
HAL Id: hal-00004191
https://hal.science/hal-00004191v1

Preprint submitted on 8 Feb 2005 (v1), last revised 7 Jan 2008 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for Hybrid Optimal Control
Aude Rondepierre, Jean-Guillaume Dumas

To cite this version:
Aude Rondepierre, Jean-Guillaume Dumas. Algorithms for Hybrid Optimal Control. 2005. �hal-
00004191v1�

https://hal.science/hal-00004191v1
https://hal.archives-ouvertes.fr

cc
sd

-0
00

04
19

1,
 v

er
si

on
 1

 -
 8

 F
eb

 2
00

5

Algorithms for Hybrid Optimal Control

Aude Rondepierre and Jean-Guillaume Dumas

Laboratoire de Modélisation et Calcul
Tour IRMA - BP 53, 38041 Grenoble cedex 9. France

Aude.Rondepierre@imag.fr

www-lmc.imag.fr/lmc-mosaic/Aude.Rondepierre

Abstract. We consider a non linear ordinary differential equation and
want to control its behavior so that it reaches a target by minimizing a cost
function. Our approach is to use hybrid systems to solve this problem:
the complex dynamic is replaced by piecewise affine approximations which
allow an analytical resolution. The sequence of affine models then forms
a sequence of states of a hybrid automaton. Given an optimal sequence of
states, we are then able to traverse the automaton till the target, locally
insuring the optimality.

Keywords. Affine and Nonlinear Optimal Control Problems, Canonical
Transformation, Controllability, Hybrid System.

Introduction
Aerospace engineering, automatics and other industries provide a lot of opti-
mization problems, which can be described by optimal control formulations:
change of satellites orbits, flight planning, motion coordination [11] ([22] for
more applications in aerospace industry). Now, in “real-life”, optimal control
problems are fully nonlinear. Since the years 1950-1970, the theory of optimal
control has been extensively developed and has provided us with powerful re-
sults like dynamic programming [2] or the maximum principle [24]. A large
amount of theory have been well studied, but resolutions are mainly numerical.

In this paper, we consider a dynamical system which state is described by
the solution of the following ordinary differential equation (ODE):

{

Ẋ(t) = f(X(t), u(t))
X(0) = X0

(1)

We present a hybrid algorithm controlling the system (1) from an initial state
X0 at time t = 0 to a final state Xf = 0 at an unspecified time tf . To reach
this state, we allow the admissible control functions u to take values in a convex
and compact polyhedral set Um of Rm, in such a way that:

J(X,u(.)) =

∫ tf

0

l(X(t), u(t))dt (2)

is minimized.

1

The idea is to approach complex systems by piecewise affine models we
can analytically study. Basically, an analytical approach must allow to improve
approximations [14, 8]: the level of details allows to reach a compromise between
quantitative quality of the approximation and the computational time.
There are many possible linearizations by parts. For instance, one can build
a virtual mesh of the phase space and use multi-dimensional interpolation to
define an affine approximation of the system in each cell (simplex) of the mesh,
see [7],[13],[1] for more details. One can also linearize each equation separately
by implicit representation and one-dimensional linearization on each variable.
The latter has been done e.g. for biological systems, where simplifications in
relation to real data and in regard of simulations of the model are possible, see
[8].

We here choose to use a hybrid system modeling, i.e. to approximate the
original system (1) by a continuous and piecewise linear one and build a virtual
mesh of the phase space times the control space. The first part of this report
is devoted to the resolution of any linear optimal control problem. The second
one presents algorithms for the hybrid approximation of the nonlinear system.

Part I

Symbolic/Numeric Control of
Affine Dynamical Systems
In this part we consider a linear dynamical system

{

Ẋ(t) = AX(t) +Bu(t)
X(0) = X0

(3)

where ∀t ≥ 0, X(t) ∈ Rn, u(t) ∈ Um = {s1, . . . , sp} ⊂ Rm. We want to control
the system (3) from an initial state X0 to a target Xf = 0 at an unspecified
time tf , in such a way that (2) is minimized.
Here, we provide a full implementation analyzing linear optimal control prob-
lems as general as possible. Our algorithm is divided in four steps:

(1) Canonical transformation (cf. §1).

(2) Computation of the controllable set (cf. §2.2).

(3) Computation of optimal solutions (cf. §3).

(4) Inverse transformation (cf. §1.2).

Each step can be done in many different ways and some salient features of our
presentation are:

• a new and more efficient implementation by block matrices of the Kalman
decomposition algorithm.

• a new method to compute an under-approximation of the controllable
domain.

2

• the design of symbolic algorithms for most of the subroutines involved.

• an efficient and generic implementation of the optimal solution computa-
tion, for a very large class of cost functions.

