open science

Multiparameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with convection term

Marius Ghergu, Vicentiu Radulescu

- To cite this version:

Marius Ghergu, Vicentiu Radulescu. Multiparameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with convection term. 2005. hal-00004192

HAL Id: hal-00004192

https://hal.science/hal-00004192

Preprint submitted on 8 Feb 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MULTIPARAMETER BIFURCATION AND ASYMPTOTICS FOR the singular Lane-Emden-Fowler equation with CONVECTION TERM

Marius GHERGU and Vicenţiu RĂDULESCU*
Department of Mathematics, University of Craiova, 200585 Craiova, Romania

Abstract

We establish some bifurcation results for the boundary value problem $-\Delta u=g(u)+$ $\lambda|\nabla u|^{p}+\mu f(x, u)$ in $\Omega, u>0$ in $\Omega, u=0$ on $\partial \Omega$, where Ω is a smooth bounded domain in $\mathbb{R}^{N}, \lambda, \mu \geq 0,0<p \leq 2, f$ is nondecreasing with respect to the second variable, and g is unbounded around the origin. The asymptotic behaviour of the solution around the bifurcation point is also established, provided $g(u)$ behaves like $u^{-\alpha}$ around the origin, for some $0<\alpha<1$. Our approach relies on finding explicit sub- and super-solutions combined with various techniques related to the maximum principle for elliptic equations. The analysis we develop in this paper shows the key role played by the convection term $|\nabla u|^{p}$.

Key words: singular elliptic equation, sub-linear perturbation, bifurcation problem, maximum principle.
2000 Mathematics Subject Classification: 35A20, 35B25, 35B50, 35J60, 58J55, 58K55.

1 Introduction and the main results

In his recent monograph [27], H. Kielhöfer synthetizes the role of bifurcation problems in Applied Mathematics: Bifurcation Theory attempts to explain various phenomena that have been discovered and described in Natural Sciences over the centuries. The buckling of the Euler rod, the appearance of Taylor vortices, and the onset of oscillations in an electric circuit, for instance, all have a common cause: a specific physical parameter crosses a threshold, and that event forces the system to the organization of a new state that differs considerably from that observed before.

In the present paper we continue the bifurcation analysis developed in our previous works [18, 19] (see also [10]) for a large class of semilinear elliptic equations with singular nonlinearity and Dirichlet boundary condition. Such problems arise in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids, chemical heterogeneous catalysts, as well as in the theory of heat conduction in electrically conducting materials. The main feature of this paper is the presence of the convection term $|\nabla u|^{p}$.

[^0]Let $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ be a bounded domain with a smooth boundary. We are concerned in this paper with singular elliptic problems of the following type

$$
\begin{cases}-\Delta u=g(u)+\lambda|\nabla u|^{p}+\mu f(x, u) & \text { in } \Omega \tag{1.1}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $0<p \leq 2$ and $\lambda, \mu \geq 0$. As remarked in [9, 26], the requirement that the nonlinearity grows at most quadratically in $|\nabla u|$ is natural in order to apply the maximum principle.

Throughout this paper we suppose that $f: \bar{\Omega} \times[0, \infty) \rightarrow[0, \infty)$ is a Hölder continuous function which is nondecreasing with respect to the second variable and is positive on $\bar{\Omega} \times(0, \infty)$. We assume that $g:(0, \infty) \rightarrow(0, \infty)$ is a Hölder continuous function which is nonincreasing and $\lim _{s \backslash 0} g(s)=+\infty$.

Problems of this type arise in the study of guided modes of an electromagnetic field in a nonlinear medium, satisfying adequate constitutive hypotheses. The following two examples illustrate situations of this type: (i) if $f(u)=u^{3}\left(1+\gamma u^{2}\right)^{-1}(\gamma>0)$ then problem (1.1) describes the variation of the dielectric constant of gas vapors where a laser beam propagates (see [36, 37]); (ii) nonlinearities of the type $f(u)=\left(1-e^{-\gamma u^{2}}\right) u$ arise in the context of laser beams in plasmas (see 38]). If $f(u)=e^{u /(1+\varepsilon u)}(\varepsilon>0)$ then the corresponding equation describes the temperature dependence of the reaction rate for exothermic reactions obeying the simple Arrhenius rate law in circumstances in which the heat flow is purely conductive (see 4, 43]). In this context the parameter ε is a dimensionless ambient temperature and the parameter λ is a dimensionless heat evolution rate. The corresponding equation

$$
-\Delta u=g(u)+\lambda|\nabla u|^{p}+\mu e^{u /(1+\varepsilon u)} \quad \text { in } \Omega
$$

represents heat balance with reactant consumption ignored, where u is a dimensionless temperature excess. The Dirichlet boundary condition $u=0$ on $\partial \Omega$ is an isothermal condition and, in this case, it describes the exchange of heat at the surface of the reactant by Newtonian cooling.

Our general setting includes some simple prototype models from boundary-layer theory of viscous fluids (see 45]). If $\lambda=0$ and $\mu=0$, (1.1) is called the Lane-Emden-Fowler equation. Problems of this type, as well as the associated evolution equations, describe naturally certain physical phenomena. For example, super-diffusivity equations of this type have been proposed by de Gennes [15] as a model for long range Van der Waals interactions in thin films spreading on solid surfaces. This equation also appears in the study of cellular automata and interacting particle systems with self-organized criticality (see [8]), as well as to describe the flow over an impermeable plate (see [5, 6]).

Our aim in this paper is to describe the influence of the gradient term in problem (1.1).

Many papers have been devoted to the case $\lambda=0$, where the problem (1.1) becomes

$$
\begin{cases}-\Delta u=g(u)+\mu f(x, u) & \text { in } \Omega \tag{1.2}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

If $\mu=0$, then (1.2) has a unique solution (see [14, 29]). When $\mu>0$, the study of (1.2) emphasizes the role played by the nonlinear term $f(x, u)$. For instance, if one of the following assumptions are fulfilled
($f 1$) there exists $c>0$ such that $f(x, s) \geq c s$ for all $(x, s) \in \bar{\Omega} \times[0, \infty)$;
(f2) the mapping $(0, \infty) \ni s \longmapsto \frac{f(x, s)}{s}$ is nondecreasing for all $x \in \bar{\Omega}$,
then problem (1.2) has solutions only if $\mu^{s}>0$ is small enough (see (11]). In turn, when f satisfies the following assumptions
($f 3$) the mapping $(0, \infty) \ni s \longmapsto \frac{f(x, s)}{s}$ is nonincreasing for all $x \in \bar{\Omega}$;
(f4) $\lim _{s \rightarrow \infty} \frac{f(x, s)}{s}=0$, uniformly for $x \in \bar{\Omega}$,
then problem (1.2) has at least one solutions for all $\mu>0$ (see (10, 11, 18, (35) and the references therein). The same assumptions will be used in the study of (1.1).

If $\lambda>0$, the following problem was treated in Zhang and Yu 42]

$$
\begin{cases}-\Delta u=\frac{1}{u^{\alpha}}+\lambda|\nabla u|^{p}+\sigma & \text { in } \Omega \tag{1.3}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\lambda, \sigma \geq 0, \alpha>0$, and $p \in(0,2]$. By using the change of variable $v=e^{\lambda u}-1$ in the case $p=2$, it is proved in (42] that problem (1.3) has classical solutions if $\lambda \sigma<\lambda_{1}$, where λ_{1} is the first eigenvalue of $-\Delta$ in $H_{0}^{1}(\Omega)$. This will be used to deduce the existence and nonexistence in the case $0<p<2$.

If $f(x, u)$ depends on u, the above change of variable does not preserve the sublinearity condition $(f 3)-(f 4)$ and the monotony of the nonlinear term g in problem (1.1). In turn, if $f(x, u)$ does not depend on u and $p=2$, this method successfully applies to our study and we will be able to give a complete characterization of (1.1) (see Theorem 1.4 below).

Due to the singular term $g(u)$ in $\left(P_{\lambda}\right)$, we cannot expect to have solutions in $C^{2}(\bar{\Omega})$. As it was pointed out in [42], if $\alpha>1$ then the solution of (1.3) is not in $C^{1}(\bar{\Omega})$. We are seeking in this paper classical solutions of $\left(P_{\lambda}\right)$, that is, solutions $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ that verify (1.1).

By the monotony of g, there exists

$$
a=\lim _{s \rightarrow \infty} g(s) \in[0, \infty) .
$$

The first result concerns the case $\lambda=1$ and $1<p \leq 2$. In the statement of the following result we do not need assumptions $(f 1)-(f 4)$; we just require that f is a Hölder continuous function which is nondecreasing with respect to the second variable and is positive on $\bar{\Omega} \times(0, \infty)$.

Theorem 1.1. Assume $\lambda=1$ and $1<p \leq 2$.
(i) If $p=2$ and $a \geq \lambda_{1}$, then (1.1) has no solutions;
(ii) If $p=2$ and $a<\lambda_{1}$ or $1<p<2$, then there exists $\mu^{*}>0$ such that (1.1) has at least one classical solution for $\mu<\mu^{*}$ and no solutions exist if $\mu>\mu^{*}$.

If $\lambda=1$ and $0<p \leq 1$ the study of existence is close related to the asymptotic behaviour of the nonlinear term $f(x, u)$. In this case we prove

Theorem 1.2. Assume $\lambda=1$ and $0<p \leq 1$.
(i) If f satisfies ($f 1$) or ($f 2$), then there exists $\mu^{*}>0$ such that (1.1) has at least one classical solution for $\mu<\mu^{*}$ and no solutions exist if $\mu>\mu^{*}$;
(ii) If $0<p<1$ and f satisfies $(f 3)-(f 4)$, then (1.1) has at least one solution for all $\mu \geq 0$.

Next we are concerned with the case $\mu=1$. Our result is the following
Theorem 1.3. Assume $\mu=1$ and f satisfies assumptions ($f 3$) and (f4). Then the following properties hold true.
(i) If $0<p<1$, then (1.1) has at least one classical solution for all $\lambda \geq 0$;
(ii) If $1 \leq p \leq 2$, then there exists $\lambda^{*} \in(0, \infty]$ such that (1.1) has at least one classical solution for $\lambda<\lambda^{*}$ and no solution exists if $\lambda>\lambda^{*}$. Moreover, if $1<p \leq 2$, then λ^{*} is finite.

Related to the above result we raise the following open problem: if $p=1$ and $\mu=1$, is λ^{*} a finite number?

Theorem 1.3 shows the importance of the convection term $\lambda|\nabla u|^{p}$ in (1.1). Indeed, according to [18, Theorem 1.3] and for any $\mu>0$, the boundary value problem

$$
\begin{cases}-\Delta u=u^{-\alpha}+\lambda|\nabla u|^{p}+\mu u^{\beta} & \text { in } \Omega \tag{1.4}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a unique solution, provided $\lambda=0, \alpha, \beta \in(0,1)$. The above theorem shows that if λ is not necessarily 0 , then the following situations may occur : (i) problem (1.4) has solutions if $p \in(0,1)$ and for all $\lambda \geq 0$; (ii) if $p \in(1,2)$ then there exists $\lambda^{*}>0$ such that problem (1.4) has a solution for any $\lambda<\lambda^{*}$ and no solution exists if $\lambda>\lambda^{*}$.

To see the dependence between λ and μ in (1.1), we consider the special case $f \equiv 1$ and $p=2$. In this case we can say more about the problem (1.1). More precisely we have

Theorem 1.4. Assume that $p=2$ and $f \equiv 1$.
(i) The problem (1.1) has solution if and only if $\lambda(a+\mu)<\lambda_{1}$;
(ii) Assume $\mu>0$ is fixed, g is decreasing and let $\lambda^{*}=\frac{\lambda_{1}}{a+\mu}$. Then (1.1) has a unique solution u_{λ} for all $\lambda<\lambda^{*}$ and the sequence $\left(u_{\lambda}\right)_{\lambda<\lambda^{*}}$ is increasing with respect to λ.
Moreover, if $\limsup _{s \backslash 0}^{\alpha} s^{\alpha} g(s)<+\infty$, for some $\alpha \in(0,1)$, then the sequence of solutions $\left(u_{\lambda}\right)_{0<\lambda<\lambda^{*}}$ has the following properties
(ii1) For all $0<\lambda<\lambda^{*}$ there exist two positive constants c_{1}, c_{2} depending on λ such that $c_{1} \operatorname{dist}(x, \partial \Omega) \leq u_{\lambda} \leq c_{2} \operatorname{dist}(x, \partial \Omega)$ in Ω;
(ii2) $u_{\lambda} \in C^{1,1-\alpha}(\bar{\Omega}) \cap C^{2}(\Omega)$;
(ii3) $u_{\lambda} \longrightarrow+\infty$ as $\lambda \nearrow \lambda^{*}$, uniformly on compact subsets of Ω.
The assumption $\limsup _{s \backslash 0} s^{\alpha} g(s)<+\infty$, for some $\alpha \in(0,1)$, has been used in 18] and it implies the following Keller-Osserman-type growth condition around the origin

$$
\begin{equation*}
\int_{0}^{1}\left(\int_{0}^{t} g(s) d s\right)^{-1 / 2} d t<+\infty \tag{1.5}
\end{equation*}
$$

As proved by Bénilan, Brezis and Crandall in [3], condition (1.5) is equivalent to the property of compact support, that is, for any $h \in L^{1}\left(\mathbb{R}^{N}\right)$ with compact support, there exists a unique $u \in W^{1,1}\left(\mathbb{R}^{N}\right)$ with compact support such that $\Delta u \in L^{1}\left(\mathbb{R}^{N}\right)$ and

$$
-\Delta u=g(u)+h \quad \text { a.e. in } \mathbb{R}^{N}
$$

The situations described in Theorem 1.4 are depicted in the following bifurcation diagrams. Case 1 (resp., Case 2) corresponds to (i) and $a=0$ (resp., $a>0$), while Case 3 is related to (ii), $\lambda>0$ and $\mu=$ fixed.

Case 1

Case 2

Case 3

Figure 1: Bifurcation diagrams

As regards the uniqueness of the solutions to problem (1.1), we may say that this does not seem to be a feature easy to achieve. Only when $f(x, u)$ is constant in u we can use classical methods in order to prove the uniqueness. It is worth pointing out here that the uniqueness of the solution is a delicate issue even for the simpler problem (1.2). We have showed in 18] that when f fulfills $(f 3)-(f 4)$ and g satisfies the same growth condition as in Theorem 1.4 then, if (1.2) has a solution, it will follows that this solution is unique. On the other hand, if f satisfies $(f 2)$, the uniqueness generally does not occur. In that sense we refer the interested reader to Haitao [23]. In the case $f(x, u)=u^{q}, g(u)=u^{-\gamma}, 0<\gamma<\frac{1}{N}$ and $1<q<\frac{N+2}{N-2}$, we learn from [23] that problem (1.2) has at least two classical solutions provided μ belongs to a certain range.

Our approach relies on finding of appropriate sub- and super-solutions of (1.1). This will allows us to enlarge the study of bifurcation to a class of problems more generally to that studied in [42]. However, neither the method used in Zhang and Yu 42], nor our method gives a precise answer if λ^{*} is finite or not in the case $p=1$ and $\mu=1$.

In the next Section we state some auxiliary results which will be used in the proofs of the above Theorems. This will be done in Sections 3, 4, 5 and 6.

2 Auxiliary results

Let φ_{1} be the normalized positive eigenfunction corresponding to the first eigenvalue λ_{1} of the problem

$$
\begin{cases}-\Delta u=\lambda u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

As it is well known $\lambda_{1}>0, \varphi_{1} \in C^{2}(\bar{\Omega})$ and

$$
\begin{equation*}
C_{1} \operatorname{dist}(x, \partial \Omega) \leq \varphi_{1} \leq C_{2} \operatorname{dist}(x, \partial \Omega) \quad \text { in } \Omega \tag{2.1}
\end{equation*}
$$

for some positive constants $C_{1}, C_{2}>0$. From the characterization of λ_{1} and φ_{1} we state the following elementary result. For the convenience of the reader we shall give a complete proof.

Lemma 2.1. Let $F: \bar{\Omega} \times(0, \infty) \rightarrow \mathbb{R}$ be a continuous function such that $F(x, s) \geq \lambda_{1} s+b$ for some $b>0$ and for all $(x, s) \in \bar{\Omega} \times(0, \infty)$. Then the problem

$$
\begin{cases}-\Delta u=F(x, u) & \text { in } \Omega \tag{2.2}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has no solutions.

Proof. By contradiction, suppose that (2.2) admits a solution. This will provide a super-solution of the problem

$$
\begin{cases}-\Delta u=\lambda_{1} u+b & \text { in } \Omega \tag{2.3}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Since 0 is a sub-solution, by the sub and super-solution method and classical regularity theory it follows that (2.2) has a solution $u \in C^{2}(\bar{\Omega})$. Multiplying by φ_{1} in (2.3) and then integrating over Ω, we get

$$
-\int_{\Omega} \varphi_{1} \Delta u=\lambda_{1} \int_{\Omega} \varphi_{1} u+b \int_{\Omega} \varphi_{1}
$$

that is $\lambda_{1} \int_{\Omega} \varphi_{1} u=\lambda_{1} \int_{\Omega} \varphi_{1} u+b \int_{\Omega} \varphi_{1}$, which implies $\int_{\Omega} \varphi_{1}=0$. This is clearly a contradiction since $\varphi_{1}>0$ in Ω. Hence (2.2) has no solutions.

The growth of φ_{1} is prescribed in the following result.
Lemma 2.2. (see 29). $\int_{\Omega} \varphi_{1}^{-s} d x<+\infty$ if and only if $s<1$.
Basic in the study of the existence is the following Lemma.
Lemma 2.3. (see 35]). Let $F: \bar{\Omega} \times(0, \infty) \rightarrow \mathbb{R}$ be a Hölder continuous function on each compact subset of $\bar{\Omega} \times(0, \infty)$ which satisfies

$$
\begin{equation*}
\limsup _{s \rightarrow+\infty}\left(s^{-1} \max _{x \in \bar{\Omega}} F(x, s)\right)<\lambda_{1} \tag{F1}
\end{equation*}
$$

(F2) for each $t>0$, there exists a constant $D(t)>0$ such that

$$
F(x, r)-F(x, s) \geq-D(t)(r-s), \quad \text { for } x \in \bar{\Omega} \quad \text { and } \quad r \geq s \geq t
$$

(F3) there exist a $\eta_{0}>0$ and an open subset $\Omega_{0} \subset \Omega$ such that

$$
\min _{x \in \bar{\Omega}} F(x, s) \geq 0 \quad \text { for } s \in\left(0, \eta_{0}\right)
$$

and

$$
\lim _{s \searrow 0} \frac{F(x, s)}{s}=+\infty \quad \text { uniformly for } x \in \Omega_{0}
$$

Then the problem

$$
\begin{cases}-\Delta u=F(x, u) & \text { in } \Omega \tag{2.4}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has at least one solution.

According to Lemma 2.3, there exists $\zeta \in C^{2}(\bar{\Omega})$ a solution of the problem

$$
\begin{cases}-\Delta \zeta=g(\zeta) & \text { in } \Omega \tag{2.5}\\ \zeta>0 & \text { in } \Omega \\ \zeta=0 & \text { on } \partial \Omega\end{cases}
$$

Clearly ζ is a sub-solution of (1.1) for all $\lambda \geq 0$. It is worth pointing out here that the sub-super solution method still works for the problem (1.1). With the same proof as in Zhang and Yu [42, Lemmma 2.8] that goes back to the pioneering work of Amann [2] we state the following result.

Lemma 2.4. Let $\lambda, \mu \geq 0$. If (1.1) has a super-solution $\bar{u} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ such that $\zeta \leq \bar{u}$ in Ω, then (1.1) has at least a solution.

Another difficulty in the treatment of (1.1) is the lack of the usual maximal principle. The following result which is due to Shi and Yao [35] gives a comparison principle that applies to singular elliptic equations.

Lemma 2.5. (see [35]). Let $F: \bar{\Omega} \times[0, \infty) \rightarrow \mathbb{R}$ be a continuous function such that the mapping $(0, \infty) \ni s \rightarrow \frac{F(x, s)}{s}$ is strictly decreasing at each $x \in \Omega$. Assume $v, w \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and
(a) $\Delta w+F(x, w) \leq 0 \leq \Delta v+F(x, v)$ in Ω;
(b) $v, w>0$ in Ω and $v \leq w$ on $\partial \Omega$;
(c) $\Delta v \in L^{1}(\Omega)$.

Then $v \leq w$ in Ω.
Lemma 2.6. (see [1]). If $p>1$, then there exists a real number $\bar{\sigma}>0$ such that the problem

$$
\begin{cases}-\Delta u=|\nabla u|^{p}+\sigma & \text { in } \Omega \tag{2.6}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has no solutions for $\sigma>\bar{\sigma}$.

3 Proof of Theorem 1.1

We start with the following more general result.
Lemma 3.1. Let $F: \bar{\Omega} \times(0, \infty) \rightarrow[0, \infty)$ and $G:(0, \infty) \rightarrow(0, \infty)$ be two Hölder continuous functions that verify
(A1) $F(x, s)>0$, for all $(x, s) \in \bar{\Omega} \times(0, \infty)$;
(A2) The mapping $[0, \infty) \ni s \longmapsto F(x, s)$ is nondecreasing for all $x \in \bar{\Omega}$;
(A3) G is nonincreasing and $\lim _{s \backslash 0} G(s)=+\infty$.

Assume that $\tau>0$ is a positive real number. Then the following holds.
(i) If $\tau \lim _{s \rightarrow \infty} G(s) \geq \lambda_{1}$, then the problem

$$
\begin{cases}-\Delta u=G(u)+\tau|\nabla u|^{2}+\mu F(x, u) & \text { in } \Omega \tag{3.1}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has no solutions.
(ii) If $\tau \lim _{s \rightarrow \infty} G(s)<\lambda_{1}$, then there exists $\bar{\mu}>0$ such that the problem (3.1) has at least one solution for all $0 \leq \mu<\bar{\mu}$.

Proof. (i) With the change of variable $v=e^{\tau u}-1$, the problem (3.1) takes the form

$$
\begin{cases}-\Delta v=\Psi_{\mu}(x, u) & \text { in } \Omega \tag{3.2}\\ v>0 & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

where

$$
\Psi_{\mu}(x, s)=\tau(s+1) G\left(\frac{1}{\tau} \ln (s+1)\right)+\mu \tau(s+1) F\left(x, \frac{1}{\tau} \ln (s+1)\right),
$$

for all $(x, s) \in \bar{\Omega} \times(0, \infty)$.
Taking into account the fact that G is nonincreasing and $\tau \lim _{s \rightarrow \infty} G(s) \geq \lambda_{1}$, we get

$$
\Psi_{\mu}(x, s) \geq \lambda_{1}(s+1) \quad \text { in } \bar{\Omega} \times(0, \infty), \text { for all } \mu \geq 0
$$

By Lemma 2.1 we conclude that (3.2) has no solutions. Hence (3.1) has no solutions.
(ii) Since

$$
\lim _{s \rightarrow+\infty} \frac{\tau(s+1) G\left(\frac{1}{\tau} \ln (s+1)\right)+1}{s}<\lambda_{1}
$$

and

$$
\lim _{s \backslash 0} \frac{\tau(s+1) G\left(\frac{1}{\tau} \ln (s+1)\right)+1}{s}=+\infty
$$

we deduce that the mapping $(0, \infty) \ni s \longmapsto \tau(s+1) G\left(\frac{1}{\tau} \ln (s+1)\right)+1$ fulfills the hypotheses in Lemma 2.3. According to this one, there exists $\bar{v} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ a solution of the problem

$$
\begin{cases}-\Delta v=\tau(v+1) G\left(\frac{1}{\tau} \ln (v+1)\right)+1 & \text { in } \Omega \\ v>0 & \text { in } \Omega \\ v=0 & \text { in } \partial \Omega\end{cases}
$$

Define

$$
\bar{\mu}:=\frac{1}{\tau\left(\|\bar{v}\|_{\infty}+1\right)} \cdot \frac{1}{\max _{x \in \bar{\Omega}} F\left(x, \frac{1}{\tau} \ln \left(\|\bar{v}\|_{\infty}+1\right)\right)} .
$$

It follows that \bar{v} is a super-solution of (3.2) for all $0 \leq \mu<\bar{\mu}$.
Next we provide a sub-solution \underline{v} of (3.2) such that $\underline{v} \leq \bar{v}$ in Ω. To this aim, we apply Lemma 2.3 to get that there exists $\underline{v} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ a solution of the problem

$$
\begin{cases}-\Delta v=\tau G\left(\frac{1}{\tau} \ln (v+1)\right) & \text { in } \Omega \\ v>0 & \text { in } \Omega, \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

Clearly, \underline{v} is a sub-solution of (3.2) for all $0 \leq \mu<\bar{\mu}$. Let us prove now that $\underline{v} \leq \bar{v}$ in Ω. Assuming the contrary, it follows that $\max _{x \in \bar{\Omega}}\{\underline{v}-\bar{v}\}>0$ is achieved in Ω. At that point, say x_{0}, we have

$$
\begin{aligned}
0 & \leq-\Delta(\underline{v}-\bar{v})\left(x_{0}\right) \\
& \leq \tau\left[G\left(\frac{1}{\tau} \ln \left(\underline{v}\left(x_{0}\right)+1\right)\right)-G\left(\frac{1}{\tau} \ln \left(\bar{v}\left(x_{0}\right)+1\right)\right)\right]-1<0,
\end{aligned}
$$

which is a contradiction. Thus, $\underline{v} \leq \bar{v}$ in Ω. We have proved that (\underline{v}, \bar{v}) is an ordered pair of sub-super solutions of (3.2) provided $0 \leq \mu<\bar{\mu}$. It follows that (3.1) has at least one classical solution for all $0 \leq \mu<\bar{\mu}$ and the proof of Lemma 3.1 is now complete.

Proof of Theorem 1.1 completed. According to Lemma 3.1(i) we deduce that (1.1) has no solutions if $p=2$ and $a \geq \lambda_{1}$. Furthermore, if $p=2$ and $a<\lambda_{1}$, in view of Lemma 3.1(ii), we deduce that (1.1) has at least one classical solution if μ is small enough. Assume now $1<p<2$ and let us fix $C>0$ such that

$$
\begin{equation*}
a C^{p / 2}+C^{p-1}<\lambda_{1} . \tag{3.3}
\end{equation*}
$$

Define

$$
\psi:[0, \infty) \rightarrow[0, \infty), \quad \psi(s)=\frac{s^{p}}{s^{2}+C}
$$

A careful examination reveals the fact that ψ attains its maximum at $\bar{s}=\left(\frac{C p}{2-p}\right)^{2-p}$. Hence

$$
\psi(s) \leq \psi(\bar{s})=\frac{p^{p / 2}(2-p)^{(2-p) / 2}}{2 C^{1-p / 2}}, \quad \text { for all } s \geq 0
$$

By the classical Young's inequality we deduce

$$
p^{p / 2}(2-p)^{(2-p) / 2} \leq 2,
$$

which yields $\psi(s) \leq C^{p / 2-1}$, for all $s \geq 0$. Thus, we have proved

$$
\begin{equation*}
s^{p} \leq C^{p / 2} s^{2}+C^{p / 2-1}, \quad \text { for all } s \geq 0 \tag{3.4}
\end{equation*}
$$

Consider the problem

$$
\begin{cases}-\Delta u=g(u)+C^{p / 2-1}+C^{p / 2}|\nabla u|^{2}+\mu f(x, u) & \text { in } \Omega \tag{3.5}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

By virtue of (3.4), any solution of (3.5) is a super-solution of (1.1).
Using now (3.3) we get

$$
\lim _{s \rightarrow \infty} C^{p / 2}\left(g(u)+C^{p / 2-1}\right)<\lambda_{1}
$$

The above relation enables us to apply Lemma 3.1(ii) with $G(s)=g(s)+C^{p / 2-1}$ and $\tau=C^{p / 2}$. It follows that there exists $\bar{\mu}>0$ such that (3.5) has at least a solution u. With a similar argument to that used in the proof of Lemma 3.1, we obtain $\zeta \leq u$ in Ω, where ζ is defined in (2.5). By Lemma 2.4 we get that (1.1) has at least one solution if $0 \leq \mu<\bar{\mu}$.

We have proved that (1.1) has at least one classical solution for both cases $p=2$ and $a<\lambda_{1}$ or $1<p<2$, provided μ is nonnegative small enough. Define next

$$
A=\{\mu \geq 0 ; \text { problem (1.1) has at least one solution }\}
$$

The above arguments implies that A is nonempty. Let $\mu^{*}=\sup A$. We first show that $\left[0, \mu^{*}\right) \subseteq A$. For this purpose, let $\mu_{1} \in A$ and $0 \leq \mu_{2}<\mu_{1}$. If $u_{\mu_{1}}$ is a solution of (1.1) with $\mu=\mu_{1}$, then $u_{\mu_{1}}$ is a super-solution of (1.1) with $\mu=\mu_{2}$. It is easy to prove that $\zeta \leq u_{\mu_{1}}$ in Ω and by virtue of Lemma 2.4 we conclude that the problem (1.1) with $\mu=\mu_{2}$ has at least one solution.

Thus we have proved $\left[0, \mu^{*}\right) \subseteq A$. Next we show $\mu^{*}<+\infty$.
Since $\lim _{s \bigvee 0} g(s)=+\infty$, we can choose $s_{0}>0$ such that $g(s)>\bar{\sigma}$ for all $s \leq s_{0}$. Let

$$
\mu_{0}=\frac{\bar{\sigma}}{\min _{x \in \bar{\Omega}} f\left(x, s_{0}\right)}
$$

Using the monotonicity of f with respect to the second argument, the above relations yields

$$
g(s)+\mu f(x, s) \geq \bar{\sigma}, \quad \text { for all }(x, s) \in \bar{\Omega} \times(0, \infty) \quad \text { and } \mu>\mu_{0}
$$

If (1.1) has a solution for $\mu>\mu_{0}$, this would be a super-solution of the problem

$$
\begin{cases}-\Delta u=|\nabla u|^{p}+\bar{\sigma} & \text { in } \Omega \tag{3.6}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Since 0 is a sub-solution, we deduce that (3.6) has at least one solution. According to Lemma 2.6, this is a contradiction. Hence $\mu^{*} \leq \mu_{0}<+\infty$. This concludes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

(i) We fix $p \in(0,1]$ and define

$$
q=q(p)= \begin{cases}p+1 & \text { if } 0<p<1 \\ 3 / 2 & \text { if } p=1\end{cases}
$$

Consider the problem

$$
\begin{cases}-\Delta u=g(u)+1+|\nabla u|^{q}+\mu f(x, u) & \text { in } \Omega \tag{4.1}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Since $s^{p} \leq s^{q}+1$, for all $s \geq 0$, we deduce that any solution of (4.1) is a super-solution of (1.1). Furthermore, taking into account the fact that $1<q<2$, we can apply Theorem 1.1(ii) in order to get that (4.1) has at least one solution if μ is small enough. Thus, by Lemma 2.4 we deduce that (1.1) has at least one classical solution. Following the method used in the proof of Theorem 1.1, we set

$$
A=\{\mu \geq 0 ; \text { problem (1.1) has at least one solution }\}
$$

and let $\mu^{*}=\sup A$. With the same arguments we prove that $\left[0, \mu^{*}\right) \subseteq A$. It remains only to show that $\mu^{*}<+\infty$.

Let us assume first that f satisfies $(f 1)$. Since $\lim _{s \backslash 0} g(s)=+\infty$, we can choose $\mu_{0}>\frac{2 \lambda_{1}}{c}$ such that $\frac{1}{2} \mu_{0} c s+g(s) \geq 1$ for all $s>0$. Then

$$
g(s)+\mu f(x, s) \geq \lambda_{1} s+1, \quad \text { for all }(x, s) \in \bar{\Omega} \times(0, \infty) \text { and } \mu \geq \mu_{0} .
$$

By virtue of Lemma 2.1 we obtain that (1.1) has no classical solutions if $\mu \geq \mu_{0}$, so μ^{*} is finite.
Assume now that f satisfies $(f 2)$. Since $\lim _{s \backslash 0} g(s)=+\infty$, there exists $s_{0}>0$ such that

$$
\begin{equation*}
g(s) \geq \lambda_{1}(s+1) \quad \text { for all } 0<s<s_{0} . \tag{4.2}
\end{equation*}
$$

On the other hand, the assumption (f2) and the fact that Ω is bounded implies that the mapping

$$
(0, \infty) \ni s \longmapsto \frac{\min _{x \in \bar{\Omega}} f(x, s)}{s+1}
$$

is nondecreasing, so we can choose $\tilde{\mu}>0$ with the property

$$
\begin{equation*}
\tilde{\mu} \cdot \frac{\min _{x \in \bar{\Omega}} f(x, s)}{s+1} \geq \lambda_{1} \quad \text { for all } s \geq s_{0} . \tag{4.3}
\end{equation*}
$$

Now (4.2) combined with (4.3) yields

$$
g(s)+\mu f(x, s) \geq \lambda_{1}(s+1), \quad \text { for all }(x, s) \in \bar{\Omega} \times(0, \infty) \text { and } \mu \geq \tilde{\mu} .
$$

Using Lemma 2.1, we deduce that (1.1) has no solutions if $\mu>\tilde{\mu}$, that is, μ^{*} is finite. The first part in Theorem 1.2 is therefore established.
(ii) The strategy is to find a super-solution $\bar{u}_{\mu} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ of (1.1) such that $\zeta \leq \bar{u}_{\mu}$ in Ω. To this aim, let $h \in C^{2}(0, \eta] \cap C[0, \eta]$ be such that

$$
\left\{\begin{array}{l}
h^{\prime \prime}(t)=-g(h(t)), \quad \text { for all } 0<t<\eta, \tag{4.4}\\
h(0)=0 \\
h>0 \text { in }(0, \eta] .
\end{array}\right.
$$

The existence of h follows by classical arguments of ODE. Since h is concave, there exists $h^{\prime}(0+) \in(0,+\infty]$. By taking $\eta>0$ small enough, we can assume that $h^{\prime}>0$ in $(0, \eta]$, so h is increasing on $[0, \eta]$.
Lemma 4.1. (i) $h \in C^{1}[0, \eta]$ if and only if $\int_{0}^{1} g(s) d s<+\infty$;
(ii) If $0<p \leq 2$, then there exist $c_{1}, c_{2}>0$ such that

$$
\left(h^{\prime}\right)^{p}(t) \leq c_{1} g(h(t))+c_{2}, \quad \text { for all } 0<t<\eta .
$$

Proof. (i) Multiplying by h^{\prime} in (4.4) and then integrating on $[t, \eta], 0<t<\eta$, we get

$$
\begin{equation*}
\left(h^{\prime}\right)^{2}(t)-\left(h^{\prime}\right)^{2}(\eta)=2 \int_{t}^{\eta} g(h(s)) h^{\prime}(s) d s=2 \int_{h(t)}^{h(\eta)} g(\tau) d \tau . \tag{4.5}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\left(h^{\prime}\right)^{2}(t)=2 G(h(t))+\left(h^{\prime}\right)^{2}(\eta) \quad \text { for all } 0<t<\eta, \tag{4.6}
\end{equation*}
$$

where $G(t)=\int_{t}^{h(\eta)} g(s) d s$. From (4.6) we deduce that $h^{\prime}(0+)$ is finite if and only if $G(0+)$ is finite, so (i) follows.
(ii) Let $p \in(0,2]$. Taking into account the fact that g is nonincreasing, the inequality (4.6) leads to

$$
\begin{equation*}
\left(h^{\prime}\right)^{2}(t) \leq 2 h(\eta) g(h(t))+\left(h^{\prime}\right)^{2}(\eta), \quad \text { for all } 0<t<\eta . \tag{4.7}
\end{equation*}
$$

Since $s^{p} \leq s^{2}+1$, for all $s \geq 0$, from (4.7) we have

$$
\begin{equation*}
\left(h^{\prime}\right)^{p}(t) \leq c_{1} g(h(t))+c_{2}, \quad \text { for all } 0<t<\eta \tag{4.8}
\end{equation*}
$$

where $c_{1}=2 h(\eta)$ and $c_{2}=\left(h^{\prime}\right)^{2}(\eta)+1$. This completes the proof of our Lemma.
Proof of Theorem 1.2 completed. Let $p \in(0,1)$ and $\mu \geq 0$ be fixed. We also fix $c>0$ such that $c\left\|\varphi_{1}\right\|_{\infty}<\eta$. By Hopf's maximum principle, there exist $\delta>0$ small enough and $\theta_{1}>0$ such that

$$
\begin{equation*}
\left|\nabla \varphi_{1}\right|>\theta_{1} \quad \text { in } \Omega_{\delta} \tag{4.9}
\end{equation*}
$$

where $\Omega_{\delta}:=\{x \in \Omega ; \operatorname{dist}(x, \partial \Omega) \leq \delta\}$.
Moreover, since $\lim _{s \backslash 0} g(h(s))=+\infty$, we can pick δ with the property

$$
\begin{equation*}
\left(c \theta_{1}\right)^{2} g\left(h\left(c \varphi_{1}\right)\right)-3 \mu f\left(x, h\left(c \varphi_{1}\right)\right)>0 \quad \text { in } \Omega_{\delta} . \tag{4.10}
\end{equation*}
$$

Let $\theta_{2}:=\inf _{\Omega \backslash \Omega_{\delta}} \varphi_{1}>0$. We choose $M>1$ with

$$
\begin{gather*}
M\left(c \theta_{1}\right)^{2}>3 \tag{4.11}\\
M c \lambda_{1} \theta_{2} h^{\prime}\left(c\left\|\varphi_{1}\right\|_{\infty}\right)>3 g\left(h\left(c \theta_{2}\right)\right) \tag{4.12}
\end{gather*}
$$

Since $p<1$, we also may assume

$$
\begin{equation*}
(M c)^{1-p} \lambda_{1}\left(h^{\prime}\right)^{1-p}\left(c\left\|\varphi_{1}\right\|_{\infty}\right) \geq 3\left\|\nabla \varphi_{1}\right\|_{\infty}^{p} \tag{4.13}
\end{equation*}
$$

On the othe hand, by Lemma 4.1(ii) we can choose $M>1$ such that

$$
\begin{equation*}
3\left(h^{\prime}\left(c \varphi_{1}\right)\right)^{p} \leq M^{1-p}\left(c \theta_{1}\right)^{2-p} g\left(h\left(c \varphi_{1}\right)\right) \quad \text { in } \Omega_{\delta} . \tag{4.14}
\end{equation*}
$$

The assumption (f4) yields

$$
\lim _{s \rightarrow \infty} \frac{3 \mu f\left(x, s h\left(c\left\|\varphi_{1}\right\|_{\infty}\right)\right)}{\operatorname{sh}\left(c\left\|\varphi_{1}\right\|_{\infty}\right)}=0
$$

So we can choose $M>1$ large enough such that

$$
\frac{3 \mu f\left(x, M h\left(c\left\|\varphi_{1}\right\|_{\infty}\right)\right)}{M h\left(c\left\|\varphi_{1}\right\|_{\infty}\right)}<\frac{c \lambda_{1} \theta_{2} h^{\prime}\left(c\left\|\varphi_{1}\right\|_{\infty}\right)}{h\left(c\left\|\varphi_{1}\right\|_{\infty}\right)}
$$

uniformly in Ω. This leads us to

$$
\begin{equation*}
3 \mu f\left(x, M h\left(c\left\|\varphi_{1}\right\|_{\infty}\right)\right)<M c \lambda_{1} \theta_{2} h^{\prime}\left(c\left\|\varphi_{1}\right\|_{\infty}\right), \quad \text { for all } x \in \Omega \tag{4.15}
\end{equation*}
$$

For M satisfying (4.11)-(4.15), we prove that $\bar{u}_{\mu}=M h\left(c \varphi_{1}\right)$ is a super-solution of (1.1). We have

$$
\begin{equation*}
-\Delta \bar{u}_{\lambda}=M c^{2} g\left(h\left(c \varphi_{1}\right)\right)\left|\nabla \varphi_{1}\right|^{2}+M c \lambda_{1} \varphi_{1} h^{\prime}\left(c \varphi_{1}\right) \quad \text { in } \Omega . \tag{4.16}
\end{equation*}
$$

First we prove that

$$
\begin{equation*}
M c^{2} g\left(h\left(c \varphi_{1}\right)\right)\left|\nabla \varphi_{1}\right|^{2} \geq g\left(\bar{u}_{\mu}\right)+\left|\nabla \bar{u}_{\mu}\right|^{p}+\mu f\left(x, \bar{u}_{\mu}\right) \quad \text { in } \Omega_{\delta} \tag{4.17}
\end{equation*}
$$

From (4.9) and (4.11) we get

$$
\begin{equation*}
\frac{1}{3} M c^{2} g\left(h\left(c \varphi_{1}\right)\right)\left|\nabla \varphi_{1}\right|^{2} \geq g\left(h\left(c \varphi_{1}\right)\right) \geq g\left(M h\left(c \varphi_{1}\right)\right)=g\left(\bar{u}_{\mu}\right) \quad \text { in } \Omega_{\delta} \tag{4.18}
\end{equation*}
$$

