
HAL Id: hal-00004191
https://hal.science/hal-00004191v2

Preprint submitted on 4 Jan 2006 (v2), last revised 7 Jan 2008 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for Hybrid Optimal Control
Jean-Guillaume Dumas, Aude Rondepierre

To cite this version:
Jean-Guillaume Dumas, Aude Rondepierre. Algorithms for Hybrid Optimal Control. 2006. �hal-
00004191v2�

https://hal.science/hal-00004191v2
https://hal.archives-ouvertes.fr

cc
sd

-0
00

04
19

1,
 v

er
si

on
 2

 -
 4

 J
an

 2
00

6

Hybrid optimal control

J.-G. DUMAS & A. RONDEPIERRE∗1

Laboratoire de Modélisation et Calcul

Tour IRMA - BP 53, 38041 Grenoble, France

January 5, 2006

1∗Corresponding author. Email: Aude.Rondepierre@imag.fr

Abstract

We consider a nonlinear ordinary differential equation and want to control its
behavior so that it reaches a target by minimizing a cost function. Our ap-
proach is to use hybrid systems to solve this problem: the complex dynamic is
replaced by piecewise affine approximations which allow an analytical resolu-
tion. The sequence of affine models then forms a sequence of states of a hybrid
automaton. Given an sequence of states, we give a hybrid approximation of
nonlinear controllable domains and a new algorithm computing a controllable
under-approximation. We are then able to traverse the automaton till the target,
locally insuring the optimality. Moreover we also present new efficient methods
computing a Kalman canonical exact decomposition of any local affine systems.

0.1 Introduction

Aerospace engineering, automatics and other industries provide a lot of op-
timization problems, which can be described by optimal control formulations:
change of satellites orbits, flight planning, motion coordination see e.g. [21] ([30]
for more applications in aerospace industry). In general those optimal control
problems are fully nonlinear ; since the years 1950-1970, the theory of optimal
control has been extensively developed and has provided us with powerful re-
sults like dynamic programming (see [6]) or the maximum principle ([32]). A
large amount of theory have been developed, and resolutions are mainly numer-
ical.

In this paper, we consider a dynamical system which state is described by
the solution of the following ordinary differential equation (ODE):

{

Ẋ(t) = f(X(t), u(t))
X(0) = X0

(1)

We present a hybrid algorithm controlling the system (1) from an initial state
X0 at time t = 0 to a final state Xf = 0 at an unspecified time tf . To reach
this state, we allow the admissible control functions u to take values in a convex
and compact polyhedral set Um of Rm, in such a way that:

J(X, u(.)) =

∫ tf

0

l(X(t), u(t))dt (2)

is minimized.

The dynamic programming approach of optimal control problems is essen-
tially based on the characterization of the value function J(X, u) in terms of
a nonlinear Hamilton-Jacobi-Bellman (HJB) equation. The first class of tech-
niques uses a discrete version of the dynamical principle over a time discretiza-
tion of the (HJB) equation ([4, 9, 7]). However those algorithms are very ex-
pensive in high dimension. For instance, if the state dimension is n and the
number of discretization points per dimension is 50 (which is the minimum ac-
ceptable: 100 could still be a bit sparse), one has to consider 50n grid points.
Despite the development of efficient techniques for the choice of the discretiza-
tion points like adaptive mesh, computations grow exponentially in the state
dimension. Consequently dimension 4 or 5 cannot be exceeded, while e.g. [30]
requires treatments of dimensions 6 or 7. Now, with the appearance of viscosity
solutions ([14, 11, 5, 12, 13]), approximations of (HJB) equations have been well
improved. Unfortunately, regularity conditions are too restrictive, see [4].

The other kind of numerical techniques are based on the Pontryagin Maxi-
mum Principle ([32, 8]). This principle provides a pseudo-Hamiltonian formu-
lation of optimal control problems. For many problems like time-optimal linear
control problems, adequate solutions have been found e.g. by [8, 31, 30]. How-
ever, the main problem is actually the synthesis of optimal feedback, even not

1

solved for linear systems, except in some very special cases (such as time-optimal
problems).

We propose a different approach: the use of hybrid systems. The idea is
to approach nonlinear systems like (1) by piecewise affine models that we can
analytically studied. Basically, an analytical approach must allow to improve
approximations as is done by [24, 19]: the level of details allows to reach a
compromise between quantitative quality of the approximation and the compu-
tational time. There are many possible linearizations by parts. For instance,
one can build a virtual mesh of the phase space and use multi-dimensional inter-
polation to define an affine approximation of the system in each cell (simplex)
of the mesh, see [15, 23, 1] for more details. One can also linearize each equation
separately by implicit representation and one-dimensional linearization on each
variable. The latter has been done e.g. for biological systems, where simplifi-
cations in relation to real data and in regard of simulations of the model are
possible, see [19]. We here choose to use a hybrid system modeling, i.e. to ap-
proximate the original system (1) by a continuous and piecewise affine one, built
on a virtual mesh of the phase space and the control space. We also propose
a new way to reduce affine problem to canonical form via an enhanced block
Kalman decomposition. To our best knowledge, the latter improves on previ-
ously known algorithm by an order of magnitude. Indeed, we show in section
0.2.1 how to use variants of fast characteristic polynomial algorithms to reduce
the Kalman decomposition to matrix multiplication. Then, in each cell of the
implicitly build automaton, the system is fully linear (Ẋ(t) = AX(t)+Bu(t)+c)
and can be solved with mostly analytical tools. A preliminary version of this
part of this paper already appeared there: [20], we here use the same ideas but
give new and more efficient algorithms for the canonical decomposition and for
the boundary computations (see in particular sections 0.2.1 and 0.3.3).

The paper is organized as follows: the first part presents algorithms for
the hybrid approximation of nonlinear system (§0.2.1). Next the controllabil-
ity of the system is studied and an optimized algorithm computing an under-
approximation of the controllable set. This set of solutions is now explicitly
computed along a path to the target, with an accuracy improving on what was
obtained in [33]. We then can propose the complete algorithmic resolution of
the optimal control problem by the search of optimized solutions in section 0.4.
Section 0.4.3 ends with an application of our algorithms to a 2-dimensional
example.

0.2 Hybrid Approximation of Nonlinear Systems

In this section, we want to build a hybrid model approximating the nonlinear
dynamic (1): Ẋ(t) = f(X(t), u(t)). The principle is as follows: for a given
mesh of the control and state space Rn × Um, we compute a piecewise affine
approximation of the nonlinear vector field f . The partition, associated to the

2

so computed piecewise affine dynamic, defines a hybrid system that we can thus
analyze.

In this section, we first compute the piecewise affine approximation of the
nonlinear vector field f in §0.2.1. Then, for each affine system, we propose a
new way to compute its Kalman canonical form, via block matrix decomposition.
From then, we develop algorithms building an implicit mesh of the space Rn×Um

in §0.2.2. Lastly, in §0.2.3, we define our hybrid model of any system (1).

0.2.1 Hybridization

In this paragraph we want to approximate the system (1) by a system:

Ẋ(t) = fh(X(t), u(t)) (3)

where fh is a piecewise affine approximation of the nonlinear vector field f .

Computation of the piecewise affine approximation

Let ∆ = (∆i)i∈I be a given simplicial mesh of the space Rn × Um. Any affine
function in dimension n + m is uniquely defined by its values at (n + m + 1)
affine independent points. Thus, as is done e.g. in [23], in each cell of ∆, we
can compute an affine approximation fh of f by interpolation at the vertices of
the cell.

Let us consider a simplicial cell ∆i of ∆, defined as the convex hull of its
(n + m + 1) vertices: σ1, . . . , σn+m+1. Let fi be the affine approximation of f
computed by interpolation at the vertices of ∆i. We state:

fi(X, u) = AiX + Biu + ci = [Ai | Bi]

[

X
u

]

+ ci

The approximation fi is computed by interpolation of f at the vertices of the
cell ∆i, so that: ∀j ∈ {1, . . . , n + m + 1}, f(σj) = fi(σj). Hence, we have:

∀j ∈ {1, . . . , n + m + 1}, f(σj) = [Ai | Bi]σj + ci

which could induce e.g.:

∀j = 1, . . . , n + m + 1, f(σj) − f(σ1) = [Ai | Bi](σj − σ1)

We thus define Mi the (n+m)× (n+m) matrix, whose columns are the vectors
of vertices: {σj −σ1; j = 2, . . . , n+m+1} and Fi the (n+m)×n matrix, whose
columns are the vectors of images: {f(σj) − f(σ1); j = 2, . . . , n + m + 1}.

Hence: Fi = [Ai | Bi]Mi. By linear independence of the vertices of the
simplex ∆i, the square matrix Mi is non singular, so that we obtain:

[Ai | Bi] = Fi M−1
i

ci = f(σ1) − [Ai | Bi]σ1

(4)

3

Remark 1. The ci can be solved as well with any column:

∀j = 1, . . . , n + m + 1, f(σj) − [Ai | Bi]σj = ci

Consequently the piecewise affine approximation of (1) is defined by:

fh(X, u) = AiX + Biu + ci, if (X, u) ∈ ∆i

and looks like in figure 1.

1f 2f

3f
4f

5f
6f

hf

Control space

} State space

Figure 1: Definition of the piecewise affine approximation

Canonical Transformation

According to the previous hybrid approximation, in each cell of the mesh ∆,
the dynamic is affine. Let us consider a general linear control system:

Ẋ(t) = AX(t) + Bu(t) + c, X(t) ∈ Rn, u(t) ∈ Um

When the system is rank deficient (i.e. rk([B AB . . .An−1B]) < n), Kalman
has shown the existence of a part of the linear system independent of the control
(see [26, 25]).

Theorem 1 (([25] Canonical Structure)). Let A and B be real matrices
having respective sizes n×n and n×m. There exists an invertible n×n matrix
T such that:

T−1AT =

[

A1 A2

0 A3

]

T−1B =

[

B1

0

]

where r = rk([B AB . . . A
n−1

B]) = rk([B1 A1B1 . . . A
n−1

1
B1]), A1 is a r × r square

matrix and B1 a r × m matrix.