• high dimensions treatment, even when compared to numerical softwares.

In section 1, we will develop explicit algorithms to compute the canonical
transformation of any linear optimal control problem and then the inverse trans-
formation. In section 2, we provide a controllability analysis and then in section
3, the analytical computation of optimal solutions of the canonical problem. We
illustrate the algorithms and give timings in the last section.

1 Canonical Transformation

Linear control systems have been widely analyzed. In [19, 18], Kalman consid-
ers constant linear optimal control problems without constraints on the control.
In this context, we have two well-known results: the first one is a controlla-
bility criterion (see [19, 6, 3] for more details), and the second is the following
decomposition theorem:

Theorem 1 ([18] Kalman Canonical Structure). Let A and B be real
matrices having respective sizes n × n and n × m. There exists an invertible
n× n matrix T such that:

T−1AT =

[

A1 A2

0 A3

]

T−1B =

[

B1

0

]

where r = rk([B AB . . . An−1B]) = rk([B1 A1B1 . . . A
n−1
1 B1]), A1 is a r di-

mensional square matrix and B1 a r ×m matrix.

There exist many numerical algorithms computing the Kalman canonical
structure of linear dynamical systems. Next, we propose a new explicit and
symbolic algorithm for the Kalman decomposition. Our approach is to use
block versions of the linear algebra algorithms as in [9] in order to improve the
locality of the computations and treat larger problems faster.

1.1 Block Canonical decomposition

We consider the general linear system (3). Our decomposition is divided into
two steps: we first reduce the system to one with a full rank mapping of the
control and second apply a LQUP decomposition to the Kalman matrix.

1.1.1 Simplification to rk(B) = m

Lemma 1. Let us consider the linear system (3). There exists a full rank
matrix B̃ ∈ Rn×rk(B) and a linear mapping Φ ∈ Rrk(B)×m such that: Ẋ(t) =
AX(t) + B̃Φu(t).

Proof. b = rk(B). If b < m, then there exists a column permutation P ∈ Rm×m

s.t.: BP = [B̃|B0] where B̃ ∈ Rn×b and rk(B̃) = b. Moreover, the column
vectors of B0 are linearly dependent of those of B̃, i.e.: ∃Λ ∈ Rb×m−b, B0 = B̃Λ.
Hence: B = B̃ [Ib|Λ]P−1 and Φ = [Ib|Λ]P−1.

3

In the following, we will denote by FullRank(B) the algorithm computing
(b, B̃,Φ) from a matrix B as in the lemma.

1.1.2 Block Kalman Canonical Form

Now we want to decompose the state space of our linear system into a control-
lable part and an uncontrollable one. The classical method is to introduce the
linear subspace W (A,B) = span(B,AB, . . . , An−1B) and then prove that W is
the first subspace of Rn satisfying both: (i) Im(B) ⊂ W (ii) W is A-invariant.
The method is then to decompose the state space R

n into W ⊕ W̄ : one has
to compute a basis of the subspace W (A,B) and to complete it for the whole
state space. The matrix T of theorem 1 would be the change matrix from the
canonical basis to the computed basis.

Here we propose a new approach via block matrix computation developed
in collaboration with C. Pernet: we use the so-called LQUP decomposition of

a x × y matrix of rank r, where U =

[

U1 U2

0 0

]

is x × y, U1 is an upper

triangular r× r invertible matrix, L is x× x, lower block-triangular, and P and
Q are permutation matrices [16].

Algorithm 1 KalmanForm

Require: A n× n matrix, B n×m matrix.
Ensure: r, T,A1, A2, A3, B1 as in theorem 1.
1: K = [B|AB| . . . |An−1B];
2: (L,Q,U1, U2, P, r) = LQUP (KT);
3: if r = n then
4: Return (n, In, A, ∅, ∅, B).
5: end if

6: Form δ = [Ir|0]QTLQ

[

Ir
0

]

, lower triangular.

7: Form d = [Ir+1..nm|0]QTLQ

[

Ir
0

]

.

8: G = [Ir|0]QTKT .

9: C1 = G(ATPT

[

Ir
0

]

U−1
1 δ−1)

10: C2 = [0|In−r]P (ATPT

[

Ir
0

]

U−1
1 δ−1)

11: C3 = [0|In−r]PA
TPT

[

−U−1
1 U2

In−r

]

12: Q1 = [Im|0]Q

[

Ir
dδ−1

]

{Q1 is m× r}

13: Return (r,

[

G
[0|In−r]P

]T

, CT
1 , C

T
2 , C

T
3 , Q

T
1).

Theorem 2. Algorithm 1 is correct and its arithmetic complexity is O(nωm)1.