By (4.9) and (4.14) we also have

$$
\begin{equation*}
\left.\frac{1}{3} M c^{2} g\left(h\left(c \varphi_{1}\right)\right)\left|\nabla \varphi_{1}\right|^{2} \geq(M c)^{p}\left(h^{\prime}\right)^{p}\left(c \varphi_{1}\right)\right)\left|\nabla \varphi_{1}\right|^{p}=\left|\nabla \bar{u}_{\mu}\right|^{p} \quad \text { in } \Omega_{\delta} \tag{4.19}
\end{equation*}
$$

The assumption (f3) and (4.10) produce

$$
\begin{equation*}
\frac{1}{3} M c^{2} g\left(h\left(c \varphi_{1}\right)\right)\left|\nabla \varphi_{1}\right|^{2} \geq \mu M f\left(x, h\left(c \varphi_{1}\right)\right) \geq \mu f\left(x, M h\left(c \varphi_{1}\right)\right) \quad \text { in } \Omega_{\delta} \tag{4.20}
\end{equation*}
$$

Now, by (4.18), (4.19) and (4.20) we conclude that (4.17) is fulfilled.
Next we prove

$$
\begin{equation*}
M c \lambda_{1} \varphi_{1} h^{\prime}\left(c \varphi_{1}\right) \geq g\left(\bar{u}_{\mu}\right)+\left|\nabla \bar{u}_{\mu}\right|^{p}+\mu f\left(x, \bar{u}_{\mu}\right) \quad \text { in } \Omega \backslash \Omega_{\delta} \tag{4.21}
\end{equation*}
$$

From (4.12) we obtain

$$
\begin{equation*}
\frac{1}{3} M c \lambda_{1} \varphi_{1} h^{\prime}\left(c \varphi_{1}\right) \geq g\left(h\left(c \varphi_{1}\right)\right) \geq g\left(M h\left(c \varphi_{1}\right)\right)=g\left(\bar{u}_{\mu}\right) \quad \text { in } \Omega \backslash \Omega_{\delta} . \tag{4.22}
\end{equation*}
$$

From (4.13) we get

$$
\begin{equation*}
\frac{1}{3} M c \lambda_{1} \varphi_{1} h^{\prime}\left(c \varphi_{1}\right) \geq(M c)^{p}\left(h^{\prime}\right)^{p}\left(c \varphi_{1}\right)\left|\nabla \varphi_{1}\right|^{p}=\left|\nabla \bar{u}_{\mu}\right|^{p} \quad \text { in } \Omega \backslash \Omega_{\delta} . \tag{4.23}
\end{equation*}
$$

By (4.15) we deduce

$$
\begin{equation*}
\frac{1}{3} M c \lambda_{1} \varphi_{1} h^{\prime}\left(c \varphi_{1}\right) \geq \mu f\left(x, M h\left(c \varphi_{1}\right)\right)=\mu f\left(x, \bar{u}_{\mu}\right) \quad \text { in } \Omega \backslash \Omega_{\delta} \tag{4.24}
\end{equation*}
$$

Obviously, (4.21) follows now by (4.22), (4.23) and (4.24).
Combining (4.16) with (4.17) and (4.21) we find that \bar{u}_{μ} is a super-solution of (1.1). Moreover, $\zeta \leq \bar{u}_{\mu}$ in Ω. Applying Lemma 2.4, we deduce that (1.1) has at least one solution for all $\mu \geq 0$. This finishes the proof of Theorem 1.2.

5 Proof of Theorem 1.3

The proof case relies on the same arguments used in the proof of Theorem 1.2. In fact, the main point is to find a super-solution $\bar{u}_{\lambda} \in C^{2}(\Omega) \cap(\bar{\Omega})$ of (1.1), while ζ defined in (2.5) is a sub-solution. Since g is nonincreasing, the inequality $\zeta \leq \bar{u}_{\lambda}$ in Ω can be proved easily and the existence of solutions to (1.1) follows by Lemma 2.4.

Define c, δ and θ_{1}, θ_{2} as in the proof of Theorem 1.2. Let M satisfying (4.11) and (4.12). Since $g(h(s)) \rightarrow+\infty$ as $s \searrow 0$, we can choose $\delta>0$ such that

$$
\begin{equation*}
\left(c \theta_{1}\right)^{2} g\left(h\left(c \varphi_{1}\right)\right)-3 f\left(x, h\left(c \varphi_{1}\right)\right)>0 \quad \text { in } \Omega_{\delta} . \tag{5.1}
\end{equation*}
$$

The assumption $(f 4)$ produces

$$
\lim _{s \rightarrow \infty} \frac{f\left(x, \operatorname{sh}\left(c\left\|\varphi_{1}\right\|_{\infty}\right)\right)}{\operatorname{sh}\left(c\left\|\varphi_{1}\right\|_{\infty}\right)}=0, \quad \text { uniformly for } \quad x \in \bar{\Omega}
$$

Thus, we can take $M>3$ large enough, such that

$$
\frac{f\left(x, M h\left(c\left\|\varphi_{1}\right\|_{\infty}\right)\right)}{M h\left(c\left\|\varphi_{1}\right\|_{\infty}\right)}<\frac{c \lambda_{1} \theta_{2} h^{\prime}\left(c\left\|\varphi_{1}\right\|_{\infty}\right)}{3 h\left(c\left\|\varphi_{1}\right\|_{\infty}\right)}
$$

The above relation yields

$$
\begin{equation*}
3 f\left(x, M h\left(c\left\|\varphi_{1}\right\|_{\infty}\right)\right)<M c \lambda_{1} \theta_{2} h^{\prime}\left(c\left\|\varphi_{1}\right\|_{\infty}\right), \quad \text { for all } \quad x \in \bar{\Omega} . \tag{5.2}
\end{equation*}
$$

Using Lemma 4.1(ii) we can take $\lambda>0$ small enough such that the following inequalities hold

$$
\begin{align*}
& 3 \lambda M^{p-1}\left(h^{\prime}\right)^{p}\left(c \varphi_{1}\right) \leq g\left(h\left(c \varphi_{1}\right)\right)\left(c \theta_{1}\right)^{2-p} \quad \text { in } \Omega_{\delta} \tag{5.3}\\
& \lambda_{1} \theta_{2} h^{\prime}\left(c\left\|\varphi_{1}\right\|_{\infty}\right)>3 \lambda(M c)^{p-1}\left(h^{\prime}\right)^{p}\left(c \theta_{2}\right)\left\|\nabla \varphi_{1}\right\|_{\infty}^{p} . \tag{5.4}
\end{align*}
$$

For M and λ satisfying (4.11)-(4.12) and (5.1)-(5.4), we claim that $\bar{u}_{\lambda}=M h\left(c \varphi_{1}\right)$ is a supersolution of (1.1). First we have

$$
\begin{equation*}
-\Delta \bar{u}_{\lambda}=M c^{2} g\left(h\left(c \varphi_{1}\right)\right)\left|\nabla \varphi_{1}\right|^{2}+M c \lambda_{1} \varphi_{1} h^{\prime}\left(c \varphi_{1}\right) \quad \text { in } \Omega . \tag{5.5}
\end{equation*}
$$

Arguing as in the proof of Theorem 1.2, from (4.9), (4.11), (5.1), (5.3) and the assumption ($f 3$) we obtain

$$
\begin{equation*}
M c^{2} g\left(h\left(c \varphi_{1}\right)\right)\left|\nabla \varphi_{1}\right|^{2} \geq g\left(\bar{u}_{\lambda}\right)+\lambda\left|\nabla \bar{u}_{\lambda}\right|^{p}+f\left(x, \bar{u}_{\lambda}\right) \quad \text { in } \Omega_{\delta} . \tag{5.6}
\end{equation*}
$$

On the other hand, (4.12), (5.2) and (5.4) gives

$$
\begin{equation*}
M c \lambda_{1} \varphi_{1} h^{\prime}\left(c \varphi_{1}\right) \geq g\left(\bar{u}_{\lambda}\right)+\lambda\left|\nabla \bar{u}_{\lambda}\right|^{p}+f\left(x, \bar{u}_{\lambda}\right) \quad \text { in } \Omega \backslash \Omega_{\delta} . \tag{5.7}
\end{equation*}
$$

Using now (5.5) and (5.6)-(5.7) we find that \bar{u}_{λ} is a super-solution of (1.1) so our claim follows. As we have already argued at the beginning of this case, we easily get that $\zeta \leq \bar{u}_{\lambda}$ in Ω and by Lemma 2.4 we deduce that problem (1.1) has at least one solution if $\lambda>0$ is sufficiently small. Set

$$
A=\{\lambda \geq 0 ; \text { problem (1.1) has at least one classical solution }\} .
$$

From the above arguments, A is nonempty. Let $\lambda^{*}=\sup A$. First we claim that if $\lambda \in A$, then $[0, \lambda) \subseteq A$. For this purpose, let $\lambda_{1} \in A$ and $0 \leq \lambda_{2}<\lambda_{1}$. If $u_{\lambda_{1}}$ is a solution of (1.1) with $\lambda=\lambda_{1}$, then $u_{\lambda_{1}}$ is a super-solution for (1.1) with $\lambda=\lambda_{2}$ while ζ defined in (2.5) is a sub-solution. Using Lemma 2.4 once more, we have that (1.1) with $\lambda=\lambda_{2}$ has at least one classical solution. This proves the claim. Since $\lambda \in A$ was arbitrary chosen, we conclude that $\left[0, \lambda^{*}\right) \subset A$.

Let us assume now $p \in(1,2]$. We prove that $\lambda^{*}<+\infty$. Set

$$
m:=\inf _{(x, s) \in \bar{\Omega} \times(0, \infty)}(g(s)+f(x, s)) .
$$

Since $\lim _{s \backslash 0} g(s)=+\infty$ and the mapping $(0, \infty) \ni s \longmapsto \min _{x \in \bar{\Omega}} f(x, s)$ is positive and nondecreasing, we deduce that m is a positive real number. Let $\lambda>0$ be such that (1.1) has a solution u_{λ}. If $v=\lambda^{1 /(p-1)} u_{\lambda}$, then v verifies

$$
\begin{cases}-\Delta v \geq|\nabla v|^{p}+\lambda^{1 /(p-1)} m & \text { in } \Omega, \tag{5.8}\\ v>0 & \text { in } \Omega, \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

It follows that v is a super-solution of (2.6) for $\sigma=\lambda^{1 /(p-1)} m$. Since 0 is a sub-solution, we obtain that (2.6) has at least one classical solution for σ defined above. According to Lemma 2.6, we have $\sigma \leq \bar{\sigma}$, and so $\lambda \leq\left(\frac{\bar{\sigma}}{m}\right)^{p-1}$. This means that λ^{*} is finite.

Assume now $p \in(0,1)$ and let us prove that $\lambda^{*}=+\infty$. Recall that ζ defined in (2.5) is a sub-solution. To get a super-solution, we proceed in the same manner. Fix $\lambda>0$. Since $p<1$ we can find $M>1$ large enough such that (4.11)-(4.12) and (5.2)-(5.4) hold. From now on, we follow the same steps as above.
The proof of Theorem 1.3 is now complete.
Remark. If $\int_{0}^{1} g(s) d s<\infty$, then the above method can be applied in order to extend the study of (1.1) to the case $\mu=1$ and $p>2$. Indeed, by Lemma 4.1(i) it follows $h \in C^{1}[0, \eta]$. Using this fact, we can choose $c_{1}, c_{2}>0$ large enough such that the conclusion of Lemma 4.1(ii) holds. Repeating the above arguments we prove that if $p>2$ then there exists a real number $\lambda^{*}>0$ such that (1.1) has at least one solution if $\lambda<\lambda^{*}$ and no solutions exist if $\lambda>\lambda^{*}$.

6 Proof of Theorem 1.4

(i) If $\lambda=0$, the existence of the solution follows by using Lemma 2.3. Next we assume that $\lambda>0$ and let us fix $\mu \geq 0$. With the change of variable $v=e^{\lambda u}-1$, the problem (1.1) becomes

$$
\begin{cases}-\Delta v=\Phi_{\lambda}(v) & \text { in } \Omega \tag{6.1}\\ v>0 & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

where

$$
\Phi_{\lambda}(s)=\lambda(s+1) g\left(\frac{1}{\lambda} \ln (s+1)\right)+\lambda \mu(s+1)
$$

for all $s \in(0, \infty)$. Obviously Φ_{λ} is not monotone but we still have that the mapping $(0, \infty) \ni$ $s \mapsto \frac{\Phi_{\lambda}(s)}{s}$ is decreasing for all $\lambda>0$ and

$$
\lim _{s \rightarrow+\infty} \frac{\Phi_{\lambda}(s)}{s}=\lambda(a+\mu) \quad \text { and } \quad \lim _{s \backslash 0} \frac{\Phi_{\lambda}(s)}{s}=+\infty
$$

uniformly for $\lambda>0$.
We first remark that Φ_{λ} satisfies the hypotheses in Lemma 2.3 provided $\lambda(a+\mu)<\lambda_{1}$. Hence (6.1) has at least one solution.

On the other hand, since $g \geq a$ on $(0, \infty)$, we get

$$
\begin{equation*}
\Phi_{\lambda}(s) \geq \lambda(a+\mu)(s+1), \quad \text { for all } \lambda, s \in(0, \infty) \tag{6.2}
\end{equation*}
$$

Using now Lemma 2.1 we deduce that (6.1) has no solutions if $\lambda(a+\mu) \geq \lambda_{1}$. The proof of the first part in Theorem 1.4 is therefore complete.
(ii) We split the proof into several steps.

STEP 1. Existence of solutions.

This follows directly from (i).

STEP 2. Uniqueness of the solution.

Fix $\lambda \geq 0$. Let u_{1} and u_{2} be two classical solutions of (1.1) with $\lambda<\lambda^{*}$. We show that $u_{1} \leq u_{2}$ in Ω. Supposing the contrary, we deduce that $\max _{\bar{\Omega}}\left\{u_{1}-u_{2}\right\}>0$ is achieved in a point $x_{0} \in \Omega$. This yields $\nabla\left(u_{1}-u_{2}\right)\left(x_{0}\right)=0$ and

$$
0 \leq-\Delta\left(u_{1}-u_{2}\right)\left(x_{0}\right)=g\left(u_{1}\left(x_{0}\right)\right)-g\left(u_{2}\left(x_{0}\right)\right)<0
$$

a contradiction. We conclude that $u_{1} \leq u_{2}$ in Ω; similarly $u_{2} \leq u_{1}$. Therefore $u_{1}=u_{2}$ in Ω and the uniqueness is proved.

Step 3. Dependence on λ.

Fix $0 \leq \lambda_{1}<\lambda_{2}<\lambda^{*}$ and let $u_{\lambda_{1}}, u_{\lambda_{2}}$ be the unique solutions of (1.1) with $\lambda=\lambda_{1}$ and $\lambda=\lambda_{2}$ respectively. If $\left\{x \in \Omega ; u_{\lambda_{1}}>u_{\lambda_{2}}\right\}$ is nonempty, then $\max _{\bar{\Omega}}\left\{u_{\lambda_{1}}-u_{\lambda_{2}}\right\}>0$ is achieved in Ω. At that point, say \bar{x}, we have $\nabla\left(u_{\lambda_{1}}-u_{\lambda_{2}}\right)(\bar{x})=0$ and

$$
0 \leq-\Delta\left(u_{\lambda_{1}}-u_{\lambda_{2}}\right)(\bar{x})=g\left(u_{\lambda_{1}}(\bar{x})\right)-g\left(u_{\lambda_{2}}(\bar{x})\right)+\left(\lambda_{1}-\lambda_{2}\right)\left|\nabla u_{\lambda_{1}}\right|^{p}(\bar{x})<0
$$

which is a contradiction.
Hence $u_{\lambda_{1}} \leq u_{\lambda_{2}}$ in $\bar{\Omega}$. The maximum principle also gives $u_{\lambda_{1}}<u_{\lambda_{2}}$ in Ω.

STEP 4. Regularity.

We fix $0<\lambda<\lambda^{*}, \mu>0$ and assume that $\limsup _{s \backslash 0} s^{\alpha} g(s)<+\infty$. This means that $g(s) \leq c s^{-\alpha}$ in a small positive neighborhood of the origin. To prove the regularity, we will use again the change of variable $v=e^{\lambda u}-1$. Thus, if u_{λ} is the unique solution of (1.1), then $v_{\lambda}=e^{\lambda u_{\lambda}}-1$ is the unique solution of (6.1). Since $\lim _{s \searrow 0} \frac{e^{\lambda s}-1}{s}=\lambda$, we conclude that (ii1) and (ii2) in Theorem 1.4 are established if we prove
(a) $\quad \tilde{c}_{1} \operatorname{dist}(x, \partial \Omega) \leq v_{\lambda}(x) \leq \tilde{c}_{2} \operatorname{dist}(x, \partial \Omega)$ in Ω, for some positive constants $\tilde{c}_{1}, \tilde{c}_{2}>0$.
(b) $v_{\lambda} \in C^{1,1-\alpha}(\bar{\Omega})$.

Proof of (a). By the monotonicity of g and the fact that $g(s) \leq c s^{-\alpha}$ near the origin, we deduce the existence of $A, B, C>0$ such that

$$
\begin{equation*}
\Phi_{\lambda}(s) \leq A s+B s^{-\alpha}+C, \quad \text { for all } 0<\lambda<\lambda^{*} \text { and } s>0 \tag{6.3}
\end{equation*}
$$

Let us fix $m>0$ such that $m \lambda_{1}\left\|\varphi_{1}\right\|_{\infty}<\lambda \mu$. Combining this with (6.2) we deduce

$$
\begin{equation*}
-\Delta\left(v_{\lambda}-m \varphi_{1}\right)=\Phi_{\lambda}\left(v_{\lambda}\right)-m \lambda_{1} \varphi_{1} \geq \lambda \mu-m \lambda_{1} \varphi_{1} \geq 0 \tag{6.4}
\end{equation*}
$$

in Ω. Since $v_{\lambda}-m \varphi_{1}=0$ on $\partial \Omega$, we conclude

$$
\begin{equation*}
v_{\lambda} \geq m \varphi_{1} \quad \text { in } \Omega \tag{6.5}
\end{equation*}
$$

Now, (6.5) and (2.1) imply $v_{\lambda} \geq \tilde{c}_{1} \operatorname{dist}(x, \partial \Omega)$ in Ω, for some positive constant $\tilde{c}_{1}>0$. The first inequality in the statement of (a) is therefore established. For the second one, we apply an idea found in Gui and Lin (22]. Using (6.5) and the estimate (6.3), by virtue of Lemma 2.2 we deduce $\Phi_{\lambda}\left(v_{\lambda}\right) \in L^{1}(\Omega)$, that is, $\Delta v_{\lambda} \in L^{1}(\Omega)$.

Using the smoothness of $\partial \Omega$, we can find $\delta \in(0,1)$ such that for all $x_{0} \in \Omega_{\delta}:=\{x \in$ $\Omega ; \operatorname{dist}(x, \partial \Omega) \leq \delta\}$, there exists $y \in \mathbb{R}^{N} \backslash \bar{\Omega}$ with $\operatorname{dist}(y, \partial \Omega)=\delta$ and $\operatorname{dist}\left(x_{0}, \partial \Omega\right)=\left|x_{0}-y\right|-\delta$.

Let $K>1$ be such that $\operatorname{diam}(\Omega)<(K-1) \delta$ and let ξ be the unique solution of the Dirichlet problem

$$
\begin{cases}-\Delta \xi=\Phi_{\lambda}(\xi) & \text { in } B_{K}(0) \backslash B_{1}(0) \tag{6.6}\\ \xi>0 & \text { in } B_{K}(0) \backslash B_{1}(0) \\ \xi=0 & \text { on } \partial\left(B_{K}(0) \backslash B_{1}(0)\right)\end{cases}
$$

where $B_{r}(0)$ denotes the open ball in \mathbb{R}^{N} of radius r and centered at the origin. By uniqueness, ξ is radially symmetric. Hence $\xi(x)=\tilde{\xi}(|x|)$ and

$$
\begin{cases}\tilde{\xi}^{\prime \prime}+\frac{N-1}{r} \tilde{\xi}^{\prime}+\Phi_{\lambda}(\tilde{\xi})=0 & \text { in }(1, K) \tag{6.7}\\ \tilde{\xi}>0 & \text { in }(1, K) \\ \tilde{\xi}(1)=\tilde{\xi}(K)=0 & \end{cases}
$$

Integrating in (6.7) we have

$$
\begin{aligned}
\tilde{\xi}^{\prime}(t) & =\tilde{\xi}^{\prime}(a) a^{N-1} t^{1-N}-t^{1-N} \int_{a}^{t} r^{N-1} \Phi_{\lambda}(\tilde{\xi}(r)) d r \\
& =\tilde{\xi}^{\prime}(b) b^{N-1} t^{1-N}+t^{1-N} \int_{t}^{b} r^{N-1} \Phi_{\lambda}(\tilde{\xi}(r)) d r
\end{aligned}
$$

where $1<a<t<b<K$. With the same arguments as above we have $\Phi_{\lambda}(\tilde{\xi}) \in L^{1}(1, K)$ which implies that both $\tilde{\xi}(1)$ and $\tilde{\xi}(K)$ are finite. Hence $\tilde{\xi} \in C^{2}(1, K) \cap C^{1}[1, K]$. Furthermore,

$$
\begin{equation*}
\xi(x) \leq \tilde{C} \min \{K-|x|,|x|-1\}, \quad \text { for any } \quad x \in B_{K}(0) \backslash B_{1}(0) \tag{6.8}
\end{equation*}
$$

Let us fix $x_{0} \in \Omega_{\delta}$. Then we can find $y_{0} \in \mathbb{R}^{N} \backslash \bar{\Omega}$ with $\operatorname{dist}\left(y_{0}, \partial \Omega\right)=\delta$ and $\operatorname{dist}\left(x_{0}, \partial \Omega\right)=$ $\left|x_{0}-y\right|-\delta$. Thus, $\Omega \subset B_{K \delta}\left(y_{0}\right) \backslash B_{\delta}\left(y_{0}\right)$. Define $\bar{v}(x)=\xi\left(\frac{x-y_{0}}{\delta}\right)$, for all $x \in \bar{\Omega}$. We show that \bar{v} is a super-solution of (6.1). Indeed, for all $x \in \Omega$ we have

$$
\begin{aligned}
\Delta \bar{v}+\Phi_{\lambda}(\bar{v}) & =\frac{1}{\delta^{2}}\left(\tilde{\xi}^{\prime \prime}+\frac{N-1}{r} \tilde{\xi}^{\prime}\right)+\Phi_{\lambda}(\tilde{\xi}) \\
& \leq \frac{1}{\delta^{2}}\left(\tilde{\xi}^{\prime \prime}+\frac{N-1}{r} \tilde{\xi}^{\prime}+\Phi_{\lambda}(\tilde{\xi})\right) \\
& =0
\end{aligned}
$$

where $r=\frac{\left|x-y_{0}\right|}{\delta}$. We have obtained that

$$
\begin{gathered}
\Delta \bar{v}+\Phi_{\lambda}(\bar{v}) \leq 0 \leq \Delta v_{\lambda}+\Phi_{\lambda}\left(v_{\lambda}\right) \quad \text { in } \Omega \\
\bar{v}, v_{\lambda}>0 \quad \text { in } \Omega, \bar{v}=v_{\lambda} \quad \text { on } \partial \Omega \\
\Delta v_{\lambda} \in L^{1}(\Omega)
\end{gathered}
$$

By Lemma 2.5 we get $v_{\lambda} \leq \bar{v}$ in Ω. Combining this with (6.8) we obtain

$$
v_{\lambda}\left(x_{0}\right) \leq \bar{v}\left(x_{0}\right) \leq \tilde{C} \min \left\{K-\frac{\left|x_{0}-y_{0}\right|}{\delta}, \frac{\left|x_{0}-y_{0}\right|}{\delta}-1\right\} \leq \frac{\tilde{C}}{\delta} \operatorname{dist}\left(x_{0}, \partial \Omega\right)
$$

Hence $v_{\lambda} \leq \frac{\tilde{C}}{\delta} \operatorname{dist}(x, \partial \Omega)$ in Ω_{δ} and the second inequality in the statement of (a) follows.
Proof of (b). Let G be the Green's function associated with the Laplace operator in Ω. Then, for all $x \in \Omega$ we have

$$
v_{\lambda}(x)=-\int_{\Omega} G(x, y) \Phi_{\lambda}\left(v_{\lambda}(y)\right) d y
$$

and

$$
\nabla v_{\lambda}(x)=-\int_{\Omega} G_{x}(x, y) \Phi_{\lambda}\left(v_{\lambda}(y)\right) d y
$$

If $x_{1}, x_{2} \in \Omega$, using (6.3) we obtain

$$
\begin{aligned}
\left|\nabla v_{\lambda}\left(x_{1}\right)-\nabla v_{\lambda}\left(x_{2}\right)\right| \leq & \int_{\Omega}\left|G_{x}\left(x_{1}, y\right)-G_{x}\left(x_{2}, y\right)\right| \cdot\left(A v_{\lambda}+C\right) d y \\
& +B \int_{\Omega}\left|G_{x}\left(x_{1}, y\right)-G_{x}\left(x_{2}, y\right)\right| \cdot v_{\lambda}^{-\alpha}(y) d y
\end{aligned}
$$

Now, taking into account that $v_{\lambda} \in C(\bar{\Omega})$, by the standard regularity theory (see 20) we get

$$
\int_{\Omega}\left|G_{x}\left(x_{1}, y\right)-G_{x}\left(x_{2}, y\right)\right| \cdot\left(A v_{\lambda}+C\right) d y \leq \tilde{c}_{1}\left|x_{1}-x_{2}\right|
$$

On the other hand, with the same proof as in [22, Theorem 1], we deduce

$$
\int_{\Omega}\left|G_{x}\left(x_{1}, y\right)-G_{x}\left(x_{2}, y\right)\right| \cdot v_{\lambda}^{-\alpha}(y) \leq \tilde{c}_{2}\left|x_{1}-x_{2}\right|^{1-\alpha}
$$

The above inequalities imply $u_{\lambda} \in C^{2}(\Omega) \cap C^{1,1-\alpha}(\bar{\Omega})$.

STEP 5. Asymptotic behaviour of the solution.

In order to conclude the asymptotic behaviour for u_{λ}, it is enough to show that $\lim _{\lambda / \lambda^{*}} v_{\lambda}=+\infty$ on compact subsets of Ω. To this aim, we use some techniques developed in [31]. Due to the special character of our problem, we will be able to show in what follows that, in certain cases, L^{2}-boundedness implies H_{0}^{1}-boundedness!

We argue by contradiction. Since $\left(v_{\lambda}\right)_{\lambda<\lambda^{*}}$ is a sequence of nonnegative super-harmonic functions in Ω then, by [24, Theorem 4.1.9], we can find a subsequence of $\left(v_{\lambda}\right)_{\lambda<\lambda^{*}}$ (still denoted by
$\left.\left(v_{\lambda}\right)_{\lambda<\lambda^{*}}\right)$ which converges in $L_{\mathrm{loc}}^{1}(\Omega)$ to some v^{*}. The monotony of v_{λ} yields (up to a subsequence) $v_{\lambda} \nearrow v^{*}$ a.e. in Ω.

We first show that $\left(v_{\lambda}\right)_{\lambda<\lambda^{*}}$ is bounded in $L^{2}(\Omega)$. Suppose the contrary. Passing eventually at a subsequence, we have $v_{\lambda}=M(\lambda) w_{\lambda}$, where

$$
\begin{equation*}
M(\lambda)=\left\|v_{\lambda}\right\|_{L^{2}(\Omega)} \rightarrow \infty \quad \text { as } \quad \lambda \nearrow \lambda^{*} \quad \text { and } \quad w_{\lambda} \in L^{2}(\Omega), \quad\left\|w_{\lambda}\right\|_{L^{2}(\Omega)}=1 \tag{6.9}
\end{equation*}
$$

Then (6.3) yields

$$
\frac{1}{M(\lambda)} \Phi_{\lambda}\left(v_{\lambda}\right) \rightarrow 0 \quad \text { in } L_{\mathrm{loc}}^{1}(\Omega) \quad \text { as } \quad \lambda \nearrow \lambda^{*}
$$

that is,

$$
\begin{equation*}
-\Delta w_{\lambda} \rightarrow 0 \quad \text { în } L_{\mathrm{loc}}^{1}(\Omega) \quad \text { as } \quad \lambda \nearrow \lambda^{*} \tag{6.10}
\end{equation*}
$$

By Green's first identity, we have

$$
\begin{equation*}
\int_{\Omega} \nabla w_{\lambda} \cdot \nabla \phi d x=-\int_{\Omega} \phi \Delta w_{\lambda} d x=-\int_{\operatorname{Supp} \phi} \phi \Delta w_{\lambda} d x, \quad \text { for all } \phi \in C_{0}^{\infty}(\Omega) \tag{6.11}
\end{equation*}
$$

Using (6.10) we obtain

$$
\begin{align*}
\left|\int_{\operatorname{Supp} \phi} \phi \Delta w_{\lambda} d x\right| & \leq \int_{\operatorname{Supp} \phi}|\phi|\left|\Delta w_{\lambda}\right| d x \tag{6.12}\\
& \leq\|\phi\|_{\infty} \int_{\operatorname{Supp} \phi}\left|\Delta w_{\lambda}\right| d x \rightarrow 0 \text { as } \lambda \nearrow \lambda^{*}
\end{align*}
$$

Now, (6.11) and (6.12) yield

$$
\begin{equation*}
\int_{\Omega} \nabla w_{\lambda} \cdot \nabla \phi d x \rightarrow 0 \quad \text { as } \lambda \nearrow \lambda^{*}, \text { for all } \phi \in C_{0}^{\infty}(\Omega) \tag{6.13}
\end{equation*}
$$

Recall that $\left(w_{\lambda}\right)_{\lambda<\lambda^{*}}$ is bounded in $L^{2}(\Omega)$. We claim that $\left(w_{\lambda}\right)_{\lambda<\lambda^{*}}$ is bounded in $H_{0}^{1}(\Omega)$. Indeed, using (6.3) and Hölder's inequality, we have

$$
\begin{aligned}
\int_{\Omega}\left|\nabla w_{\lambda}\right|^{2} & =-\int_{\Omega} w_{\lambda} \Delta w_{\lambda} \\
& =-\frac{1}{M(\lambda)} \int_{\Omega} w_{\lambda} \Delta u_{\lambda}=\frac{1}{M(\lambda)} \int_{\Omega} w_{\lambda} \Phi_{\lambda}\left(v_{\lambda}\right) \\
& \leq \frac{A}{M(\lambda)} \int_{\Omega} w_{\lambda} v_{\lambda}+\frac{B}{M(\lambda)} \int_{\Omega} w_{\lambda} v_{\lambda}^{-\alpha}+\frac{C}{M(\lambda)} \int_{\Omega} w_{\lambda} \\
& =A \int_{\Omega} w_{\lambda}^{2}+\frac{B}{M(\lambda)^{1+\alpha}} \int_{\Omega} w_{\lambda}^{1-\alpha}+\frac{C}{M(\lambda)} \int_{\Omega} w_{\lambda} \\
& \leq A+\frac{B}{M(\lambda)^{1+\alpha}}|\Omega|^{(1+\alpha) / 2}+\frac{C}{M(\lambda)}|\Omega|^{1 / 2}
\end{aligned}
$$

From the above estimates, we can easily conclude that $\left(w_{\lambda}\right)_{\lambda<\lambda^{*}}$ is bounded in $H_{0}^{1}(\Omega)$. Thus, there exists $w \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
w_{\lambda} \rightharpoonup w \quad \text { weakly in } \quad H_{0}^{1}(\Omega) \tag{6.14}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{\lambda} \rightarrow w \quad \text { strongly in } \quad L^{2}(\Omega) \tag{6.15}
\end{equation*}
$$

Combining (6.9) and (6.15), we get $\|w\|_{L^{2}(\Omega)}=1$. On the other hand, from (6.13) and (6.14) we obtain

$$
\int_{\Omega} \nabla w \cdot \nabla \phi d x=0, \quad \text { for all } \phi \in C_{0}^{\infty}(\Omega)
$$

Since $w \in H_{0}^{1}(\Omega)$, using the above relation and the definition of $H_{0}^{1}(\Omega)$, we get $w=0$, which contradicts the fact that $\|w\|_{L^{2}(\Omega)}=1$. Hence $\left(v_{\lambda}\right)_{\lambda<\lambda^{*}}$ is bounded in $L^{2}(\Omega)$. As before for w_{λ}, we can obtain that $\left(v_{\lambda}\right)_{\lambda<\lambda^{*}}$ is bounded in $H_{0}^{1}(\Omega)$. Then, up to a subsequence we have

$$
\begin{array}{ll}
v_{\lambda} \rightharpoonup v^{*} & \text { weakly in } H_{0}^{1}(\Omega) \text { as } \lambda \nearrow \lambda^{*} \\
v_{\lambda} \rightarrow v^{*} & \text { strongly in } L^{2}(\Omega) \text { as } \lambda \nearrow \lambda^{*} \tag{6.16}\\
v_{\lambda} \rightarrow v^{*} & \text { a.e. in } \Omega \text { as } \lambda \nearrow \lambda^{*}
\end{array}
$$

Now we can proceed to get a contradiction. Multiplying by φ_{1} in 6.1) and then integrating over Ω we have

$$
\begin{equation*}
-\int_{\Omega} \Delta v_{\lambda} \varphi_{1} d x=\int_{\Omega} \Phi_{\lambda}\left(v_{\lambda}\right) \varphi_{1} d x \quad \text { for all } 0<\lambda<\lambda^{*} \tag{6.17}
\end{equation*}
$$

Using (6.2) we get

$$
\begin{equation*}
\lambda_{1} \int_{\Omega} v_{\lambda} \varphi_{1} \geq \lambda(a+\mu) \int_{\Omega}\left(v_{\lambda}+1\right) \varphi_{1} d x, \quad \text { for all } 0<\lambda<\lambda^{*} \tag{6.18}
\end{equation*}
$$

By (6.16) we can use Lebesgue's dominated convergence theorem in order to pass to the limit with $\lambda \nearrow \lambda^{*}$ in (6.18). We obtain

$$
\begin{equation*}
\lambda_{1} \int_{\Omega} v^{*} \varphi_{1} d x \geq \lambda_{1} \int_{\Omega}\left(v^{*}+1\right) \varphi_{1} d x \tag{6.19}
\end{equation*}
$$

which is a contradiction since $\varphi_{1}>0$ in Ω. This contradiction shows that $\lim _{\lambda / \lambda^{*}} v_{\lambda}=+\infty$, uniformly on compact subsets of Ω which implies $\lim _{\lambda / \lambda^{*}} u_{\lambda}=+\infty$, uniformly on compact subsets of Ω. The proof of Theorem $\sqrt{1.4}$ is now complete.

References

[1] N. E. Alaa and M. Pierre, Weak solutions of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal. 24 (1993), 23-35.
[2] H. Amann, Existence and multiplicity theorems for semilinear elliptic boundary value problems, Math. Z. 150 (1976), 567-597.
[3] Ph. Bénilan, H. Brezis, and M. Crandall, A semilinear equation in $L^{1}\left(\mathbb{R}^{N}\right)$, Ann. Scuola Norm. Sup. Cl. Sci. Pisa 4 (1975), 523-555.
[4] T. Boddington, P. Gray, and G. C. Wake, Criteria for thermal explosions with and without reactant consumptions, Proc. Roy. Soc. London, Ser. A, Math. Phys. Eng. Sci. 357 (1977), 403-422.
[5] A. Callegari and A. Nachman, Some singular nonlinear equations arising in boundary layer theory, J. Math. Anal. Appl. 64 (1978), 96-105.
[6] A. Callegari and A. Nachman, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275-281.
[7] T. Carelman, Problèmes mathématiques dans la théorie cinétique de gas, Almquist-Wiksells, Uppsala, 1957.
[8] J. T. Chayes, S. J. Osher, and J. V. Ralston, On singular diffusion equations with applications to self-organized criticality, Comm. Pure Appl. Math. 46 (1993), 1363-1377.
[9] Y. Choquet-Bruhat and J. Leray, Sur le problème de Dirichlet quasilinéaire d'ordre 2, C. R. Acad. Sci. Paris, Ser. A 274 (1972), 81-85.
[10] F.-C. Cîrstea, M. Ghergu, and V. Rădulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type, in preparation.
[11] M. M. Coclite and G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations 14 (1989), 1315-1327.
[12] D. S. Cohen and H. B. Keller, Some positive problems suggested by nonlinear heat generators, J. Math. Mech. 16 (1967), 1361-1376.
[13] M. G. Crandall, An introduction to evolution governed by accretive operators in dynamical systems, in $A n$ International Symposium (L. Cesari et al. Eds.), Academic Press, 1976, pp. 131-165.
[14] M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222.
[15] P. G. de Gennes, Wetting: statics and dynamics, Review of Modern Physics 57 (1985), 827-863.
[16] A. L. Edelson, Entire solutions of singular elliptic equations, J. Math. Anal. Appl. 139 (1989), 523-532.
[17] W. Fulks and J. S. Maybee, A singular nonlinear equation, Osaka J. Math. 12 (1960), 1-19.
[18] M. Ghergu and V. Rădulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 (2003), 520-536.
[19] M. Ghergu and V. Rădulescu, Bifurcation and asymptotics for the Lane-Emden-Fowler equation, C. R. Acad. Sci. Paris, Ser. I 337 (2003), 259-264.
[20] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., SpringerVerlag, Berlin Heidelberg New York, 1983.
[21] S. M. Gomes, On a singular nonlinear elliptic problem, SIAM J. Math. Anal. 17 (1986), 1359-1369.
[22] C. Gui and F. H. Lin, Regularity of an elliptic problem with a singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 1021-1029.
[23] Y. Haitao, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem, J. Differential Equations 189 (2003), 487-512.
[24] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin Heidelberg New York, 1983.
[25] S. Karlin and L. Nirenberg, On a theorem of P. Nowosad, J. Math. Anal. Appl. 17 (1967), 61-67.
[26] J. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597.
[27] H. Kielhöfer, Bifurcation Theory. An Introduction with Applications to Partial Differential Equations, Springer-Verlag, Berlin Heidelberg New York, 2003.
[28] T. Kusano and C. A. Swanson, Entire positive solutions of singular elliptic equations, Japan J. Math. 11 (1985), 145-155.
[29] A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 3 (1991), 720-730.
[30] C. D. Luning and W. L. Perry, An interactive method for solution of a boundary value problem in nonNewtonian fluid flow, J. Non-Newtonian Fluid Mech. 15 (1984), 145-154.
[31] P. Mironescu and V. Rădulescu, The study of a bifurcation problem associated to an asymptotically linear function, Nonlinear Anal., T.M.A. 26 (1996), 857-875.
[32] P. Nowosad, On the integral equation $k f=1 / f$ arising in a problem in communications, J. Math. Anal. Appl. 14 (1966), 484-492.
[33] W. L. Perry, A monotone iterative technique for solution of p th order $(p<0)$ reaction-diffusion problems in permeable catalysis, J. Comput. Chemistry 5 (1984), 353-357.
[34] S. M. Rybicki, Global bifurcations of solutions of the Emden-Fowler type equation $-\Delta u(x)=\lambda f(u(x))$ on an annulus in $\mathbb{R}^{n}, n \geq 3$, J. Differential Equations 183 (2002), 208-223.
[35] J. Shi and M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Royal Soc. Edinburgh Sect. A 128 (1998), 1389-1401.
[36] C. A. Stuart, Self-trapping of an electromagnetic field and bifurcation from the essential spectrum, Arch. Rational Mech. Anal. 113 (1991), 65-96.
[37] C. A. Stuart and H. S. Zhou, A variational problem related to self-trapping of an electromagnetic field, Math. Methods Appl. Sci. 19 (1996), 1397-1407.
[38] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse, Appl. Math. Sci., vol. 139, Springer-Verlag, New York, 1999.
[39] H. Usami, Asymptotic behavior of positive solutions of singular Emden-Fowler type equations, J. Math. Soc. Japan 46 (1994), 195-211.
[40] J. L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures Appl. 71 (1992), 503-526.
[41] Z. Zhang, Nonexistence of positive classical solutions of a singular nonlinear Dirichlet problems with a convection term, Nonlinear Anal. 27 (1996), 957-961.
[42] Z. Zhang and J. Yu, On a singular nonlinear Dirichlet problem with a convection term, SIAM J. Math. Anal. 4 (2000), 916-927.
[43] S.-H. Wang, Rigorous analysis and estimates of S-shaped bifurcation curves in a combustion problem with general Arrhenius reaction-rate laws, Proc. Roy. Soc. London, Ser. A, Math. Phys. Eng. Sci. 454 (1998), 1031-1048.
[44] G. B. Whitman, Linear and Nonlinear Waves, Wiley-Interscience, New York, 1973.
[45] J. S. W. Wong, On the generalized Emden-Fowler equation, Siam Rev. 17 (1975), 339-360.

[^0]: ${ }^{*}$ Correspondence address: Vicenţiu Rădulescu, Department of Mathematics, University of Craiova, 200585 Craiova, Romania, fax: $+40-251.41 .16 .88$. E-mail: radulescu@inf.ucv.ro