With numerical methods, or numerical inputs computing the canonical struc-
ture can be useless. Nevertheless, cases where the control is already linear and
the matrices B or even A are known exactly appears quite often. In this case, it
is of high interest to extract the rank deficiency and the related uncontrollable
parts of the system. Therefore we here propose a new explicit and exact algo-
rithm for the Kalman decomposition. Furthermore, and different from the initial
Kalman decomposition, our canonical form returns a nearly diagonal matrix A1,
speeding up the subsequent computations.

4

Block Kalman Decomposition Our approach is to use block versions of
the linear algebra algorithms as in [16] in order to improve the locality of the
computations and treat larger problems faster. Indeed, we are then able to com-
pute exactly the rank of the system and use the LQUP decomposition of [17]
(nowadays quite as fast as numerical routines) to perform the decomposition.
We already presented a block version in [20], but Gilles Villard thus remarked1

that our fast block algorithms of [18] for the characteristic polynomial could
then be applied on the Kalman matrix. To our best knowledge, this algorithm
improves on previously known algorithm by an order of magnitude.

The idea, developed in cooperation with C. Pernet, is to treat the matrix K
virtually, and never to compute it explicitly as follows:

1. Form a compressed matrix K selecting at most n independent columns of
K.

2. Compute the Kalman form using K.

Now, to enable an O(nω log(n)) complexity2, the computation of K is based on
the following two remarks:

- A block Gaussian elimination enables a fast computation of r independent
columns in a m × n rank r matrix. Keller-Gehrig used a step-form elimi-
nation with complexity O(nω) [28], also known in the literature as “row-
echelon”, we shown in [18, 17] that a LQUP variant is more efficient in
practice. In the following this subroutine will be denoted ColReducedForm

([18, algorithm 2.3]).

- It is possible to compute all the iterates of the Kalman matrix with only
O(nω log(n)) operations by using Keller-Gehrig’s trick:

Compute ⌈log2(n)⌉ squares of A (A, A2, . . . , A2i

, A2⌈log2(n)⌉

) ; then all the
iterates of a column C can be obtained with only O(nω log(n)) operations

with the scheme V0 = C, Vi+1 = [Vi|A2i−1

V].

To perform the first step of our decomposition, thus start with all the columns
of B and interleave both preceding techniques so that Vi+1 contains only inde-
pendent columns at each step. This produces the compressed Kalman matrix
with only O(nω log(n) operations. The proof of correctness is the same as the
one for the characteristic polynomial just replacing the identity in the latter by
our matrix B.

Now, in [18], we were able to remove the log(n) factor in the characteristic
polynomial algorithm to the price of loosing the fast matrix multiplication. This
gives an O(n3) complexity but a faster algorithm in practice. We can extend
this algorithm to also compute the compressed Kalman matrix as follows:

The last part of the algorithm is then to recover the transformation matrix
T . This is done by completing the compressed Krylov matrix to get an invertible

1G. Villard, 2005, personal communication
2
ω is the exponent of fast matrix multiplication, actually between 2.3755 and 3.

5

Algorithm 1 LUCKM : Compressed Krylov Matrix (LU-Krylov)

Require: A a n × n matrix, B, a n × m matrix over a field
Ensure: (K, rank(K))
1: Take the first column of B, v = B1.

2:

{

K1 =
[

v Av A2v . . .
]

(L, [U1|U2], P) = LUP(KT
1), r1 = rank(K1)

{The matrix K1 is computed on the fly: at most 2r columns are computed}
3: if (r1 = n) then
4: Return (K1, r1)
5: else

6: A′ = PAPT =

[

A′
11 A′

12

A′
21 A′

22

]

where A′
11 is r1 × r1.

7: AR = A′
22 − UT

2 U−T
1 A′

12

8: B′ =

[

U−T
1 0

−UT
2 U−T

1 I

]

PB

9: Compute the permutation Q s.t. B′Q =

[

X Y
0 Z

]

10: Recursively call (K2, r2) = LUCKM(AR, Z)

11: K =

[

Kv PT

[

0
K2

]]

12: Return (K, r1 + r2)
13: end if

matrix. We use the technique of [18, theorem 2.1]: compute the LUP factorization

of K
T
, replace [U1U2], the upper part of U , by

[

U1 U2

0 Id

]

and replace [L] by
[

L 0
0 Id

]

:

Theorem 2. Let A be a n×n matrix and B a n×m matrix n×m. Algorithm
2 is correct and requires O(nω logn) arithmetic operations using Keller-Gehrig’s
compression or O(n3) using algorithm 1.

The proof of this theorem is given in appendix .1. Our implementation and
constructive proof of the Kalman decomposition are based on LQUP factoriza-
tion and block matrix computation. The better locality induced by this block
version enables the use of very fast Basic Linear Algebra Subroutines, even with
symbolic computations [17]. Therefore the computation time is improved and
can nowadays match the numerical performances.

Local canonical transformation of the hybrid model Thanks to the
canonical structure theorem 1, any local affine system Ẋ(t) = AqX(t)+Bqu(t)+
cq can be replaced by another affine one:

Ẏ (t) =

[

Aq,1 Aq,2

0 Aq,3

]

Y (t) +

[

Bq,1

0

]

u(t) +

[

cq,1

cq,2

]

(5)

6

Algorithm 2 Fast Block Kalman form

Require: A a n × n matrix over a field, B, a n × m matrix
Ensure: r, T, A1, A2, A3, B1 as in theorem 1
1: (K, r) = CompressedKrylovMatrix(A, B)
2: if (r=n) then
3: Return (n, Id, A, ∅, ∅, B)
4: else
5: (L, [U1U2], P) = LUP(K

T
)

6: T =

[

K PT

[

0
In−r

]]

7: B1 = L−T U−T
1 PB

8: A′ = PAT PT =

[

A′
11 A′

12

A′
21 A′

22

]

9: C1 = L−T U−T
1 A′

12

10: C2 = A′
22 − UT

2 U−T
1 A′

12

11: for all j do
12: Let tj be the column indexes in K of the last iterate lj of the jth block.
13: mj = ljL

−1
1...tj ,1...tj

14: end for
15: Build the polycyclic matrix H by placing each column vectors mj at

column index tj and adding 1 on the sub-diagonal on all other columns.
16: Return (r, T, H, C1, C2, B1)
17: end if

7

via the state variable change Y (t) = T−1
q X(t), with [cq,1 | cq,2]T = T−1

q cq.

Interpolation error of the Hybridisation scheme

In this section, we establish some properties of the piecewise affine approxima-
tion fh. These properties are an extension of those presented in [24, §11.1] for
autonomous nonlinear systems like: ẋ(t) = f(x(t)). The difference, here, in the
context of nonlinear control systems Ẋ(t) = f(X(t), u(t)), is that the control
function is in general only measurable. In this case, the regularity of the vector
field f is lost. We thus need to generalize the latter result to get a good bound
on the error produced by our linearization scheme.

Let us recall that h denotes the size of the mesh ∆ and is defined by:

h = sup
i∈I

hi and: hi = sup
x,y∈∆i

‖x − y‖

where ‖.‖ is the ∞-norm on Rn+m. We first need the continuity of fh:

Proposition 1. The vector field fh is a continuous function on Rn × Um and
locally Lipschitz in X, i.e. for all compact subset Ω in Rn, the restriction of fh

to Ω × Um is Lipschitz continuous in X, uniformly in u.

Proof. The continuity of the piecewise affine approximation fh is the result of
the proposition [24, proposition 11.1.3] applied to f and the mesh ∆ of Rn×Um.
Now, let Ω be a compact subset of Rn. We introduce Ω̃ = Conv(Ω) the convex
hull of Ω. Ω̃ is so a compact and convex subset in Rn. By applying [24,
proposition 11.1.3] to the domain Ω̃, we deduce that fh is Lh-Lipschitz in X
over Ω̃ where: Lh = sup

i∈J(Ω̃)

‖Ai‖ and J(Ω̃) = {i ∈ I ; ∆i ∩ (Ω̃ × Um) 6= ∅}. We

conclude, since Ω̃ × Um is a compact in Rn+m as the Cartesian product of two
compacts respectively in Rn and Rm. It follows that card J(Ω̃) < +∞ and then
the Lipschitz constant Lh is well defined.

Then, from this continuities of f and fh, we deduce the following bound on
the magnitude of fh:

Lemma 1. f and fh are locally bounded in X, uniformly in u on Rn × Um,
i.e.:

∀R > 0, ∃CR > 0, ∀(X, u) ∈ B(0, R) × Um, ‖fh(X, u)‖ ≤ CR

Moreover, if f is bounded on Rn × Um, then fh is also bounded on Rn × Um.

Proof. The first result is immediate by noticing that f and fh are continuous
over any compact B̄(0, R) × Um, for R > 0. Let us consider (X, u) ∈ Rn × Um

; there exists a cell ∆i = Conv(σ1, . . . , σn+m+1) of the mesh ∆ of Rn × Um,
such that (X, u) ∈ ∆i. The convexity thus gives (X, u) as a linear combination:

∃(αj)j=1...n+m+1 ∈ [0, 1]n+m+1, (X, u) =
∑n+m+1

j=1 αjσj , with
∑n+m+1

j=1 αj = 1.

8

In ∆i, fh is affine, so we have: fh(X, u) =
∑n+m+1

j=1 αjfh(σj). According to
the interpolation constraints, we have ∀j = 1 . . . n + m + 1, fh(σj) = f(σj) and
hence:

‖fh(X, u)‖ = ‖
n+m+1

∑

j=1

αjfh(σj)‖ = ‖
n+m+1

∑

j=1

αjfh(σj)‖

≤
n+m+1

∑

j=1

αj‖fh(σj)‖ ≤ (
n+m+1

∑

j=1

αj) C = C

With these key modifications, and under some non restrictive assumptions
on the nonlinear vector field f , the interpolation error of [24] can be evaluated
with respect to the size h of the mesh ∆ as:

Proposition 2 (([24, proposition 11.1.1] Interpolation error)).

If f is L-Lipschitz on Ω × Um, then: sup
(X,u)∈Ω×Um

‖f(X, u)−fh(X, u)‖ ≤ 2L(n + m)

n + m + 1
h

We can thus see that the key point is the definition of the mesh and of its
size h. We now show that a meshing of the whole space is not mandatory. We
rather compute the mesh on the fly.