1where ω is the exponent of matrix multiplication (3 for the classical algorithm and 2.3755
for Coppersmith-Winograd’s)

4

Proof. The full proof is given in appendix A. It has three parts and is actually
another, constructive, proof of Kalman’s theorem:
1. First, use the generalization of the companion matrix decomposition to prove
that GAT = C1G.
2. Second, use the latter to show that T−1AT is block triangular.
3. Show that T−1B has generic rank profile.
4. Now for the complexity: building the Kalman matrix is n matrix multipli-
cations n × n by n ×m, each requiring O(nω−1m) operations. Following [10,
Lemma 4.1], the LQUP decomposition requires O

(

nω−1(mn+ n)
)

operations.
Those two costs dominate the remaining operations: two triangular inversions
O(rω), some permutations and column selections, and small matrix multiplica-
tions (GAT is O(rnω−1) and dδ−1 is O(nmrω−1) where r ≤ n.).

Our implementation and constructive proof of the Kalman decomposition are
based on LQUP factorization and block matrix computation. The better locality
induced by this block version enables the use of very fast Basic Linear Algebra
Subroutines, even with symbolic computations [10]. Therefore the computation
time is improved. Moreover if we first apply the algorithm FullRank of paragraph
1.1.1, the system (3) can be replaced by another linear one:

Ẏ (t) =

[

A1 A2

0 A3

]

Y (t) +

[

B1

0

]

ũ(t) (4)

via possibly two variable changes:

{

Y (t) = T−1X(t)
ũ(t) = Φu(t)

Next, we use these decomposition in order to define a canonical optimal control
problem, simpler to solve.

1.2 Inverse transformation

In this section, the focus is on the explicit construction of a new linear optimal
control problem under the dynamic (4). New state and control spaces, a new
cost function have to be constructed and initial solutions have to be recovered.

1.2.1 Control Space

In this paragraph we focus on the construction of a new control space for our
linear system (4).
By assumptions the control u(.) satisfies: ∀t ≥ 0, u(t) ∈ Um = Conv(s1, . . . , sp).
Moreover the image of a polyhedron in finite dimension by a linear mapping is
polyhedral. So the new control polyhedron is: ΦUm = Conv(Φs1, . . . ,Φsp).
Note that, if rk(B) = m, then Φ = Im, so that no control change is needed.

When rk(B) < m, the main difficulty to build our optimal control problem
is that there is not any invertible relation between u and ũ ; consequently to
switch from one control problem to the other, we will first need to define the
pseudo-inverse of the control change matrix: s̃1, . . . , s̃p′ are the vertices of ΦUm.
We introduce the Moore-Penrose pseudo-inverse Ψ ∈ R

m×b) [27] of the matrix
Φ = [Ib|Λ]P−1:

Ψ = P

[

Ib
0

]

defined by: ∀i ∈ {1, . . . , p′},Ψs̃i = sk

5

where k = min{j ∈ {1, . . . , p} / Φsj = s̃i}. By linearity, Ψ is also well
defined on the whole polyhedron ΦUm, indeed: ∀ũ ∈ ΦUm, ∃(αi)i=1...p′ ∈
[0, 1]p

′

,
∑p′

i=1 αi = 1, ũ =
∑p′

i=1 αis̃i. Hence Ψũ =
∑p′

i=1 αiΨs̃i and the proposi-
tion is proven:

Proposition 1.

(i) ΦΨ = Ib

(ii) ∀u ∈ Um, Bu = B̃Φu

(iii) ∀ũ ∈ ΦUm, B̃ũ = BΨũ.

1.2.2 State Space

By construction, the change matrix T is non singular. Therefore, a trajectory
Y (.) from an initial point Y0 corresponds to a trajectory X(.) = TY (.) from the
initial point X0 = TY0. Every trajectory is necessarily related to a control, the
table 1 displays the correspondence between each trajectory.

Initial Problem (3) Canonical Problem (5)
(X(.), u(.)) → (T−1X(.),Φu)
(TY (.),Ψũ) ← (Y (.), ũ(.))

Table 1: Corresponding trajectories

Proof. The key point here is that a trajectory (X(.), u(.)) in the X-space is a
solution of the system (3):

X(t) = eAtX0 + eAt
∫ t

0
e−AwBu(w)dw

T−1X(t) = e(T
−1AT)tT−1X0 + e(T

−1AT)t
∫ t

0 e
−(T−1AT)wT−1Bu(w)dw]

= e(T
−1AT)tT−1X0 + e(T

−1AT)t
∫ t

0
e−(T−1AT)wT−1B̃Φu(w)dw]

Then (T−1X(.),Φu(.)) is a solution of (4), i.e. a trajectory in the Y -space.

