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Résumé

Nous considérons le probléme d’affectation multicritére qui vise a affecter chaque
action d’un ensemble fini A & une des catégories pré-définies. Nous proposons un
nouveau concept de taille des catégories qui référe a “la proportion de vecteur per-
formance correspondant a une action réaliste affecté a la catégorie”.

Les problémes d’affectation font référence a une évaluation absolue (I’affectation
d’une action ne dépend pas des autres), par opposition aux problémes de choix et
de rangement dans lesquels la nature méme du probléme conduit & comparer les
actions entre elles. Le fait de considérer des contraintes concernant la taille des
catégories conduit a définir un probléme d’affectation contraint qui fait référence a
la fois a I’évaluation absolue et relative.

Apreés avoir introduit des situations décisionnelles ol la notion de taille des caté-
gories se révéle utile en matiére de modélisation, ce papier définit formellement le
concept de taille des catégories. Nous proposons une utilisation opérationnelle de
ce concept qui s’applique aussi lorsque ’ensemble des actions potentielles et/ou les
préférences du décideur sont connus de facon imprécise. Nous montrons comment
cette notion peut étre utilisée dans un processus d’élicitation des préférences. Enfin,
pour illustrer 'utilisation de ce concept, nous proposons une procédure qui infére les
valeurs des paramétres préférentiels de la méthode UTADIS en prenant en compte
des contraintes sur la taille des catégories.

Mots clés: Aide multicritére a la décision, problématique du tri, taille des catégories
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Abstract

We consider the Multiple Criteria Sorting Problem, that aims at assigning each
alternative in a finite set A to one of the predefined categories. We propose a new
concept of category size that refers to “the proportion by which an evaluation vector
corresponding to a realistic alternative is assigned to the category’.

Sorting problems usually refer to absolute evaluation (the assignment of an alterna-
tive does not depend on the others), as opposed to ranking and choice problems in
which the very purpose is to compare alternatives against each other. Considering
constraints concerning category size lead to define a Constrained Sorting Problem
which refers both to absolute and relative evaluation.

After identifying decision situations in which category size is useful for modelling
purposes, this paper defines the concept of category size and proposes a way to com-
pute the size of categories, even when the set of alternatives and/or the preference
information is/are imprecisely known. We show how this notion can be used in a
preference elicitation process. Finally, in order to illustrate the use of this concept,
we propose a procedure to infer the values for preference parameters that accounts
for specifications (provided by the DM) about the size of categories, in the context
of the UTADIS sorting model.

Keywords: Multiple Criteria Decision Analysis, Sorting problem, Category size
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Introduction

Modelling a real world decision problem using multiple criteria decision aid involves defining
a set of nyy alternatives A = {ay,as,...,a,,,} evaluated on n..; criteria g1, go, ..., gn...,, €ach
criterion, g;, being associated to a scale X;. Several problem statements (or problem formula-
tions) can be considered. Roy [9] distinguishes three basic problem statements: choice, sorting
and ranking (see also [1]).

Given a set A of alternatives, choice problems consist in determining a subset A* C A, as
small as possible, composed of alternatives being judged as the most satisficing. Optimiza-
tion problems are particular cases of choice problems where A* is restricted to one alternative.
Ranking problems consist in establishing a preference pre-order (either partial or complete) in
the set of alternatives A.

Sorting problems consist in formulating the decision problem in terms of a classification, in
order to assign each alternative from A to one of the n.,; predefined categories Cy,Cy, ..., C,.,-

The assignment of an alternative a to the appropriate category should rely on the intrinsic value
of a (and not on the comparison of a to other alternatives from A).

Among these problem statements, a major distinction concerns relative versus absolute judg-
ment of alternatives. This distinction refers to the way alternatives are considered and to the
type of result expected from the analysis. In the first case, alternatives are directly compared
one to each other and the results are expressed using the comparative notions of “better” and
“worse”’. Choice or ranking are typical examples of comparative judgments. The presence (or
absence) of an alternative a in the set of best alternatives A* results from the comparison of
a to the other alternatives. Similarly, the position of an alternative in the preference order
depends on its comparison to others.

In the absolute judgment case, each alternative is considered independently from the oth-
ers in order to determine its intrinsic value by means of comparisons to norms or references.
Sorting problems refer to absolute judgments and consist of assigning each alternative to one
of the pre-defined categories. The assignment of an alternative a € A results from the intrinsic
evaluation of a on all criteria (the assignment of a to a specific category does not influence
the category to which another alternative should be assigned). Various methods have been
developed for such assignment problem (see for instance [7], [3], [6],[10], [8] and [2], see also [12]
for a review).

In this paper, we are concerned with sorting problems. More precisely, we are concerned
with what we call Constrained Sorting Problems (CSP), related to a new notion regarding the
size of the categories, i.e., “the proportion by which an evaluation vector corresponding to a re-
alistic alternative is assigned to the category”. CSPs arise when the Decision Maker (DM) has
an idea about how the alternatives should be distributed among the categories. For instance,
imagine a sorting model to assign students to grades A,B,C, and D. The DM is asked the follow-
ing question “If all of this year’s students fall into the same category (it does not matter which),
would you be compelled to change the model?”. If the answer is yes, then we would have a CSP.



The paper is organized as follows. In the first section, we present four illustrative examples
that motivate the usefulness of the notion of category size for decision aiding. We analyze,
in section 2, the consequences of using category size in the sorting problem statement and
define the CSP, contrasting it to other problem statements. Section 3 formally defines the
notion of category size. Two ways to consider category size in preference elicitation processes
are considered in section 4. An illustrative example using the UTADIS method is provided in
section 5. A final section groups conclusions and further research.

1 Motivating examples

In order to justify the interest of the notion of category size for decision aiding, let us consider
several realistic illustrative decision problems in which this notion can play a significant role in
the modelling process.

Example A

Consider a corporate distribution company composed of a large number of retails. The
head of this company wants to identify the retails that outperform (i.e., the ones that are
very profitable and have good results) and those that under-perform (i.e., the ones that seem
improperly managed and induce losses). This evaluation is to be grounded on several criteria
(e.g., profit, customer complaints, market share, ...). The CEO formulates this problem as a
sorting problem in which retails should be assigned to one of the five following categories:

Cy Underperforming retail: immediate corrective action required concerning the management
(consider replacing the manager),

C5 Retail having a bad performance: demand justifying information to the manager in order
to clarify the reasons for the bad results,

C5 Retail having average performance: no specific action required,

C, Retail having good results: send a congratulation letter to the manager and encourage
him /her to pursue his/her effort,

Cs Retail that outperform, that have exceptional results stemming from an outstanding
management: consider a promotion for the manager.

The CEO wants to identify and analyze only the cases corresponding to exceptions, i.e., retails
that have either very positive or very negative results. Her idea is that most of the retails fall
into the Cj5 situation and that only very few of them correspond to C; or Cs. She views the
distribution of the retails among the five categories as “gaussian” (bell-shaped).



Example B

Consider a credit manager in a financial institution who decides whether or not to grant
credits to clients. His role is to accept/reject credit files or possibly refer to his superior for
difficult or ambiguous cases. His decision is grounded on the various elements documented
in the file. This decision problem can be formulated through a multiple criteria trichotomic
segmentation (accept/refer to superior /reject).

However, the credit manager does not want to send to many files (no more than 10% in
average) to his superior. In such a case, it is natural to conceive a sorting model with three cate-
gories in which the central class is small in size (when considering a set of “habitual” credit files).

Example C

Each year the director of a department of a firm wants to split the grant budget among her
collaborators. She considers four levels of bonuses (A: high, B: medium, C: small, D: null) accord-
ing to several performance criteria discussed in the beginning of the year with her collaborators
(the bonuses packages A, B and C are also stated in the beginning of the year).

The bonus policy of the director is such that very few collaborators get a A-bonus, a little
more get a B-bonus, a significant proportion get a C-bonus and a large part of them get no
bonus. In this situation, the shape of the category size distribution can be considered as “in-
creasing’ (or “decreasing’ according to the way the categories are numbered).

Example D

Each year, the responsible of the University training program faces the same problem when
defining the foreign language courses. He wants to split a group of students (approximately
100) into three groups of different levels (beginners, intermediate, advanced). The assignment
of a student to a specific class is grounded on his/her skills (oral expression, listening compre-
hension, grammar, written expression, ...). However, in order to be “fair” to the teachers and
students the three classes are intended to be “not too different” in size. Such decision problem
can obviously be formulated as a multiple criteria sorting problem. One of the specificities of
this problem consists of the “uniform” size of the categories representing the three classes.

These four decision problems illustrate prototypical sorting decision situations in which cat-
egory size somehow intervenes in the modelling process. An analyst designing a decision aiding
model for these situations should consider in the modelling process the information concerning
the shape of the category size distribution, as suggested by the DM.

The reader will easily imagine various other problems in which this notion is an important
aspect of the decision model definition. Each of these examples suggest constraints about
the proportion of alternatives assigned to each category. Figure 1 depicts typical category
size distributions, which we may call “Gaussian” (Example A), “Dichotomic” (Example B),
“Increasing/Decreasing” (Example C), and “Uniform” (Example D).
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Figure 1: Typical category size distributions

2 Constrained sorting problems

We refer to Constrained Sorting Problem (CSP) in decision situations formulated through a
sorting model in which specifications about the size of the categories are introduced. These
specifications take the form of implicit or explicit constraints on category size.

In example A for instance, these constraints specify that “the distribution of the retails
among the five categories is gaussian”. The credit manager, in example B, does not want to
refer to his superior for more than 10% of the files. In the Example C, the director’s view on the
“relative proportion” of A, B, C and D-bonuses specifies constraints on the size of corresponding
categories. In example D, the constraints express the statement “the three groups should not
be too different in size”.

CSPs differ from “standard” sorting problems. “Standard” sorting problems refer to absolute
judgments (no comparison among alternatives is required). However, constraints on the size
of categories introduce implicit relative evaluation between alternatives. More precisely, in a
“standard” sorting problem the assignment of an alternative a to a specific category only de-
pends on the intrinsic characteristics of a (and the norms defining the categories), while in CSPs
its assignment rely not only on its intrinsic characteristics but also on the other alternatives in A.

In example D, a student that has average/low skills might be assigned to the “beginners”
class when a large proportion of students have high skills, while some other year he/she could
be assigned to the “intermediate” class when the average level of students is lower. In example
B, suppose that the credit manager faces an exceptional situation in which a majority of credit
files are uncertain and ambiguous. In such a case, a standard sorting model would assign a large
proportion of files to the “central’ class (i.e., refer to superior). The introduction of constraints
about the size of this category will “force” the model to assign some alternatives previously
assigned to the central class to either of the two remaining ones and will keep in this refer to
superior category only the most ambiguous cases.

Consequently, it follows that CSPs possess some of the characteristics of the relative problem
statements (choice and ranking) namely regarding the dependence of the result with respect
to the set of alternatives. In CSPs the assignment of an alternative depends on its intrinsic
characteristics, but also on the assignment of the other alternatives. Such problem statement
is however distinct from relative problem statements and can be considered as an intermediate
situation as it deals both with relative and absolute issues: absolute evaluation is present in



the sorting model, and the very idea of sorting, while comparative evaluation stems from the
the addition of constraints concerning category size.

It is also interesting to note that a choice problem can be expressed through a CSP, if the
categories are ordered. Consider a sorting problem with two categories (C: select, Cy: reject).
Let us impose that the size of C is equal to n. If we pose n = 1, then this problem corresponds
to a choice. Moreover, relaxing the constraint concerning the size of C; (i.e., increasing the
value for n) leads to interesting formulations with respect to the choice problem.

Conversely, some CSPs can be formulated as choice or ranking problems if the categories
are ordered. If there exists a size constraint stating that the first category should contain &
alternatives, this corresponds to a choice of the best k alternatives from a set. If there exist
size constraints stating that k; alternatives belong to C', ks, alternatives belong to C, etc., this
may be accomplished by ranking the alternatives from best to worst and breaking the ranking
into n.; segments. However, there exist CPS problems that can not be formulated using a
relative formulation (choice or ranking). For instance, a situation like example B can not be
solved by ranking the alternatives because we would not know which segment with 10% of the
alternatives (in the middle of the ranking) should be selected.

We have informally defined the size of a category as “the proportion by which an evaluation
vector corresponding to a realistic alternative is assigned to the category”. We can distinguish
among situations in which the set of alternatives A is completely known or not before building
the model:

e Static CSP: Suppose that we have a complete description of the set of alternatives A. In
this case, constraints on category size may be specified during the model definition. The
resulting model explicitly integrates these constraints. For instance in example D, the
three groups of students are to be defined considering the actual students of the current
year.

o Anticipatory CSP: If A is not known beforehand, we face situations with uncertainty
concerning the alternatives, where a sorting model is built taking into account constraints
about the size of the categories, given the alternatives that are realistically likely to appear.
In such situations, the model is built (and may be divulged) before the actual alternatives
are known, and constraints about category size may possibly be violated when the actual
set of alternatives is considered. For instance, in example C, the department director
would want to announce the criteria for granting bonuses, and if the employees work
exceedingly well she may have to grant more A bonuses than she was expecting.

3 Formal definition of category size

We have referred to the size of category C} resulting from a sorting model as “the proportion
by which an evaluation vector corresponding to a realistic alternative is assigned to the category
Cy”. Let K ={1,...,nc} be the set of category indices. Next we propose some definitions for
the size of the k" category, denoted by p(Cy). These definitions satisfy the following desirable
properties:
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Let us consider a specific sorting model that uses a set of preference parameters Q (such as
criteria weights, limits of categories, ...). Let P denote the domain of possible values for the
parameters in ). Let C'(a;, p) denote the index of the category to which a; € A is assigned when
the model parameters take values p € P. Let each alternative be defined by its evaluations on
Nerie criteria. For the j criterion (j = 1,...,n4), the evaluations may take values from a
domain X;.

3.1 Evaluating the size of categories when A and p are known

Given a set of alternatives A completely defined and a vector of parameter values p € P, it is
reasonable to admit that the size of each category equals the proportion of alternatives from A

that are assigned to category Cj, i.e., {a;, € A: C(a;,p) = k}|
a; : a;, P) =
u(Cr) = A ¥

In such situations, there is complete a knowledge about the alternatives, which excludes antic-
ipatory CSPs. Furthermore, the model’s parameters have been precisely fixed.

3.2 Evaluating the size of categories when p is known but A is impre-
cisely known

In this situation we have the knowledge concerning the vector of parameter values p € P, but
the alternatives are not precisely known in advance. This may correspond to the anticipatory
CSPs, where the sorting model is being constructed to evaluate alternatives that will appear
in the future, such as financial projects, job applicants, research projects, etc.

We will consider that the knowledge of the DMs (e.g. from past evaluations) allows to
specify a multivariate probability distribution ¥ on U<} X; (X; denotes the scale of criterion
g:)- This probability distribution for the evaluations of alternatives should account for possible
correlations among criteria. We may therefore consider that a random sample of evaluation
vectors following this distribution is a representative set of the actual evaluations of the alter-
natives that will appear in the future. Following the definition for the category size presented in
the previous subsection, we reach a new definition that relates the size of the k" category with
the probability of an alternative following the distribution ¥ being assigned to that category:

1(C) = Prob(C(a, p) = k) (3)

where a is a random vector following the distribution W.

3.3 Evaluating the size of categories when p is imprecisely known

In this situation neither the alternatives nor the parameter values are precisely known in ad-
vance. The lack of a precise vector of preference-related parameter values may stem from
various sources:



the DMs find it hard to precisely answer some questions regarding their preferences,

the DMs may not fully understand the role of all the parameters,

the model may be used in the future and the DMs may not know how their preferences
will evolve,

o etc.

We will consider again a multivariate probability distribution ¥ for the evaluations of the
alternatives, and introduce a multivariate probability distribution II (possibly uniform) for the
vector of parameters. Although there will seldom exist reasons to consider that some parameter
values are more probable than others, using probability distributions for parameter values will
permit a general definition of category size, consistent with the one provided in the previous
sub-section. Indeed, the latter may be extended to account for the fact that the parameter
values are also stochastic: 1(Cx) = Prob(C(a,p) = k) (4)

where @ is a random vector following the distribution W, and p is a random vector following
the distribution II.

3.4 Robustness analysis for the category size

A complementary approach to using the preceding definitions is to find the maximum and
minimum size of each category, given a domain for the vector of parameters p. Assuming that
the information provided by the DMs allows to define a domain P C P, we may compute:

fmin(Cr) = min(Prob(C(a,p) = k) : p € P) (5)
tmaz(Cr) = max(Prob(C(a,p) = k) :p € P)

This provides the DMs an idea of the interval for the size of each category given the lack
of precise knowledge about the parameter values and alternatives. These intervals become
narrower as more information about the parameter values is added (i.e., as P becomes smaller).
The mean value i(Cy,) for the size of Cy, can also provide information.

4 Considering category size in preference elicitation pro-
cesses

The elicitation of a multiple criteria sorting model amounts at assigning precise values to the
preference parameters used by the aggregation model, i.e., to select an appropriate p* € P.
This work can be done:

e cither by a direct questioning procedure with the DM,

e or indirectly through the use of an inference program that induces parameter values
that restore holistic judgments (e.g., assignment examples) provided by the DM (see for
instance [4] and [5] for such a disaggregation approach).



In this section we discuss how the concept of category size may be exploited in such pref-
erence elicitation processes. As input, we consider a domain P, C P for possible parameter
values and a set A of alternatives to assign to categories. When the alternatives are known in
advance, then we consider A = A. Otherwise (e.g., in anticipatory CSPs), we can consider A
is a sample generated from distribution ¥, or a sample from historical data.

The concept of category size may be used to support an elicitation process by trial and
error, where the DM chooses a combination of values for the parameters p € P and observes
the computed category sizes corresponding to it through pictures similar to those in Figure
1. If what the DM sees does not correspond to his/her intuition of what the distribution of
category sizes should look like, then he/she may change the parameter values, by trial and
error, until a satisfactory distribution is found. However, unless the DM is using a very simple
assignment model (e.g. one that depends on few parameters and such that the effects of chang-
ing each parameter are easy to predict), then a trial and error process may become cumbersome.

We therefore consider the case where the sorting model is inferred. In such cases, the DM
does not have to be an expert in the sorting method, and may simply provide assignment ex-
amples, i.e., alternatives for which the DM defines a specific assignment. In addition, the DM
will provide some constraints related to his/her intuitive view on the “size of each category’,
and may provide additional constraints on parameter values.

Constraints on category sizes can be expressed in various manners:
e exact values, e.g., “there should be 5 alternatives in C”;

e bounds, e.g., “there should be at most 5 alternatives in C”;

e intervals, e.g., “there should between 5 and 10 alternatives in C;”;

e comparisons, e.g., “there should more alternatives category C; than C5”.

This information can be translated as constraints on p (defining P C P) in a mathematical
program, because a set of alternatives A has already been fixed as a reference. The details
of such a mathematical program will vary from a sorting method to another (the next section
provides an example for a UTADIS-like method).

As assignment examples and constraints on category size are expressed through constraints
in the inference mathematical program, these two types of constraints might be conflicting.
This implies that the inference program should specify how such potential conflicts among
these constraints are to be solved (see section 5 for further discussion in the UTADIS frame-
work).

In anticipatory CSPs, where the actual set A will seldom be equal to the forecasted sample
A, the inferred model that satisfies all category size constraints when A is considered, may no
longer satisfy some of them when A is considered instead. For this reason, when a DM places a
constraint like “there should be 5 alternatives in the top category”, he/she should expect that
around 5 alternatives, and not ezactly 5, will appear in the top category when using the model



to sort A. The DM may even determine beforehand (e.g., using Monte-Carlo simulation) the
probability of violating each constraint, given distribution ¥ and an inferred model p* € P.

This characteristic of anticipatory CSPs should not be seen as a drawback. Indeed, it may
be essential. For instance, in Example A (Section 1) the CEO may provide size constraints
stating that less than 10% of the retails should fall into categories C or C5, whereas more than
50% should be sorted into C3. This reflects the CEQ’s view of normality, and a model might be
built using past data as a reference set A. However, should for some reason the performance of
the actual retails A become atypical (e.g. 30% of them fall into C}), then the CEO would want
to be alerted for that. Surely, she would not want a model that would automatically adjust its
parameters to keep the underperformers under a 10% size barrier.

5 An illustrative example using a UTADIS-like method

In order to illustrate the use of category size concept, we propose a procedure to infer the
preference parameters values that account both for assignment examples and specifications
about the size of categories, in the context of the UTADIS sorting model ([3], [11]).

5.1 Brief reminder on the UTADIS method

UTADIS is a multiple criteria sorting method that assigns alternatives a; € A = {ay, a9, ...,
Qn,,, } to one of the predefined ordered categories Cy,Cy, ..., Ck,...,C,.., (Cy being the worst
category) on the basis of a set of criteria {g1,92,...,9j,---,9n..,, - In what follows, we will
assume, without any loss of generality, that preferences increase with the value on each criterion.
Let ' = {1,...,nqq} denote the set of criteria indices, I = {1,...,n.} denote the set of
alternatives indices, and by K = {1,...,n.;} the set of categories indices. The UTADIS

sorting method is an additive utility model of the form:

u(a;) = Zuj(gj(ai)) € [0,1], Viel, where (6)

e g;(a;) is the evaluation of alternative a; on criterion g;, Vi € I, Vj € F,

e u; is a piecewise linear utility function for criterion g;, Vj € F, each u; ranges on the set
[0, w;] (we pose without loss of generality . . w; =1).

UTADIS assigns each alternative a; € A by comparing u(a;) to a set of category limits,
bi,..., b, ..., by,,,—1 such that by > by_1, kK = 2,....,n. — 1. These limits are used to assign
alternatives in the following way (Figure 2 illustrates the assignment process described above):
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Figure 2: UTADIS sorting scheme

Let g7 (ng , respectively) be the minimum (maximum, respectively) evaluation on criterion
l+1[

95, VjLE F. LThe interval [g?”‘,ngM] is divided into L; equal subintervals: [g, gj[, ..., [g5, g
. [gjjfl,gj"] (99 = gi* and g;” = g}'), where g} is computed as follows:

[ .
gé.:g;?"b_kf(gjj.w—g;”), [=0,...,L; and j€F (8)
j

Each piecewise linear function u; is defined by the utilities of breakpoints u;(g7) < u;(g;) <

... < uj(gj»L'j) (we recall that u;(g9) = 0 and uj(gij) = wy). If g;(a;) € [g}, g5"'[, then the partial

(ai)—g!
utility is obtained by linear interpolation: w;(g;(a;)) = u;(g}) + g;l_(ﬂ)_gg/ (ui (g5 = uy(gh).
Hence, the parameters of the UTADIS sorting model are the followin]g: ’

e The utility of each breakpoint g}, that is, u;(g}), for j € Fand 1 =1,... L;.

e The category limits, by, for kK =1,... ney — 1.

Let A* C A denote a subset of alternatives that the DM intuitively assigns to a specific
category (A* contains the assignment examples). UTADIS aims at inferring the parameters
values that best match the assignment examples. Suppose the DM stated that alternative
a; € A* should be assigned to the category Cj. (a; — Cj). This statements generates constraints
on the parameters values: by_; < u(a;) < by. In order to integrate these constraints in a
mathematical program, two slack variables 0~ (a;) and 0% (a;) are introduced as follows (e is an

arbitrarily small positive constant,):
Y POSIHIY {) w(ag) — by — 0~ (a;) < e

u(a;) — bp—1 4+ 6% (a;) >0 (9)

The linear program (10)-(19) infers the parameter values that best restore a set of assignment
examples:
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5.2 Considering category size constraints in UTADIS

Let us consider the data of a real-world application concerning a credit granting application
[10]. This application deals with 100 alternatives (Appendix A lists the set of alternatives)
evaluated on 7 criteria (all criteria are decreasing) to be assigned to 3 ordered categories: Cj:
to reject, Cy: to analyze, C5: to accept.

The knowledge of the credit manager leads to define interval of variation for the parameters
values as follows:

e the shape of the functions u; are imprecisely known (see Appendix B),
o the criteria weights are such that w; € [0.1,0.2], Vj € F, (note: w; = u]-(gij)) and

o the categories profiles or limits are such that b, € [0.5,0.6] and by € [0.65,0.7].

Moreover, the credit manager usually sends about 10% of the files to his/her superior for
further analysis, which means that, Cy should contain “approximately” 10% of the files. Hence,
our purpose is to built a model taking into account the constraint about the size of category
Cy. A simulation study (1000 random simulations for the parameters values considering the
imprecise knowledge concerning these parameters) leads to the results given in Table 1.

pin (Cr) (%) | pmac(C) (%) | 7i(Ch) (%)
Cy 12 73 37.5
Cs 2 64 34.3
Cy 16 62 28.2

Table 1: Results from the simulation process

Considering the imprecision of the data, the size of C5 is contained in [2%, 64%)] (see Table
1). However, the credit manager wants to send approximately 10% of the files to his/her supe-
rior. As assignment examples, the credit manager has identified some files (a4, ass, ag), for
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which he/she should refer to his/her superior, as well as some files to be rejected (agq, asy, aq1)
and some to be accepted (agg, ag)

In order cope with the manager’s requirements, we define a mathematical program to infer
(in the domain of acceptable values of the parameters) a model as compatible as possible with
this constraint on the size of C5. Let us define the decision variables y;; such that:

Vi:a;€ A, k=1,2,3 (20)

L if the alternative a; — C}
Yik = 0, otherwise.

These y;; variables can be defined in a mathematical program by the constraints (21) and (22)
where M is a large positive constant and ¢ a small positive constant.

> ug(gi(ai)) — by + Myy, < M —e, (21)
— > u(gi(ai)) + b1 + My, < M, (22)

alt

Hence the expression Y ¥ y;; denotes the number of alternatives assigned to category Cj

and can be used to constraints on the size of Cj. In our case, the statement ‘Cy should contain
approzimately 10 % of the files’ can be formulated by the two following constraints:

Nalt ,,. .
{ Zi:l Yi2 Z 10 o (23)

Sty <10+ 0

where o is a variable to be minimized. Moreover, the assignment examples can be easily
integrated by setting the values of the corresponding y;; variables (a; — Cy < yi = 1'). In
the mathematical program given hereafter, the y;, binary variables are defined by the constraints
(24)-(?7).

Min o

st Yy u(gi(a) —be + My < M —e, i=1.100, k=1,2
=3 uy(gi(an) + bt + Myg, < M, i=1.100, k=1,2
Sy >10-0
Zgﬂ Yo <10+ 0
w; € [w}”,w}‘/’], j=1.7, 237‘:1 w; =1
by > b1 + ¢,
br € [b7, b2, k=1,2
Vi1 + Y2 +yis =1, 1 =1..100
y € {0,1}, i=1..100, k=1,2, 0 >0

N N
(SIS

N BN
~N

AN AN AN AN SN SN SN /S~
W W N N
— O © 0o

e N N N N N N N N

w
DN

After solving this mathematical programming model we have the following results:

!Note that such model considers assignment examples as constraints. It is also possible to introduce slack
variables as in the standard UTADIS model, using an objective function that defines how violations of assignment
examples compensate violation of category size constraints.
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e There exists a combination of parameter values that satisfies the credit manager request
(assignment examples and p(Cy) = 10%): w = (0.192,0.100, 0.200, 0.103, 0.200, 0.100, 0.105),
by = 0.6 and by = 0.65

[ The 10 ﬁles to analyze are {(142, asg, 453, As4, A56, A57, A59, Ag1, AG2, CL70},

o The size of each category are: u(Cy) = 64%, u(Cy) = 10% and u(Cs) = 26%.

On the basis of this first result, the credit manager may want to refine the sorting model.
He/She may for instance state that the file asy (currently assigned to Cy by the model) is to
be rejected, i.e., asa — C;. This can be done by assigning the value 1 to yso;. He/She can
impose that criterion g¢ is at least as important as g7 (wg > wy). Solving the mathematical
program with these additional constraints would lead to a new solution and such interactive
process continues as long as the credit manager is not satisfied with the resulting sorting model.

Conclusion

Sorting problems consist of formulating the decision problem in terms of a classification so as
to assign each alternative from A to one of the predefined categories Cy,Cs,...,C,..,. The
assignment of an alternative a to the appropriate category should rely on the intrinsic value of
a (and not on the comparison of a to other alternatives from A). On the contrary, the very
nature of ranking and choice problems is to compare alternatives one to another to determine
a preference order or the subset of the best one(s). Hence ranking and choice refer to relative

evaluation while sorting refers to absolute evaluation.

In this paper we have motivated the use of the notion of category size in sorting problems
and given a formal definition to this notion. We have shown that considering constraints on
category size leads to define a new type of problem, that we call constrained sorting problem
(CSP) that has both an absolute and relative evaluation aspect.

We have shown how to make the category size concept operational even in decision situ-
ations where the set of alternatives and/or DM’s preferences are imprecise. Finally, we have
given an illustration using a UTADIS like sorting method.

We deem the notion of category size and CSP open a new research avenue that ought to be
pursued. On the one hand, future research may work on the design of elicitation procedures
that allow DMs to specify contraints on category size, thus integrating the notion of category
size in the various existing sorting methods. On the other hand, new multicriteria sorting
methods might be devised to deal specifically with CSPs.
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Appendices

Appendix A: List of alternatives used in the example

| Name| g1 [ o | 9 | 9 | 9 | 9 | 97 |

a; 14.47 | 14.02 | 18.02 | 7.24 | 22.16 | 3.02 | 58.65
as 14.64 | 14.02 | 18.02 | 5.46 | 22.16 | 3.02 | 39.44
as 14.48 | 11.01 | 18.02 | 17.36 | 22.16 | 20.32 | 39.44
ay 14.65 | 11.01 | 14.11 | 6.43 | 22.16 | 8.91 | 39.44
as 14.43 | 11.01 | 18.02 | 29.25 | 22.16 | 31.73 | 39.44
ag 14.15 | 11.01 | 18.02 | 19.13 | 49.87 | 14.83 | 58.65
ar 15.04 | 14.02 | 10.47 | 18.32 | 12.92 | 8.91 | 39.44
as 14.71 | 14.02 | 18.02 | 6.43 | 12.92 | 3.02 | 39.44
ag 14.54 | 14.02 | 18.02 | 4.65 | 12.92 | 3.02 | 58.65

a1 14.59 | 11.01 | 18.02 | 6.43 | 12.92 | 8.91 | 39.44
a1 14.42 | 11.01 | 18.02 | 4.65 | 12.92 | 8.91 | 58.64
an 14.72 | 11.01 | 14.11 | 18.32 | 12.92 | 8.97 | 39.44
a3 14.65 | 14.02 | 18.02 | 6.43 | 22.16 | 14.83 | 39.44
a4 14.52 | 11.01 | 18.02 | 6.43 | 22.16 | 3.02 | 39.44
a5 1440 | 7.99 | 18.02 | 6.43 | 22.16 | 8.91 | 39.44
a16 14.23 | 7.99 | 18.02 | 4.65 | 22.16 | 8.91 | 58.65
ayy 14.42 | 11.01 | 18.02 | 16.55 | 12.92 | 3.02 | 58.65
a1 13.66 | 7.99 | 31.49 | 81.60 | 40.64 | 30.70 | 61.59
a19 13.02 | 15.74 | 18.02 | 7.24 | 79.21 | 42.63 | 79.32
as 13.39 | 4.98 | 26.96 | 81.60 | 69.01 | 18.77 | 61.59
a9 13.60 | 4.02 | 22.44 | 4.65 | 31.40 | 31.73 | 58.65
a9 13.75 | 11.01 | 22.44 | 81.13 | 69.01 | 7.88 | 21.71
g3 13.66 | 11.01 | 14.11 | 70.55 | 69.01 | 18.77 | 42.39
o 13.80 | 14.02 | 14.11 | 60.43 | 59.11 | 8.91 | 20.24
ass 13.04 | 7.99 | 22.44 | 40.19 | 40.64 | 6.96 | 100.0
a9 12.97 | 7.99 | 18.02 | 29.66 | 31.40 | 18.77 | 100.0
as7 13.51 | 14.02 | 18.02 | 29.25 | 22.16 | 8.91 | 39.44
28 13.26 | 11.01 | 14.11 | 7.24 | 22.16 | 7.88 | 79.32
g9 13.39 | 11.01 | 18.02 | 17.36 | 22.16 | 8.91 | 39.44
aso 13.71 | 14.02 | 14.11 | 6.43 | 12.92 | 3.02 | 39.44
as 13.24 | 11.01 | 14.11 | 4.65 | 12.92 | 6.96 | 100.0
asy 13.54 | 14.02 | 14.11 | 4.65 | 12.92 | 3.02 | 58.65
ass 13.19 | 11.01 | 18.02 | 7.24 | 12.92 | 7.88 | 79.32
asy 13.59 | 11.01 | 14.11 | 6.43 | 12.92 | 8.91 | 39.44
ass 13.46 | 11.01 | 18.02 | 5.46 | 12.92 | 8.91 | 39.44
ase 13.42 | 11.01 | 14.11 | 4.65 | 12.92 | 8.91 | 58.65
agy 13.52 | 11.01 | 14.11 | 6.43 | 22.16 | 3.02 | 39.44
ass 13.39 | 11.01 | 18.02 | 5.46 | 22.16 | 3.02 | 39.44

following next page
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following of the preceding page

9 g2 g3 94 s Je gr

Name

a39 13.92 | 7.99 | 18.02 | 7.24| 22.16 | 6.96 | 100.0
Q40 13.40 | 7.99 | 14.11 | 6.43 | 22.16 | 8.91 | 39.44
49 13.79 | 11.01 | 10.47 | 18.32 | 12.92 | 8.91 | 39.44
Q4 13.04 | 7.99 | 22.44 | 7.24 | 31.40 | 14.83 | 58.65
Q43 13.42 | 11.01 | 14.11 | 16.55 | 12.92 | 3.02 | 58.65
Q44 13.46 | 11.01 | 18.02 | 6.43 | 12.92 | 3.02 | 39.44
Q45 12.97 | 7.99 | 18.02 | 7.24 | 40.64 | 14.83 | 58.65
Qg 13.40 | 11.01 | 18.02 | 6.43 | 22.16 | 14.83 | 39.44
Qg7 13.15 | 4.98 | 18.02 | 6.43 | 22.16 | 8.91 | 39.44
Q48 13.24 | 4.98 | 14.11 | 6.43 | 22.16 | 20.32 | 39.44
Q49 13.48 | 1.05 | 18.02 | 6.45 | 31.40 | 18.77 | 100.0
a5 12.74 | 11.01 | 22.44 | 91.72 | 69.01 7.88 | 21.71
a5, 12.07 | 7.99 | 18.02 | 29.25 | 31.40 | 8.91 | 39.44
59 12.46 | 11.01 | 14.11 546 | 12.92 | 891 | 39.44
as3 12.46 | 11.01 | 14.11 | 6.43 | 12.92 | 3.02 | 39.44
Q54 12.07 | 7.99 | 14.11 | 4.65| 12.92 | 7.88 | 79.32
ass 12.14 | 7.99 | 18.02 | 5.46 | 22.16 | 3.02 | 39.44
56 10.94 | 7.99 | 14.11 7.24 11292 | 7.88 | 79.32
as7 11.08 | 7.99 | 18.02 | 17.36 | 12.92 | 8.91 | 39.44
a5 10.41 1.96 | 18.02 | 19.13 | 22.16 | 18.77 | 100.0
as9 11.01 7.99 | 18.02 | 17.36 | 22.16 | 3.02 | 39.44
ago 11.04 | 7.99 | 14.11 | 4.65 | 12.92 | 3.02 | 58.65
a6l 10.91 799 | 18.02 | 7.24 | 1292 | 3.02 | 58.65
Qg 11.07 | 7.99 | 18.02 | 5.46 | 12.92 | 3.02 | 39.44
g3 11.40 | 11.01 | 14.11 | 6.43 | 3.76 | 3.02 | 39.44
g4 9.90 | 4.98 | 18.02 | 71.48 | 59.11 7.88 | 60.12
Qg5 9.93 | 7.99 | 18.02 | 61.36 | 49.87 | 3.93 | 79.32
Qe 10.25 | 7.99 | 14.11 | 15.58 | 12.92 | 8.91 | 20.24
Qg7 10.08 | 7.99 | 14.11 5.46 | 12.92 | 3.02 | 39.44
68 9.91 7.99 | 14.11 7.24 11292 | 3.02 | 58.65
Qgo 10.65 | 11.01 | 10.47 | 3.69 | 3.76 | 8.91 | 20.24
a7 9.60 | 4.98 | 14.11 7.24 11292 | 6.96 | 100.0
a7 9.29 | 1.05 ]| 14.11 7.24 | 22.16 | 18.77 | 100.0
79 894 | 498 | 18.02 | 81.60 | 59.11 7.88 | 40.92
a3 8.65 1.96 | 18.02 | 71.48 | 59.11 7.88 | 60.12
74 8.65 | 4.98 | 18.02 | 61.36 | 40.64 | 6.96 | 100.0
ars 8.46 | 1.96 | 18.02 | 61.36 | 49.87 | 6.96 | 100.0
76 876 | 498 | 14.11 | 17.36 | 22.16 | 3.02 | 39.44
a7 940 | 7.99 | 1047 | 3.69| 3.76 | 8.91 | 20.24
ars 8.66 | 4.98 | 14.11 7.24 11292 | 3.02 | 58.65
Q79 857 | 4.99 | 14.11 7.24 11292 | 3.93 | 79.32
aso 8.71 1.96 | 14.11 5.46 | 12.92 | 891 | 39.44

following next page
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following of the preceding page

231 g2 g3 g4 s Je gr

Name

agy 7.58 | 1.96 | 18.02 | 71.48 | 49.87 | 7.88 | 60.12
ago 7.58 | 4.98 | 18.02 | 61.36 | 31.40 | 6.96 | 100.0
ass3 7.31 1.96 | 14.11 | 19.13 | 12.92 | 7.88 | 79.32
agy 826 | 7.99 1047 | 3.69| 3.76 | 3.02 | 20.24
ass 845 | 799 | 6.74 | 3.69| 3.76 | 891 | 20.24
asg 6.33 | 1.96 | 18.02 | 61.36 | 31.40 | 6.96 | 100.0
ag7 6.46 | 4.98 | 18.02 | 50.78 | 12.92 | 6.96 | 100.0
ass 6.65 | 4.98 | 14.11 546 | 3.76 | 14.83 | 39.44
agg 528 | 1.05 | 18.02 | 60.43 | 40.64 | 3.02 | 20.24
Qg0 4.06 | 1.05 | 18.02 | 39.78 | 12.92 | 3.02 | 39.44
Qg1 464 | 196 | 6.74 | 546 | 3.76 | 3.02 | 39.44
Qg9 511 | 498 | 3.02| 3.69 | 3.76 | 3.02 | 20.24
Q93 3.68 | 196 | 6.74 | 156.58 | 3.76 | 3.02 | 20.24
Qg4 3.86 | 1.96 | 3.02 | 3.69| 3.76 | 3.02 | 20.24
Qg5 2.56 | 1.96 | 6.74 | 15.58 | 3.76 | 14.83 | 20.24
Qg6 2.81 1.96 | 3.02| 3.69 | 5.41 3.02 | 20.24
Qg7 1.04 | 1.05 | 14.11 | 49.90 | 3.76 | 3.02 | 20.24
Qgg 1.48 | 1.05| 3.02 | 15.58 | 3.76 | 3.02 | 20.24
Qg9 1.68 | 1.96 | 3.02 | 15.58 | 5.41 3.02 | 20.24
a100 060 | 1.05| 0.71] 3.69| 5.41 3.02 | 20.24
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Appendix B: Constraints on the utility functions used in the example

g1 92 93 94 9s
!l 0 0 0 0 0
uj | [0.25wy, 0.6w] [0, 0.18ws] [0,0.16w;] [0, 0.2w,] [0,0.125w;]
ui | [0.5wy,0.65wy] | [0.22ws,0.42w,] | [0.14ws, 0.34ws] | [0.2wy, 0.4w,] | [0.1ws, 0.3ws]
ud | [0.65wy,0.8wy] | [0.62w,, 0.82ws] | [0.44ws, 0.64ws] | [0.6wy, 0.8wy] | [0.7ws, 0.9ws]
uj | [0.75wy, 0.99w,] [0.8ws, wo) [0.86ws3, 0.99ws3] | [0.8wy, wy] [0.875ws, ws]
U,? w1 Wo Ws W4y Ws

96 g7
u?» 0 0
s | [0.18ws, 0.45wg] | [0.1wz, 0.5wy]
u; | [0.425wg, 0.7ws] | [0.45w7, 0.8wr]
ul | [0.7we, 0.85wg] | [0-75wr, 0.9wr]
u) We wy

Table 3: Shape of the partial utility functions
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