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An hybrid system approach to nonlinear optimal control problems

We consider a nonlinear ordinary differential equation and want to control its behavior so that it reaches a target by minimizing a cost function. Our approach is to use hybrid systems to solve this problem: the complex dynamic is replaced by piecewise affine approximations which allow an analytical resolution. The sequence of affine models then forms a sequence of states of a hybrid automaton. Given a sequence of states, we introduce an hybrid approximation of the nonlinear controllable domain and propose a new algorithm computing a controllable, piecewise convex approximation. The same way the nonlinear optimal control problem is replaced by an hybrid piecewise affine one. Stating a hybrid maximum principle suitable to our hybrid model, we deduce the global structure of the hybrid optimal control steering the system to the target.

Introduction

Aerospace engineering, automatics and other industries provide a lot of optimization problems, which can be described by optimal control formulations: change of satellites orbits, flight planning, motion coordination (see e.g. [START_REF] Fierro | Hybrid control of formations of robots[END_REF] or [START_REF] Pesch | A practical guide to the solutions of real-life optimal control problems[END_REF] for more applications in aerospace industry). In general those optimal control problems are fully nonlinear ; since the years 1950-1970, the theory of optimal control has been extensively developed and has provided us with powerful results like dynamic programming [START_REF] Bellman | Dynamic Programming[END_REF] or the maximum principle [START_REF] Pontriaguine | The mathematical theory of optimal processes[END_REF]. A large amount of theory has been developed and resolutions are mainly numerical.

We here consider a dynamical system whose state is described by the solution of the following ordinary differential equation (ODE):

Ẋ(t) = f (X(t), u(t)) X(0) = X 0 (1) 1 
We present a hybrid (discrete-continuous) algorithm controlling the system (1) from an initial state X 0 at time t = 0 to a final state X f = 0 at an unspecified time t f . To reach this state, we allow the admissible control functions u to take values in a convex and compact polyhedral set U m of R m , in order to minimize the following cost-function:

J(X, u) = t f 0 l(X(t), u(t))dt (2) 
There exists two main approaches for the resolution of nonlinear optimal control problems (see e.g. [START_REF] Trélat | Contrôle optimal: théorie et applications[END_REF] for a review of different solving methods).

A first class of solving methods is based on the Bellman dynamic principle and the characterization of the value function J(X, u) in terms of viscosity solutions of a nonlinear Hamilton-Jacobi-Bellman (HJB) equation [START_REF] Crandall | Viscosity solutions of hamilton-jacobi equations[END_REF][START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF][START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF][START_REF] Capuzzo-Dolcetta | On a Discrete Approximation of the Hamilton-Jacobi Equation of Dynamic Programming[END_REF][START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF]. The related numerical methods, called direct methods, often uses time and/or space discretizations and are really efficient in small dimension. Unfortunately, their cost in memory is in general too expensive in high dimension.

The second class of methods is based on the Pontryagin Maximum Principle [START_REF] Pontriaguine | The mathematical theory of optimal processes[END_REF][START_REF] Gamkrelidze | Discovery of the maximum principle[END_REF]. This principle provides a pseudo-Hamiltonian formulation of optimal control problems and some necessary optimality conditions. In this context, the foremost numerical methods are the indirect shooting methods. These methods are very efficient in any dimension but require an a priori knowledge of the optimal trajectory structure.

Today's challenge is to reach a compromise between direct and indirect methods in order to enable the handling of high dimensional problems with a satisfactory precision and without any pre-simulation to locate optimal trajectories.

In this paper, we propose a different approach: the use of hybrid computing [START_REF] Della Dora | Hybrid computation[END_REF]. The idea is to approach nonlinear systems like [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF] by simplified models which we can analytically study. Basically, an analytical approach must allow to improve approximations as is done by [START_REF] Girard | Analyse algorithmique des systèmes hybrides[END_REF][START_REF] Dumas | Modeling the electrical activity of a neuron by a continuous and piecewise affine hybrid system[END_REF]: the level of details allows to reach a compromise between quantitative quality of the approximation and the computational time. The latter has been done e.g. for biological systems, where simplifications (in relation to real data and in regard of model simulations) are possible, see [START_REF] Dumas | Modeling the electrical activity of a neuron by a continuous and piecewise affine hybrid system[END_REF]. We here choose to use a hybrid system modeling i.e. to approximate the original system (1) by a continuous and piecewise affine one. Contrary to [START_REF] Hedlund | Optimal control of hybrid systems[END_REF], we want to focus on both the discrete and continuous aspects of the hybrid systems. We thus first compute on the fly a polyhedral mesh of phase space and the control space and approach the global system by piecewise affine dynamics in each mode: in each cell of this mesh, the system is piecewise affine ( Ẋ(t) = AX(t) + Bu(t) + c) and can be locally solved, mostly with analytical tools. We then find inside the cells the affine feedback controls à la [START_REF] Habets | Reachability and control synthesis for piecewise-affine hybrid systems on simplices[END_REF] which enable a global controllability. Finally, to optimize the choice of the solutions, we derive from [START_REF] Riedinger | An optimal control approach for hybrid systems[END_REF]Theorem 2.3] a hybrid maximum principle where the transitions are not constrained.

The paper is organized as follows: §2 presents algorithms for the hybrid approximation of nonlinear system. Next, in section 3, the controllability of the system is studied and a new efficient algorithm computing a piecewise convex approximation of the controllable set is developed. The last section §4 is devoted to a heuristic approaching the resolution of optimal control problems: we first validate our hybrid approach for this resolution and establish a suitable hybrid maximum principle. We then show that the analysis of the optimality conditions gives us the general structure of optimal trajectories.

Hybrid Approximation of Nonlinear Systems

In this section, we model nonlinear control systems by way of piecewise affine systems. Our main objective here is to replace the nonlinear system (1) by another one, complex enough to reproduce the intrinsic properties of the initial system, but also simple enough to be analytically studied.

Let us consider the general nonlinear control system Ẋ(t) = f (X(t), u(t)), where the admissible controls are measurable. Moreover we assume that the bounded functions u take values in a compact polytope U m of R m . Classical numerical methods like Euler or Runge-Kutta usually propose time discretizations of nonlinear systems and then obtain discretizations of solution trajectories. On the contrary, we here use hybrid computation introduced in [START_REF] Della Dora | Hybrid computation[END_REF] and whose main idea is to compute an approximation of the nonlinear field f by means of a state discretization. Extended to control systems, the principle is as follows: for a given mesh of the control and state space R n × U m , we compute a piecewise affine approximation of the nonlinear vector field f . This partition, associated to the so computed piecewise affine dynamic, defines a hybrid system which we can thus analyze. We thus first describe the construction of a piecewise affine approximation of the nonlinear system. We then propose a complete study of the interpolation error and the convergence of the approximation. Then we develop algorithms building an implicit mesh of the state and control space R n × U m . This will enable us to define our hybrid model for nonlinear control systems.

Piecewise affine approximation of nonlinear systems

In this paragraph we want to approximate the nonlinear system (1) by a system:

Ẋ(t) = f h (X(t), u(t)) (3) 
where f h is a piecewise affine approximation of the nonlinear vector field f .

Computation of the piecewise affine approximation

There are many possible linearizations by part ; especially in the context of nonlinear systems without terms of control, [START_REF] Chien | Solving nonlinear resistive networks using piecewise-linear analysis and simplicial subdivision[END_REF] and [START_REF] Girard | Analyse algorithmique des systèmes hybrides[END_REF] propose a linearization technique based on the interpolation of the nonlinear vector field at the vertices of a given simplicial mesh of the state space. This technique is extended in this paragraph to control dynamics like (1) and therefore enables the computation of a piecewise affine approximation with respect to the state X and the control u. Let ∆ = (∆ i ) i∈I be a given simplicial mesh of R n × U m . Any affine function in dimension n + m is uniquely defined by its values at (n + m + 1) affine independent points. Thus, as done e.g. in [START_REF] Girard | Approximate solutions of odes using piecewise linear vector fields[END_REF], in each cell ∆ i , we can compute an affine approximation f h of f by interpolation at the vertices of the cell. Moreover, only one supplementary function evaluation can be sufficient to compute an approximation when the system is evolving to an adjacent cell.

Then, we consider a simplicial cell ∆ i of ∆, defined as the convex hull of its (n + m + 1) vertices: σ 1 , . . . , σ n+m+1 . Let f i be the affine approximation of f computed by interpolation at the vertices of ∆ i . We have that:

f i (X, u) = A i X + B i u + c i .
The approximation f i is computed by interpolation of f at the vertices of the cell ∆ i , so that: ∀j, f (σ j ) = f i (σ j ). Hence, this proves that

f (σ j ) = [ A i | B i ]σ j +c i which in turn induces that ∀j = 1, . . . , n+m+1, f (σ j )- f (σ 1 ) = [ A i | B i ](σ j -σ 1
). We thus define M i to be the (n+m)×(n+m) matrix, whose columns are the vectors of vertices: {σ jσ 1 ; j = 2, . . . , n + m + 1} and F i is the (n + m) × n matrix, whose columns are the vectors {f (σ j )f (σ 1 ); j = 2, . . . , n + m + 1} so that

F i = [ A i | B i ]M i .
Consequently, by linear independence of the vertices of the simplex ∆ i , the square matrix M i is non singular, so that we obtain the piecewise affine approximation of figure 1 

}

   [ A i | B i ] = F i M -1 i c i = f (σ 1 ) -[ A i | B i ]σ 1 f h (X, u) = A i X + B i u + c i , if (X, u) ∈ ∆ i (4)
Figure 1: Definition of the piecewise affine approximation

Interpolation error and convergence of the Hybridization scheme

For autonomous nonlinear systems: ẋ(t) = g(x(t)), [27, §11.1] presents a study of the approximation error inside a compact set D under some regularity as-sumptions on the field g. In the context of nonlinear control systems Ẋ(t) = f (X(t), u(t)), the control is in general only measurable so that the required regularity for f is lost. Regularity assumptions on the initial nonlinear field f are usually chosen to fulfill the conditions of the Cauchy-Lipschitz theorem applied to control systems, see e.g. [START_REF] Sontag | Mathematical Control Theory: Deterministic Finite Dimensional Systems[END_REF][START_REF] Trélat | Contrôle optimal: théorie et applications[END_REF][START_REF] Rondepierre | Algorithmes hybrides pour le contrôle optimal des systèmes non linéaires[END_REF]. From now on we therefore assume that f is continuous, Lipschitz continuous over any compact set in X, uniformly in u. In other words, we have the condition (A 1 ):

(A 1 ) ∀Ω ⋐ R n , ∃L Ω > 0, ∀(X 1 , X 2 ) ∈ Ω 2 , ∀u ∈ U m , f (X 2 , u) -f (X 1 , u) ≤ L Ω X 2 -X 1 .
Then for any given control u, we can prove the existence and uniqueness of solution trajectories of the nonlinear system (1): we first establish the regularity properties of the piecewise affine approximation f h , required by the Cauchy-Lipschitz theorem. This then enables us to get an accurate bound on the error produced by our linearization scheme. We end this study by convergence results on our scheme.