0.2.2 Implicit simplicial mesh

In the previous section, we have seen how to build a piecewise affine approx-
imation of the nonlinear dynamic f for a given simplicial mesh of the state
and control domain. So to perform our hybrid approximation, we need now a
method to build a simplicial mesh of Rn × Um.
As Rn×Um is not bounded, it’s algorithmically inconceivable to mesh the whole
space Rn × Um. Our approach is then to implicitly define a mesh of our space,
so that the simplicial subdivision is made on the fly.

Let h > 0 be the discretization step. There exists several ways to mesh a
given domain. To each mesh correspond only one piecewise affine approximation
(3) by interpolation. Among all the possible meshes of the domain Rn×Um, we
want to select those for which (0, 0) is a fixed point of the system (3). Indeed, the
target is Xf = 0 and we want to stay there once we have reached it. Therefore,
u(tf) also has to be zero. A simple way to thus enforce fh(0, 0) = (0, 0) is to
request the following property:

Property 1. If 0 ∈ ∆i, then 0 is a vertex of ∆i.

Lemma 2. Let ∆ be a mesh of Rn × Um that satisfies the property 1. Then
(0, 0) is a fixed point of the system (3) build over ∆.

Proof. At the vertices of the mesh, f(σ) = fh(σ) by the interpolating constraints
and (0, 0) is a fixed point of the initial system by definition.

9

Moreover, we assume that the mesh ∆ also satisfies the following property:

Property 2. Let D = (Dq)q∈Q be the projection of ∆ over the state space Rn.

1. D is a simplicial mesh of Rn.

2. Let (i, j) ∈ I2. We state: Di = p⊥
Rn(∆i) and Dj = p⊥

Rn(∆j). Then we
have:

Di = Dj or D̊i ∩ D̊j = ∅

The property 2 is a geometrical constraint on the position of the cells ∆i in
Rn ×Um. Indeed, we now assume that, to each cell Di corresponds a “column”
of cells ∆j whose projection over Rn is exactly Di (see for example, figure 2a).
The latter property will allow us in section 0.4 to have the same output con-

10

1

3

0,2

0,6

42 5

0,8

0,4

0
10 5

1

0,8

4

0,6

0,4

3

0,2

0
2

(a) (b)

Figure 2: Examples of meshes, for n = m = 1, (a) satisfying the properties 1
and 2 (b) satisfying the properties 1 and not 2.

straints from a state cell Dq for each ∆i such that: p⊥
Rn(∆i) = Dq.

We are now able to define an algorithm computing an implicit mesh of the
space Rn ×Um. To satisfy property 2, we start by computing an implicit mesh
D = (Dq)q∈Q of the state space. Next, we compute an explicit triangulation
of the control domain Um (small and bounded). We lastly deduce an implicit
simplicial mesh (∆i)i∈I of Rn × Um.

Simplicial mesh of Rn

The state space Rn is implicitly cut into n-dimensional cubes. Each cube is then
meshed into n! simplices and the resulting partition is a mesh of Rn (see [22],[24,
chapter 11]) for more details). Here, a n-cube C is defined by one point a =
(ai)i=1...n ∈ Rn and the length h of its edges: C = [a1, a1+h]×· · ·× [an, an +h].
This will also be denoted by C = a + [0, h]n. In the same way we define a mesh
of Rn into n-cubes:

Definition 1 ((Mesh of Rn into n-cubes)). Let a = (ai)i=1...n be a given
point in Rn and h > 0. Then (a + kh + [0, h]n)k=(k1,...,kn)∈Zn is a mesh of Rn

into n-cubes.

10

Now, let us consider a n-cube C = [a1, a1 + h] × · · · × [an, an + h]. We
then introduce Sn the set of permutations of {1, . . . , n}. For all ϕ ∈ Sn, Dϕ =
{(x1, . . . , xn) ∈ Rn; 0 ≤ xϕ(1) − aϕ(1) ≤ · · · ≤ xϕ(n) − aϕ(n) ≤ h} is a simplex in
Rn, whose vertices are defined by:

{

∀i = 1, . . . , p, xϕ(i) = aϕ(i)

∀i = p + 1, . . . , n, xϕ(i) = aϕ(i) + h
, p = 0, . . . , n (6)

Note that property 1 is satisfied if a = 0.

Proposition 3 (([22])). (Dϕ)ϕ∈Sn
is a mesh of the n-cube C.

This definition enables us to give the actual size of our mesh:

Corollary 1. (Dϕ)ϕ∈Sn
is a mesh of size

√
nh.

Proof. Let ϕ ∈ Sn and (x, y) ∈ Dϕ.

d(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)2 =

√

√

√

√

n
∑

i=1

(xϕ(i) − yϕ(i))2 ≤

√

√

√

√

n
∑

i=1

h2 =
√

nh

The size of the mesh is therefore at least equal to
√

nh. Moreover, according
to (6), we can easily check that a and a + h must also remain in Dϕ for any
ϕ. Now, since d(a, a + h) =

√
nh, we deduce that the mesh is exactly of size√

nh.

Triangulation of Um

Um is a convex bounded polyhedron, defined as the convex hull of its vertices.
The study of simplicial subdivisions of such polytopes has been extensively
developed in recent years and provides us with some efficient tools to compute
them (e.g. Delaunay triangulation of the Qhull [3] software3). To build a regular
mesh of size h of Um we just first regularly add points in Um and then apply
the Delaunay triangulation.

Remark 2. The triangulation of the control domain is computed once and for
all at the beginning of the algorithm. Moreover in every control problem, we
generally have no initial condition on the control. Therefore in each state cell,
we need to compute all the possible related control cells, and the triangulation
can not be computed on the fly as for the state. This is possible for the control
polytope as it is bounded and usually much smaller than the state space. Also
this same explicit triangulation will be reused in every column cell of our hybrid
automaton.

3tool for computation of convex hulls, Delaunay triangulation, Voronoi diagrams in 2d, 3d
or higher

11

Simplicial mesh of Rn × Um

We let (Di)i and (Uj)j respectively be the simplicial subdivisions of Rn and
Um. We build a triangulation (∆q)q of Rn × Um without new vertices via
the Delaunay triangulation (using e.g.Qhull). This last criterion guarantees the
property 2 to be satisfied and gives the following size of the resulting mesh:

Lemma 3. Let Di and Uj be polytopes respectively in Rn and Rm. Then we
have:

diam(Di × Uj) =
√

diam(Di)2 + diam(Uj)2

Thanks to this lemma, we can conclude that the our mesh ∆ is of size√
n + 1h.

In this section, we have described the main steps of the construction of an
implicit simplicial mesh. Next, we will see that this mesh and the correspond-
ing linear approximations, actually define a hybrid approximation of the initial
system (1).

0.2.3 Hybrid Automaton

In sections 0.2.1 and 0.2.2, we built a piecewise affine approximation of the
nonlinear vector field f over a simplicial mesh ∆ = (∆q)q∈I of the space Rn×Um.
Now, in each cell ∆q, we want to define an affine optimal control problem.

Control constraints computation

We consider a given cell Dq in the state space. We then define K(q) the set of
cells in ∆, whose projection in Rn is Dq:

K(q) = {q′ ∈ I / p⊥Rn(∆q′) = Dq}
By construction, in each cell ∆q, the control depends on the state. In this
paragraph we want to compute the explicit control constraints. For that, we
define Uq′(X) to be the set of control constraints in the cell ∆q′ for a given
X ∈ Rn:

∀X ∈ Dq, ∀q′ ∈ K(q), Uq′(X) = {u ∈ Rm / (X, u) ∈ ∆q′} (7)

The problem now is to determine the geometrical structure of Uq′(X) in Rm.
For instance, on figure 3, we can remark that the control domain Uq′(x) is a
segment (namely an 1-simplex) in R when x ∈]ak, ak +h], and is reduced to one
point {ui}, when x = ak.

Let us take X ∈ Dq and q′ ∈ K(q). By definition, ∆q′ is a simplex in
Rn+m, so that it can be defined by a system of (n + m + 1) affine independent
inequalities: NY + d ≥ 0 where N ∈ Mn+m+1,n+m(R) and d ∈ Rn+m+1. We
define now the left and right parts of N as follows:

N1 = N

[

In

0

]

∈ Mn+m+1,n(R), N2 = N

[

0
Im

]

∈ Mn+m+1,m(R)

12

 (a +h, u)
ik

(a , u)
ik

(a +h, u +h)
k i

x

u

∆
q’

(x, u) ∈ ∆q′

m
x ∈ Dq = [ak, ak + h]

and
u ∈ Uq′(x) = {u ∈ U1; 0 ≤ u − ui ≤

x − ak}

Figure 3: Definition of Dq and Uq′(x) in cell ∆q′ for n = m = 1

so that: N = [N1 | N2]. Thus we have ∀(X, u) ∈ ∆q′ , N1X + N2u + d ≥ 0.
And we hence obtain a characterization of Uq′ :

∀X ∈ Dq, Uq′(X) = {u ∈ Rm / (X, u) ∈ ∆q′}
= {u ∈ Rm / N2u + (N1X + d) ≥ 0} (8)

Therefore Uq′(X) is determined by a finite number of affine inequalities and is a
polyhedral set. Moreover, since ∆q is bounded by construction, it follows that
Uq′(X) is a bounded polyhedral set, i.e. a polytope. Furthermore, it also has
the following property:

Proposition 4. For all X ∈ D̊q. Then, for all q′ ∈ K(q), Uq′(X) is a m-simplex
in Rm.

The proof is given in appendix .2 ; the idea is to count the number of
intersections between the whole control space and the n-faces of the simplex
∆q′ .

Now, we can also define a pseudo-convexity property over the control do-
mains. This will enable us in section 0.3.2 to compute them efficiently:

Lemma 4 ((Pseudo-convexity)). Let q1, q2 be indices in K(q). Then:

u1 ∈ Uq1(X1) and u2 ∈ Uq2(X2)
⇓

∀α ∈ [0, 1], ∃q′ ∈ K(q), αu1 + (1 − α)u2 ∈ Uq′(αX1 + (1 − α)X2)

Proof. Let us state: α ∈ [0, 1]. Thanks to the definition 7, we have:

u1 ∈ Uq1(X1), u2 ∈ Uq2(X2) ⇒ (X1, u1) ∈ ∆q1 , (X2, u2) ∈ ∆q2

By assumptions: q1 ∈ K(q), q2 ∈ K(q), so that: X1 ∈ Dq and X2 ∈ Dq. By
convexity of Dq, we deduce: αX1 +(1−α)X2 ∈ Dq. Then, by convexity of Um,
we have: αu1 + (1 − α)u2 ∈ Um. Hence:

(αX1 + (1 − α)X2, αu1 + (1 − α)u2) ∈ Dq × Um

Moreover, by construction of the mesh ∆, we have: Dq × Um =
⋃

q′∈K(q)

∆q′ .

Thus, the latter pair must belong to one of the simplices:

∃q′ ∈ K(q), (αX1 + (1 − α)X2, αu1 + (1 − α)u2) ∈ ∆q′

13

This proves that αu1 + (1 − α)u2 ∈ Uq′(αX1 + (1 − α)X2) and the lemma is
true.

Once the control constraints are explicitly determined, we are now able to
define a hybrid optimal control problem.

Hybrid automaton definition

Let us introduce the equivalence relation ∼ on I defined by:

i ∼ j ⇔ p⊥
Rn(∆i) = p⊥

Rn(∆j)

We then introduce the index q of the cell Dq in the state space, which is the
projection of ∆i and ∆j . We can then define the equivalence classes of the
relation ∼:

Lemma 5. The equivalence classes for the relation ∼ are the sets K(q), where
q is an index of the mesh D of Rn. Moreover: ∀q, card K(q) < +∞.

In control theory, the control functions are generally measurable and not con-
tinuous (at best piecewise continuous). Therefore, every trajectory (X(.), u(.))
in the space Rn × Um is a priori discontinuous, whereas X(.) is a continuous
trajectory in the state space. Moreover, figure 4 shows that the notion of tran-

u = 0min

umax

x0

u

x

Figure 4: Example of discontinuous trajectory in the space R × [0, umax]

sitions between two cells of the mesh ∆ has no meanings with respect to the
control. Indeed, an admissible control function can switch at any time to a given
cell ∆i to another ∆j , not necessarily adjacent to ∆i, and without reaching one
boundary of the system. This observation leads us to introduce a new class of
hybrid systems with inputs:

Definition 2 ((Controlled hybrid automaton)).

1. Q the countable set of class representatives for ∼ (i.e. the set of indices
of the simplices Dq).

14

2. D = {Dq / q ∈ Q} the collection of domains induced by ∆ over the state
space:







∀q ∈ Q, ∃q′ ∈ I, Dq = p⊥
Rn(∆q′)

∀(q, q′) ∈ Q2, [D̊q ∩ D̊q′ 6= ∅ ⇒ Dq = Dq′]

3. U = {Uq / q ∈ Q} ⊂ Um the collection of control domains induced by ∆:















Uq = {u(.) admissible / ∀X ∈ Dq, ∃q′ ∈ K(q), u(X) ∈ Uq′(X)}

Uq′(X) = {u ∈ Rm /

[

X
u

]

∈ ∆q′}

4. E = {(q, q′) ∈ Q×Q/ ∂Dq ∩ ∂Dq′ 6= ∅} the transition set.

5. F = {Fq / q ∈ Q} the collection of field vectors of section 0.2.1, where:
Fq = {fq′ / q′ ∈ K(q)} and:

fq′ : ∆q′ → Rn

(X, u) → Aq′X + Bq′u + cq′

6. G = {Ge / e ∈ E} the collection of the guards:

∀e = (q, q′) ∈ E , Ge = ∂Dq ∩ ∂Dq′

7. R = {Re/e ∈ E} the collection of Reset functions:

∀e = (q, q′) ∈ E , ∀x ∈ Ge, Re(x) = {x}

(Here, we do not need to reinitialize the continuous variable x, since the
Dq are adjacent).

q0 1q
q2

q3 q4
q5

q6

G
5(q ,q)6

0

Figure 5: Illustration of the hybrid automaton definition over 7 modes
(q0, q1, q2, q3, q4, q5, q6)

Notation 1. When there is no ambiguity about the trajectory, we will denote
u(X(t)) simply by u(t).

From now on, we will make the following assumption:

15

Hypothesis 1. The hybrid automaton H is assumed not Zeno4

Once the hybrid automaton H is defined, we can then build a new optimal
control problem (PH) as the hybrid approximation of the initial one (1)-(2):
”Let X0 be a point of Rn. We want to find a trajectory under the H’s dynamic
that steers the initial point X0 to the target point 0, locally minimizing the cost
function J(X0, u(.)).”

Next we propose some methods and algorithms to solve the hybrid problem
(PH). Our analysis is divided in two parts. First in §0.3, we address the control-
lability problem, namely the existence of (non compulsorily optimal) solutions.
Then, in §0.4, we provide an algorithmic resolution of the optimization problem
(PH).

0.3 Approximation of the Controllable Domain

In this section, we focus on the controllability of the nonlinear system (1) to-
wards the origin. For a given initial point X0 ∈ Rn in the state space, we want
to study the existence of admissible trajectories of the system that steers X0 to
the considered target 0 at some finite time. The theory of linear control systems
without constraints on the control have been extensively developed and provides
some powerful results like the Kalman controllability criterion ([26, 27]). Using
the implicit functions theorem, the analysis of the local linearization of nonlinear
systems gives some results about the local controllability of the system ([29]).
In this paper, we present methods and algorithms to approximate the control-
lable domain of nonlinear control systems by the way of the hybrid model. In
§0.3.1, we present a hybrid approach to the controllability of nonlinear systems:
the nonlinear controllable domain is approximated by the hybrid one over a
finite cells path in the state space. Then, in the following paragraph, we give
some useful properties of the hybrid controllable domain, which will enable us
in §0.3.3 to define a new algorithm computing an under-approximation of the
hybrid controllable domain.

0.3.1 Hybrid approach

In this paragraph, we focus on the notion of controllability to the origin of
nonlinear systems:

Definition 3. X0 ∈ Rn is controllable to 0 if and only if there exists T ≥ 0 and
u : [0, T] → Um measurable, such that the system

{

Ẋ(t) = f(X(t), u(t))
X(0) = X0, X(T) = 0

4Zeno executions correspond to an infinite number of switch in a finite time. That often
involves problems in the simulation of hybrid system. Indeed the transition times come closer
and closer and in simulations, we can not differentiate them any more (see [24, §2.3] and [35]).

16

admits a solution X(.) over [0, T]. The set of controllable points in Rn is called
controllable domain of the system (1).

This definition can be applied to any control system, and particularly to
the hybrid automaton previously described (see §0.2.3). So, any X0 ∈ Rn is
controllable for the hybrid system H if and only if there exists an admissible
trajectory of the system that steers X0 to the target 0 in some time T > 0. Let
us now introduce the notion of solution of a hybrid system (inspired from [24,
section 2.1]):

Definition 4. (X(.), u(.)) is a solution of the hybrid control problem (PH) (i.e.
X0 controllable) if there exists a finite execution χ = (τ, q, X) satisfying:

i. (q(t0), X(t0)) = (q0, X0) and (q(tr+1), X(tr+1)) = (qr , 0).

ii. For all i ∈ {0, . . . , r}, such that: ti < ti+1:
- ∀t ∈]ti, ti+1[, q(t) = qi and X(t) ∈ Dqi

- there exists a measurable control function u(.) ∈ Uqi
over [ti, ti+1], such that:

∀t ∈]ti, ti+1[, Ẋ(t) = fh(X(t), u(t))

iii. ∀i ∈ {1, . . . , r}, X(ti) ∈ G(qi−1,qi).

where: τ = ([ti, ti+1])i=0...r−1 (ti ≤ ti+1) and q = (qi)0≤i≤r is a finite sequence
of modes of the automaton H.

Moreover, for any controllable point X0 ∈ Rn, the hybrid system may accept
several executions that steer X0 to the target, and several different cell paths
q = (qi)i between X0 and 0. So the analysis of the global controllability of
the hybrid automaton H implies to first determine one admissible sequence of
modes, on which we then compute the controllable domain for the system H.
From now on, we so consider the following assumption illustrated on figure 6:

Hypothesis 2. Let q = (qi)i=0...r be a sequence of discrete modes of the au-
tomaton H such that:

{

X0 ∈ Dq0 , 0 ∈ Dqr

∀i = 1 . . . r − 1, Dqi
∩ Dqi+1 6= ∅

(Dqi
)i=0...r is the sequence of adjacent state cells related to the path q.

For any given sequence of discrete modes q = (qi)i=0...r satisfying the hy-
pothesis 2, we define:

- a successor function succ: succq(qi) = qi+1 for i < r

- the sequence of modes q̄ associated to q = (qi)i=0...r by time reversal:

q̄ = (qr−i)i=0...r and succq̄(qi) = qi−1 for i = 1 . . . r

17

X 0

0

Figure 6: Hybrid controllability

The hypothesis 2 leads us to introduce the domain: Ω =
r
⋃

i=0

Dqi
⊂ Rn and to

focus on the controllability of the nonlinear system (1) inside Ω in the state
space. Our hybrid approach consists then in approximating the nonlinear con-
trollable domain on Ω by the hybrid one.

This idea induces a recursive definition of the controllable domain inside
the domain Ω, for the nonlinear control system as well as for the hybrid one.
It is build inside Ω by time reversal, i.e. from the target 0 to successive cells
Dq̄0 , . . . , Dq̄r

, according to the path q̄.

Definition 5 ((Controllable domain C(Ω))). Let q = (qi)i=0...r be a se-

quence of modes in the automaton H satisfying the hypothesis 2 and Ω =
r
⋃

i=0

Dqi
.

The controllable domain C(Ω) inside Ω for the considered control system is de-
fined by:

- C(Dq̄0) is the set of points X0 ∈ Dq̄0 , steerable to the target 0, while
remaining within the cell Dq̄0 .

- For all i ∈ {0, . . . , r − 1}, C(
i+1
⋃

j=0

Dq̄j
) is the union of C(

i
⋃

j=0

Dq̄j
) and

of the set of points X0 ∈ Dq̄i+1 , that are steerable to the current target

C(
i
⋃

j=0

Dq̄j
) ∩ G(q̄i,q̄i+1), while remaining within the cell Dq̄i+1 .

0.3.2 Controllable domain of the hybrid automaton

Let q be a discrete mode of the automaton H satisfying: 0 ∈ Dq (q = q̄0 of
definition 5). In this section, we are interested in determining some topological
properties of the controllable domain inside the cell Dq under the control con-
straints Uq. These properties will enable us to compute a good approximation

18

of the controllable set in section §0.3.3. We now consider the piecewise affine
dynamic fh defined by the hybrid automaton (see §0.2.3). The controllability
of the hybrid system H in the state cell Dq is defined as follows:

Definition 6 ((Controllability in mode q)). X0 ∈ Dq is controllable by
the hybrid automaton H if and only if there exists T ≥ 0 and u : [0, T] → Um

measurable, such that the system:

{

Ẋ(t) = fh(X(t), u(t))
X(0) = X0, X(T) = 0

admits a solution X(.) over [0, T] such that:

∀t ∈ [0, T],

{

X(t) ∈ Dq

∃q′(t) ∈ K(q), u(t) ∈ Uq′(t)(X(t))

Proposition 5. The controllable domain in mode q is convex.

The proof of proposition 5 has to be completed. This result has been an-
alytically proved for linear systems and piecewise affine systems with constant
constraints on the control and could be generalized to our hybrid automaton
definition.

Corollary 2. Let q be a mode of the hybrid automaton H and q′ ∈ K(q).
If 0 ∈ ∆q′ (i.e.: 0 ∈ Dq and ∀X ∈ Dq, 0 ∈ Uq′(X)), then the controllable
domain under the state and control constraints induced by ∆q′ is convex.

0.3.3 Computation of a controllable under-approximation

In this section, we want to compute the set of controllable points in Rn, i.e. the
set of initial points for which the problem (PH) admits a solution. In [20], we
proposed an algorithm to compute an under-approximation in time T > 0 of the
controllable set without state constraints. In [33], an extension of this algorithm
to piecewise affine systems under constant control constraints is presented. Here
these algorithms are developed and widely improved for hybrid systems like H.
The principle is as follows: by time reversal, the computation of the controllable
set comes down to the computation of the attainable set from the target. In
[1], for safety verification, the idea is to compute an over-approximation of the
attainable set. They can thus certify that the system can not escape from an
admissible set of states. On the contrary, we address the problem of guarantying
the controllability of a given initial point. Therefore, we instead compute an
under-approximation of the controllable set.

Under-Approximation within a given state cell

In this paragraph, we address the problem of under-approximating the control-
lable set in the state cell Dq, q ∈ Q. The idea is to compute for each cell ∆q′ ,

19

0

X

X
u

u3

X
4u

4

1

2

3
X

2

u1

Figure 7: Under-approximation principle in a state cell Dq

q′ ∈ K(q), some specific controllable points in Dq ; then, thanks to the proposi-
tion 5, their convex hull is an under-approximation of the controllable set (see
figure 7). The algorithm presented below is inspired by [20, 33]. There, the
under approximation is computed for piecewise affine automata with constant
control constraints with several discretisation levels. Here, the automaton cells
are build for a selected precision h and we choose the same precision for the
under-approximation. This is actually simpler and the under-approximation
quality is nonetheless preserved !

Notation 2. From now on, X [X0, u] denotes the trajectory that goes through
X0 according to the control function u(.).

Let ∆q′ , q′ ∈ K(q), be a given cell in the state-control space Rn × Um.
Now, we want to compute some controllable points in Dq under the control
constraints defined by Uq: the first step is to compute the vertices ui(X) of the
control domain Uq′(X), for any X ∈ Dq.

Remark 3. As previously seen in proposition 7, the control constraints in the
cell Uq′(X) are affine in the state and the control ; so ∀i, ui(X) depends affinely
on the state X.

After that, for each control function ui, we consider the trajectory X [0, ui]
and compute its intersection, when it exists, by time reversal with the boundary
of Dq:

Xi = X [0, ui](Ti) where: Ti = sup{t < 0; X [0, ui](t) ∈ ∂Dq}

Remark 4. If the system: Ẋ(t) = fh(X(t), ui(X(t))), X(0) = 0 has an equi-
librium point in Dq, then: Ti = −∞ and Xi = lim

t→−∞
X [0, ui](t) exists and is

controllable in mode q.

Let Λq(q
′) be the set of the so computed controllable points in Dq. According

to the proposition 5, we deduce:

20

Proposition 6. Λq = Conv(
⋃

q′∈K(q)

Λq(q
′)) is an under-approximation of the

controllable set in mode q.

The following algorithm 3 thus computes the under-approximation of the
controllable domain in mode q.

Algorithm 3 UnderApproximationCell

Require: H, Dq a given state cell.
Ensure: an under-approximation of the controllable domain in Dq.
1: Initial under-approximation: Λ := ∅;
2: Target: T := {0};
3: K(q) := {q′ ∈ I / p⊥

Rn(∆q′) = Dq} {Computation of the set of indices of
cells ∆q′ whose projection on Rn is Dq.}

4: In each cell ∆q′

5: for all q′ ∈ K(q) do

6: Computation of the set of control constraints defined by the list of its
vertices
Uq := ControlConstraints(∆q′);
{For each vertex of Uq′(X)}

7: for all time step i (from 1 to card(Uq′(X))) do
8: i-th vertex of Uq′(X): u := X → Uq′(X)[i];
9: Computation of the trajectory from T according to u = Uq′(X)[i]

X [T , u](.) solution of Ẋ(t) = Aq′X(t) + Bq′u(X(t)) + cq′ , X(0) = T .
10: Computation of the intersection time between X [T , u](.) and the bound-

ary of Dq

T := sup{t < 0; X [T , u](t) ∈ ∂Dq}
{The so-computed point is in the under-approximation}

11: Λ := Λ ∪ {X [T , u](T)}
12: end for
13: end for

14: Return ConvexHull(Λ).

Under-Approximation over a given path

Let q = (qi)i=0...r be a given sequence of discrete modes of the hybrid automaton
H satisfying the hypothesis 2, i.e. such that:

{

0 ∈ Dq0

∀i ∈ [|0, r − 1|], G(qi,qi+1) 6= ∅

As similarly done in [33], we are now able to compute an under-approximation
of the controllable set over the sequence of adjacent states Dqi

. The principle is
to start by computing the under-approximation of the controllable set from the
target 0 in the first cell q0 by the algorithm 3. Then, from its intersection with
the guard G(q0,q1), we pursue the under-approximation, the same way. The only

21

0
q
0 q

2

1q q
3 q

4

q
5

q
6

Under−approximation
Trajectories by time reversal

Figure 8: Construction of an under-approximation of the controllable set in a
given path (q0, q1, q2, q3, q4, q5, q6) of discrete modes.

difference is that the reverse starting point is not 0 any more. It is instead the
extremal points of the intersection between the guard and the current under-
approximation. The algorithm ends when this intersection is empty or when the
last state qr is reached. This algorithm is illustrated on figure 8. The computed
under-approximation describes the set of points, which are reachable by time
reversal inside a given sequence of cells. It clearly depends on the order of cells
inside the cells path (see example 0.3.4).

Controllability of the initial point

Up to now, we have seen how to build an under-approximation of the hybrid
controllable domain on a given finite sequence of modes. Now, we come back
to the controllability of a given initial point in the state space for the hybrid
system. Let X0 ∈ Rn be a given initial point for the system H. According to
the hypothesis 2, we consider a finite sequence of discrete modes q = (qi)i=1...r

between X0 and the target 0 and the domain: Ω =
r
⋃

i=1

Dqi
, on which we study

the controllability to 0. The idea is to compute an under-approximation Λ(Ω)
of the controllable domain on the domain Ω, then, if X0 ∈ Λ(Ω), then X0 is
controllable. Otherwise we can combine an under- and an over-approximation
of the controllable set: if X0 is out of the over-approximation, we can certify
that it is not controllable. If X0 is in between, we can not conclude.

0.3.4 Experimental results

In this section, we consider the example of the nonlinear spring presented in
[34, paragraph 7.3.1]:

{

ẋ(t) = y(t)
ẏ(t) = −x(t) − 2 ∗ x(t)3 + u(t)

(9)

where the control constraints are: ∀t ≥ 0, |u(t)| ≤ 1. In this section, we want to
apply the previously described algorithms to compute an under-approximation
of the set of initial positions (x0, y0 = ẋ0), from which the spring can be steered

22

to its equilibrium position (0, 0).

In this example, we perform the under-approximation algorithm on three
successive adjacent cells as shown on figure 9-(a): Now, we are given the

0.5

-0.8
0

-0.5

-1

-1

0-0.2-0.4-0.6

1

0.5

-0.8
0

-0.5

-1

-1

0-0.2-0.4-0.6

1

q
3

q
2

q
1

q
3

q
2

q
1

(a) (b)

Figure 9: Two different paths inside one given domain in the state space.

(a) (b) (c)

Figure 10: Controllable under-approximations for the nonlinear spring inside
the three successive cells in R2 of figure 9-(a).

same set of adjacent state cells, but in reverse order, as shown on figure 9-(b).
We want to compare the controllable under-approximations over these two cells
paths. As expected, the resulting under-approximations are different. In fact,
the resulting under-approximation is the one computed in the first step (a) on
figure 10;
Indeed, each boundary between two adjacent modes can not necessarily be
crossed in every direction. In conclusion, when several different paths exist
inside one given domain in the state space, we have to compute the under-
approximations on all the possible paths.

Example 1 ((Runtimes)).
The under-approximation algorithm 3, implemented in Maple5, is performed

5The maplets are available online at: www-lmc.imag.fr/lmc-mosaic/Jean-Guillaume.Dumas/SHOC

23

inside a given simplex Sn in Rn for u ∈ [−1, 1] where Sn is the standard simplex
of Rm, we have scaled in order to respect the size h of the mesh of the control
and state space Rn × [−1, 1]:

Sn = Conv({(hδij)j=1...m+1 / i = 1, . . . , m + 1})

where: δij is the Kronecker symbol: δij = 1 if i = j. Otherwise, when i 6= j,
δij = 0. The considered nonlinear dynamic is: f(X, u) = (X1u, . . . , Xnu).

