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Introduction

Dans un article récent (confer [Am-Da1]), nous avons montré une minoration presque optimale pour le « minimum essentiel » de la hauteur des points algébriques d'une sous-variété algébrique V de G n m définie sur Q et géométriquement irréductible. Nous nous proposons ici de compléter ce travail en montrant qu'une minoration de même qualité est en fait valable pour le dernier des minima dits « géométriques » pour la hauteur des points de V . Commençons par rappeler plus précisément ces différentes notions.

Soit n un entier 1. Dans ce travail, nous nous restreindrons pour simplifier à la compactification naturelle G n m ֒→ P n du tore 1 . Soit V une sous-variété algébrique de G n m , définie sur Q, et géométriquement irréductible; le degré de V sera celui de son adhérence de Zariski dans P n . De même, si α = (α 1 , . . . , α n ) est un point de G n m (Q), sa hauteur normalisée ĥ(α) sera la hauteur de Weil logarithmique et absolue du point (1 : α 1 : • • • : α n ) ∈ P n (Q). Soit θ un nombre réel strictement positif. On note V (θ) := {α ∈ V (Q) tel que ĥ(α) ≤ θ} .

Le minimum essentiel de V est alors : μess (V ) := inf θ > 0, V (θ) = V .

Rappelons que le minimum essentiel de V est nul si et seulement si V est un translaté d'un sous-tore par un point de torsion : c'est un théorème de S. Zhang,confer [Zh1] pour les courbes et [START_REF] Zhang | Positive line bundles on arithmetic varieties[END_REF] plus généralement (il s'agit de la variante torique du problème dit de Bogomolov).

Rappelons enfin la notion d'indice d'obstruction; si V est une sous-variété de G n m , son indice d'obstruction, noté ω(V ), est l'infimum des degrés des hypersurfaces de G n m contenant V . Nous pouvons maintenant rappeler le résultat principal de [Am-Da1] (théorème 1.4) :

Théorème 1.1 Soit V une sous-variété2 de G n m , définie sur Q et géométriquement irréductible. Alors, si V n'est pas contenue dans un translaté d'un sous-tore strict B G n m , on a, en notant k la codimension de V :

μess (V ) c(n)ω(V ) -1 (log(3ω(V ))) -λ(k) ,
où c(n) est un nombre réel strictement positif, effectivement calculable en fonction de la dimension ambiante n, et λ(k) := 9(3k) (k+1) k .

Ce théorème est optimal à des facteurs logarithmiques près : en effet, la conjecture la plus fine que l'on peut faire sur le comportement de μess (V ) en fonction de l'indice d'obstruction est la suivante (conjecture 1.2 de op. cit.) : Conjecture 1.2 Soit V une sous-variété de G n m qui n'est pas un translaté d'un sous-tore strict de G n m . Notons B le plus petit translaté d'un sous-tore de G n m contenant V , alors :

μess (V ) c(n) ω(V, B)
.

Ici ω(V, W ) est l'indice d'obstruction de V relatif à la sous-variété W V , introduit dans la définition 1.1 de loc. cit., i. e. la quantité

min deg(Z) deg(W ) 1/ codim W (Z)
où Z parcourt l'ensemble des sous-variétés de G n m tels que V ⊆ Z W . On a donc :

ω(V, W ) deg(V ) 1/ codim W (V ) .
De plus, il est facile de voir, en tenant compte d'un résultat de M. Chardin sur la fonction de Hilbert géométrique (confer [Ch], corollaire 2, chapitre 1, page 8 et exemple 1, page 9), que :

ω(V, G n m ) ω(V ) nω(V, G n m ) .
L'indice d'obstruction relatif sert donc à tenir compte du degré du groupe ambiant, pour obtenir des résultats (ou conjectures) plus fins.

Le meilleur résultat dans la direction de la conjecture 1.2 connu précédemment était dû au second auteur de ces notes et à P. Philippon (confer [Da-Ph], théorème 1.2) :

μess (V ) 2 -41 deg(V ) -2 log(deg(V ) + 2) -2 .
Enfin, les premiers résultats quantitatifs concernant le minimum essentiel (minoration et non pas seulement non-nullité) sont dus d'une part à E. Bombieri et U. Zannier (confer [Bo-Za]) et W. Schmidt (confer [Sc]) d'autre part qui ont obtenu des minorations pluriexponentielles en le degré de V . Le lecteur pourra se reporter à [Am] et à [Da] pour plus de détails sur ces questions. Il convient de noter que toutes ces minorations ne dépendent pas d'un corps de définition de V , et ne sont fonctions que d'invariants géométriques.

Dans ce texte, nous nous intéresserons à des quantités plus fines que le minimum essentiel. Dans [Da-Ph], les auteurs ont introduit une série de « minima géométriques » notée μ• j (V ) dont nous rappelons ici la définition. Notons pour

3 j = 1, . . . , dim(V ) μ• j (V ) = sup Y inf ĥ(α), α ∈ (V \Y )(Q) où le supremum est pris sur les fermés de Zariski Y de V de la forme Y = Y 1 ∪ Y 2 , où Y 1 est
une réunion finie de sous-variétés de V de codimension j dans V et Y 2 est une réunion finie4 de translatés de sous-tores de G n m contenus dans V et de codimension < j dans V . On notera que cette suite diffère de la suite usuelle des minima successifs pour la hauteur (comme introduite par S. Zhang dans [START_REF] Zhang | Positive line bundles on arithmetic varieties[END_REF]) :

μj (V ) = sup Y ⊂V, codim V (Y )=j inf ĥ(α), α ∈ (V \Y )(Q)
par le fait que l'on exclut aussi les translatés de sous-tores au lieu de se placer simplement en codimension j.

Par définition (on notera que la première égalité n'est valable que lorsque V n'est pas un translaté d'un sous-tore),

μess (V ) = μ• 1 (V ) μ• 2 (V ) • • • μ• dim(V ) (V ) .
La suite des minima géométriques est liée aux minima de la hauteur sur l'ouvert V • , dont nous rappelons la définition et les principales propriétés. Suivant E. Bombieri-U. Zannier et W. Schmidt, pour tout sous-tore H non trivial de G n m , notons V a (H) la réunion des translatés de H contenus dans V . Notons également V a la réunion des V a (H), pour H parcourant l'ensemble des sous-tores de G n m de dimension 1, et V • son complémentaire

V • := V \ V a .
L'ensemble V a est un fermé de Zariski; de plus, il existe un ensemble fini {H 1 , . . . , H m } de sous-tores de dimension 1 tels que [Sc], Theorem 1) et, pour chaque sous-tore H l'ensemble V a (H) est un fermé de Zariski (confer [Sc], Theorem 2). Par contre, V a (H) n'est pas en général une réunion d'un nombre fini de translatés de sous-tores de G n m (confer le deuxième exemple ci-dessous). Notons que l'ouvert V • peut être vide : il suffit pour cela que le stabilisateur Stab(V ) de V soit de dimension 1. Inversement, si Stab(V ) est discret, V • est non vide.

V a = m i=1 V a (H i ) (confer
Ainsi, les μ• j (V ) ne sont en fait pas tout à fait les minima successifs de la hauteur sur l'ouvert V • (et ce, même si Stab(V ) est discret : il suffit par exemple que l'un des fermés V a (H) que l'on retire soit de dimension > dim(H)). Notons de plus que le minimum absolu de la hauteur sur V • peut être nul : il suffit que V • contienne un point de torsion. Toutefois, μ• dim(V ) (V ) n'est pas nul et peut même être minoré en fonction de n et du degré de V (cela résulte des travaux de E. Bombieri-U. Zannier et de W. Schmidt confer [Bo-Za], [Sc]).

Illustrons les notions précédentes à l'aide de quelques exemples :

Exemples : si V = {α} × G n-1 m , où α ∈ Q * , alors μess (V ) = ĥ(α). Par contre, V • = ∅, et μ• 1 (V ) = • • • = μ• n-1 (V ) = +∞. Si maintenant C est une courbe contenue dans G 2 m , de stabilisateur discret, et si V = C × G m ⊂ G 3 m , alors, on a encore μess (V ) = μess (C) et V • = ∅. Par contre, μ• 1 (V ) = μess (V ) = μess (C) ,
puisque V n'est pas un translaté d'un sous-tore mais μ• 2 (V ) = μess (C) bien que V soit une réunion de translatés de sous-groupes de codimension 1.

Ces considérations montrent que non seulement les μ• j (V ) reflètent assez bien le comportement de la hauteur sur l'ouvert V • , mais ils prennent également en compte la variation de la hauteur sur V tout entier, notamment lorsque son stabilisateur n'est pas discret.

Nous nous proposons d'étudier le dernier de ces minima géométriques, μ• dim(V ) (V ) que nous noterons pour alléger μ• (V ) dans la suite.

On peut aussi interpréter la quantité μ• (V ) comme un infimum des minima essentiels des sous-variétés de V ; plus précisément, nous verrons au lemme 2.2,

μ• (V ) = inf Z μess (Z)
où l'infimum est pris sur les sous-variétés Z de V qui ne sont pas contenues dans un translaté B d'un sous-tore de G n m tel que B ⊆ V .

Avant d'énoncer des conjectures précises sur le comportement de μ• (V ), introduisons encore une notion : on appelle indice d'interpolation de V , noté δ(V ), le plus petit entier δ pour lequel l'idéal de définition I(V ) est engendré en degré δ. Un indice d'interpolation relatif à une variété W intermédiaire est plus généralement introduit dans la définition 1.8 de [Am-Da1] : si V W , le plus petit entier δ tel qu'il existe des sous-variétés Y 1 , . . . , Y t de W de codimension 1 dans

W et degré δ telles que V = Y 1 ∩ • • • ∩ Y t est l'indice d'interpolation relatif δ(V, W ).
On peut alors conjecturer :

Conjecture 1.3 Soient V une sous-variété de G n m , et B le plus petit translaté d'un sous-tore contenant V . Alors, l'ensemble des points x de V • (Q) de hauteur ĥ(x) c(n) -1 deg(B) δ(V, B) est de cardinal fini, majoré par c(n) δ(V, B) b deg(B) b-1 , où b est la dimension de B et c(n) > 1.
Remarques : en particulier, cette conjecture affirme que

μ• (V ) c(n) -1 deg(B) δ(V, B) .
Il est intéressant de noter qu'en tout état de cause, δ(V ) est majoré par deg(V ). De plus, on voit facilement que δ(V, B) deg(B) δ(V ). Ainsi, la conjecture 1.3 entraîne en particulier :

μ• (V ) c(n) -1 deg(V ) .
Enfin, il ne semble pas possible de conjecturer une minoration dépendant d'un invariant comme l'indice d'obstruction, comme le montre l'exemple ci-dessous. La conjecture 1.3 semble donc être essentiellement optimale quant au comportement de μ• (V ) en fonction du degré de V .

Exemple : soit m un entier 1; considérons la sous-variété V de G 4 m définie par les équations :

F (x, y, z, t) := x m + y m -1 = 0 , G(x, y, z, t) := x 2 + x 3 -z -t = 0 .
On vérifie facilement que V • = V , et que V n'est contenue dans aucun translaté de soustore strict de G n m . Enfin, on voit aussi que ω(V ) 3 (en fait ω(V ) = 3). Soit C la courbe ⊂ G 2 m définie par F = 0 (vu comme polynôme de deux variables) et soit enfin (α n , β n ) une suite de points de C(Q) telle que ĥ(α n , β n ) converge vers μess (C) ∼ 1 m . On pose

P n := (α n , β n , α 2 n , α 3 n ) .
Les points P n sont donc tous dans V • , leur hauteur vérifie ĥ(P n ) 3 ĥ(α n , β n ). Ainsi, on a exhibé une suite de points de V • de hauteur c/m ce qui montre bien que μ• (V ) c/m. Pour m assez grand, ceci contredirait l'inégalité μ• (V ) c/ω(V ).

Toutefois, il n'est pas exclu que l'on puisse se contenter d'un indice de quasi interpolation défini comme suit.

Définition 1.4 Si V W , l'indice de quasi interpolation de V relativement à W est le plus petit entier δ pour lequel il existe des sous-variétés Y 1 , . . . , Y t de W , de degré δ telles que

V soit une composante isolée de Y 1 ∩ • • • ∩ Y t . On le notera δ(V, W ), et simplement δ(V ) si W = P n .
Bien entendu, on dispose des inégalités :

ω(V ) δ(V ) δ(V ) deg(V ) .
(1)

De plus, δ(V ) = δ(V ) si V est une intersection complète.

Dans la direction de la conjecture 1.3, nous obtenons le théorème suivant :

Théorème 1.5 Soit V une sous-variété de G n m . On a : μ• (V ) > c ′ (n) -1 δ(V ) -1 log(3δ(V )) -λ(n-1) , où c ′ (n) > 1 et λ(k) = 9(3k) (k+1
) k est la fonction de k introduite au théorème 1.1. Il existe donc un nombre fini de translatés de sous-tores B 1 , . . . , B m contenus dans V tels que

ĥ(α) c ′ (n) -1 δ(V ) -1 log(3δ(V )) -λ(n-1)
,

pour tout α ∈ V (Q), α ∈ m j=1 B j .
Remarques :

(i) le théorème 1.5 établit à une puissance du logarithme du degré près la minoration conjecturée pour le dernier des minima géométriques, tout au moins lorsque le degré du groupe ambiant est négligé (comparer avec la conjecture 1.3 avec B = G n m ) ;

(ii) ce résultat semble indiquer qu'au moins pour les compactifications naturelles du groupe multiplicatif G n m , on puisse conjecturer que le bon invariant pour ce problème est bien δ(V ) ;

(iii) rappelons que la meilleure minoration connue précédemment était due au second auteur et à P. Philippon (confer [Da-Ph], théorème 1.3) et affirmait que si

q(V ) := 2 n+4 dim(V )+22 deg(V )(log(deg(V ) + 1)) 2/3 7 dim(V ) ,
alors, l'ensemble des points de V • (Q) de hauteur ĥ(x) 1 q(V ) 3/4 est fini, de cardinal au plus q(V ), soit une minoration de μ• (V ) essentiellement du type deg(V ) -7 dim(V ) , à comparer à δ(V ) -1-ε dans le théorème 1.5. Les résultats antérieurs (confer E. Bombieri-U. Zannier, [Bo-Za] et W. Schmidt, [Sc]) étaient quant à eux pluri-exponentiels en le degré de V .

Si la minoration de μ• (V ) dans le théorème 1.5 est assez satisfaisante (à l'exception peutêtre des valeurs de c(n) et λ(n -1)), nous ne disons rien ici sur le nombre de points exceptionnels. Rappelons qu'une des applications d'énoncés comme le théorème 1.5 est une estimation pour le nombre de points de hauteur bornée de V • se trouvant dans un sous-groupe de rang fini. Plus précisément, soient Γ ⊂ G n m (Q) un sous-groupe de rang r, et a un nombre réel positif. On cherche à majorer le nombre N de points de V • (Q) ∩ Γ de hauteur a. Ainsi, du théorème 1.3 de [Da-Ph], on déduit que (confer théorème 1.5 de loc. cit.)

N a r • q(V ) r+1 .
Une telle borne est pour sa part cruciale pour les applications ultérieures. On pourra se reporter en particulier aux travaux de J.-H. Evertse et H.-P. Schlickewei (confer [Ev-Sc]) et de G. Rémond (confer [Ré]) pour plus de détails sur ces questions. Pour parvenir à une telle estimation, on ne peut se contenter d'une minoration (même très bonne) pour μ• (V ) : il faut parallèlement conserver un contrôle sur le nombre de points exceptionnels (i. e. de hauteur exceptionnellement petite) . Toutefois, si les méthodes introduites ici sont très performantes pour la hauteur, elles ne le sont guère pour le nombre de points exceptionnels, et les résultats seraient très comparables à ceux déjà obtenus dans [Da-Ph].

On peut plus généralement chercher à estimer la quantité

D := m j=1 deg B j
(voir la formulation du théorème 1.5)5 en fonction du paramètre δ(V ). Bien sûr, l'entier D majore le nombre de points exceptionnels dans V • , mais on peut dire plus : on contrôle ainsi la distribution des points exceptionnels dans l'ensemble de V (et donc en particulier sur le fermé V \ V • ). Par exemple, on obtient ainsi des informations précises même si V • est vide.

On peut noter qu'un énoncé de ce type est en fait démontré dans [Da-Ph] (confer la proposition 5.6) : l'ensemble des points de V (Q) de hauteur q(V ) -3/4 est contenu dans une réunion finie de translatés de sous-tores

B ′ 1 , . . . , B ′ m ′ contenus dans V tels que m ′ j=1 deg(B ′ j ) q(V ).
Il semble raisonnable de renforcer la conjecture 1.3 pour inclure dans les exceptions les translatés par des sous-tores non triviaux, et conjecturer (en reprenant les notations de la conjecture 1.3) que l'ensemble des points de V (Q) de hauteur

c(n) -1 deg(B) δ(V, B)
est contenu dans une réunion de translatés de sous-tores contenus dans V dont la somme D des degrés est majorée par :

D c(n) δ(V, B) b deg(B) b-1 .
De plus, dans le cadre du théorème 1.5 (B = G n m ), une borne du type

D c ′ (n)δ(V ) n log(3δ(V )) κ(n)
pour la somme D := m j=1 deg B j , est peut-être accessible à l'aide des techniques actuelles6 . En dehors de son intérêt propre, un tel résultat aurait notamment comme conséquence la borne suivante pour le nombre N de points de V • (Q) ∩ Γ de hauteur a : N c(n, ε)a r δ(V ) r(n+1)+ε , une amélioration substantielle du théorème 1.4 de [Da-Ph].

Il est intéressant de noter qu'en fait une borne polynomiale en le degré de V pourrait être obtenue pour D (essentiellement de l'ordre de deg(V ) 7 dim(V ) ), en combinant les méthodes du paragraphe 5 de loc. cit. (confer en particulier la proposition 5.6 de ce texte) avec celles du présent article.

Signalons enfin que des résultats partiels vers ce type de questions pour des surfaces dans G 3 m ont été récemment obtenus par C. Pontreau (confer [Pon]).

La preuve du théorème 1.5 occupera le paragraphe 3. Ce dernier s'obtient à partir d'une variante quantitative du théorème 1.1 (le théorème 2.1), à l'aide d'une récurrence sur la dimension qui est assez proche de l'argument que l'on trouvera dans notre texte [Am-Da2] qui traitait pour sa part du « dernier minimum arithmétique ». Il est à noter que la récurrence est très différente de celle employée dans [Da-Ph] (arguments d'intersection, et théorèmes de Bézout) qui est elle très coûteuse en terme de qualité des bornes. La preuve du théorème 2.1 occupe pour sa part le paragraphe 2. Comme cette dernière est très proche de celle du théorème 1.1, nous avons, pour garder à ce texte une longueur raisonnable et éviter trop de redites, fait appel très souvent aux arguments de [Am-Da1]. Il est donc conseillé au lecteur de garder cette référence à sa portée pour suivre les démonstrations. Que le lecteur préférant un texte plus auto-explicite veuille bien nous en excuser.

C'est un plaisir pour nous de remercier ici chaleureusement l'arbitre qui par ses remarques a contribué à préciser des points par rapport à notre manuscrit initial et améliorer la présentation générale de ce texte.

Résultats auxiliaires

Nous précisons dans ce paragraphe le théorème 1.1 : dans [Am-Da1], nous avons supposé que V n'est contenue dans aucun translaté d'un sous-tore propre de G n m , pour minorer son minimum essentiel en fonction de ω(V ). Toutefois, comme c'est souvent le cas en géométrie diophantienne on peut, dans le cas dégénéré, obtenir une information quantitative précise. Ici, cela reviendrait à proposer l'alternative suivante : ou bien le minimum essentiel de V est assez grand, ou bien V est contenue dans un translaté B d'un sous-tore strict de G n m dont le degré est contrôlé précisément en fonction des données du problème (ici, ω(V ), la dimension du groupe ambiant et la dimension de V ). C'est très précisément ce qui se produit : Théorème 2.1 Pour tout entier n 1, il existe un nombre réel strictement positif c ′ (n), effectivement calculable, tel que la propriété suivante soit vraie. Soit V une sous-variété de G n m de codimension k. Alors, ou bien il existe un translaté d'un sous-tore B G n m contenant V , tel que :

(deg(B) 1/ codim(B) c ′ (n)ω(V ) log(3ω(V )) λ(k) , ou bien : μess (V ) c ′ (n) -1 ω(V ) -1 log(3ω(V )) -λ(k)
; comme dans le théorème 1.1, le nombre λ(k) est explicitement connu et vaut :

λ(k) := 9(3k) (k+1) k .
Démonstration : on suit la preuve du théorème 1.4 de [Am-Da1] dont nous conservons les notations; nous indiquons simplement les passages où il convient d'être plus précis. Soit V une sous-variété propre et Q-irréductible de G n m de codimension k dont on suppose qu'elle a un petit minimum essentiel :

μess (V ) < c ′ (n) -1 ω(V ) -1 log(3ω(V )) -λ(k)
; Nous pouvons alors appliquer la proposition 5.5 de op. cit.7 : en particulier, on est assuré de l'existence de deux sous-variétés propres et Q-irréductibles W i-1 et W i de G n m , de la même dimension, et de l'existence de certains entiers l 1 , . . . , l i ∈ N * qui vérifient :

dim(W i-1 ) = dim(W i ) , [l i ]W i-1 ⊆ W i , [l 1 . . . l i-1 ]V ⊆ W i .
De plus, l i est premier avec Stab(W i-1 ) : Stab(W i-1 ) 0 . Si W i n'est pas un translaté d'un sous-tore propre de G n m , alors la suite de la preuve du théorème 1.4 de [Am-Da1] conduit à une contradiction. On peut donc supposer que W i est un translaté d'un sous-tore propre; il s'ensuit que

B := [l 1 . . . l i-1 ] -1 W i est une réunion de translatés d'un sous-tore propre et contient V (car W i contient [l 1 . . . l i-1 ]V ).
Choisissons une composante, que nous noterons B, de B contenant V . Pour démontrer le théorème 2.1, il suffit de majorer le degré de B.

En appliquant les relations (ii) de la définition 5.3 et la scolie 5.4 de op. cit., on tire :

(deg(W i ) 1/ codim(W i ) (P i+1 . . . P k ) 2 ω([l 1 . . . l i ]V ) (P 1 . . . P k )(P i+1 . . . P k )ω(V ) , d'où (rappelons que W i est un translaté d'un sous-tore propre de G n m ) (deg(B) 1/ codim(B) = (deg(W i ) 1/ codim(W i ) (P 1 . . . P k ) 2 ω(V ) .
Par ailleurs, (P 1 . . . P k ) 2 = (C 2 0 log(3ω(V ))) u , où (confer les choix des paramètres P i et l'inégalité (5.2) dans op. cit.) :

u := 4(3k) k+1 (ρ 1 + • • • + ρ k ) 8(3k) k+1 ρ 1 < 9(3k) (k+1) k = λ(k) .
On a donc :

(deg(B) k) . Le théorème 2.1 est donc entièrement établi.

1/ codim(B) ω(V )(C 2 0 log(3ω(V ))) λ(
On se propose, au paragraphe 3, de déduire le théorème 1.5 du résultat précédent, au moyen d'une récurrence sur la dimension du groupe ambiant, analogue à celle utilisée dans la preuve du théorème 1.4 de [Am-Da2]. Pour ce faire, nous avons d'abord besoin d'exprimer μ• (V ) en fonction du minimum essentiel de certaines sous-variétés de : Lemme 2.2 Soit V une sous-variété de G n m . On a alors :

μ• (V ) = inf Z μess (Z) ,
où l'infimum est pris sur les sous-variétés Z de V , qui ne sont pas contenues dans un translaté B ⊆ V d'un sous-tore de G n m .

Démonstration : nous commençons par montrer que inf Z μess (Z) μ• (V ); soit donc θ un nombre réel strictement supérieur à inf Z μess (Z) . Par définition, il existe donc une sous-variété Z de V , qui n'est pas contenue dans un translaté B d'un sous-tore de G n m tel que B ⊆ V et telle que Z(θ) est Zariski-dense dans Z. Supposons que V (θ) soit contenu dans une réunion finie Σ de translatés de sous-tores contenus dans V . On a alors : Z(θ) ⊆ Σ et donc Z ⊆ Σ par densité. On en déduit que Z est contenu dans une composante irréductible de Σ, i. e. dans un translaté B ⊆ V d'un sous-tore (car Z est irréductible); c'est une contradiction. En conclusion, V (θ) n'est pas contenu dans une réunion finie de translatés de sous-tores contenus dans V , d'où, par définition de μ• (V ),

θ μ• (V ) .
Montrons maintenant que inf Z μess (Z) μ• (V ). Pour cela, soit θ un réel, θ > μ• (V ); l'ensemble V (θ) n'est donc pas contenu dans une réunion finie de translatés de sous-tores contenus dans V . On en déduit l'existence d'une composante irréductible Z de la clôture de Zariski de V (θ) qui n'est pas contenue dans un translaté B ⊆ V d'un sous-tore de G n m . Remarquons que V (θ) ∩ Z est Zariski-dense dans Z. Donc μess (Z) θ. Ce qui donne :

inf Z μess (Z) θ .
Le lemme 2.2 est donc établi.

3 Démonstration du théorème 1.5

Nous pouvons maintenant démontrer le théorème 1.5. Nous allons procéder par récurrence sur n. Dans le principe, nous suivons la démarche introduite8 pour la preuve du théorème 1.4 de [Am-Da2] : si une sous-variété Z de V a un trop petit minimum essentiel, alors, elle est contenue dans un translaté d'un sous-groupe, dont nous contrôlons le degré par le théorème 2.1. On peut alors utiliser une bonne paramétrisation de ce sous-groupe pour se ramener à une situation en dimension ambiante plus petite.

Grâce au lemme 2.2, il suffit de montrer que pour tout n ∈ N, pour toute sous-variété V de G n m , et pour toute sous-variété Z de V qui n'est pas contenue dans un translaté B ⊆ V d'un sous-tore, on a :

μess (Z) > c ′ (n) -1 δ(V ) -1 (log(3δ(V ))) -λ(n-1) ,
pour un certain nombre réel c ′ (n) > 0.

Si n = 1, cette propriété est vraie (V est un point, donc un translaté d'un sous-tore contenu dans celui-ci). Supposons donc cette propriété vraie pour un certain entier n -1 1 et supposons par l'absurde qu'elle soit fausse pour n. Soit C 0 (n) un nombre réel assez grand (que l'on pourrait calculer effectivement à partir de la constante c(n) du théorème 2.1). Il existe alors un entier δ 1, une sous-variété algébrique

Q-irréductible V de G n m telle que δ(V ) δ et une sous-variété Z ⊆ V de codimension k, qui n'est pas contenue dans un translaté B ⊆ V d'un sous-tore et telle que μess (Z) < C 0 (n) -1 δ -1 (log(3δ)) -λ(n-1) . Remarquons que ω(Z) δ (puisque Z ⊆ V , par définition ω(Z) ω(V ) δ(V )) et que λ(k) λ(n -1). Donc μess (Z) < C 0 (n) -1 ω(Z) -1 (log(3ω(Z))) -λ(k)
et le théorème 2.1 nous assure que Z est contenue dans un certain translaté α•H d'un sous-tore H G n m de codimension k ′ k, dont le degré vérifie l'inégalité :

(deg(H)

1/k ′ c(n)δ(log(3δ)) λ(n-1) . (2) 
De plus, il n'y a pas de restriction à supposer que α ∈ Z et est tel que ĥ(α) 2μ ess (Z); on a alors : μess (α -1 • Z) ĥ(α -1 ) + μess (Z) n ĥ(α) + μess (Z) 3nμ ess (Z) .

(3)

Fixons une base du sous-module

Λ := λ ∈ Z n , tel que ∀ x ∈ H, x λ = 1 ⊆ Z n
des relations de H et notons A la matrice n×k ′ dont les lignes sont formées par les coordonnées de cette base par rapport à la base canonique de R n . Notons E = Λ ⊗ Z R. On sait alors (confer [Be-Ph]) que le degré de H est égal au maximum des valeurs absolues des déterminants des mineurs k ′ ×k ′ de A et que le volume Vol(E/Λ) de Λ (par rapport à la métrique euclidienne usuelle) est égal à la moyenne quadratique des mêmes déterminants. On a alors :

Vol(E/Λ) n k ′ 1/2 deg(H) n k ′ deg(H) .
Soit C le cube [-1/2, 1/2] n ⊂ R n ; par un théorème de Vaaler (confer [Va]), on a Vol(C ∩ E) 1 et donc le théorème de Minkowski nous fournit un élément non nul λ ∈ Λ tel que :

D := max 1 i n |λ i | n deg(H) 1/k ′ . (4) 
On peut supposer que λ 1 , . . . , λ n sont globalement premiers entre eux (car H est connexe); quitte à renuméroter les variables et à changer les signes, on peut également supposer λ n = D.

Le sous-tore H ′ d'équation

x λ = 1 contient donc H, il est de degré au plus nD et on dispose de la paramétrisation ϕ :

G n-1 m ։ H ′ définie par : ϕ(x) := x λn 1 , . . . , x λn n-1 , x -λ 1 1 . . . x -λ n-1 n-1 . Soit Z ′ composante irréductible de ϕ -1 α -1 • Z et notons V ′ une composante irréduc- tible de ϕ -1 (α -1 • V ) contenant Z ′ . On a alors : (a) la sous-variété V ′ de G n-1
m est une composante irréductible du lieu des zéros de polynômes dont le degré satisfait l'inégalité : Par hypothèse de récurrence, il existe une constante c ′ (n -1) > 0 telle que 3nD -1 μess (Z) μess (Z ′ ) > c ′ (n -1) -1 (nDδ) -1 log(3nDδ)

max{λ n , |λ 1 + • • • + λ n-1 |}δ nDδ ; en particulier, δ(V ′ ) nDδ; (b) par construction, Z ′ ⊆ V ′ et Z ′ n'est
-λ(n-2) , d'où, compte tenu de la majoration (4), μess (Z) c ′ (n -1) -1 (3n 2 ) -1 δ -1 log(3n 2 deg(H)δ)

-λ(n-2)

.

L'inégalité (2) majorant le degré de H, on voit pour finir que l'on peut choisir la constante C 0 (n) assez grande de telle sorte que : C 0 (n) -1 δ -1 (log 3δ) -λ(n-2)

C 0 (n) -1 δ -1 (log 3δ) -λ(n-1) .

On aboutit à une contradiction, ce qui termine la preuve du théorème 1.5.
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  contenue dans aucun translaté d'un sous-tore inclus dans V ′ . En effet, si Z ′ ⊆ B ′ pour un certain translaté d'un sous-toreB ′ ⊆ V ′ , alors on aurait 9 Z = α • ϕ(Z ′ ) ⊆ B avec B := α • ϕ(B ′ ) ⊆ V translaté d'un sous-tore, ce qui contredit le choix de Z.(c) les minima essentiels de Z et Z ′ sont liés par l'inégalité (confer la relation (3)) :3nμ ess (Z) μess (α -1 • Z) = μess (ϕ(Z ′ )) λ n μess (Z ′ ) = D μess (Z ′ ) .

  3n 2 c ′ (n -1) log(3n 2 deg(H)δ) λ(n-2) C 0 (n) log(3δ) λ(n-2).Pour un tel choix de C 0 (n) on a nécessairement : μess (Z)

L'essentiel des problématiques et une partie des résultats peuvent se formuler plus généralement pour une compactification équivariante du tore. Nous ne rentrerons pas dans ces considérations au cours de ce texte.

D'une manière générale, toutes les sous-variétés de G n m considérées dans cet article seront supposées algébriques, définies sur Q et géométriquement irréductibles.

Par convention l'infimum sur l'ensemble vide vaut +∞.

En fait, la définition des μ• j (V ) de [Da-Ph] est légèrement ambiguë. On pourrait la comprendre soit en prenant naturellement Y2 comme ici, soit en prenant pour Y2 la réunion des V a (H) où la codimension de H est < j. Les résultats démontrés dans loc. cit. utilisent toutefois la même définition qu'ici et permettent de lever l'ambiguïté.

Il convient de remarquer que D est en fait fonction de la minoration demandée pour la hauteur.

Quitte à modifier éventuellement les fonctions λ(k) et c ′ (n).

L'hypothèse que V n'est contenue dans aucun translaté de sous-tore propre de G n m , qui apparaît dans l'énoncé de cette proposition, n'est en fait pas utilisée dans sa preuve. Cette dernière n'apparaît qu'à une étape ultérieure de la démonstration, au paragraphe 5.3.

, nous nous intéressons au minimum pour la hauteur des points dans l'ouvert V ⋆ de V , c'est-à-dire V privé de la réunion des sous-variétés de torsion contenues dans V . Pour ce minimum, on ne peut espérer minorer la hauteur uniquement en fonction de données issues de la géométrie de V ; le degré d'un corps de définition pour V intervient nécessairement : en dimension n = 1, V est la réunion des conjugués d'un nombre algébrique (non de torsion), V ⋆ = V et l'on est ramené au problème de Lehmer classique. En contrepartie, on peut obtenir une minoration valable pour tous les points sans exception de V ⋆ . De même, les méthodes de preuve pour les deux questions (minimum sur V • ou V ⋆ ) diffèrent. Toutefois, de nombreuses similitudes existent entre les deux questions, et il n'est donc pas surprenant que certains arguments soient communs ou tout au moins voisins.

Rappelons que comme Z ⊆ α • H, on a nécessairement α • ϕ(Z ′ ) = Z.