
HAL Id: hal-00004196
https://hal.science/hal-00004196

Preprint submitted on 19 Feb 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The qnu and qnuK calculi, name capture and control
(Extended Abstract)

Sylvain Baro, François Maurel

To cite this version:
Sylvain Baro, François Maurel. The qnu and qnuK calculi, name capture and control (Extended
Abstract). 2003. �hal-00004196�

https://hal.science/hal-00004196
https://hal.archives-ouvertes.fr

The qν and qνK calculi : name capture and control

Sylvain Baro François Maurel

March 11, 2003

Abstract

We introduce a pithy calculus obtained by splitting the λ binder of the λ-calculus into two con-
structions : a pure binder ν, à la π-calculus, and a combinator for β-reduction. This splitting allows
a powerful – yet controlled – rebinding mechanism. Using the same splitting with continuations allows
the expression of both local and global exceptions in the same clean calculus. We also exhibit a typing
system with variable initialisation and exception handling analysis.

Introduction

The splitting of a binder into a pure binder and a combinator has been proposed by Fu Yuxi in ICALP’97
for the χ-calculus and by Joachim Parrow and Björn Victor in LICS’98 for their fusion calculus. This led to
expressive and simple process calculi. We hereby present a similar construction in the functional setting.

We first present the syntax of the qν-calculus, its reduction rules and some properties. We then define
typing rules and a variable initialisation analysis. Finally, we extend the language with continuations which
allows an encoding for real exceptions.

1 The qν-calculus

1.1 Syntax

The qν-calculus is obtained by splitting the usual λ construction into two constructions: the binder ν which
handles the renaming, and the combinator q for β-reduction.

Given an infinite countable set of variables X , we define the terms of the qν-calculus as :

t ::= x | νx.t | qx.t | (t t)

The set of free variables of a term t is defined as

FV (x) ≡ {x} FV (qx.t) ≡ FV (t) ∪ {x}
FV (νx.t) ≡ FV (t)\{x} FV ((t1 t2)) ≡ FV (t1) ∪ FV (t2)

For example, in the term qx.(νy.qy.y z), the variables x and z are free while y is bound.
As opposed to the behaviour of the ν, the combinator q is not a binder, hence, variables in its subterm

are not protected against capture. Renaming and closed terms are defined according to this definition of free
variables. The renaming in a term only takes into account the ν binder : for example νx.x and νy.y are
equivalent up to renaming, while qx.x and qy.y are not.

A term is closed if all its variables x are under a νx. Similarly, a term is safe if all its variables x are under
a qx. The unsafe variables – those which are not under a q – are the variables which may not be initialised.
The typical example is x in νx.x which is bound but unsafe. The intuition behind these definitions is that a
term is closed when all its variables are declared whereas a term is safe when all its variables are initialised.

The substitution is also defined according to the behaviour we expect from ν and q, up to renaming.

x[u/x] ≡ u y[u/x] ≡ y
(νx.t)[u/x] ≡ νx.t (νy.t)[u/x] ≡ νy.t[u/x] if y /∈ FV (u)
(qx.t)[u/x] ≡ qx.t[u/x] (qy.t)[u/x] ≡ qy.t[u/x]
(t1 t2)[u/x] ≡ (t1[u/x] t2[u/x])

1

1.2 Reduction rules

We consider terms up to a structural congruence νx.νy.t ∼ νy.νx.t. The reduction rules are:

Scope extrusion (νx.t u) ;ν νx.(t u) if x /∈ FV (u)
β-reduction (qx.t u) ;β t[u/x]
Garbage collection νx.t ;γ t if x /∈ FV (t)

The reduction ; is the union of these three reductions.

1.3 Properties

Following the initial motivations, the λ-calculus can be encoded inside the qν-calculus by the translation
Jλx.tK ≡ νx.qx.JtK which has the expected behaviour : t ;λ u⇒ JtK ;ν ;β ;∗γ JuK. We therefore use
in the sequel λx.t as a shorthand for νx.qx.t.

Let choice = λt.λu.νx.(λy.(qx.y u) (qx.x t)). For all t and u, ((choice t) u) reduces to t or u. Hence the
qν-calculus is not confluent. Therefore, we use reduction strategies to enforce determinism. In the sequel,
we explore specifically both call-by-value and call-by-name weak strategies (no reductions under a q).

1.4 Examples

The following terms – which do not belong to the λ-calculus – should help to understand the qν-calculus :

• A rebinder is a term capturing a variable during reduction. A typical rebinder is rx ≡ λy.qx.y which
can be used to write the identity function id ≡ νx.(λf.(f x) rx) where x is rebound by rx at runtime.

• The term νx.x is closed, unsafe and doesn’t reduce.