Let us introduce the size h of the simplicial mesh ∆ = (∆ i ) i∈I defined by: h = sup i∈I h i where h i = sup x,y∈∆i xy and . denotes the ∞-norm on R n+m . We first need the continuity of the vector field f h which is an application of [27, proposition 11.1.3] to a state-control space:

Proposition 1 f h is continuous over R n × U m and locally Lipschitz in X, i.e. for all compact subset Ω in R n , the restriction of f h to Ω × U m is Lipschitz continuous in X, uniformly in u.
Then, from this continuities of f and f h , we deduce the following bound on the magnitude of f h : Lemma 1 f and f h are locally bounded in X, uniformly in u on R n × U m , i.e.:

∀R > 0, ∃C R > 0, ∀(X, u) ∈ B(0, R) × U m , f h (X, u) ≤ C R Moreover, if f is bounded on R n × U m , then f h is also bounded on R n × U m (with the same bound).
Consequently for any given control u, the conditions of the Cauchy-Lipschitz theorem are satisfied and we therefore obtain the existence and uniqueness of solutions to the Cauchy problem: Ẋ(t) = f h (X(t), u(t)), X(0) = X 0 . Now under some non restrictive assumptions on the nonlinear vector field f , our interpolation error can be evaluated with respect to the size h of the mesh ∆ of

R n × U m : Proposition 2 (Interpolation error) i. If f is L-Lipschitz on R n × U m , then: sup (X,u)∈R n ×Um f (X, u) -f h (X, u) ≤ 4L(n + m) n + m + 1 h = ε(h)
ii. If f is continuously differentiable on R n × U m , then for any compact set Ω ⊂ R n , then there exists L Ω > 0 such that:

sup (X,u)∈Ω×Um f (X, u) -f h (X, u) ≤ 4L Ω (n + m) n + m + 1 h = ε Ω (h)
where:

L Ω = max q ′ ∈I/∆ q ′ ∩(Ω×Um) =∅ sup (X,u)∈∆ q ′
Df .

The principle of the proof of proposition 2 is first to evaluate the interpolation error inside one cell ∆ q ′ of the mesh ∆. If the so computed error does not depend on the given cell ∆ q ′ , then we deduce the global interpolation error ; otherwise the error is evaluated on any compact set Ω × U m of the state and control space. See [40, proposition 2.3.1] for more details. Now, let X 0 ∈ R n be a given initial point and let the state X(.) (resp. X h (.)) be the corresponding solution of the initial nonlinear (resp. piecewise affine) system: Ẋ = f (X, u) (resp. Ẋh = f h (X h , u)). Now by introducing the attainable sets A(X 0 , t) and A h (X 0 , t) i.e. the sets of points that can be reached from X 0 by the related system in time s ≤ t, we obtain the following convergence results [40, proposition 2.3.2] of our piecewise affine approximation:

Proposition 3 (C 1 Convergence) i. If f is Lipschitz continuous in X,
uniformly in u, then for all t > 0 such that X(t) and X h (t) are well defined:

X(t) -X h (t) ≤ ε(h) L (e Lt -1) Ẋ(t) -Ẋh (t) ≤ ε(h)e Lt .
ii. Let f be Lipschitz continuous over any compact set Ω in X, uniformly in u (hypothesis A1) and assume that the attainable sets A(X 0 , s), s > 0 are compact. Then for t > 0,

X(t) -X h (t) ≤ ε Ω (h) L Ω (e LΩt -1) Ẋ(t) -Ẋh (t) ≤ ε Ω (h)e LΩt ,
where Ω is defined by: Ω = A(X 0 , t) ∪ A h (X 0 , t).

We can thus see that the key point is the definition of the mesh ∆ and its size h. We now show that meshing the whole space is not mandatory. We rather compute the mesh on the fly.

Implicit simplicial mesh

Previously we have seen how to build a piecewise affine approximation of the nonlinear dynamic f for a given simplicial mesh of the state and control domain.

In order to perform our hybrid approximation, we need now a method to build a simplicial mesh of R n × U m . As R n × U m is not bounded, it is algorithmically inconceivable to mesh the whole space R n × U m . Our approach is then to implicitly define a mesh of our space so that the simplicial subdivision is made on the fly.

Let h > 0 be the discretization step. There exists several ways to mesh a given domain. To each mesh corresponds only one piecewise affine approximation (3) by interpolation. Among all the possible meshes of the space R n × U m , we choose to select those for which (0, 0) is a fixed point of the system (3). Indeed, if the target is X f = 0, we want to stay there once we have reached it. Therefore, u(t f ) also has to be zero. A simple way to thus enforce f h (0, 0) = (0, 0) is to request the following property:

Property 1 If 0 ∈ ∆ i then 0 is a vertex of ∆ i .
Lemma 2 Let us assume that f (0, 0) = 0. Let ∆ be a mesh of R n × U m that satisfies the property 1. Then (0, 0) is also a fixed point of the piecewise affine system (3) built over ∆.

Proof. At the vertices of the mesh, f (σ) = f h (σ) by the interpolating constraints and (0, 0) is a fixed point of the initial system by definition. Therefore, f h (0, 0) = f (0, 0) = 0.

Moreover we assume that the mesh ∆ also satisfies the property: Property 2 Let D = (D q ) q∈Q be the projection of ∆ over the state space R n . 1. D is a simplicial mesh of R n .

2. Let (i, j) ∈ I 2 . We state:

D i = p ⊥ R n (∆ i ) and D j = p ⊥ R n (∆ j
). Then we have:

D i = D j or Di ∩ Dj = ∅.
The property 2 is a geometrical constraint on the position of the cells ∆ i in R n × U m . Indeed, we now assume that, to each cell D i corresponds a "column" of cells ∆ j whose projection over R n is exactly D i (see for example, figure 2a). We note

K(q) = {i ∈ I ; p ⊥ R n (∆ i ) = D q } the
set of all the indices of cells ∆ j belonging to the same column q. Then each domain D q ×U m can be decomposed into exactly card K(q) simplices in this way: The latter property will allow us in section 4 to have the same output constraints from a state cell D q for each ∆ i in the column defined by K(q).

Lemma 3 D q × U m = q ′ ∈K(q) ∆ q ′ .
We are now able to define an algorithm computing an implicit mesh of the space R n × U m . To satisfy property 2, we start by computing an implicit mesh D = (D q ) q∈Q of the state space. Next, we compute an explicit triangulation of the control domain U m (small and bounded). We lastly deduce an implicit simplicial mesh (∆ i ) i∈I of R n × U m .

Simplicial mesh of R n

The state space R n is implicitly cut into n-dimensional cubes. Each cube is then meshed into n! simplices and the resulting partition is a mesh of R n (see [START_REF]Simplizialzerlegungen von beschraeukter flachkeit[END_REF], [27, chapter 11] for more details). Here, a n-cube C is defined by one point a = (a i ) i=1...n ∈ R n and the length2 h of its edges:

C = [a 1 , a 1 +h]ו • •×[a n , a n +h].
This will also be denoted by C = a + [0, h] n . In the same way we define a mesh of R n into n-cubes:

Definition 1 (Mesh of R n into n-cubes) Let a = (a i ) i=1...n be a given point in R n and h > 0. Then (a + kh + [0, h] n ) k=(k1,...,kn)∈Z n is a mesh of R n into n-cubes. Now, let us consider a n-cube C = [a 1 , a 1 + h] × • • • × [a n , a n + h]. We then introduce S n the set of permutations of {1, . . . , n}. For all ϕ ∈ S n , D a,ϕ = {(x 1 , . . . , x n ) ∈ R n ; 0 ≤ x ϕ(1) -a ϕ(1) ≤ • • • ≤ x ϕ(n) -a ϕ(n) ≤ h} is a simplex in R n ,
whose vertices are defined by: ∀i = 1, . . . , p,

x

ϕ(i) = a ϕ(i) ∀i = p + 1, . . . , n, x ϕ(i) = a ϕ(i) + h , p = 0, . . . , n (5) 
Note that property 1 is satisfied if a = 0. Now each n-cube can be meshed into n! simplices [START_REF]Simplizialzerlegungen von beschraeukter flachkeit[END_REF]:

Proposition 4 (D b,ϕ ) ϕ∈Sn is a mesh of size √ nh of the n-cube C = b + [0, h] n .
We then check that the respective meshes of two adjacent n-cubes coincide at their intersection so that we deduce a global mesh of R n as in [40, proposition 3.1.2]:

Proposition 5 (D k,ϕ ) k∈Z n ,ϕ∈Sn is a simplicial mesh of size √ nh of the state space R n .

Triangulation of U m

The control domain U m is a bounded convex polyhedron, defined as the convex hull of its vertices. The study of simplicial subdivisions of such polytopes has been extensively developed in recent years and provides us with some efficient tools to compute them (e.g. Delaunay triangulation of the Qhull [6] software3 ).

To build a regular mesh of size h of U m , we use an algorithm combining a Sierpinski-like discretization with the Delaunay triangulation.

Remark 1 The triangulation of the control domain is computed once and for all at the beginning of the algorithm: indeed, in every control problem, there is in general no initial condition on the control. Therefore in each state cell, we need to compute all the possible related control cells and the triangulation can not be computed on the fly as for the state. This is possible for the control polytope as it is bounded and usually much smaller than the state space. Also this same explicit triangulation will be reused in every column cell of our hybrid automaton.

