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Abstract. We study the Josephson oscillations of two coupled elongated condensates. Linearized calcula-
tions show that the oscillating mode uniform over the length of the condensates (uniform Josephson mode)
is unstable : modes of non zero longitudinal momentum grow exponentially. In the limit of strong atom
interactions, we give scaling laws for the instability time constant and unstable wave vectors. Beyond the
linearized approach, numerical calculations show a damped recurrence behavior : the energy in the Joseph-
son mode presents damped oscillations. Finally, we derive conditions on the confinement of the condensates
to prevent instabilities.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices and topological excitations – 03.75.Kk Dynamic properties of condensates; collective and hydro-
dynamic excitations, superfluid flow

1 Introduction

Josephson oscillations arise between two Bose-Einstein condensates coupled by tunneling effect. They have been ob-
served in superfluid Helium[1] and in superconductors[2] and have recently been achieved in dilute atomic BEC in a
double well potential[3]. The physics of two coupled condensates has been extensively studied in a two modes model,
where only two single particle modes are involved[4,5]. For atoms interacting in each well through a two-body inter-
action, different regimes are reached depending on the ratio between the tunneling strength to the interaction energy
of atoms in each well[6,4]. For small interaction energy, one expects to observe Rabi oscillations. For large interaction
energy one enters the Josephson regime. In this regime, oscillations around equilibrium configuration have a reduced
amplitude in atom number and their frequency depends on the mean field energy. Finally, for very large interaction
energy, quantum fluctuations are no longer negligible : the system is in the so called Fock regime and oscillations
of atoms between the wells do not occur any more. In this paper, we assume this regime is not reached. Oscillations
between the two wells, both in the Rabi and in the Josephson regime, are then well described by a mean field approach.

Atom chips[7] are probably good candidates to realize Josephson oscillations of Bose-Einstein Condensates as they
enable the realization of micro-traps with strong confinement and flexible geometries. A possible configuration to
realize a tunnel coupling between BEC on an atom-chip is proposed in [8]. In this proposal, the two condensates are
very elongated and are coupled all along their longitudinal extension. With such an elongated geometry, both the
Rabi and the Josephson regime could be accessed. However, in this case, tunnel coupling may be larger than the
longitudinal frequency and the two modes model a priori breaks down. In this paper, we are interested in the stability
of the uniform Josephson mode where all the atoms oscillate between the two wells independently of their longitudinal
position. In the absence of interaction between atoms and if the transverse and longitudinal trapping potentials are
separable, the longitudinal and transverse degree of freedom are decoupled and one expects to observe stable Rabi
oscillations between the condensates. On the other hand interactions between atoms introduce non linearities that may
couple the two motions. For a homogeneous situation such as atoms trapped in a box-like potential, uniform Josephson
oscillations are a solution of the mean field evolution equations and are a priori possible, even in presence of interactions
between atoms. However, the non linearities introduced by interactions between atoms may cause instability of this
uniform Josephson mode. Similar modulational instabilities appear in many situations of nonlinear physics such as
water waves propagation[9] or light propagation in a non linear fiber[11]. In the context of Bose Einstein condensates,
they have been observed in presence of a periodic potential, at positions in the Brillouin zone where the effective mass
is negative[12,13,14]. In our case a modulational instability would cause uniform Josephson oscillations to decay into
modes of non vanishing longitudinal momentum. The goal of this paper is to investigate those instabilities.
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We assume that all the relevant frequencies (interaction energy and tunnel coupling) are much smaller than the
transverse oscillation frequencies in each well so that we can consider only a one dimensional problem. Thus, the
system we consider is described by the Hamiltonian

H =
∫

dz
{

−~
2

2m

[

ψ†
1(z)

∂2

∂z2ψ1(z) + ψ†
2(z)

∂2

∂z2ψ2(z)
]

+U(z)
[

ψ†
1(z)ψ1(z) + ψ†

2(z)ψ2(z)
]

+ g
2

[

ψ†
1(z)ψ

†
1(z)ψ1(z)ψ1(z) + ψ†

2(z)ψ
†
2(z)ψ2(z)ψ2(z)

]

−γ
[

ψ†
1(z)ψ2(z) + ψ†

2(z)ψ1(z)
]}

,

(1)

where g is the one-dimensional coupling constant and U(z) is the longitudinal trapping potential. For a harmonic
transverse confinement for which ω⊥ ≪ ~

2/(ma2), we have g = 2~ω⊥a, where a is the scattering length[15]. The
parameter γ describes the tunnel coupling.