2 Typing

We mimic the λ-calculus simple typing rules in the qν-calculus and afterwards enrich this system with unsafe
variables evaluation analysis.

2.1 Simple types

Given a countable set of atoms (ranged over by X), simple types (ranged over by A,B . . .) are built using
the following grammar : A := X | A→ A.

Judgements are of the form Γ ` t : A where the context Γ is a set of distinct variables with a simple type,
t is a term and A is a type. Judgements are considered up to context permutation.

The typing rules for the qν-calculus are as follows

Γ, x : A ` x : A
Γ ` t : A→ B Γ ` u : A

Γ ` (t u) : B

Γ, x : A ` t : B
Γ, x : A ` qx.t : A→ B

Γ, x : A ` t : B
Γ ` νx.t : B

These typing rules extend the ones of the λ-calculus with the translation λx.t = νx.qx.t. The combinator
q is not a binder, hence the variable x is not discarded from the context in the rule for q. Moreover, each
variable has to be declared by a ν.

Proposition 1 (Subject reduction)

Let Γ ` t : A be a derivable judgement. If t reduces to u then Γ ` u : A is derivable.

Proposition 2 (Strong normalization)

Any typable term is strongly normalizing.

2

2.2 Analysis

Consider id = νx.(λf.(f x) λy.qx.y). This term reduces to λx.x. The terms id and νx.x are both well typed
and unsafe but their reductions differ. In weak reduction, the unsafety of id disappears during the reduction
process whereas νx.x leads to the evaluation of an uninitialized variable.

By annotating types with variables and extending simple typing rules, we are able to detect this kind of
“errors” and distinguish the previous terms.

3 The K

The λκ-calculus is an extension of the λ-calculus with continuation such that κx.t = call/cc λx.t. In the
same way λ is split, κ can be split into two parts : the already defined ν and a combinator K such that
κx.t = νx.Kx.t. The syntax of the qνK-calculus is t ::= x | νx.t | qx.t | (t t) | Kx.t | 〈x, C[]〉.

The Kx.t construction evaluates t with the current continuation (〈x, C[]〉) bound to x, where C[] is the
current evaluation context. The variable x in 〈x, C[]〉 is needed here for the nesting of Kx which doesn’t
occur in the λκ-calculus.

The reduction rules of the qνK-calculus are more complicated than the ones of the qν-calculus because of
control. Due to lack of space, we only present without details the right weak call-by-value reduction strategy.

C[{νx.t}] ; C[νx.{t}] C[{(t u)}] ; C[(t {u})]
C[(t {v})] ; C[({t} v)] C[({νx.t} v)] ; C[νx.({t} v)] if x /∈ FV (v)
C[({qx.t} v)] ; C[{t[v/x]}] C[{Kx.t}] ; C[{t[〈x, C[]〉/x]}]
C[{(〈x, C′[]〉 t)}] ; C′[{ν−→z .t}]

where 〈x, C[]〉[〈x, C′[]〉/x] ≡ 〈x, C′[]〉. The −→z are the bound variables of C[] minus those of C′[].
The intuition is that to reduce Kx.t, first reduce t ; t1 ; · · ·. If x is evaluated, then return its (scope

extruded) argument.
Both typing and analysis can be extended for the qνK-calculus.

4 Real programmers’ exceptions

We encode CoreML – a mini-language with first class exceptions à la ML – inside the qνK-calculus. We use
a notion of toplevel in CoreML to handle uncaught exceptions. Exceptions of CoreML behaves in the usual
(Caml) way. The translation of a term with an uncaught exception carrying a value t reduces to νe.ν−→x .(e t).
The uninitialized variables analysis yields for free an uncaught exceptions analysis.

The syntax of CoreML is

top ::= Toplevel(t)
t ::= x | λx.t | (t t) | let x = t in t

| Except x.t Defines of a new exception x in t
| Exn(x, t) Builds an exception value containing t
| try t with x → u Catches an exception x and feeds u with its contained value
| (raise t) Raises an exception value

For example, the following term reduces to 12, due to the rescoping of the exception e in the try with.

Toplevel(Except e.let f = λx.(raise Exn(e, 12)) in try (f 42) with e → λx.x)

Both CoreML and the qνK-calculus use a right weak call-by-value reduction strategy.
Translations of non straightforward constructions are :

JToplevel(t)K ≡ νTop.KTop.JtK
JExcept e.tK ≡ νe.νe′.Jtry t with e → λx.(Top (e x))K
JExn(e, t)K ≡ λz.(e JtK)
Jtry t with e → uK≡ Ke′.(JuK Ke.(e′ JtK))
J(raise t)K ≡ (JtK a) where a is an arbitrary constant of the proper type.

All this shows that the qνK-calculus can express both real exceptions and continuations.

3