Table 1: Global timings with Maple 9.5 on a PIV 3.4 GHz: cpu (s) for h = 1
n∗ 2 3 4 5 6 7 8

3.346 (12)† 4.643 (16) 6.795 (20) 10.611 (24) 16.110 (28) 22.213 (32) 29.978 (36)

9 10 11 12 13 14 20
41.691 (40) 54.501 (44) 80.067 (48) 96.205 (52) 120.913 (56) 157.066 (60) 626.884(84)

∗ n is the dimension of the state space † (.) is the number of cells ∆q′ in one
mode

The times given in table 1 take into account:

- the computation of the set of control domains Uq′(X) related to the simplex
Sn (their number increases with the dimension).

- the hybridisation, i.e. to compute the affine approximation in each result-
ing state and control cell in Rn+m.

- the under-approximation computation in each cell.

0.4 Computation of optimized solutions

This section deals with the algorithmic resolution of the nonlinear optimal
control problem (1)-(2) stated in introduction. For a given controllable point
X0 ∈ Rn, we want to select among all the admissible trajectories that steers
X0 to 0, those that minimize the given cost. We therefore now present some
methods and algorithms to approximate the optimal solutions of the nonlinear
control problem. First, in paragraph 0.4.1, we describe the hybrid approxi-
mation of optimal solutions of the nonlinear problem. Then an algorithm is
proposed in §0.4.2 to solve the hybrid optimal control problem. We end the
section with a full example showing the overall process.

0.4.1 Hybrid approximation of optimal solutions

In this paragraph we focus on the resolution of the nonlinear optimal control
problem stated in introduction:

24

(PNL) Minimize the cost function J(X0, u(.)) =
tf
∫

0

l(X(t), u(t))dt with respect

to the control u(.) under the nonlinear dynamic (1):

{

Ẋ(t) = f(X(t), u(t))
X(0) = X0

X(tf) = 0

and the constraints: ∀t ∈ [0, tf], u(t) ∈ Um convex and compact polytope in Rm,
such that: 0 ∈ Um. The final time tf is unspecified.

We define a hybrid optimal control problem (PH) by replacing the vector
field f by fh. In section 0.3 we approximated the nonlinear controllable domain
by the hybrid one inside a given compact subset Ω of Rn. Now, we consider
the optimal resolution of the problem (PNL) inside Ω. Our approach is divided
in two main steps: we first define the hybrid optimal control problem, and then
prove that hybrid optimal solutions are good approximations of the nonlinear
optimal ones. Let X0 be a given initial point in the state space Rn and q =
(qi)i=1...r the finite sequence of discrete modes (satisfying the hypothesis 2),
on which X0 is controllable for the nonlinear system (1): X0 ∈ CNL(Ω) where

Ω =
r
⋃

i=1

Dqi
and CNL(Ω) is nonlinear controllable domain inside Ω. Any optimal

solution inside Ω is then defined step by step from X0 in mode q0 towards 0 in
mode qr: for i from 0 to r, we have to solve a local optimal control problem
(PNL(qi)) in each mode qi of the given path:

(PNL(qi)) Minimize the cost function J(Xi, u(.)) =
∫ ti+1

ti
l(X(t), u(t))dt with

respect to the control u(.) ∈ Uqi
under the nonlinear dynamic (1):

{

Ẋ(t) = f(X(t), u(t))
X(ti) = Xi

Xi+1 = X(ti+1) ∈ G(qi,qi+1)

and the constraints: ∀t ∈ [ti, ti+1], (X(t), u(t)) ∈ ∆qi
, where the final time ti+1

is unspecified.
We so compute an optimal execution (τ, q, X) (see definition 4) in Ω of the
nonlinear optimal control problem (PNL), by stating:

τ = ([ti, ti+1])i=0...r, X(t0) = X0, X(tr+1) = 0, G(qr ,qr+1) = {0}

Our purpose is to approximate optimal solutions of (PNL) inside Ω by the op-
timal solutions of (PH) inside Ω. Therefore, the following paragraph is devoted
to the algorithmic resolution of the hybrid optimal control problem inside Ω.

0.4.2 Computation of hybrid optimal solutions

Let us consider the hybrid optimal control problem (PH) inside Ω as defined in
previous section. Its definition emphasizes the existence of local optimal control
problems to solve. There are actually three levels of resolution in our approach.
The first one deals with the affine optimal control problems defined in each cell

25

∆q′ of the state and control space. Then the second is to solve the optimal
control problem in the current mode of the considered path q. The last one is
the generic optimal resolution inside the domain Ω, i.e. all over the path q.

Local optimal solutions in each cell ∆q′

Let us consider a mode qi in our given path q and q′ ∈ K(qi) (see definition 2).
In this section, we want to compute optimal solutions for the hybrid problem
(PH) in the state and control cell ∆q′ . By definition of the automaton H, in
∆q′ we can define a constrained affine optimal control problem (pqi

(q′)):

(pqi
(q′)) Minimize the cost function J(X0, u(.)) =

∫ tf

0
l(X(t), u(t))dt with re-

spect to the control u(.) ∈ Uq under the dynamic:

{

Ẋ(t) = Aq′X(t) + Bq′u(t) + cq′

X(0) = Xi
X(tf) ∈ T

and the constraints: ∀t ∈ [0, tf], (X(t), u(t)) ∈ ∆q′ for an unspecified final time
tf .
The target T is the guard G(qi,qi+1) of Dqi

, if i < r, {0} otherwise.

We then are typically in the context of mixed state and control constraints
affine optimal control problems. Optimal control under state inequality con-
straints is a hard and subtle problem. Indeed, some problems with bounded
target curves have no generic solving methods, see [31]. A crucial point that
would make our problem generically solvable is the shape of our final constraints.
From now, we consider that the target T is to reach the sub-space gen-
erated by the target guard of Dqi

. So, let us now state our optimal control
problem (pqi

(q′)) in terms of optimization via the Pontryagin maximum princi-
ple (see e.g. [8, 10]) where the state constraints induced by Dq are given by the
affine inequalities Nqi

X +Lqi
≤ 0. We first introduce the Hamiltonian function

Hqi
(X, u, λ) = l(X, u) + (λT + µT Nqi

)(Aq′X + Bq′u + cq′)

where µ is a Lagrange multiplier verifying:

∀j, µj

{

= 0 if (Nqi
X + Lqi

)j < 0
> 0 if (Nqi

X + Lqi
)j = 0

We can now formulate the optimization problem thanks to the Pontryagin prin-
ciple:

Minimize the Hamiltonian function H with respect to the control variable
u ∈ Uq′(X) under the constraints:

26

Ẋ(t) = ∂H
∂λ

(X(t), u(t), λ(t), µ(t))

λ̇T (t) = ∂H
∂X(t) (X(t), u(t), λ(t), µ(t))

H(X⋆(t), u⋆(t), λ⋆(t), µ⋆(t)) = 0 along the optimal trajectory

∀t ≥ 0, X(t) ∈ Dqi
, i.e.: Nqi

X + Lqi
≤ 0

Transverse condition: < λ(tf), nT >= 0 where nT is the normal vector to
the target T ”.

The principle of our local solving algorithm is first to solve the affine opti-
mal control problem without state constraints. Useful methods and algorithms
have been developed in [20]. Once we have computed the optimal control ū⋆

and the related optimal trajectory X̄⋆ towards the target hyper-plan T , two
configurations may occur (see figure 11):

0
X

0
X

Target hyperplan

Optimal trajectory without state constraints Optimal trajectory under state constraints

Dq

(a) (b)

Figure 11: Local optimal solutions from a controllable point X0 in mode q

1. ∀t ≥ 0, X̄⋆(t) ∈ Dqi
. Then the optimal trajectory without state con-

straints is optimal for our problem (pqi
(q′)), see figure 11-(a).

2. ∃t ≥ 0, X̄⋆(t) /∈ Dqi
. Then the optimal trajectory without state con-

straints is optimal for our problem (pqi
(q′)), see figure 11-(b).

Optimal control in mode qi

In this section, we want to solve the optimal control problem in one given mode
qi. By construction of the hybrid automaton (see definition 2), to each mode
correspond a finite number of state and control cell in ∆. The main purpose
in this paragraph is to manage the optimal resolution of the hybrid problem
through this set of cells. Let us consider the cell Dqi

in the state space Rn and
the set of cells ∆q′ , q′ ∈ K(qi). To compute the optimal control from Xi, we have
exactly card K(qi) candidate cells ∆q′ . The idea is to solve the local optimal

27

control problem (pqi
(q′)) in each ∆q′ as presented in previous section 0.4.2 ; and

then to compute the local optimal trajectory (X∗
q′ , u∗

q′) and the related value
function Vq′(X0). We end by a finite discrete optimization over these cells ; i.e.
find the mode q∗i such that:

Vq∗
i
(X0) = min

q′∈K(qi)
Vq′(X0)

However the last optimization step can sometimes be avoided. Indeed, as ex-
plained in section 0.4.2, any optimal trajectory (X(.), u(.)) evolves along the
edges of our mesh ∆ of Rn × Um.
Let us take the example of the figure 12 and consider the trajectory between the

a

0

h

u

2hh xx
0

b

Figure 12: Example of optimal configurations

cells a and b. We assume that we have already computed the optimal control
in each cell so that:

- in cell a, the optimal control is constant, equal to h.

- in cell b, the optimal control depends on the state and: u∗ = x − 3h

As shown on figure 12, the optimal trajectory in cell b evolves along the bound-
ary between the two cells a and b. In consequence, it could belong to both cells
a and b. Moreover we have seen that the optimal trajectory in cell b is not
optimal in cell a. We then conclude that the cell a is a best choice than the cell
b for our optimal control problem. Therefore the discrete optimization can be

a

b

a

b

Figure 13: Example of optimal choices between two cells in dimension 2: left
the local optimal choices in each cell, right the deduced optimal choice in the
column

avoided by the application of that kind of analysis (see figure 13).

28

Hybrid solver

In regard of previous results, we can now describe the HybridSolver algorithm:
as expressed in hypothesis 2, we assume a sequence of state given. The principle
of our solving algorithm 4 is to compute column by column a piecewise optimal
solution of our hybrid problem along the path.

Algorithm 4 HybridSolver

Require: X0 and the hybrid automaton H
Require: q = (qi)i=1..r a sequence of discrete modes s.t. X0 ∈ Dq0 and 0 ∈

Dqr
.

Ensure: τ = ([ti, ti+1]), the sequence of times for entering and exiting a mode.
Ensure: X a trajectory such that (τ, q, X) is a local optimal execution of H
Ensure: u the corresponding optimal control.
Ensure: V (X0) the corresponding value function.
1: if X0 /∈ UnderApproximation(H,q), then
2: Return “X0 may not be controllable”.
3: end if
4: t0 := 0; V := 0;

{Piecewise Affine Resolution}
5: for all time step i (from 1 to r) do
6: {Linear Approximations in a mode}:

Compute the several affine approximations (Aq′ , Bq′ , cq′)q′ of a mode qi

using equation (4)
7: {Output Condition}: target := G(qi,qi+1);
8: {Mixed and State Inequality Constraints}

Column := Uqi
; Cell := Dqi

; using equation (8)
9: {Solve the piecewise affine problem in mode qi}

(PH(qi)) → (X(.), u(.), tf , Vf) using section (0.4.2)
10: X0 := X(tf); ti+1 := ti + tf ; V := V + Vf ;
11: end for
12: Return (τ, X, u, V).

0.4.3 Example

Let us consider the nonlinear dynamical system:

ẋ(t) = x2(t) + x(t)u(t) + u(t)2 (10)

The problem is to control the system (10) in minimum time from a given initial
point X0 ∈ R to the origin 0 under the control constraint: ∀t ≥ 0,−1 ≤ u(t) ≤ 1.

Exact resolution

Let us consider the vector field: f(x, u) = x2 + xu + u2 as a polynomial of
degree 2 in the variable u. Its discriminant is: −3x2 < 0 ; we thus deduce:

29

∀(x, u), f(x, u) > 0. Hence ∀t ≥ 0, ẋ(t) > 0, so that x(.) is increasing and the
controllability conditions: x0 ≤ 0. We can also numerically check that the exact
controllable domain of our problem is] −∞, 0].

Let us introduce the Hamiltonian: H(X, u, λ) = 1+λ(x2+xu+u2). Accord-
ing to the Pontryagin minimum principle ([32]), we come down to the problem
of minimizing H with respect to u under the constraints:

λ̇(t) = −2x(t)λ(t) − λ(t)u(t)

H(X(t), u(t), λ(t) = 0 along the optimal trajectory
(11)

Let us first assume that the optimal control takes values in] − 1, 1[. We thus

have to solve: ∂H
∂u

= 0 ⇔ λx + 2λu = 0 under the condition: ∂2H
∂u2 > 0.

As H ≡ 0 along the optimal trajectory, we necessarily have: λ 6= 0 (oth-
erwise: H ≡ 1), so that: u∗ = −x

2 while −2 ≤ x ≤ 2 (to fulfill the control
constraints). In consequence, we can now explicitly solve the system (10) and
we obtain:

x(t) = 4x0(4 − 3x0t)
−1 and λ(t) = −4

3
x(t)−2

Therefore λ(t) < 0 and the previous u∗ is not minimizing H . Hence: ∀t ≥
0, u(t) ∈ {−1, 1}.

To choose between u∗ = −1 and u∗ = 1, we compute the value function
associated to each possible control. The comparison of these functions shows
that u∗ = −1 is the exact solution of our initial nonlinear optimal control
problem and the value function is:

V (x0) = −1

9
(6 arctan(

1

3
(−1 + 2x0)

√
3) + π)

√
3

Hybrid Approximation

Let h = 1/N our discretization step. Let us build a simplicial mesh (Dk)k of R

(see methods in §0.2.2): here we have: Dk = [kh, (k + 1)h].
Then the control domain [−1, 1] is subdivided into N intervals [ui, ui+1], i =

0 . . .N − 1, where: ui = −1 + 2ih.
Lastly we just have to triangulate [kh, (k + 1)h]× [ui, ui+1] and we can thus

define our global mesh ∆ of R × [−1, 1] by:

∆
(1)
k,i = {(x, u); 0 ≤ u − ui ≤ x − kh ≤ h}

∆
(2)
k,i = {(x, u); 0 ≤ x − kh ≤ u − ui ≤ h}

So we now perform the hybrid approximation fh over the cells ∆
(j)
k,i , j ∈

{1, 2}:
fh(x, u) = a

(j)
k,ix + b

(j)
k,iu + c

(j)
k,i, for (x, u) ∈ ∆

(j)
k,i

30

where:

a
(1)
k,i = 2kh + h − 1 + 2ih

b
(1)
k,i = −2 + 3h + kh + 4ih

c
(1)
k,i = −k2h2 + kh − 2ih2k − 1 + 4ih− 4i2h2 − h2k + 3h − 6ih2

a
(2)
k,i = 2kh + 3h − 1 + 2ih

b
(2)
k,i = kh − 2 + 4ih + 2h

c
(2)
k,i = −k2h2 + kh − 2ih2k − 1 + 4ih− 4i2h2 − 3h2k + 2h − 4ih2

We have defined the hybrid automaton related to the considered optimal control
problem. Next, we will therefore apply the algorithm described in section 0.4.

Let x0 be a given initial point: x0 ∈ Dk with k = E[x0

h
] and a fixed sequence

of states q = (Dj)j=0...k ; we then want to compute the optimal solution of the
hybrid problem over the path q:
As presented in §0.4.2, the first step is to solve the local affine optimal control
problem in each cell of ∆ and we have:

u∗ =

{

ui when (x, u) ∈ ∆
(1)
k,i

x + ui − kh when (x, u) ∈ ∆
(2)
k,i

After that, we have to find the optimal cell ∆
(j)
k,i , j ∈ {1, 2}, i = 0, . . . , N to

consider. We then can notice that for all i, ∆
(1)
k,i and ∆

(2)
k,i play respectively the

roles of the cells a and b of the figure 13, so that:

u∗ = ui when (x, u) ∈ ∆
(1)
k,i ∪ ∆

(2)
k,i

Recursively, we can so conclude that over the whole columns on cells ∆
(j)
k,i , j ∈

{1, 2}, i = 0, . . . , N , the optimal choice is the cell ∆
(1)
k,0 with u∗ = −1. We can

then compute the local value function Vk(x0). x0 is then re-initialized to kh in
the cell Dk−1, and so on.

So our HybridSolver algorithm returns the optimal solution to our hybrid
optimal control problem:

u∗ = −1 and Vh(x0) =

k
∑

j=0

Vj(xj) where:

{

x0 given
xj = (k − j)h, j = 1 . . . k

Figure 14 shows in dot the real value function V (x0) and two hybrid value
functions for two different discretization steps h. Our approximation converges
towards the real curve.

31

-2-3

x0

-4-5

1,2

0,8

0,6

0

0,4

-1

1

0,2

0

Figure 14: Hybrid approximations of the exact value function (in green dashed-
dots) for: h = .1 and h = 0.05

0.5 Conclusion

In this paper, we address the problem of hybrid optimal control of non-linear
dynamical systems. First we propose a hybrid approximation, by way of a hy-
brid automaton with piecewise affine dynamics, of complex systems. Then we
solve the affine optimal control problem and give an explicit and fully analytical
algorithm.

This algorithm however guarantees only a local optimization. Next step will
be to give a way to find a sequence of cells containing an optimal trajectory.
Several directions to solve this problem include:

• Exploring different sequences of states. This could unfortunately induce
a combinatorial explosion.

• Partial numerical simulations could give some information on the local-
ization of an optimal trajectory and thus reduce the exploration.

• Replace l(X(t), u), the cost function with an admissible variable change
ds = l, so that the problem comes down to a time optimal control problem.
Finding the optimal sequence would then be to minimize the time to reach
0. To do this, one can use a time reversal, then perform an attainability
test on X0. The first time step when X0 is reached gives an estimation
of the total time and moreover the direction from which it was reached.
This direction is the new goal of the affine optimal control. When a guard
is reached in this direction, this gives a new point X1, closer to zero than
X0, and from which we iterate the same loop.

• Another idea would be to perform an optimal control in the whole space
with the local affine system. This would also give a possible direction.
Unfortunately, convergence is then not guaranteed anymore.

32

.1 Proof of the correctness of the Fast Block Kalman

form algorithm

Algorithm CompressedKrylovMatrix builds a matrix K satisfying

AK = KH

where H has a polycyclic Hessenberg form: upper block triangular with com-
panion blocks on the diagonal and upper blocks full of zeroes except on the last
column [2, Definition 4]:

K
−1

AK =









































0 ∗

1 0 ∗

. . .
. . . ∗

1 ∗

∗

∗

∗

∗

. . .

0 ∗

1 0 ∗

. . .
. . . ∗

1 ∗









































(12)

Now, we have AT =

[

AK APT

[

0
In−r

]]

and there remains to find C1 and C2 such that AT = T

[

H C1

0 C2

]

i.e.

T

[

C1

C2

]

= APT

[

0
In−r

]

. By writing A′ = PAPT =

[

A′
11 A′

12

A′
21 A′

22

]

we get

T

[

C1

C2

]

= PT A′

[

0
In−r

]

= PT

[

A′
12

A′
22

]

But T = PT

[

UT
1 0

UT
2 In−r

] [

LT 0
0 In−r

]

so that

[

UT
1 0

U2 In−r

] [

LT 0
0 In−r

] [

C1

C2

]

=

[

A′
12

A′
22

]

[

UT
1 0

UT
2 In−r

] [

LT C1

C2

]

=

[

A′
12

A′
22

]

This give the following system:

{

UT
1 LT C1 = A′

12

UT
2 LT C1 + C2 = A′

22

33

which solutions are
{

C1 = L−T U−T
1 A′

12

C2 = A′
22 − UT

2 U−T
1 A′

12

And therefore

T−1AT =

[

H C1

0 C2

]

,

Now, as columns of B are linear combinations of columns of K, this gives

B = T

[

B1

0

]

And thus B1 = L−T U−T
1 PB.

The complexity of the compression is either O(nω log(n) or O(n3) depending
on the chosen method. The remaining steps in algorithm 2 are n × n LUP
factorizations, multiplications and triangular solvings all of which requires at
most O(nω) operations.

.2 Proof that the control constraints are m-simplices

Proof. We take q′ ∈ K(q). The problem is to compute the intersection of the
affine subspace P = {(X0, u)/u ∈ Rm} in Rn+m and the simplex ∆q′ (see figure
15):

Uq′(X0) = {(X0, u) / u ∈ Rm} ∩ ∆q′ = P ∩ ∆q′

We know that the intersection of an affine subspace with a simplex is a simplex

x1

x2

u1

u2

0x

x 0x

u

Figure 15: Intersection P ∩ ∆q′ for (n, m) = (1, 2) on the left, (n, m) = (2, 1)
on the right.

[36, Theorem 1.1]. Therefore Uq′(X0) is a simplex in Rm. There remain to to
compute its dimension. The idea is to consider the intersection of the subspace
P of dimension m with the n-faces of ∆q′ . These intersections, when they exist,
are of dimension 0, and define the vertices of Uq′(X0). We then have to prove
that there exists exactly (m + 1) different n-faces intersecting P to conclude.

34

Let {X1, . . . , Xn+1} be the vertices of Dq. By construction, we have: p⊥
Rn(∆q′) =

Dq. We can then introduce the vertices of ∆q′ :

Vk =

[

Xik

ujk

]

, ik ∈ {1, . . . , n + 1}, jk ∈ {1, . . . , m + 1}, k = 1, . . . , n + m + 1

and: {Xik
; k = 1, . . . , n + m + 1} = {X1, . . . , Xn+1}.

We also assume: X0 ∈ D̊q, hence:

∃!(αk)k=1...n+1 ∈]0, 1[n+1,
n+1
∑

k=1

αk = 1 et X0 =
n+1
∑

k=1

αkXk (13)

1st step: any n-face of ∆q′ has either one intersection with P , or no
one.
Let F be a n-face of ∆q′ defined by the list (renumbered to make the read-

ability easier) of its vertices: (

[

Xik

ujk

]

)k=1,...,n+1 where ik ∈ {1, . . . , n + 1},
jk ∈ {1, . . . , m + 1}.

• 1st case: the ik are all different.
We then have: {Xik

/ k = 1, . . . , n + 1} = {X1, . . . , Xn+1}. (13) so be-

comes: X0 =
n+1
∑

k=1

αik
Xik

. We state: XF =
n+1
∑

k=1

αik

[

Xik

ujk

]

=





X0
n+1
∑

k=1

αik
ujk



.

Then: XF ∈ P . Moreover, by construction of XF , X0 ∈ D̊q involves:

XF ∈ F̊ , hence: XF ∈ P ∩ F .
By uniqueness of the convex decomposition in a given simplex, we then
deduce:

P ∩ F = {XF} and XF ∈ F̊

• 2nd case: the ik are not all different.
We then deduce: {Xik

/ k = 1, . . . , n + 1} ({X1, . . . , Xn+1}. For Y ∈ F ,
we so have:

∃!(γik
)k=1...n+1 ∈ [0, 1]n+1,

n+1
∑

k=1

γik
= 1 et Y =

n+1
∑

k=1

γik

[

Xik

ujk

]

However, according to the hypothesis: X0 ∈ D̊q, X0 depends on all the

Xi, i = 1, . . . , n + 1. It follows:
n+1
∑

k=1

γik
Xik

6= X0, i.e.: Y /∈ P , and:

F ∩ P = ∅.

35

2nd step: there exist exactly (m + 1) n-faces intersecting P .
By construction, we know that: {Xik

/ k = 1, . . . , n+m+1} = {X1, . . . , Xn+1}
; after renumbering the vertices of ∆q′ , we can assume:

∀l ∈ {1, . . . , n + 1}, Vl =

[

Xl

ujl

]

• We state: F0 = Conv({V1, . . . , Vn+1}). By affine independence of X1, . . . , Xn+1

of Dq, the vertices V1, . . . , Vn+1 are also affinely independent, so that F0

is actually a n-face of ∆q′ intersecting P .

• For n + 2 ≤ l ≤ n + m + 1 (i.e. m possible values for l), we state:

Fl = Conv(({V1, . . . , Vn+1} − {Vil
}) ∪ {Vl}), 1 ≤ il ≤ n + 1

where: Vl = (Xil
, ujl

) and Vil
= (Xil

, ujil
). As for F0, Fl is a n-face of

∆q′ which intersects P .

At the end, we so have found (1 + m) n-faces of ∆q′ which intersect P , i.e.
(m + 1) vertices of Uq′(X0).

36

Bibliography

[1] E. Asarin, T. Dang, and A. Girard. Reachability of non-linear systems using
conservative approximations. In Proceedings of the 2003 Hybrid Systems:
Computation and Control, pages 20–35. Springer, April 2003.

[2] D. Augot and P. Camion. On the computation of minimal polynomials,
cyclic vectors, and Frobenius forms. Linear Algebra and its Applications,
260(1–3):61–94, July 1997.

[3] C.B. Barber, D.P. Dobkin, and H.T. Huhdanpaa. The Quickhull algorithm
for convex hulls. ACM Transactions on Mathematical Software, 1996.

[4] M. Bardi and I. Capuzzo-Dolcetta. Optimal Control and Viscosity Solutions
of Hamilton-Jacobi-Bellman Equations, volume 17 of Systems & Control:
Foundations & Applications. Birkauser, 1997.

[5] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi, vol-
ume 17 of Mathématiques et Applications. Springer-Verlag, 1994.

[6] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[7] R. Bertsekas. Dynamic Programming and Optimal Control, volume 1 & 2.
Athena Scientific, 1984.

[8] A.E. Bryson and Y. Ho. Applied Optimal Control. Hemisphere, 1975.

[9] I. Capuzzo-Dolcetta. On a Discrete Approximation of the Hamilton-Jacobi
Equation of Dynamic Programming, volume 10 of Applied Mathematics and
Optimization, pages 367–377. Springer-Verlag, 1983.

[10] F. H. Clarke. Optimization and Nonsmooth Analysis. SIAM Classics in
Applied Mathematics, 1990.

[11] M.G. Crandall, L.C. Evans, and P.-L. Lions. Some properties of viscos-
ity solutions of hamilton-jacobi equations. Transactions of the American
Mathematical Society, 282(2):487–502, 1984.

[12] M.G. Crandall, H. Ishii, and P.-L. Lions. Uniqueness of viscosity solutions
revisited. Journal of Mathematical Society, 39:581–596, 1987.

37

[13] M.G. Crandall, H. Ishii, and P.-L. Lions. A user’s guide to viscosity solu-
tions. Bulletin A.M.S., N.S., 27:1–67, 1992.

[14] M.G. Crandall and P.-L. Lions. Viscosity solutions of hamilton-jacobi equa-
tions. Transactions of the American Mathematical Society, 277(1):1–42,
1983.

[15] J. Della Dora, A. Maignan, M. Mirica-Ruse, and S. Yovine. Hybrid com-
putation. In Proceedings of the 2001 International Symposium on Symbolic
and Algebraic Computation. Bernard Mourrain editor, ACM Press, July
2001.

[16] J.-G. Dumas, T. Gautier, and C. Pernet. Finite field linear algebra subrou-
tines. In Teo Mora, editor, Proceedings of the 2002 International Sympo-
sium on Symbolic and Algebraic Computation,, pages 63–74. ACM Press,
New York, jul 2002.

[17] J.-G. Dumas, P. Giorgi, and C. Pernet. FFPACK: Finite Field Linear Al-
gebra Package. In Jaime Gutierrez, editor, Proceedings of the 2004 Inter-
national Symposium on Symbolic and Algebraic Computation, Santander,
Spain. ACM Press, New York, July 2004.

[18] J.-G. Dumas, C. Pernet, and Z. Wan. Efficient computation of the char-
acteristic polynomial. In Proceedings of the 2005 International Symposium
on Symbolic and Algebraic Computation, Beijing, China, 2005.

[19] J.-G. Dumas and A. Rondepierre. Modeling the electrical activity of a
neuron by a continuous and piecewise affine hybrid system. In Proceedings
of the 2003 Hybrid Systems: Computation and Control, pages 156–171.
Springer, April 2003.

[20] J.-G. Dumas and A. Rondepierre. Algorithms for symbolic/numeric con-
trol of affine dynamical systems. In Proceedings of the 2005 International
Symposium on Symbolic and Algebraic Computation, Beijing, China, 2005.

[21] R. Fierro, A. K. Das, V.Kumar, and J. P. Ostrowski. Hybrid control of
formations of robots. 2001.

[22] H. Freudenthal. Simplizialzerlegungen von beschraeukter flachkeit. Annals
of Math. in Science and Engin., 43:580–582, 1942.

[23] A. Girard. Approximate solutions of ordinary differential equations using
piecewise linear vector fields. In Proceedings of the 2002 Computer Algebra
in Scientific Computing. Springer Verlag, September 2002.

[24] A. Girard. Analyse Algorithmique des Systèmes hybrides. PhD thesis,
Institut National Polytechnique, Grenoble, 2004.

[25] R.E. Kalman. Canonical structure of linear dynamical systems. In Pro-
ceedings of the National Academy of Sciences, pages 596–600, 1961.

38

[26] R.E. Kalman. Mathematical description of linear dynamical systems. Siam
Journal on Control, 1:152–292, 1963.

[27] R.E. Kalman, P.A. Falb, and M. Arbib. Topics in Mathematical System
Theory. New York: McGraw-Hill, 1969.

[28] W. Keller-Gehrig. Fast algorithms for the characteristic polynomial. The-
oretical computer science, 36:309–317, 1985.

[29] M.M. Lee and L. Markus. Foundations of Optimal Control Theory. Whiley,
New York, 1967.

[30] H.J. Pesch. A practical guide to the solutions of real-life optimal control
problems. Parametric Optimization. Control Cybernet, 23:7–60, 1994.

[31] E.R. Pinch. Optimal Control and the Calculus of Variations. Oxford Uni-
versity Press, 1993.

[32] L. Pontryagin, V. Boltiansky, R. Gamkrelidze, and E. Michtchenko.
Théorie mathématique des processus optimaux. Editions de Moscou, 1974.

[33] A. Rondepierre. Piecewise affine systems controllability and hybrid optimal
control. In Proceedings of the 2005 International Conference on Informatics
in Control, Automation and Robotics, 2005.

[34] E. Trélat. Contrôle optimal: théorie et applications. Collection
Mathématiques Concrètes. Vuibert, 2005.

[35] J. Zhang, K.H. Johansson, J. Lygeros, and S. Sastry. Zeno hybrid systems.
International Journal of Robust and Nonlinear Control, 11:435–451, 2001.

[36] G.M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics.
Springer-Verlag, 1994.

39