We are interested in the stability of uniform Josephson oscillations around the equilibrium configuration where the
two condensates have the same phase and equal longitudinal density. In the sections 2-4, we consider a homogeneous
configuration where U(z) = 0. In the sections 2 and 3, we calculate the linearized evolution of modes of non zero
longitudinal momentum in the presence of uniform Josephson oscillations. In the section 2, we give results of a
calculation valid both in the Josephson and in the Rabi regime. In section 3, we show that, in the Josephson regime,
the system is well described by a modified Sine-Gordon equation. For small amplitude oscillations, we derive scaling
laws for the instability time constant and the wave vectors of the growing modes. In section 4, we go beyond the previous
linearized approaches and present numerical results. We observe damped oscillations of the uniform Josephson mode
amplitude. Such oscillations are similar to the Fermi-Pasta-Ulam recurrence behavior[16,17]. In the last section (5), we
present numerical calculations in the case of a harmonic longitudinal confinement. We show that Josephson oscillations
are stable for a sufficiently strong confinement and we give an approximate condition of stability.

2 Numerical linearized calculation

To investigate whether Josephson oscillations are unstable with respect to longitudinal excitations, we use a linearized
calculation around the time-dependent solution corresponding to uniform Josephson oscillations. Such oscillations are
described by the z-independent mean fields ϕ1 and ϕ2 describing the two condensates which obey the time dependent
Gross-Pitaevski equation

i~
d

dt
ϕ1 = g|ϕ1|2ϕ1 − γϕ2 + (γ − ρ0g)ϕ1

i~
d

dt
ϕ2 = g|ϕ2|2ϕ2 − γϕ1 + (γ − ρ0g)ϕ2

. (2)

We added to the Hamiltonian a chemical potential term γ − ρ0g, where ρ0 is the density of each condensate at
equilibrium. We recover here the well known results established for a two modes model[4,5,6]. More precisely, writing

ϕ1 =
√

N1/L eiθ1 and ϕ2 =
√

(N −N1)/L eiθ2 where L is the size of the system, Eq.2 implies that the conjugate
variables θ1 − θ2 and k = (N1 − N2)/2 evolve according to the non rigid pendulum Hamiltonian Hp = ECk

2/2 +

EJ

√

1 − 4k2/N2 cos(θ1−θ2) where the charge energy is Ec = 2g/L and the Josephson energy is EJ = γN . We consider
oscillations of θ1 − θ2 around 0 of amplitude Θosc. Writing ψ1 = ϕ1 + δψ1 and ψ2 = ϕ2 + δψ2 and linearizing the time
dependent Gross-Pitaevski equation of motion derived from 1, we obtain

i~
d

dt







δψ1

−δψ+
1

δψ2

−δψ+
2






=

(

L1 C
C L2

)







δψ1

−δψ+
1

δψ2

−δψ+
2






. (3)

Here, for i = 1, 2,

Li =

(

− ~
2

2m

∂
2

∂z2 + 2g|ϕi|2 − ρ0g + γ −gϕ2

i

gϕ∗

i

2 ~
2

2m

∂
2

∂z2 − 2g|ϕi|2 + ρ0g − γ

)

. (4)

and the coupling term is

C =

(

−γ 0
0 γ

)

(5)

Instabilities arise if there exist modes growing exponentially in time under Eq.3. The evolution matrix is invariant
under translation so that we can study independently plane waves modes eikz(u1, v1, u2, v2), the second derivatives
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Fig. 1. Evolution of the square amplitude of the symmetric (fat lines) and antisymmetric (thin lines) excitations of wave vector
k = 0.1

√
mρ0g/~ (a) and k = 0.3

√
mρ0g/~ (b). Those graphs are computed for γ = 0.1ρ0g and a uniform Josephson oscillation

amplitude Θosc = 0.6.

in L1 and L2 being replaced by −k2. Note that the evolution of excitations depends only on the four parameters k,
ρ0g, γ and Θosc. For a given k component, we numerically evolve equations 2 and 3. Fig.1 gives the evolution of the
square amplitude of the symmetric mode |us|2 = |u1 + u2|2 and of the antisymmetric mode |ua|2 = |u1 − u2|2 for
two different k vectors, for γ = 0.1ρ0g and for Θosc = 0.6. For these calculations, we choose the initial condition as
(u1, v2, u2, v2) = (1,−1,−1, 1). In the two cases, we observe a fast oscillation at a frequency close to the frequency

of the antisymmetric mode
√

(2ρ0g + 2γ + ~2k2/2m)(2γ + ~2k2/2m) and a slower oscillation at a frequency close to

that of the symmetric mode
√

(2ρ0g + ~2k2/2m)~2k2/2m[18]. On top of this, we observe, for k = 0.1, an exponential
growth e2Γt of |u1+u2|2 and |u1−u2|2 , signature of an unstability. We find that, for given ρ0g and Θosc, the instability
domain in k is [0, kmax]. Fig.2 gives the maximum growth rate Γ and the maximum unstable wave vector kmax.

3 Calculation in the Josephson limit

In this section, we focus on the Josephson regime where γ ≪ ρ0g[10]. In this regime the amplitude of oscillations in the
relative density δρ remains small compared to the mean density and one can assume ρ1 = ρ2 in the Josephson energy
term of the Hamiltonian. Furthermore, we restrict ourselves to long wavelength excitations described by phonons and
we neglect anharmonicity of phonons. Then, the Hamiltonian reduces to

HJ = Hs +HSG +Hc, (6)

where, writing ψ1 =
√
ρ1e

iθ1 , ψ2 =
√
ρ2e

iθ2 , θa = θ1 − θ2, θs = θ1 + θ2, ρa = (ρ1 − ρ2)/2 and ρs + ρ0 = (ρ1 + ρ2)/2,

Hs =

∫

(

~
2ρ0

4m

(

∂θs

∂z

)2

+ gρ2
s

)

dz (7)

describes the symmetric phonons,

HSG =

∫

(

~
2ρ0

4m

(

∂θa

∂z

)2

+ gρ2
a − 2γρ0(cos(θa) − 1)

)

dz (8)
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Fig. 2. Maximum instability rate of excitations (a) and maximum wave vector k of unstable modes (b) as a function of the
amplitude of the relative phase oscillations for γ = 0.05ρ0g (stars and solid line) γ = 0.1ρ0g (crosses and dashed line) and
γ = 0.2ρ0g (circles and dotted line). The points are the results of the linearized numerical calculations presented in section 2
and are given with a precision of 10%. The continuous lines are given by diagonalising the four by four matrix as presented in
section 3.

is the Sine-Gordon Hamiltonian and

Hc = −2γ

∫

ρs(cos(θa) − 1)dz (9)

is a coupling between the symmetric and antisymmetric modes. The Sine-Gordon Hamiltonian has already been intro-
duced in the physics of elongated supraconducting Josephson junction[2]. In those systems, symmetric modes would
have a very large charge and magnetic energy and do not contribute. The Sine-Gordon model has been extensively
studied[19]. In particular, it has been shown that, for a Sine-Gordon Hamiltonian, oscillations of well defined momen-
tum (in particular k = 0) present Benjamin-Feir instabilities[19]. Our system is not described by the Sine-Gordon
Hamiltonian because of the presence of Hc. In the following, we derive results about stability of our modified Sine-
Gordon system. As we will see later, we recover results close to that obtained for the Sine-Gordon model.

The Josephson oscillations correspond to oscillations where ρa = ρosc and θa = θosc are independent of z. They
are given by











∂ρosc

∂t
= 2γρ0 sin(θosc)/~

∂θosc

∂t
= −2gρosc/~

(10)

They also induce an oscillation θ
(s)
osc of θs given by

∂θ
(s)
osc

∂t
= −2γ (cos(θosc) − 1) /~. (11)

To investigate whether some non vanishing k modes are unstable in presence of a Josephson oscillation, we linearize, as
in the previous section, the equation of motion derived from Eq.6 around the solution ρosc, θosc. Because of translational
invariance, we can study independently the evolution of modes of well defined longitudinal wave vector k. Writing

ρ1 = ρ0 + ρosc + (δρa + δρs)e
ikz , ρ2 = ρ0 − ρosc + (−δρa + δρs)e

ikz , θ1 = (θ
(s)
osc + θosc + (δθs + δθa)eikz)/2, and
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θ2 = (θ
(s)
osc − θosc + (δθs − δθa)eikz)/2, we find the evolution equation

~
d

dt









δρa/ρ0

δθa

δρs/ρ0

δθs









=









0 − ~
2
k
2

2m
+ 2γ cos(θosc) 2γ sin(θosc) 0

−2ρ0g 0 0 0

0 0 0 − ~
2
k
2

2m

0 2γ sin(θosc) −2ρ0g 0

















δρa/ρ0

δθa

δρs/ρ0

δθs









.

(12)

We solved numerically Eq.10 and Eq.12 and we find that modes of low k wave vectors are unstable. Fig.3 gives the
instability rate and the maximum k wave vector of unstable modes. Those results agree within 10% to the more general
results of the previous section as long as γ/ρ0g < 0.2 and the oscillation amplitude fulfills Θosc < 0.6.

To get more insight into the physics involved and to obtain scaling laws for the instability rate and the instability
range in k, we will perform several approximations. The evolution matrix M of Eq.12 is periodic in time with a period
ωJ . We can thus use a Floquet analysis[20] and look for solutions of Eq.12 in the form

eiνt
+∞
∑

n=−∞
einωJ tcn = eiνt

+∞
∑

n=−∞
einωJ t







c1n

c2n

c3n

c4n






. (13)

Expanding Eq.12 for each Fourier component, we find

νcn = −ωJncn − iM0cn − i
∑

m

Mmcn−m, (14)

where the time independent matrices Mn are the Fourier components

Mm =
ωJ

2π~

∫ 2π

ωJ

0

e−imωJ tM(t)dt (15)

Thus, solutions of Eq.12 are found as eigenvalues of the linear set of equations (14). The mode is unstable if there
exists an eigenvalue of non vanishing real part and its growth rate is the real part of the eigenvalue.

For Θosc = 0, only the dc component M0 is not vanishing and its eigenvalues are ±ωa = ±i
√

2ρ0g(2γ + ~k2/2m)

and ±ωs = ±i~k
√

ρ0g/m corresponding, for each Fourier component n, to the symmetric modes c
(s)
± n

and antisym-

metric modes c
(a)
± n

. The four states c
(a)
− −1

, c
(s)
− 0

, c
(s)
+ 0

and c
(a)
+ 1

form a subspace almost degenerate in energy and of

energy far away from the other states as depicted Fig.4. Thus, we will restrict ourselves to those states in the following.
In the limit of oscillations of small amplitude Θosc, the matrix elements of M can be expanded to second order in
θosc. Furthermore, the oscillations are well described by θosc = Θosc cos(ωJ t), where ωJ = 2

√
γρ0g(1−Θ2

osc/16)/~. We

then find that, in the 4 dimensional subspace spanned by (c
(a)
− −1

, c
(s)
− 0

, c
(s)
+ 0

,c
(a)
+ 1

), the eigenvalue ν of Eq.14 are the

eigenvalues of the four by four matrix

M =















i(−ωa + ωJ + γΘ2
oscf

2
a/4) −iγΘoscfa/(2fs) γΘoscfa/(2fs) −γΘ2

oscf
2
a/8

iγΘoscfa/fs/2 iωs 0 −γΘoscfa/(2fs)

γΘoscfa/(2fs) 0 −iωs −iγΘoscfa/(2fs)

−γΘ2
oscf

2
a/8 γΘoscfa/(2fs) iγΘoscfa/(2fs) i(ωa − ωJ − γΘ2

oscf
2
a/4)















(16)

where fa = (2ρ0g/(~
2k2/2m+ 2γ))(1/4) and fs = (4mρ0g/~

2k2)(1/4).
We numerically diagonalise this matrix and find the instability rate as the largest real part of the eigenvalues. For

a given oscillation amplitude Θosc, scanning the wave vector k, we find the largest instability rate and the maximum
wave vector of unstable modes. Fig.3 compare those results with the values obtained by integration of Eq.12. We find
a very good agreement in the range θ < 0.6 and γ/ρ0g < 0.1. Finally, in Fig.2, we compare the instability rate and the
maximum unstable wave vector found with this simplified Floquet analysis with the more general results of section 1.
We find a very good agreement as long as γ/ρ0g < 0.2 and Θosc < 0.6.

If we restrict ourselves to terms linear in Θosc, then the only effect of the Josephson oscillations is to introduce a
coupling between the symmetric and antisymmetric mode. We checked that this coupling alone does not introduce any
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Fig. 3. Comparison between numerical evolution of Eqs.10 and 12 (points) and the results obtained by diagonalising the 4 by
4 matrix of the Floquet representation (lines). Parameters are γ = 0.1 × ρ0g (stars and continuous lines) and γ = 0.05 × ρ0g
(crosses and dashed line).

n = 0 n = 1n = −1

c
(a)
−

c
(s)
−

c
(s)
+

c
(a)
+

ωJ

Fig. 4. Floquet representation of the equation Eq.12. The ellipse surrounds the four states that are considered in the calculation
of instability rates.

instability. Thus instability is due to the quadratic terms. Those terms contain a modulation at 2ωJ . This modulation
corresponds to the modulation of the frequency of the antisymmetric mode

ω2
a = 2ρ0g(~

2k2/2m+ 2γ − 2γΘ2
osc/4) + γρ0gΘ

2
osc cos(2ωJ t). (17)

This parametric oscillation leads to instability for k ∈ [0, Θosc

√

mγ/2/~] and the instability time constant at resonance

is Γ = Θ2
osc

√
γρ0g

8~
. We recover here the well known results of Benjamin-Feir instability derived for example in [19] using

the multiple-scale perturbation technique. In our case, the coupling to the symmetric mode will modify those values.
However, for small values of γ, the qualitative behavior is unchanged. Indeed, as seen in Fig.5, as long as γ < 0.05ρ0g
and within a precision of 10%, the instability rate Γ scales as

Γ = 0.122(1)θ2osc

√
γρ0g/~ (18)

and the maximum wave vector of unstable modes as

kmax = 0.97(1)

√
mγ

~
Θosc. (19)
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Fig. 5. Maximum instability rate normalized to the Josephson oscillation frequency (a) and maximum wave vector of unstable
modes normalized to

√
mγ/~ (b) as a function of the oscillations amplitude Θosc for different ratios γ/ρ0g (from lower curves

to upper curves : 0.02,0.06,0.1,0.14). Fat dashed lines are the scaling laws Eq.18 and 19. Thin continuous lines are found by
diagonalising the matrix of Eq.16.

For larger γ, the Γ and kmax are higher than those lows as seen in Fig.5.

4 Beyond the linearisation

The two previous sections give a linearized analysis of the evolution of perturbations. They show that the presence
of uniform Josephson oscillations produces instabilities of modes of non vanishing momentum. The energy in these
mode grows and consequently, the energy of the uniform Josephson mode decreases and one expects a decrease of the
uniform Josephson oscillations amplitude. Such a decrease is beyond the previous linearized analysis and we perform
full numerical calculation of the evolution of the mean fields ψ1(z, t) and ψ2(z, t). The evolution equations derived
from Eq.1 are











i~
d

dt
ψ1 = − ~

2

2m

d2ψ1

dz2
+ g|ψ1|2ψ1 − γψ2

i~
d

dt
ψ2 = − ~

2

2m

d2ψ2

dz2
+ g|ψ2|2ψ2 − γψ1

(20)

Fig.6 gives the evolution of the total number of atoms in the condensate 1, N1 =
∫

|ψ1|2, for initial amplitude
Θosc = 0.6 and for different values of γ/(ρ0g). For these calculations, the initial state consists in a z-independent phase
difference Θosc between ψ1 and ψ2 superposed on thermal fluctuations of the density and phase of the two condensates
corresponding to a temperature kBT = ρ0g/10. We observe that the amplitude of the Uniform Josephson Oscillations
presents damped oscillations. For γ ≪ ρ0g, the period of these amplitude oscillations is about three times the inverse
of the instability rate of Eq.18. The ratio between the Josephson frequency and the frequency of these amplitude
oscillations is about 20 and is almost independent on the ratio between γ and ρ0g as long as γ < ρ0g. For larger γ,
this ratio increases and more Josephson oscillations are seen in a period of the amplitude modulation. Such amplitude
oscillations are a reminiscence of the Fermi-Ulam-Pasta recurrence behavior observed in many non linear systems with
modulational instabilities[19,16,17]. In particular, this recurrence behavior has been seen in numerical evolution of the
Sine-Gordon Hamiltonian[21]. In our case, we observe an additional damping which results probably from the coupling
to symmetric modes.

The case of an initial amplitude Θosc = π/2 is of particular interest as, in absence of interactions between atoms,
it corresponds to Rabi oscillations of maximum amplitude. Fig.7 gives the evolution of N1 for γ = ρ0g and an initial
amplitude Θosc = π/2.
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Fig. 6. Evolution of the number of atoms in the condensate 1, normalized to the total number of atoms, as a function of time.
The initial state corresponds to a phase difference between the condensate Θosc = 0.6 superposed to phase and density fluctuations
corresponding to a thermal equilibrium at temperature kBT = 0.1ρ0g. For this calculation, γ = 0.1ρ0g (a) and γ = ρ0g (b).
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0

Fig. 7. Evolution of the number of atoms in the condensate 1, normalized to the total number of atoms, as a function of
time for γ = ρ0g and an initial phase difference between condensates Θosc = π/2. Initial thermal population of excited modes
corresponding to kBT = 0.1ρ0g is assumed.

5 Case of a confined system

In the previous sections, we considered large and homogeneous systems. We found that unstable excited modes are
those of low wave vectors. In the Josephson limit where γ ≪ ρ0g, we derived the scaling law Eq.19 for the maximum
unstable wave vector. In a cloud trapped in a box like potential of extension L, the minimum k value of the excitation
modes is 2π/L. Thus, if

L <
2π~

1.0
√
mγΘosc

, (21)

the minimum wave vector of excited modes is larger than the maximum unstable k value Eq.19 and the system is stable.
This condition can be understood in a different way : the energy of the lowest longitudinal mode is ~2π

√
ρ0g/(mL) (

here we assume L≫ ~/
√
mρ0g). Thus, we find that the system is stable provided that the energy of the lowest excited

mode satisfies Eexc > 0.52ωJΘosc where ωJ = 2
√
γρ0g/~ is the Josephson frequency.

An approximate condition of stability of Josephson oscillations in the case of a cloud trapped in a harmonic
longitudinal potential of frequency ω is found as follows. The size of cloud, described by a Thomas Fermi profile, is
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Fig. 8. Josephson oscillations of clouds trapped in a harmonic potential of frequency ω = 0.1ρ0g/~ (solid line) and ω = ρ0g/~

(dashed line), where ρ0 is the peak linear density in each condensate. The initial phase difference between the condensates is
π/2 and the tunnel coupling is γ = ρ0g. N1 is the number of atoms in the condensate 1 and Ntot the total number of atoms.

L = 2µ/(mω2), where µ = ρ0g is the chemical potential and ρ0 the peak linear density. Then, from the same argument
as above, one expects to observe stable oscillations for

ω > α
√
γρ0gΘosc = αΘoscωJ/2 (22)

where α is a numerical factor close to one. We performed numerical simulations of the evolution in the case of a
harmonic potential, adding to both left hand sides of Eqs.20 a trapping potential 1/2mω2z2. The initial situation
is the Thomas Fermi profile superposed on thermal random fluctuations and a global phase difference between the
condensates Θosc = π/2. The tunnel coupling is γ = ρ0g. The resulting Josephson oscillations are shown in Fig.8
for ω = ρ0g/~ and ω = 0.1ρ0g/~. We observe that for ω = ρ0g/~, Josephson oscillations are stable whereas, for
ω = 0.1ρ0g/~, oscillations are unstable.

6 Conclusion and prospects

We have shown that Josephson oscillations of two coupled elongated condensates are unstable with respect to ex-
citations of longitudinal modes. The unstable modes are those of small wave vectors. In the Josephson limit where
γ ≪ ρ0g, we have derived the scaling lows Eq.18 and Eq.19 for the instability time constant and wave vectors. Since the
frequency of Josephson oscillations are 2

√
γρ0g, the first equation tells us that the number of oscillations that can be

observed scales as Θ2
osc and is independent on γ/ρ0g. This is true as long as γ < ρ0g. For larger γ/(ρ0g), the Josephson

condition is not fulfilled. Effect of interactions is less pronounced and more oscillations can be observed. Performing
numerical calculations beyond the linearized approach, we have shown that the system presents a recurrence behavior,
although it is damped quickly. Finally, we investigated the stability of oscillations in finite size systems. Eq.21 gives
the maximum longitudinal size of confined condensate that enables the presence of stable Josephson oscillations. We
also considered the case of harmonically trapped cloud and give an approximate condition on the oscillation frequency
to have stable Josephson oscillations.

The results of this paper are not changed drastically for finite temperature. Indeed, although elongated Bose-
Einstein condensates present thermally excited longitudinal phase fluctuations[22,23], it has been shown in [18] that,
because the antisymmetric modes present an energy gap, thermal fluctuations of the relative phase between elongated
coupled condensates are strongly suppressed.

Among the possible extensions of this work, two questions are of immediate experimental interest. First, the
effect of a random longitudinal potential could be investigated. Indeed, it has been proposed to realized elongated
coupled condensates using magnetic trapped formed by micro-fabricated wires[8], but, for such systems, a roughness
of the longitudinal potential has been observed[24,25,26]. If the amplitude of the roughness potential is smaller than
the chemical potential of the condensate, one expects to still have a two single elongated condensate. However, the
roughness of the potential may change significantly the results of this paper. Second, the effect of correlations between
atoms may be studied. Indeed, for large interactions between atoms, correlations between atoms become important.
More precisely, for ρ0 < mg/~2, a mean field approach is wrong and the gas is close to the Tonks-Girardeau regime[27,
28,29]. Such a situation is not described in this paper in which a mean field approach has been assumed. Thus, a new
study should be devoted to the physics of coupled elongated Tonks gas.

Dynamical instabilities of the uniform Josephson mode are not the only effect of non linearities in the system of
two coupled elongated condensates and other interesting phenomena are expected. For instance, ref.[30] shows that
Josephson vortices similar to the solitons of the Sine-Gordon model exist for large enough interaction energy.

We thank Dimitri Gangardt for helpful discussions. This work was supported by EU (IST-2001-38863, MRTN-CT-
2003-505032), DGA (03.34.033) and by the French ministery of research (action concertée “nanosciences”).
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