Simplicial mesh of R n × U m

Let (D q ) q∈Q and (U j ) j∈I be the respective simplicial subdivisions of R n and U m . The triangulation (∆ i ) i of the state and control space R n × U m is built without new vertices via the Delaunay triangulation. This last criterion guarantees the property 2 to be satisfied and gives the following size of the resulting mesh:

Lemma 4 Let D q and U j be two polytopes respectively in R n and R m . Then we have:

diam(D q × U j ) = diam(D q ) 2 + diam(U j ) 2
Combining this lemma with proposition 5 gives that our mesh ∆ is of size √ n + 1h.

In this section, we have described the main steps of the construction of an implicit simplicial mesh. Next, we will see that this mesh and the corresponding linear approximations, actually define a hybrid approximation of the initial system (1).

Hybrid Automaton

Definition of the hybrid model

The state of a hybrid system is described by two variables: the first one, denoted by q(t), is discrete and takes values in a countable set Q. The second one, denoted by X(t), is continuous and takes values in the space R n . In each discrete mode q ∈ Q, the variable X evolves continuously according to a dynamic f q specific to the mode q. Therefore the hybrid dynamic and consequently the solving methods, depend on the choice of the discrete set Q. Since the control functions are generally measurable and not continuous (at best piecewise continuous), trajectories (X(.), u(.)) in the space R n ×U m are a priori discontinuous whereas the trajectories X(.) are continuous in the state space. Furthermore,

X 0 X u D 2 D 1 u min = 0 u max Figure 3: Example of discontinuous trajectory in the space R × [0, u max ]
as illustrated on figure 3, the notion of transitions between two cells of the mesh ∆ has no meanings with respect to the control. Indeed, an admissible control function can switch at any time to a given cell ∆ i to another ∆ j , not necessarily adjacent to ∆ i , and without reaching one boundary of the system. In consequence the choice of the continuous variable, describing the state of the hybrid system, is restricted to the state variable X ∈ R n . We then introduce the following notations:

1. Q the countable set of indices of a simplicial mesh (D q ) q∈Q of the state space R n .

2. E = {(q, q ′ ) ∈ Q × Q ; ∂D q ∩ ∂D q ′ = ∅} the transition set: a transition between two discrete modes q and q ′ is allowed if the associated cells D q and D q ′ are adjacent.

3. D = {D q ; q ∈ Q} the collection of simplicial cells of the mesh of R n . By construction, each domain D q induces a set of affine constraints on the state X in the mode q: D q = {X ∈ R n ; N q X + L q ≤ O}.

4. U = {U m ; q ∈ Q} ⊂ U m the collection of control domains. Here, in each mode q the control domain is unchanged.

5. F = {f q ; q ∈ Q} the collection of piecewise affine field vectors defined by interpolation of the nonlinear field vector f (see section 2.1):

∀q ∈ Q, f q : D q × U m → R n (X, u) → f h (X, u)
According to lemma 3, the vector f q is locally defined by: ∀q

′ ∈ K(q), ∀(X, u) ∈ ∆ q ′ , f q (X, u) = A q ′ X + B q ′ u + c q ′ . 6. G = {G e ; e ∈ E} the collection of guards: ∀e = (q, q ′ ) ∈ E, G e = ∂D q ∩ ∂D q ′ .
Remark 2 The definition of hybrid systems proposed at first by M.S. Branicky and al. in [START_REF] Branicky | A Unified Framework for Hybrid Control: Model and Optimal Control Theory[END_REF], suggests the introduction of the collection R = {R e ; e ∈ E} of Reset functions here defined by: ∀e = (q, q ′ ) ∈ E, ∀X ∈ G e , R e (X) = {X}. Indeed in our model, at any transition e = (q, q ′ ) ∈ E, the corresponding cells D q and D q ′ are adjacent so that we do not need to reinitialize the continuous variable X.

We can now define our hybrid model and the associated notion of solution, extending that of [27, §2.1]:

Proposition 6 H = (Q, E, D, U, F , G
) is a hybrid system approximating the nonlinear system (1).

Definition 2 A solution (or execution) of the hybrid system H is a hybrid trajectory χ = (τ, q, X) where:

• τ = ([t i , t i+1 ]) i=0...r (t i ≤ t i+1 if i < r
) is a sequence of real intervals.

• q : τ → Q describes the discrete state of H and X : τ → R n the continuous behavior of H. and satisfying, for all i ∈ {0, . . . , r} such that t i < t i+1 ,

• For t ∈]t i , t i+1 [, q(t) is constant and X(t) remains inside D q(t) .

• there is a measurable function

u :]t i , t i+1 [→ U m such that: ∀t ∈]t i , t i+1 [, Ẋ(t) = f q(t) (X(t), u(t)).
At any time t, the state of the hybrid system H is described by its position X(t) in the state space R n and the associated discrete mode q(t) = q ∈ Q. For each nonempty time interval ]t i , t i+1 [, the system H is in mode q(t) = q i at the position X(t) ∈ D qi . In this mode, there exists an admissible control u such that H evolves continuously according to the dynamic: Ẋ(t) = f qi (X(t), u(t)). As soon as the system reaches a guard G (qi,qi+1) at time t i+1 , a discrete transition e = (q i , q i+1 ) ∈ E may occur from the mode q i towards the mode q i+1 and we start again the same process from the position X(t i+1 ) in mode q i+1 at time t i+1 . Note that t i and t i+1 are the respective entering and exiting times in the cell D qi .

Computation of hybrid data on the fly

Let X 0 be the current position in the state space R n of the hybrid system H defined in the previous section. In this section we first present an explicit algorithm to compute on the fly the current discrete mode associated to the position X 0 i.e. the cell D q which contains the point X 0 . We will assume in particular that the hybrid automaton is not Zeno (no infinite number of switch can occur in a finite time, see e.g. [27, §2.3] and [START_REF] Zhang | Zeno hybrid systems[END_REF]). Then we want to compute the local control constraints induced by each cell ∆ q ′ in the mode q.

Computation of the current state The principle of the algorithm is based on the definition of the implicit mesh ∆ of the state and control space R n × U m (see section 2.2): we first compute the n-cube and then the simplex inside this cube that contain the given position X 0 .

Computation of the n-cube C such that X 0 ∈ C: according to the definition 1, the n-cube C is defined by one origin point and the length h of its edges.

Here the origin of the mesh ∆ has to be chosen at the origin 0 of R n × U m , so that the searched cube C can be written as:

C = kh + [0, h] n , where kh = (k 1 h, . . . , k n h) ∈ hZ n .
Since we want to compute all the cubes C to which

X 0 = (x 1 , . . . , x n ) ∈ R n belongs, we necessarily obtain: ∀i ∈ {1, . . . , n},        k i = x i h if x i / ∈ hZ k i ∈ { x i h -1, x i h } otherwise
Computation of the simplex D q such that X 0 ∈ D q : let C = kh + [0, h] n be a n-cube containing X 0 . According to the proposition 4, C can be divided into n! simplices defined by:

∀ϕ ∈ S n , D ϕ = {X ∈ R n ; 0 ≤ X ϕ(1) -k ϕ(1) h ≤ . . . (6) • • • ≤ X ϕ(n) -k ϕ(n) h ≤ h}
To avoid the explicit computation of all the D ϕ contained in the cube C, the trick is to directly compute the permutation ϕ which defines the searched simplex:

1. Form L := [x 1 -k 1 h, . . . , x n -k n h];
2. Apply a sort by selection algorithm to the list L. We so obtain the sorted list L and the permutation ϕ that performs the sort on the list L.

3. Deduce the simplex D ϕ satisfying:

X 0 ∈ D ϕ
Computation of the local constraints on the control We consider a given cell D q in the state space and again K(q) = {q ′ ∈ I / p ⊥ R n (∆ q ′ ) = D q } is the set of cells in ∆ whose projection in R n is exactly D q . By construction, in each cell ∆ q , the control depends on the state. In this paragraph we want to compute the explicit control constraints. For that matter, we define U q ′ (X) to be the set of control constraints in the cell ∆ q ′ for a given X ∈ R n : ∀X ∈ D q , ∀q ′ ∈ K(q), U q ′ (X) = {u ∈ R m / (X, u) ∈ ∆ q ′ }. The problem now is to determine the geometrical structure of U q ′ (X) in R m . For instance, on figure 4, we can remark that the control domain U q ′ (x) is a segment (namely an 1simplex) in R when x ∈]a k , a k + h], and is reduced to one point {u i }, when x = a k .

(a +h, u ) i k (a , u ) i k (a +h, u +h) k i x u ∆ q' (x, u) ∈ ∆ q ′ x ∈ D q = [a k , a k + h] and u ∈ U q ′ (x) = {u ∈ U 1 ; 0 ≤ u -u i ≤ x -a k } Figure 4: Definition of D q and U q ′ (x) in cell ∆ q ′ for n = m = 1
Let us take X ∈ D q and q ′ ∈ K(q). By definition, ∆ q ′ is a simplex in R n+m , so that it can be defined by a system of (n + m + 1) affine independent inequalities: M Y + d ≥ 0 where M ∈ M n+m+1,n+m (R) and d ∈ R n+m+1 . We now define the left and right parts of M as follows:

M 1 = M I n 0 M 2 = M 0 I m so that: M = [ M 1 | M 2 ]. Thus we have ∀(X, u) ∈ ∆ q ′ , M 1 X + M 2 u + d ≥ 0.
And we hence obtain a characterization of U q ′ :

∀X ∈ D q , U q ′ (X) = {u ∈ R m /(X, u) ∈ ∆ q ′ } = {u ∈ R m /M 2 u + (M 1 X + d) ≥ 0} (7) 
Therefore U q ′ (X) is determined by a finite number of affine inequalities and is a polyhedral set. Moreover, since ∆ q is bounded by construction, it follows that U q ′ (X) is a bounded polyhedral set, i.e. a polytope. Furthermore, it also has the following property:

Proposition 7 For all X ∈ Dq . Then, for all

q ′ ∈ K(q), U q ′ (X) is a m-simplex in R m .
The proof is given in appendix A ; the idea is to count the number of intersections between the whole control space and the n-faces of the simplex ∆ q ′ . In this section, we have proposed a model of hybrid automaton for the approximation of nonlinear control systems Ẋ = f (X, u). The construction of the hybrid model is performed on the fly, so that at any time we are able to determine the state and the associated local control constraints. Next section addresses the controllability problem, namely the existence of (non compulsorily optimal) solutions via this hybrid approximation.

Approximation of the controllable domain

In this section, we focus on the controllability of the nonlinear system (1) towards a given polyhedral target. For a given initial point X 0 ∈ R n in the state space, we want to study the existence of admissible trajectories of the system that steers X 0 to the considered target at some finite time. The theory of linear control systems without constraints on the control have been extensively developed and provides some powerful results like the Kalman controllability criterion [START_REF] Kalman | Mathematical description of linear dynamical systems[END_REF][START_REF] Kalman | Topics in Mathematical System Theory[END_REF] for autonomous linear systems like Ẋ = AX + Bu. The use of this criterion can be extended to nonlinear control systems by using local controllability techniques an so provides local controllability results [START_REF] Lee | Foundations of Optimal Control Theory[END_REF][START_REF] Trélat | Contrôle optimal: théorie et applications[END_REF]. Some global results can be obtained for a class of systems which depends affinely on the control [START_REF] Jurdjevic | Geometric Control Theory[END_REF][START_REF] Lobry | Contrôlabilité des systèmes non linéaires[END_REF].

Our goal is to propose a constructive approach of nonlinear controllability by the study of the controllable domain (the set of initial points that can be steered to the target). We thus present now methods and algorithms to approximate the controllable domain of nonlinear systems by the way of the hybrid model defined in section 2.3. We first present our hybrid approach for the controllability of nonlinear systems: the nonlinear controllable domain is approximated by the hybrid one. Then, after stating some useful properties of the hybrid controllable domain, we develop a new algorithm computing a convex approximation of the hybrid controllable domain. Some experimental results will then validate our algorithm.

Hybrid approach to the nonlinear controllable domain

In section 2, we have built a hybrid model approximating every nonlinear control system like [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF]. We now need to verify that the use of our hybrid model enables the approximated solving of the initial control problem ; namely we analyze the approximation of the nonlinear controllable domain by the hybrid one. Let us specify the notion of controllability and controllable domain to a given target T f :

Definition 3 X 0 ∈ R n is controllable to T f if
and only if there exists T ≥ 0 and u : [0, T ] → U m measurable, such that the following system (S) admits a solution X(.) over [0, T ]:

(S) Ẋ(t) = f (X(t), u(t)) X(0) = X 0 , X(T ) ∈ T f
The set of controllable points in R n to T f is called the controllable domain of the system (1).

This definition can be applied to any control system, and particularly to the hybrid automaton previously described. Therefore, any X 0 ∈ R n is controllable to the target T f for the hybrid system H if and only if there exists an admissible hybrid trajectory, in the sense of definition 2, that steers X 0 to T f in some finite time T > 0. In particular, for any controllable point X 0 ∈ R n , the hybrid system may accept several executions that steer X 0 to the target, and several different cell paths q = (q i ) i between X 0 and T f .

Global error of the hybrid approximation

Let C N L (R n ) and C H (R n ) be the respective controllable domains of the nonlinear system (1) and its hybrid model H towards a given target T f . To validate the hybrid approximation, we need to evaluate the distance between C N L (R n ) and C H (R n ), namely their Hausdorff distance defined by:

d H (C N L (R n ), C H (R n )) = max sup X∈CH(R n ) inf Y ∈CNL(R n ) X -Y , sup Y ∈CNL(R n ) inf X∈CH(R n ) X -Y Let X 0 ∈ C N L (R n
) be a controllable point to T f by the nonlinear system [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF]. Hence, according to definition 3, there exist a finite time T > 0 and an admissible control u 0 : [0, T ] → U m such that the system: Ẋ(t) = f (X(t), u(t)), X(0) = X 0 has a solution X satisfying: X(T ) ∈ T f . Then we can easily build a new point Y h,0 that is controllable by the hybrid system H in the same time T and control u 0 as for X 0 : Y h,0 = Y (T ) where Y is the unique solution of the system: ˙ Y (t) = -f h ( Y (t), u 0 (Tt)), Y (0) = X(T ) obtained from (1) by time reversal on the time interval [0, T ]. We thereupon deduce:

Y h,0 ∈ C H (R n ) and inf Y ∈CH(R n ) X 0 -Y ≤ X 0 -Y h,0 .
According to the convergence results established in proposition 3, and assuming that f is Lipschitz in X, uniformly in u, we thus obtain:

X 0 -Y h,0 ≤ ε(h) L (e LT -1),
where ε(h) denotes the interpolation error between f and its piecewise affine approximation f h ; we consequently have shown that for all X 0 ∈ C N L (R n ):

∃T > 0, inf Y ∈CH(R n ) X 0 -Y ≤ ε(h) L (e LT -1).
Moreover, starting from a controllable point of the automaton H, we prove in the same manner that:

∀Y h,0 ∈ C H (R n ), ∃T h ≥ 0, inf X∈CNL(R n ) X -Y 0 ≤ ε(h) L (e LT h -1).
Since the final T is a priori unbounded, we introduce the notion of controllable domain in time less than or equal to T > 0, denoted by C N L,[0,T ] (R n ) in the nonlinear case and C H,[0,T ] (R n ) in the hybrid one. We have shown:

Proposition 8 Let the nonlinear function f : R n × U m → R n be Lipschitz continuous in X ∈ R n , uniformly in u ∈ U m . Then: d H C N L,[0,T ] (R n ), C H,[0,T ] (R n ) ≤ ε(h) e LT -1 L ,
where the interpolation error ε(h) satisfies:

lim h→0 ε(h) = 0.
Using the second part of the proposition 3, it is then straightforward to generalize this result as:

Proposition 9 Let f : R n × U m → R n be Lipschitz continuous over any com- pact set in X ∈ R n , uniformly in u ∈ U m .
Then there exists L Ω > 0 such that:

d H C N L,[0,T ] (R n ), C H,[0,T ] (R n ) ≤ ε Ω (h) e LΩT -1 L Ω ,
where Ω ⊂ R n is the compact set defined by the union of

C N L,[0,T ] (R n ) and C H,[0,T ] (R n ).

Exploration reduction: controllable domain in finite paths of modes

We have shown that the hybrid controllable domain is a valid approximation of the nonlinear one. From now on, we consider that a given point X 0 in the state space is approximatively controllable by the initial nonlinear system (1) to the considered target if it belongs to the controllable domain of its hybrid approximation. Unfortunately the controllable domain of a hybrid system, like its attainable set, are rarely computable. One of the main reasons is that the number of discrete transitions needed to reach some modes of the hybrid system is unbounded [27, chapter 7]: by time reversal, the computation of the controllable domain comes down to the computation of the attainable sets from the target. Then, if the given point X 0 is "far from the target", all the admissible paths of cells between X 0 and the target have to be explored. Hence an infinite number of discrete transitions are to be simulated and the computation can not be done in finite time. Therefore an approach that is more favorable to the simulation is required. We first assume that:

(A 2 ) The target T f is a subset of some cell D q in the state space R n : ∃q ∈ Q, T f ⊂ D q
The assumption (A 2 ) is non restrictive: indeed, if there are several cells D q whose intersection with the target T f is non-empty, then T f can be decomposed into the union of its intersections with each cell:

T f = q∈Q/Dq ∩T f =∅ (D q ∩ T f ) .
There, we have several targets to reach (as many new targets as intersections) each of those satisfying the hypothesis (A 2 ). We first consider a given mode q ∈ Q of our hybrid model H and a local target T q (i.e.: T q ⊂ D q ). We introduce the concept of controllable domain in the given mode q: Definition 4 (Controllable domain in a mode q) Let q ∈ Q be a given discrete mode of our hybrid model H and T q a subset of D q . X 0 ∈ D q is controllable to T q in mode q if there exist a finite time T > 0 and an admissible control u such that the hybrid problem:

Ẋ(t) = f h (X(t), u(t)), X(0) = X 0 , X(T ) ∈ T q has a solution, denoted by X h , satisfying: ∀t ∈ [0, T ], X h (t) ∈ D q .
The controllable domain in mode q is the set of all the controllable points in mode q and is denoted by C H (T q , D q ). Hence, any point in D q from which the local target T q is attainable while remaining within the cell D q , necessarily reaches T q ′ ⊃ T q ; hence:

Lemma 5 T q ⊂ T q ′ ⊂ D q ⇒ C H (T q , D q ) ⊂ C H (T q ′ , D q )
The definition 4 can be easily extended to any subset of the state space, and especially to the set Ω γ associated to γ = (q i ) i=1...r . This set, shown on figure 5, is defined by Ω γ = r i=1 D qi where γ = (q i ) i=0...r is a finite sequence of adjacent modes of our hybrid automaton Let T f be a given subset of Ω γ and the target for the controllability problem. We introduce the set C H (T f , Ω γ ) of points that can be steered in finite time by the hybrid model H to the target T f while remaining within Ω γ , in the given sequence of modes. Our idea is to build an approximation of the controllable set inside Ω γ , recursively defined along the path. Assuming without loss of generality that: T f ⊂ D q0 , the principle consists in starting from the cell D q0 : we first compute the local controllable domain in mode q 0 . Then its intersection with the current guard G (q0,q1) defines a new target now in mode q 1 and we pursue the approximation the same way (the spreading rule is illustrated on figure 6). The algorithm stops when the last cell q r is reached or when the intersection between the current controllable domain and the next guard is empty.

H satisfying ∀i = 1, . . . , r -1, D qi ∩ D qi+1 = ∅. D q 6 D q 1 D q 2 D q 3 D q 4 D q 5 D q 7 Ω γ D q 8 T f D q 0
D q i D q i+1 T q i T q i+1 C H (T q i , D q i )
Figure 6: Spreading rule for the controllable domain from mode q i to mode q i+1 This induces a recursive definition of an under-approximation of the hybrid controllable domain inside Ω γ :

Proposition 10 We define: C H (Ω γ ) = C H (T q0 , D q0 ) ∪ C H (T q1 , D q1 ) ∪ • • • ∪ C H (T qr , D qr ),
where C H (T qi , D qi ) denotes the set of points inside D qi from which the local target T qi ⊂ D qi is attainable in finite time while remaining within the cell D qi . The current target T qi is recursively defined by:

τ 0 = T f τ i+1 = C H (τ i , D qi ) ∩ G (qi,qi+1) , i = 0, . . . , r -1 C H (Ω γ ) is an under-approximation of C H (Ω γ ), hence : C H (Ω γ ) ⊂ C H (Ω γ ).
Proof. We proceed by induction. Let us define for i = 0, . . . , r, the property

P(i) : C H (T q0 , D q0 ) ∪ • • • ∪ C H (T qi , D qi ) ⊂ C H (Ω γ ).
First, let X 0 ∈ C H (T q0 , D q0 ). Since D q0 ⊂ Ω γ and T q0 = T f , the point X 0 is actually controllable to the T f while remaining within Ω γ . This proves that X 0 ∈ C H (Ω γ ) and P(0) is true.