1.2.3 Cost Function

Let X0 be a controllable point. The value function related to the initial control
problem (3) is defined by: V (X0) = infu(.)

∫ +∞

0 l(X(t), u(t))dt. We want to

define a new value function Ṽ (Y0) = inf ũ(.)

∫ +∞

0
l̃(Y (t), ũ(t))dt such that the

two related optimal control problems are equivalent.
First, the idea is to define a new cost function l̃, such that the value function

is invariant by canonical transformation (i.e.: V (X0) = Ṽ (T−1X0)). In this
case, l̃(Y, ũ) 7→ l(TY,Ψũ) and the new optimal control problem becomes:

“Minimize J̃(Y0, ũ(.)) =
∫ +∞

0
l̃(Y (t), ũ(t))dt with respect to the con-

trol ũ(.) under the dynamic (4) and the constraints: ∀t ≥ 0, ũ(t) ∈
Conv{s̃1, . . . , s̃p′}”.

(5)

We then have to verify that optimal solutions of this new problem correspond
to optimal solutions of (3):

6

Proposition 2. Let (Y ∗(.), ũ∗(.)) be an optimal solution of (5).
Then (TY ∗(.),Ψũ∗(.)) is an optimal solution of the initial problem (3) and
V (TY0) = Ṽ (Y0).

The proof is by inspection of J(X0,Ψũ
∗) and is given in appendix B.1.

1.2.4 Algorithms

To conclude the section, we describe two algorithms: SimplifySystem and In-
verseTransformation. From one given optimal control problem, SimplifySystem
allows to define a canonical optimal control problem (see §1.1) ; once this prob-
lem is solved, InverseTransformation compute the related optimal solutions of
the initial problem (3).

In the following algorithms, the pseudo-inverse Ψ of Φ is given e.g. by [27].
Now, if T,Ψ are transformation matrices and (Y ∗, ũ∗) optimal solutions of the

Algorithm 2 SimplifySystem

Require: A, B, Um = [s1, . . . , sp], l.

Ensure: r, T,Φ,Ψ, A1, A2, A3, Ũ , l̃. (Data for the new optimal control problem:
r, the state change matrix, the control change, the dynamic, the control
space and the cost function).
{Definition of the new control space:}

1: (b, B̃,M):=FullRank(B);
2: Ψ := PseudoInverse(Φ);
3: Ũ := ConvexHull(Φs1, . . . ,Φsp);
{Definition of the new optimal control problem:}

4: (r, T,A1, A2, A3, B1) := KalmanForm(A, B̃);
{Definition of the new cost function:}

5: l̃ := (Y, ũ) 7→ l(TY,Ψũ)
6: Return (r, T,Φ,Ψ, A1, A2, A3, Ũ , l̃).

new optimal control problem (cf. section 3), then algorithm InverseTransfor-
mation just makes use of proposition 2.

Algorithm 3 InverseTransformation

Require: T,Ψ, Y ∗, ũ∗.
1: Return (TY ∗,Ψũ∗,Um,ΦUm).

In this section we achieved the transformation of any linear optimal control
problem into a canonical one. Moreover we have proved that optimal solutions
of the canonical problem give optimal solutions of our initial problem. We have
also proposed algorithms for switching to one problem to the other. Now, we
can work on the canonical problem.

2 Controllable Domain

In this section, we consider the canonical optimal control problem previously
defined and raise the question of its controllability: how to compute the set of

7

initial points Y0 for which the control problem (4) with the constraints Y (0) = Y0

; Y (tf) = 0 and ∀t ≥ 0, u(t) ∈ Um = {s1, . . . , sp} ⊂ Rm) admits a solution.
Let us state: ∀t ≥ 0, Y (t) = (Y1(t), Y2(t)) where: Y1(t) ∈ R

r and Y2(t) ∈
Rn−r. Thus the state space splits clearly up into an uncontrollable part (Ẏ2 =
A3Y2) and a controllable one (Ẏ1 = A1Y1 +A2Y2 +B1u). We study the control-
lability question in the two configurations.

2.1 Stabilization of the uncontrollable part

For the uncontrollable part:

Ẏ2(t) = A3Y2(t) (6)

Clearly, 0 ∈ Rn−r is an equilibrium point of (6). Thus the target 0 is reachable
from everywhere if 0 is a stable focus of (6). In other words, the matrix A3

has to be stable (all its eigenvalues have negative real parts). In the following,
we prove that the non-stability of A3 involves constraints on Y2(0), so that
we can easily come down to the case of a stable matrix A3: we apply the
Schur decomposition to A3 and choose to sort its eigenvalues in such a way
that: ∀i = 1 . . . k, