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A two armed bandit type problem revisited

Gilles Pagès ∗

February 9, 2005

Abstract

In [2] M. Benäım and G. Ben Arous solve a multi-armed bandit problem arising in
the theory of learning in games. We propose an short elementary proof of this result
based on a variant of the Kronecker Lemma.

Key words: Two-armed bandit problem, Kronecker Lemma, learning theory, stochastic
fictitious play.

In [2] a multi-armed bandit problem is addressed and investigated by M. Benäım and
G. Ben Arous. Let f0, . . . , fd denote d + 1 real-valued continuous functions defined on
[0, 1]d+1. Given a sequence x = (xn)n≥1∈ {0, . . . , d}N∗

(the strategy), set for every n ≥ 1

x̄n := (x̄0
n, x̄1

n, . . . , x̄d
n) with x̄i

n :=
1

n

n
∑

k=1

1{xk=i}, i = 0, . . . , d,

and

Q(x) = lim inf
n→+∞

1

n

n−1
∑

k=0

fxk+1
(x̄k).

(x̄0 := (x̄0
0, x̄

1
0, . . . , x̄

d
0) ∈ [0, 1]d+1, x̄0

0 + · · · + x̄d
0 = 1 is a starting distribution). Imagine

d + 1 players enrolled in a cooperative/competitive game with the following simple rules:
if player i∈ {0, . . . , d} plays at time n he is rewarded by fi(x̄n), otherwise he gets nothing;
only one player can play at the same time. Then the sequence x is a playing strategy for
the group of players and Q(x) is the global cumulative worst payoff rate of the strategy
x for the whole community of players (regardless of the cumulative payoff rate of each
player).

In [2] an answer (see Theorem 1 below) is provided to the following question

What are the good strategies (for the group) ?
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The authors rely on some recent tools developed in stochastic approximation theory (see
e.g. [1]). The aim of this note is to provide an elementary and shorter proof based on a
slight improvement of the Kronecker Lemma.

Let Sd := {v∈ [0, 1]d,
∑d

i=1 vi ≤ 1} and Pd+1 := {u∈ [0, 1]d+1,
∑d+1

i=1 ui = 1}. Further-
more, for notational convenience, set

∀ v = (v1, . . . , vd) ∈ Sd, ṽ := (1 −
d
∑

i=1

vi, v1, . . . , vd) ∈ Pd+1,

∀u = (u0, u1, . . . , ud)∈ Pd+1, û := (u1, . . . , ud) ∈ Sd.

The canonical inner product on Rd will be denoted by (v|v′) =
∑d

i=1 viv
′
i. The interior of

a subset A of Rd will be denoted A
◦

. For a sequence u = (un)n≥1, ∆un :=un −un−1, n≥1.

The main result is the following theorem (first established in [2]).

Theorem 1 Assume there is a function Φ : Sd → R, continuously differentiable on S
◦

d

having a continuous extension ∇Φ on Sd and satisfying:

∀ v ∈ Sd, ∇Φ(v) = (fi(ṽ) − f0(ṽ))1≤i≤d . (1)

Set for every u∈ Pd+1,

q(u) :=
d+1
∑

i=0

ui fi(u)

and Q∗ := max {q(u), u∈ Pd+1}. Then, for every strategy x∈ {0, 1, . . . , d}N∗

,

Q(x) ≤ Q∗.

Furthermore, for any strategy x such that x̄n → x̄∞,

1

n

n
∑

k=1

fxk+1
(x̄k) → q(x̄∞) as n → ∞ (so that Q(x) = q(x̄∞)).

In particular there is no better strategy than choosing the player at random according to
an i.i.d. strategy with distribution x̄∗∈ argmax q.

The key of the proof is the following slight extension of the Kronecker Lemma.

Lemma 1 (“à la Kronecker” Lemma) Let (bn)n≥1 be a nondecreasing sequence of positive
real numbers converging to +∞ and let (an)n≥1 be a sequence of real numbers. Then

lim inf
n→+∞

n
∑

k=1

ak

bk

∈ R =⇒ lim inf
n→+∞

1

bn

n
∑

k=1

ak ≤ 0.
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Proof. Set Cn =
n
∑

k=1

ak

bk

, n ≥ 1 and C0 = 0 so that an = bn∆Cn. As a consequence, an

Abel transform yields

1

bn

n
∑

k=1

ak =
1

bn

n
∑

k=1

bk∆Ck =
1

bn

(

bnCn −
n
∑

k=1

Ck−1∆bk

)

= Cn −
1

bn

n
∑

k=1

Ck−1∆bk.

Now, lim inf
n→+∞

Cn being finite, for every ε > 0, there is an integer nε such that for every

k ≥ nε, Ck ≥ lim inf
n→+∞

Cn − ε. Hence

1

bn

n
∑

k=1

Ck−1∆bk ≥
1

bn

nε
∑

k=1

Ck−1∆bk +
bn − bnε

bn

(

lim inf
k

Ck − ε

)

.

Consequently, lim inf
n→+∞

Cn being finite, one concludes that

lim inf
n→+∞

1

bn

n
∑

k=1

ak ≤ lim inf
n→+∞

Cn − 0 − 1 ×

(

lim inf
k→+∞

Ck − ε

)

= ε. ♦

Proof of Theorem 1. First note that for every u = (u0, . . . , ud)∈ Pd+1,

q(u) :=
d+1
∑

i=0

uifi(u) = f0(u) +
d
∑

i=1

ui(fi(u) − f0(u))

so that

Q∗ = sup
v∈Sd

{

f0(ṽ) +
d
∑

i=1

vi(fi(ṽ) − f0(ṽ))

}

= sup
v∈Sd

{f0(ṽ) + (v|∇Φ(v))} .

Now, for every k ≥ 0

fxk+1
(x̄k) − q(x̄k) =

d
∑

i=0

(fi(x̄k)1{xk+1=i} − x̄i
kfi(x̄k)) =

d
∑

i=0

fi(x̄k)(1{xk+1=i} − x̄i
k)

=
d
∑

i=0

fi(x̄k)(k + 1)∆x̄i
k+1

= (k + 1)
d
∑

i=1

(fi(x̄k) − f0(x̄k))∆x̄i
k+1.

The last equality reads using Assumption (1),

fxk+1
(x̄k) − q(x̄k) = (k + 1)(∇Φ(ˆ̄xk)|∆ˆ̄xk+1)
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Consequently, by the fundamental formula of calculus applied to Φ on (ˆ̄xk, ˆ̄xk+1) ⊂ S
◦

d,

1

n

n−1
∑

k=0

fxk+1
(x̄k) − q(x̄k) =

1

n

n−1
∑

k=0

(k + 1)
(

Φ(ˆ̄xk+1) − Φ(ˆ̄xk)
)

− Rn

with Rn :=
1

n

n−1
∑

k=0

(

∇Φ(ξ̂k) −∇Φ(ˆ̄xk)|(k + 1)∆ˆ̄xk+1

)

and ξ̂k∈ (ˆ̄xk, ˆ̄xk+1), k = 1, . . . n. The fact that |(k + 1)∆ˆ̄xk+1| ≤ 1 implies

|Rn| ≤
1

n

n−1
∑

k=0

w(∇Φ, |∆ˆ̄xk+1|)

where w(g, δ) denotes the uniform continuity δ-modulus of a function g. One derives from
the uniform continuity of ∇Φ on the compact set Sd that

Rn → 0 as n → +∞.

Finally, the continuous function Φ being bounded on the compact set Sd, the partial sums

n−1
∑

k=0

Φ(ˆ̄xk+1) − Φ(ˆ̄xk) = Φ(ˆ̄xn+1) − Φ(ˆ̄x0)

remain bounded as n goes to infinity. Lemma 1 then implies that

lim inf
n→+∞

1

n

n−1
∑

k=0

(k + 1)
(

Φ(ˆ̄xk+1) − Φ(ˆ̄xk)
)

≤ 0.

One concludes by noting that on one hand

lim sup
n→∞

1

n

n−1
∑

k=0

q(x̄k) ≤ Q∗ = sup
Pd+1

q

and that, on the other hand, the function q being continuous,

lim
n→∞

1

n

n−1
∑

k=0

q(x̄k) = q(x∗) as soon as x̄n → x∗. ♦

Corollary 1 When d+1 = 2 (two players), Assumption (1) is satisfied as soon as f0 and
f1 are continuous on P2 and then the conclusions of Theorem1 hold true.

Proof: This follows from the obvious fact that the continuous function u1 7→ f1(1 −
u1, u1) − f0(1 − u1, u1) on [0, 1] has an antiderivative. ♦

Further comments: • If one considers a slightly more general game in which some
weighted strategies are allowed, the final result is not modified in any way provided the
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weight sequence satisfies a very light assumption. Namely, assume that at time n the
reward is

∆n+1fxn+1
(x̄n) instead of fxn+1

(x̄n)

where the weight sequence ∆ = (∆n)n≥1 satisfies

∆n ≥ 0, n ≥ 1, Sn =
n
∑

k=1

∆k → +∞,
∆n

Sn

→ 0 as n → ∞

then the quantities x̄∆
0 ∈ Pd+1, x̄∆

n := (x̄∆,0
n , . . . , x̄∆,d

n ) with x̄∆,i
n = 1

Sn

∑n
k=1 ∆k1{xk=i}, i =

0, . . . , d, n ≥ 1, and Q∆(x) = lim inf
n→+∞

1

Sn

n−1
∑

k=0

∆k+1fxk+1
(x̄∆

k ) satisfy all the conclusions of

Theorem 1 mutatis mutandis.

• Several applications of Theorem 1 to the theory of learning in games and to stochastic
fictitious play are extensively investigated in [2] which we refer to for all these aspects. As
far as we are concerned we will simply make a remark about some “natural” strategies
which illustrates the theorem in an elementary way.

In the reward function at time k, i.e. fxk
(x̄k−1), xk represents the competitive term

(“who will play ?”) and x̄k−1 represents a cooperative term (everybody’s past behaviour
has influence on everybody’s reward).

This cooperative/competitive antagonism induces that in such a game a greedy com-
petitive strategy is usually not optimal (when the players do not play a symmetric rôle).
Let us be more specific. Assume for the sake of simplicity that d + 1 = 2 (two players).
Then one may consider without loss of generality that x̄n = ˆ̄xn i.e. that x̄n is a [0, 1]-valued
real number. A greedy competitive strategy is defined by

player 1 plays at time n (i.e. xn = 1) iff f1(x̄n−1) ≥ f0(x̄n−1) (2)

i.e. the player with the highest reward is nominated to play. Note that such a strategy is
anticipative from a probabilistic viewpoint. Then, for every n ≥ 1,

fxn
(x̄n−1) = max(f0(x̄n−1), f1(x̄n−1))

and it is clear that

fxn
(x̄n−1) − q(x̄n) = max(f0(x̄n−1), f1(x̄n−1)) − q(x̄n) =: ϕ(x̄n) ≥ 0.

On the other hand, the proof of Theorem 1 implies that

lim inf
n→+∞

1

n

n−1
∑

k=0

ϕ(x̄n) ≤ 0.

Hence, there is at least one weak limiting distribution µ̄∞ of the sequence of empirical
measures µ̄n := 1

n

∑

0≤k≤n−1 δx̄k
which is supported by the closed set {ϕ = 0} ⊂ {0, 1} ∪

{f0 = f1}; on the other supp(µ∞) is contained in the set X̄∞ of the limiting values of the
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sequence (x̄n) itself (in fact X̄∞ is an interval since (x̄n)n is bounded and x̄n+1 − x̄n → 0).
Hence X̄∞ ∩ ({0, 1} ∪ {f0 = f1}) 6= ∅.

If the greedy strategy (x̄n)n is optimal then dist(x̄n, argmax q) → 0 as n → ∞ i.e.
X̄∞ ⊂ argmax q. Consequently if

argmax q ∩ ({0, 1} ∪ {f0 = f1}) = ∅ (3)

then the purely competitive strategy is never optimal.

So is the case if

f0(x) = ax and f1(x) = b (1 − x), x∈ [0, 1],

for some positive parameters a 6= b, then

argmaxq = {1/2} and f0(1/2) 6= f1(1/2).

In fact, one shows that the greedy strategy x = (xn)n≥1 defined by (2) satisfies

x̄n →
b

a + b
and Q(x) =

ab

a + b
as n → ∞

whereas any optimal (cooperative) strategy (like the i.i.d. Bernoulli(1/2) one) yields an
asymptotic (relative) global payoff rate

Q∗ = max
[0,1]

q =
a + b

4
.

Note that Q∗ > ab
a+b

since a 6= b. (When a = b the greedy strategy becomes optimal.)

• A more abstract version of Theorem 1 can be established using the same approach.
The finite set {0, 1, . . . , d} is replaced by a compact metric set K, Pd+1 is replaced by the
convex set P

K
of probability distributions on K equipped with the weak topology and the

continuous function f : K ×PK → R still derives from a potential function in some sense.
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[2] M. Benäım, G. Ben Arous (2003). A two armed bandit type problem, Game Theory,
32(3), 3-16.

6