Second, let us assume that the property P(i) is satisfied and

X 0 ∈ i+1 k=0 C H (T q k , D q k ). By assumption, if X 0 ∈ i k=0 C H (T q k , D q k ) then X 0 ∈ C H (Ω γ ).
We can thus assume X 0 ∈ C H (T qi+1 , D qi+1 ). By definition of the local controllable domain inside the cell D qi+1 , there exists Y 0 ∈ T qi+1 such that the hybrid system H steers X 0 to Y 0 while remaining inside D qi+1 , and henceforth inside Ω γ . Moreover by construction: T qi+1 = G qi,qi+1 ∩ C H (T qi , D qi ), so that Y 0 is steerable to the target T f while remaining inside Ω γ . By transitivity, we conclude that X 0 is controllable to the target T f while remaining within Ω γ : X 0 ∈ C H (T f , Ω γ ) and the property P(i + 1) is satisfied.

The decomposition of the controllable domain in Ω γ in local controllable sub-domains expressed in proposition 10 draws the structure of the algorithm presented in section 3.2 for the hybrid controllable domain computation. Actually, as shown next, it is also possible to use this spreading in different directions.

Expansion of the controllable domain in r iterations

In paragraph 3.1.2 we have proposed a constructive approach of the hybrid controllable domain to a given target Ω γ . Its key points are described by the proposition 10. In practise, this process may be used in two different manner illustrated on figures 7 and 8. The first is an extension of the process described previously: we are given a finite sequence γ = (q i ) i=0,...,r-1 of adjacent modes of the hybrid model H and we compute the controllable under-approximation as expressed in proposition 10 and illustrated on figure 7. A weakness of this method is the arbitrary choice of the path in which we want to compute our controllable under-approximation. As we will see later a way to exhibit such a path is to start with a cell large enough to contain both the source and the target. Then such an approximation at a given level could guide the selection of an interesting path at a more refined approximation level. The second idea is based on a more global approach of the hybrid controllable domain. There, we compute an under-approximation of the global hybrid controllable domain C H (R n ) by time reversal starting from the cell containing the target T f . The difference is that we only impose a maximum distance to the target. The principle is illustrated on figure 8: we compute the cell D q0 of the state space containing the target (T f ⊂ D q0 ). Starting from D q0 by time reversal, we compute the local controllable domain to T f in this cell and then its intersections with all the guards (i.e. facets) of D q0 . Each non empty intersection defines a new target and a new cell at the next iteration. This process is pursued at the p-th iteration from the controllable domains computed at the (p -1)-th iteration.

Computation of a convex approximation of the hybrid controllable domain

We have studied the approximation of the controllable domain to a target T f of a nonlinear system by the controllable domain of its hybrid approximation.

In view of simulations, we also developed a more constructive approach for the hybrid controllable domain computation. This approach is based on local controllable domains propagation and reduces the state space exploration. Now, we want to compute the set of controllable points (or attainable points by time reversal) in R n , i.e. the set of initial points that can be steered to a given target T f in finite time. The considered class of systems is the one of piecewise affine hybrid systems defined in section 2.3. A first method for the attainable sets computation consists in extracting, by abstraction, a simplified model equivalent to the initial one for the regarded property [START_REF] Alur | Reachability analysis of hybrid systems via predicate abstraction[END_REF][START_REF] Asarin | Abstraction by projection and application to multiaffine systems[END_REF][START_REF] Tabuada | Hybrid abstractions that preserve timed languages[END_REF]. The main problem is to find the right abstraction that enables to conclude under a reasonable complexity. Another class of methods developed for safety verification is based on approximations by unions of polytopes. For instance, [START_REF] Asarin | Reachability of non-linear systems using conservative approximations[END_REF] compute an over-approximation of the attainable set and can thus certify that the system can not escape from an admissible set of states. On the contrary our idea is to guaranty as much as possible the controllability of a given initial point. In [START_REF] Dumas | Algorithms for symbolic/numeric control of affine dynamical systems[END_REF], we proposed an algorithm to compute an underapproximation in time T > 0 of the controllable set without state constraints. In [START_REF] Rondepierre | Piecewise affine systems controllability and hybrid optimal control[END_REF], an extension of this algorithm to piecewise affine systems under constant control constraints is presented. Here, these techniques are adapted to our hybrid model H for bounded convex polyhedral targets. From now on, we assume:

(A 3 ) The target T f is a bounded polytope of R n defined
as the convex hull of its vertices.

Convex approximation within a given state cell

Let us consider a given discrete mode q ∈ Q of our hybrid model, or equivalently a given cell D q in the state space. Let T q ⊂ D q be a local target in mode q satisfying the hypothesis (A 3 ): T q = Conv(s q,1 , . . . , s q,k ). In this paragraph, we address the problem of approximating the local controllable set C H (T q , D q ) i.e. the set of points in D q steerable in finite time to T q while remaining within D q . Our main idea is to compute some specific controllable points in D q ; their convex hull defines a convex approximation of the hybrid controllable domain in mode q.

Now, any point X 0 in D q is controllable to a target T q in mode q if it is attainable from T q by time reversal. Consequently, a simple way to compute controllable points in a mode q is: for an admissible control u j , we compute by time reversal the hybrid trajectories X[s q,i , u j ] coming from the vertex s q,i of T q . We then introduce their intersections, when they exist, with the boundary of D q : X i,j = X[s q,i , u j ](T i )

where

T i = sup{t > 0; X[s q,i , u](t) ∈ ∂D q }.
As illustrated on figure 9, when the trajectory X[s q,i , u j ] remains inside D q on a non empty time interval, all points between s qi and the corresponding intersection X i,j is controllable to the target T q . Our approximation will be the convex hull of all the points computed this way.

D q s q,2 s q,1 X[s q,1 , u 1 ] X[s q,2 , u 3 ] X[s q,2 , u 4 ] X[s q,1 , u 2 ] X 1 D q s q,2 s q,1 X 1,1 X 1,2 X 2,2 X 2,1 (a) (b) 
Figure 9: Principle of the convex approximation in a state cell D q : (a) along the trajectory X[s q,1 , u 1 ], only points between s q,1 and X 1 are controllable to s q,1 ∈ T q (b) Convex approximation

The main difficulty in this approach is the choice of control functions u. Indeed they have to be simple enough to enable the efficient computation of the related trajectories, but also significant enough to obtain a good quality approximation of the hybrid controllable domain. According to the construction of the mesh ∆ = (∆ q ′ ) q ′ ∈I of the state and control space developed in section 2.2, there exists a column of cells {∆ q ′ ; q ′ ∈ K(q)} in R n × U m whose projection on the state space R n is exactly D q . We recall that the cells of this column are defined by their indices this way:

K(q) = {i ∈ I ; p ⊥ R n (∆ i ) = D q }.
By definition of our hybrid model, in each cell ∆ q ′ of this column, the hybrid dynamic f h is affine. Our idea is then to choose a control function such that the control and state trajectory (X(t), u(t)) remains within only one cell ∆ q ′ (q ′ ∈ K(q)) while X(t) remains within the state cell D q :

∃T > 0, ∀t ∈ [0, T ], X(t) ∈ D q and (X(t), u(t)) ∈ ∆ q ′ (9)
We thus ensure that the hybrid dynamic is affine over the time interval [0, T ].

Our method is then to consider feedback affine controls:

u j (t) = F j X(t) + g j ( 10 
)
such that (X(t), u(t)) evolves on the edges of our state and control mesh ∆. Such controls at the position X(t) correspond to the vertices of the control domains U q ′ (X(t)) defined in paragraph 2.3.2 and their definition is illustrated on figure 10. The principle of our approximation algorithm 1 in mode q is as follows: for each previously defined control u j and each vertex s q,i of the target T q , 1. Test if the trajectory by time reversal X[s q,i , u j ] remains inside D q on a non empty time interval (notice that for this test, we do not need to explicitly compute the trajectory, see [40, chapter 5, paragraph 5.1.2]). If not, stop.

0 u 2 (t) u 3 (t) u 4 (t) u 5 (t) Control domain X(t) State space D q u 1 (t) U i1 (X(t)) U i2 (X(t)) U i3 (X(t)) U i4 (X(t)) ∆ i3 ∆ i1 ∆ i2 ∆ i4
2. Computation of X[s q,i , u j ] by solving: Ẋ(t) = A q ′ X(t) + B q ′ u j (t) + c q ′ , i.e. Ẋ(t) = (A q ′ + B q ′ F j )X(t) + (B q ′ g j + c q ′ ).

3. Computation of its first intersection with the boundary of D q .

Let Λ(T q , D q ) be the convex hull of the so computed controllable points X i,j defined by [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] and computed by the algorithm 1. By construction, we deduce:

Proposition 11 Λ(T q , D q ) is a convex approximation of the hybrid controllable domain C H (T q , D q ) in mode q. Moreover if C H (T q , D q ) is convex, Λ(T q , D q ) is a guaranteed under-approximation: C H (T q , D q ) convex ⇒ Λ(T q , D q ) ⊂ C H (T q , D q ).
Algorithm 1 ConvexApproximation: Convex approximation of the hybrid controllable domain in a mode Require: H, q a discrete mode of the hybrid automaton H, T q = Conv(s q,1 , . . . , s q,k ) the local target in mode q. Ensure: A convex approximation of the controllable domain C H (T q , D q ).

1: Initialization: Λ := ∅; 2: {Computation of the indices q ′ ∈ K(q) of cells ∆ q ′ whose projection is exactly D q :} K(q) := {q ′ ∈ I / p ⊥ R n (∆ q ′ ) = D q } 3: {Set of already tested controls:} Σ := ∅. 4: for all q ′ ∈ K(q) do 5:

{Computation of the polytope U q ′ (X) of control constraints (see §2.3.2):} U q ′ (X) := ControlConstraints(∆ q ′ );

6:

{For each non tested vertex of U q ′ (X),} 7:

for all i from 1 to card(U q ′ (X)) such that U q ′ (X)[i] / ∈ Σ do 8: {i-th vertex of Σ:} u := t → U q ′ (X(t))[i]; Σ := Σ ∪ {u}; 9:
{For each vertex s q,j of the target T q ,} 10:

for all j from 1 to k do 11:

if the trajectory X[s q,j , u] remains in D q on a non empty time interval then 12:

{Computation of the intersection of X[s q,j , u] with ∂D q :} (X f , ExitF ace) := OutCell † (H, q, s q,j , u);

13:
{X f , if it exists, is controllable,} end for 18: end for 19: Return Conv(Λ). † (X f , ExitF ace) := OutCell(H, q, X 0 , u) computes the intersection point X f of the trajectory X[X 0 , u] of the hybrid automaton H with the state cell Dq. ExitF ace is the facet of Dq satisfying: X f ∈ ExitF ace.

Expansion of the convex approximation and approximation error

Let us consider a finite sequence of adjacent discrete modes of the hybrid automaton H satisfying ∀i ∈ {1, . . . , r -1}, D qi ∩ D qi+1 = ∅ and T f ⊂ D q0 . As in section 3.1.2, we introduce the set Ω γ associated to the path γ and defined by:

Ω γ = r i=0 D qi .
According to proposition 10, the hybrid controllable domain in Ω γ can be under-approached by the union of local controllable domains successively defined in the cells D qi of the path γ:

C H (Ω γ ) = C H (T 0 , D q0 ) ∪ C H (T 1 , D q1 ) ∪ . . . ∪C H (T r , D qr ) ⊂ C H (Ω γ ) (11) 
where T qi denotes the local target in mode q i . Similarly, we define an approximation Λ(Ω γ ) of C H (Ω γ ) by successive local convex approximations:

Λ(Ω γ ) = Λ(τ 0 , D q0 ) ∪ Λ(τ 1 , D q1 ) ∪ • • • ∪ Λ(τ r , D qr ) (12) 
where Λ(τ i , D qi ) denotes the convex approximation computed by the algorithm 1 and (τ i ) i=0...r is the sequence of local targets defined along the path γ by recurrence as follows:

τ 0 = T f τ i+1 = Λ(τ i , D qi ) ∩ G (qi,qi+1) , i = 0, . . . , r (13) 
We easily check that the targets τ i , i = 0, . . . , r are polytopes (i.e. bounded and convex polyhedra). Furthermore, each local target τ i is a convex approximation of T qi , so that Λ(τ i , D qi ) is actually a convex approximation of the controllable domain C H (T qi , D qi ):

Proposition 12 For all i = 0, . . . , r, the local targets τ i defined by the recursive relation [START_REF] Branicky | A Unified Framework for Hybrid Control: Model and Optimal Control Theory[END_REF], are respective convex approximations of targets T qi and Λ(τ i , D qi ) is a convex approximation of order √ nh of the controllable domain C H (τ i , D qi ) in mode q i . Moreover, if the sets C H (T qi , D qi ), i = 0, . . . , r, are convex then: ∀i = 0, . . . , r, τ i ⊂ T qi and Λ(τ i , D qi ) ⊂ C H (T qi , D qi ). Now, we want to evaluate the approximation error, namely the Hausdorff distance d H (C H (Ω γ ), Λ(Ω γ )) between the controllable domain C H (Ω γ ) and its piecewise convex approximation Λ(Ω γ ). Since C H (Ω γ ) is an under-approximation of C H (Ω γ ) and according to the decompositions ( 11) and ( 12), we deduce:

d H (C H (Ω γ ), Λ(Ω γ )) ≤ d H (C H (Ω γ ), Λ(Ω γ )) ≤ max i=0...r d H (C H (T qi , D qi ), Λ(τ i , D qi ))
Moreover, for any cell D qi , i = 0, . . . , r, the distance of the local controllable domain C H (T qi , D qi ) to its convex approximation Λ(τ i , D qi ) is bounded by the size of the mesh D of the state space. Hence, according to 5, we have: ∀i = 1, . . . , r, d H (C H (T qi , D qi ), Λ(τ i , D qi )) ≤ √ nh and we can conclude by:

d H (C H (Ω γ ), Λ(Ω γ )) ≤ √ nh.

Experience on the non linear spring

In this section, we consider the small example of the nonlinear spring presented in [44, paragraph 7.3.1]:

ẋ(t) = y(t) ẏ(t) = -x(t) -2x(t) 3 + u(t) (14) 
where the control constraints are: ∀t ≥ 0, |u(t)| ≤ 1. In this section, we want to apply the previously described algorithms to compute a controllable approximation of the set of initial positions (x 0 , y 0 = ẋ0 ), from which the spring can be steered to its equilibrium position (0, 0).

In this example, we perform the convex approximation algorithm on three successive adjacent cells. Figure 11 shows the three successive hybrid controllable approximations for the discretization step h = 1. Figure3.3 shows the result of our algorithm at three different discretization level h ∈ {2, 1, 1 2 }. The outside blue curve delimits the real nonlinear controllable domain over the three considered cells: as we can observe, the hybrid approximations tend to the exact nonlinear domain when h decreases. 

Orbital transfer

We now consider a satellite in orbit around the Earth. Our control problem is the minimum time transfer of this satellite from an initial orbit to a geostationary one.

Let m be the mass of the satellite and u its thrust. The satellite dynamic is Figure 12: Convex controllable approximations at scales h = 2, h = 1 and h = 1/2. Our approximations tend to the exact controllable domain delimited by the blue curve.

described by the equations:

r = -µ r r 3 + u m , (15) ṁ 
= - u v e , v e ∈ R + . ( 16 
)
where µ denotes the gravitation constant. The control u is assumed bounded: u ≤ F max . The numerical values of the involved physical constants are given in Table 1.

Parameter Value µ 5165, 8620912 Mm 3 .h -2 m 0 1500 kg F max 3 N
Table 1: Physical constants for the orbital transfer problem

The mathematical model of the satellite is a variable mass three dimensional model. Simplified models have been proposed such as coplanar transfer [START_REF] Caillau | Coplanar control of a satellite around the earth[END_REF] and/or constant mass models [START_REF] Bonnard | Geometric optimal control of elliptic keplerian orbits[END_REF]. For each model, geometrical studies have been proposed to analyze the controllability properties and the structure of extremals. For the sake of simplicity, we restrict our analysis to coplanar transfers at constant mass. The satellite dynamic is described by equations expressed in radial-orthoradial coordinates (P, e x , e y , L) as follows:

    Ṗ ėx ėy L     = µ P     0 0 0 W 2 /P     + P µ     0 sin L -cos L 0     u 1 + P µ     2P/W cos L + (e x + cos L)/W sin L + (e y + sin L)/W 0     u 2 (17) 
where: W = 1 + e x cos L + e y sin L. Variables (P, e) are respectively the parameter and the eccentricity vector of the osculating ellipse and L the longitude. The variable change between the Cartesian and radial-orthoradial frames is defined by:

       r 1 = P W cos L r 2 = P W sin L            v 1 = - µ P (e y + sin L) v 2 = µ P (e x + cos L) (18) 
where v = ṙ denotes the satellite velocity. From now on, the control constraints are expressed as:

|u 1 | + |u 2 | < F max .
and the control domain U m could be defined by:

U m = Conv ([-F max , 0], [0, -F max ], [F max , 0], [0, F max ]) .
The control problem is to minimize the time transfer of the satellite from a given initial orbit to a given final one, the position of the satellite on this last orbit being free. The related initial and final conditions are summed up on Table 2. Let us now consider an initial point X 0 = [11.625, 0.75, 0, π] expressed in orbital coordinates. At the rougher scale h = 6, our algorithm 1 computes 451 controllable points in 4 minutes, building a four-dimensional approximation made of 104 vertices. By projection, we could obtain for example:

Initial conditions

• the attainable set of the eccentricity e from the initial point e 0 = (0.75, 0) (see figure 13-(a)).

• the three dimensional attainable set of parameters (P, e y , L) (see figure 13-(b)).

Using variable change [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF], these numerical results could be translated in Cartesian coordinates (r 1 , r 2 ) and give an approximation of the attainable set from X 0 into the Earth Cartesian frame (see figure 14).

Observe that since the Earth radius r E is about 6 kilometers, collision with the Earth is possible. To avoid this configuration, we could add a constraint like r > r E : we would then have to redefine the involved cells of the state mesh and this way, to restrict the controllable domain.

4 Approaching nonlinear optimal solutions by optimal solutions of the hybrid control problem

In this section we focus on the resolution of the nonlinear optimal control problem via the hybrid approach. Let U m be a convex and compact polytope in R m such that: 0 ∈ U m : in section 2.3, we shaw that any nonlinear control system 

Hybrid maximum principle

In the classical context of smooth systems, the Pontryagin maximum principle provides first-order necessary optimality conditions and a pseudo-Hamiltonian formulation of the considered optimal control problem. It has been first stated by Pontryagin and al. in [START_REF] Pontriaguine | The mathematical theory of optimal processes[END_REF]. Stronger versions have been stated especially in the context on constraints on the control. References are numerous ; one can refer to [START_REF] Pontriaguine | The mathematical theory of optimal processes[END_REF][START_REF] Lee | Foundations of Optimal Control Theory[END_REF][START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF][START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF] for a proof of the maximum principle or to [11, paragraphe 1.5] and [START_REF] Trélat | Contrôle optimal: théorie et applications[END_REF] for a detailed study of its applications.

The main difficulty of establishing a hybrid maximum principle is to manage discontinuities generated by the discrete component of the hybrid system. Today several formulations has been proposed depending on the structure and the regularity of the studied hybrid systems [START_REF] Sussmann | A maximum principle for hybrid optimal control problems[END_REF][START_REF] Zaytoon | Systèmes dynamiques hybrides. Systèmes automatisés[END_REF]. Especially P. Riedinger, C. Iung and F. Kratz state and prove a hybrid maximum principle for a general class of hybrid systems in [38, theorem 2.3]. Next our hybrid maximum principle is inspired from their theorem.

Theorem 1 (Hybrid maximum principle) We introduce the Hamiltonian H h related to the hybrid model H defined in section 2.3:

H h (X, u, λ) = l(X, u) + λ ⊤ f h (X, u).
If the control u is optimal on the time interval [0, t f ], then there exists a piecewise absolute continuous application λ : [0, t f ] → R n such that:

• For almost all t ∈ [0, t f ], H reaches its minimum with regards to the control at point u(t) i.e.:

H h (X(t), u(t), λ(t)) = min v∈Um H h (X(t), v, λ(t)).

• Ẋ(t) = ∂H h ∂λ (X(t), u(t), λ(t))

• λ(t) ⊤ = -∂H h ∂X (X(t), u(t), λ(t)) (Euler-Lagrange equation)

• H h (X(t), u(t), λ(t)) = 0 along the optimal trajectory.

• At each transition instant t i between two modes q i and q i+1 , we have the following transversality conditions:

   λ(t + i ) = λ(t - i ) H h (X(t + i ), u(t + i ), λ(t + i )) = H h (X(t - i ), u(t - i ), λ(t - i ))
We first recall that by definition, the state variable is continuous at each transition time t i : X(t + i ) = X(t - i ), which together with the autonomous feature of the hybrid system, implies the continuity of the hybrid Hamiltonian at each transition time.

Then transitions between discrete modes of our hybrid automaton are non constrained: at each transition time t i between (at least) two modes q i and q i+1 , our hybrid system could either switch to mode q i+1 , or stay in mode q i , depending on the value of the field vector f h at X(t i ). This implies the continuity of the adjoint vector λ at each transition time.

Characterization of hybrid optimal trajectories

Necessary optimality conditions in mode q

Let X 0 ∈ R n be a controllable point by our hybrid system H and q the corresponding discrete mode satisfying: X 0 ∈ D q . We assume that the initial time t = 0 is not a transition time of the system, which means that X 0 does not belong to any guard of H (in other words X 0 ∈ int D q ). This assumption guarantees that any (state) trajectory steered from X 0 remains inside the cell D q on a non empty time interval.

Our point is now the local resolution (inside D q ) of the optimization problem stated by the hybrid maximum principle. According to this principle, any state and control trajectory candidate to optimality, also called extremal, in mode q has to fulfill three conditions: to minimize the hybrid Hamiltonian, to enable the definition of an appropriate adjoint state vector λ and to cancel the Hamiltonian along this trajectory.

Minimization of the hybrid Hamiltonian H h in mode q In paragraph 2.3.2, we defined the set of local control constraints at a given position X in one mode q by introducing the sets:

∀X ∈ D q , ∀q ′ ∈ K(q), U q ′ (X) = {u ∈ U m ; (X, u) ∈ ∆ q ′ }.
where K(q) denotes the set of indices of state-control cells of the mesh ∆ whose projection is exactly D q . Therefore (U q ′ (X)) q ′ ∈K(q) forms a partition of the control domain U m i.e.:

∀X ∈ D q , U m = q ′ ∈K(q) U q ′ (X) (19) 
Now, by definition of the hybrid system H, between two successive transition instants t i and t i+1 , the state trajectory X(t) remains in cell D q , the state and control trajectory (X(t), v) belongs to ∆ q ′ for all v ∈ U q ′ (X(t)) and the hybrid dynamic at any point (X(t), v)

for v ∈ U q ′ (X(t)) is affine: ∀t ∈ [t i , t i+1 ], ∀v ∈ U q ′ (X(t)), f h (X(t), u(t)) = A q ′ X(t) + B q ′ v + c q ′ . Together with (19), we then have: inf v∈Um H(X(t), v, λ(t)) = min q ′ ∈K(q) min v∈U q ′ (X(t))
H(X(t), v, λ(t))

= min

q ′ ∈K(q) min v∈U q ′ (X(t)) l(X(t)) + λ(t) ⊤ f h (X(t), v) = min q ′ ∈K(q) min v∈U q ′ (X(t)) l(X(t)) + λ(t) ⊤ A q ′ X(t) + λ(t) ⊤ c q ′ + λ(t) ⊤ B q ′ v
Let us consider the inner minimization problem for a given q ′ ∈ K(q). The objective is affine in the optimization variable v. Moreover, according to the proposition 7, the set U q ′ (X(t)) is a m-simplex whose vertices are denoted by σ i (t) = F i X(t) + g i , i = 1, . . . , m + 1. The induced constraints on the control v are therefore affine and the inner minimization problem actually is a linear program whose solution is well-known:

v ⋆ (t) = F i X(t) + g i if ∀j = i, λ(t) ⊤ B q ′ [(F i -F j )X(t) + g i -g j ] < 0.
We observe that the switching conditions explicitly depend both on the state X and the adjoint state λ. Remark 3 (Switching curves and singular controls) From now on, we assume that optimal controls are non singular or equivalently, that zeros of each switching function

S i,j : t → λ(t) ⊤ B q ′ [(F i -F j )X(t) + g i -g j ]
where i, j = 1, . . . , m, i = j, are isolated.

Consequently our minimization problem in mode q could be replaced by the simultaneous solving of a finite number (exactly card K(q)) of linear programs: the searched optimal controls are feedback (more precisely they are piecewise affine in the state variable X). Notice that the choice of each piece F X + g also depends on the adjoint state variable λ. The next step is to check that such controls fulfill the missing optimality necessary conditions given by the hybrid maximum principle. Let us now introduce a given affine feedback control u = F X + g and the resulting trajectory in mode q. As illustrated on figure 15, we now focus on a time interval [t 0 , t 1 ] on which the considered trajectory ( X, F X + g) remains in a state-control cell ∆ q ′ for some q

′ ∈ K(q): ∀t ∈ [t 0 , t 1 ], ( X(t), F X(t) + g) ∈ ∆ q ′ . X(t 0 ) X(t 1 ) X ∆ q ′ u u = F X + g • u = F X +g a given affine feedback control.
• X the resulting trajectory solution of: It follows that the hybrid dynamic is affine along the trajectory ( X, F X + g) ∈ ∆ q ′ i.e. for all t ∈ [t 0 , t 1 ]:

Ẋ(t) = f h (X(t), F X(t) + g).
f h ( X(t), F X(t) + g) = (A q ′ + B q ′ F ) X(t) + B q ′ g + c q ′ .
Definition of the adjoint vector λ in mode q The adjoint parameter is then simply defined as solution of the following first order differential equation:

λ(t) ⊤ = - ∂l ∂X ( X(t)) -λ(t) ⊤ (A + BF ) (20) 
for all t ∈]t 0 , t 1 [. According to our regularity assumptions, the cost function l is continuously differentiable on R n × U m , so that t → ∂l ∂X ( X(t)) is continuous. This implies the expected absolute continuity of the solution λ. Notice that no initial condition on λ is required.

Hybrid Hamiltonian equal to 0 along the optimal trajectory Lastly we have to check that the hybrid Hamiltonian is equal to 0 along the considered trajectory ( X, F X + g). We write for all t ∈ [t 0 , t 1 ]:

H( X(t), F X(t) + g, λ(t)) = l( X(t)) + λ(t) ⊤ (A + BF ) X(t) + Bg + c = l( X(t)) + λ(t) ⊤ ˙ X(t).
Using Ẍ(t) = (A + BF ) Ẋ(t) and relation [START_REF] Della Dora | Hybrid computation[END_REF], we prove

d dt H(X(t), u(t), λ(t)) = ∂l ∂X (X(t)) Ẋ(t) + λ(t) ⊤ Ẋ(t) + λ(t) ⊤ Ẍ(t) = ∂l ∂X (X(t)) Ẋ(t) + λ(t) ⊤ (A + BF ) Ẋ(t) - ∂l ∂X (X(t)) + λ(t) ⊤ (A + BF ) Ẋ(t) = 0 for all t ∈ [t 0 , t 1 ]
. That means that the Hamiltonian is constant along the considered trajectory ( X, F X+g, λ). Thus to fulfill the last optimality necessary condition required by our hybrid maximum principle, we just have to cancel the hybrid Hamiltonian at the initial time i.e.:

l(X(t 0 )) + λ(t 0 ) ⊤ [(A + BF )X(t 0 ) + Bg + c] = 0. (21) 
This gives an explicit constraint on the adjoint state variable λ at the initial time t 0 .

In conclusion that feedback affine controls are good local candidates to optimality. Next we propose a strategy to globally reconstruct the extremals of our hybrid optimal control problem (P H ).

Global structure of hybrid extremals

Let (X, u, λ) be an extremal of the hybrid optimal control problem (P H ) for the initial condition X(0) = X 0 . By definition 2 of an hybrid trajectory, there exists a sequence of time intervals ([t i , t i+1 ]) i=0...r and a sequence of discrete modes (q i ) i=0...r+1 such that:

∀t ∈ [t i , t i+1 ], X(t) ∈ D qi (22) 
The transversality conditions stated by the hybrid maximum principle together with the definition of our hybrid model, guarantee the continuity of both the state X and the adjoint state λ at each switching time t i between two discrete modes. There just remains to determine the structure of trajectories inside each mode q i .

Structure in mode q i We focus on one discrete mode q i of our hybrid automaton H and introduce the set Σ qi (X) of the vertices of the control domain U q ′ (X) induced at position X in mode q i :

Σ qi (X) = {F X + g ∈ U m /∃q ′ ∈ K(q i ), (F X + g) is a vertex of U q ′ (X)} ⊂ U m .
According to results presented in paragraph 4.2.1, the optimal control u is locally the solution of a linear program and can be expressed as an explicit piecewise affine function of the state X, each piece's choice implicitly depending on the adjoint vector λ: therefore there exists a subdivision ( t j ) j=0...Ni of the time interval ]t i , t i+1 [ such that for all j ∈ {0, . . . , N i -1}:

∃(F j , g j ) ∈ M m,n × R m , ∀t ∈ [ t j , t j+1 [, u(t) = F j X(t) + g j ∈ Σ qi (X(t)). (23) 
Hence: (X, F j X + g j ) ∈ ∆ q ′ on [ t j , t j+1 [. In other words, as illustrated on figure 16, the optimal trajectory (X, u) evolves along the edges of the state and control mesh ∆, continuously in X and not in u.

u 0 U m D q 1 D q 2 D q 3 D q 4 X
Figure 16: Hybrid extremals evolve along edges of the state and control mesh ∆

The main issue is so to efficiently compute both the optimal control and the adjoint state variable λ at any given position X. Indeed Euler-Lagrange equations determining λ depend on the control choice, which in turns depends on λ. Therefore we need to determine u = F X+g and λ satisfying the optimality conditions without having to compute any trajectories.

Switching conditions and optimal control computation Let us consider our hybrid optimal control problem at a given time t j . The state X j = X( t j ) and the adjoint state λ j = λ( t j ) are supposed to be known. According to [START_REF] Fierro | Hybrid control of formations of robots[END_REF], we want to determine control candidate to optimality satisfying u = F X + g in the set Σ qi (X). We also need to compute the first time t j+1 > t j at which the optimality conditions are not fulfilled any more.

We assume that the control u = F X +g satisfies all the optimality conditions required by the hybrid maximum principle at time t j : H h ( X j , F X j + g, λ j ) = min u∈Um H h ( X j , u, λ j ) = min

F ′ Xj + g ′ ∈ Σq i ( Xj )
H h ( X j , F ′ X j + g ′ , λ j )

H h ( X j , F X j + g, λ j ) = 0

This induces that switching functions could be expressed via the hybrid Hamiltonian this way:

S F X+g,F ′ X+g ′ = λ ⊤ [f h (X, F X + g) -f h (X, F ′ X + g ′ )] = -l(X) -λ ⊤ f h (X, F ′ X + g ′ ) = -H h (X, F ′ X + g ′ , λ) ≤ 0
Therefore switching conditions are obtained by studying the zeros of the application: u → H h ( X j , u, λ j ) over the finite set Σ qi ( X j ). We thus compute:

H h ( X j , F X j +g, λ j ) for all F X j +g ∈ Σ qi ( X j ). When the latter equals zero, the corresponding control is a good candidate to optimality. The main advantage of this approach is that we only need card Σ qi ( X j ), i.e. at most m + card K(q i ), function evaluations of H h ( X j , •, λ j ).

We then introduce: t j+1 = min (t i+1 ; inf{t > t j ; H h ( X(t), F X(t) + g, λ(t)) > 0}

where ( X, λ) denotes the state and adjoint state trajectory steered from ( X j , λ j ) at time t j according to the control u = F X + g. In other words, t j+1 denotes either the exit time, namely t i+1 , from the current mode q i or the first instant at which optimality conditions are not satisfied anymore. At time t j+1 , we have new initial conditions ( X j+1 , λ j+1 ) = ( X( t j+1 ), λ( t j+1 )).

Simulation algorithm of hybrid extremals

For a given initial condition of the adjoint state, we propose an algorithm to compute extremals of the hybrid optimal control problem i.e. trajectories satisfying the necessary optimality conditions of the hybrid maximum principle. Algorithm 2 details this computation of a hybrid extremal in a given mode q i . The global simulation algorithm of hybrid extremals relies on the computation of discrete modes reached by the trajectory satisfying the necessary optimality conditions and on the transversality conditions that guarantee the continuity of the adjoint state variable λ. The principle is as follows: starting from a given initial condition (t 0 , X 0 , λ 0 ) in mode q 0 and using algorithm 2, we compute the trajectory inside D q0 satisfying the hybrid maximum principle and its exit time from the cell D q0 towards an adjacent cell D q1 . By continuity of the state and adjoint state, the exit conditions give new initial conditions (t 1 , X 1 , λ 1 ) in mode q 1 and we pursue the simulation the same way.

Conclusion

In this paper, we address the problem of hybrid optimal control of nonlinear dynamical systems. First we propose a hybrid approximation, by way of a hybrid automaton with piecewise affine dynamics, of complex systems. We therefore define a piecewise affine optimal control problem and then focus on two main problems in control theory: the controllability question and the computation of optimal solutions.

For the controllability, we have given a convex approximation of the controllable set which is at a guaranteed distance of the actual controllable set. Furthermore, when the controllable set is convex, this approximation is an under-approximation and thus guarantees controllability. We then proposed and implemented an algorithm to compute this approximation and its efficiency Algorithm 2 Extremal computation in a given discrete mode q i Require: t i ≥ 0 initial time in mode q i at the position X i ∈ D qi for the given initial condition: λ(t i ) = λ i . 1: Initialization. j = 0; t 0 = t i ; X 0 = X i ; λ 0 = λ i ; 2: Control computation. Find the control F X j + g ∈ Σ qi ( X j ) satisfying the necessary optimality conditions at time t j i.e.:

H h ( X j , F X j + g, λ j ) = 0 H h ( X j , F ′ X j + g ′ , λ j ) > 0 for all F ′ X j + g ′ ∈ Σ qi ( X j )\{F X j + g}. 3: State and adjoint state trajectories. Compute the state X j = X[ X j , F X + g] and adjoint state λ j = λ[ λ j , F X + g] trajectories respectively steered from X j and λ j according to the control u(X) = F X + g:

Ẋ(t) = f h (X(t), F X(t) + g), X(t i ) = X j λ(t) ⊤ = - ∂H h ∂X (X[ X j , F X + g](t),
F X[ X j , F X + g](t) + g, λ(t)) λ(t i ) = λ j 4: Compute the exit time t i+1 of X[ X j , F X + g] from the cell D qi and the next cell D qi+1 at time t i+1 . 5: Switching time. Introducing the Hamiltonian along the considered trajectory, compute t j+1 = inf{t > t j ; H h (X[ X j , F X + g](t), F X[ X j , F X + g](t) + g, λ[ λ j , F X + g](t)) > 0}

6: if t j+1 exists and t j+1 < t i+1 then 7:

Go back to step 2 with new initial conditions: t j+1 , X j+1 = X[ X j , F X + g]( t j+1 ) and λ j+1 = λ[ λ j , F X + g]( t j+1 ) until t j+1 = t i+1 i.e. until the state leaves the cell D qi . Then we addressed the question of optimality. By developing an hybrid maximum principle we are able to characterize the hybrid optimal trajectories and to prove that the optimal control have the form of affine feedbacks. Moreover, the principle gives us a way to compute the switching times between modes and thus an algorithm to follow the optimal trajectories.

Further improvements include mixing this approach with shooting methods in order to get a better initialization of the adjoint vector.
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the c i can be solved as well with any column as ∀j = 1, . . . , n+m+1, f(σ j )-[ A i | B i ]σ j = c i .

The Euclidean norm is used to compute lengths or sizes in the mesh.

tool for computation of convex hulls, Delaunay triangulation, Voronoi diagrams in 2d, 3d or higher dimension.

 1) can be approached by a piecewise affine hybrid model. This enables us to define two optimal control problems related to each control system:

(P N L ) Minimize the cost function J(X 0 , u) = t f 0 l(X(t), u(t))dt with respect to the control u under the nonlinear dynamic:

and the constraints: ∀t ∈ [0, t f ], u(t) ∈ U m . The final time t f is unspecified.

(P H ) Minimize the cost function J(X 0 , u) = t f 0 l(X(t), u(t))dt with respect to the control u under the piecewise affine hybrid dynamic:

and the constraints: ∀t ∈ [0, t f ], u(t) ∈ U m . The final time t f is unspecified.

As for the controllability problem, a key point of our hybrid approach is first to prove that solutions of the hybrid problem (P H ) are satisfactory approximations of those of (P N L ). We then address the problem of solving the hybrid optimal control problem (P H ): a powerful tool for optimal trajectories analysis is the (PMP) Pontryagin maximum principle [START_REF] Pontriaguine | The mathematical theory of optimal processes[END_REF]. First, in section 4.1, we state a suitable maximum principle for our hybrid optimal control problem (P H ) and then deduce in section 4.2 the general structure of hybrid optimal trajectories.

A Proof that the control constraints are m-simplices

We take q ′ ∈ K(q). The problem is to compute the intersection of the affine subspace P = {(X 0 , u)/u ∈ R m } in R n+m and the simplex ∆ q ′ (see figure 17):

We know that the intersection of an affine subspace with a simplex is a simplex [47, Theorem 1.1]. Therefore U q ′ (X 0 ) is a simplex in R m . There remain to to compute its dimension. The idea is to consider the intersection of the subspace P of dimension m with the n-faces of ∆ q ′ . These intersections, when they exist, are of dimension 0, and define the vertices of U q ′ (X 0 ). We then have to prove that there exists exactly (m + 1) different n-faces intersecting P to conclude. Let {X 1 , . . . , X n+1 } be the vertices of D q . By construction, we have: p ⊥ R n (∆ q ′ ) = D q . We can then introduce the vertices of ∆ q ′ :

We also assume: X 0 ∈ Dq , hence:

1 st step: any n-face of ∆ q ′ has either one intersection with P , or none.

Let F be a n-face of ∆ q ′ defined by the list (renumbered to ease the readability) of its vertices: ( X i k u j k ) k=1,...,n+1 where i k ∈ {1, . . . , n+1}, j k ∈ {1, . . . , m+1}.

• 1 st case: the i k are all different. We then have:

Then: X F ∈ P . Moreover, by construction of X F , X 0 ∈ Dq involves:

By uniqueness of the convex decomposition in a given simplex, we then deduce:

We then deduce:

we therefore have:

However, according to the hypothesis: X 0 ∈ Dq , X 0 depends on all the

e.: Y / ∈ P , and:

2 nd step: there exist exactly (m + 1) n-faces intersecting P .

By construction, we know that: {X i k / k = 1, . . . , n + m + 1} = {X 1 , . . . , X n+1 } ; after renumbering the vertices of ∆ q ′ , we can assume:

. By affine independence of X 1 , . . . , X n+1 of D q , the vertices V 1 , . . . , V n+1 are also affinely independent, so that F 0 is actually a n-face of ∆ q ′ intersecting P .

• For n + 2 ≤ l ≤ n + m + 1 (i.e. m possible values for l), we state:

where: V l = (X i l , u j l ) and V i l = (X i l , u ji l ). As for F 0 , F l is a n-face of ∆ q ′ which intersects P .

To conclude, we have found (1+m) n-faces of ∆ q ′ which intersect P , i.e. (m+1) vertices of U q ′ (X 0 ).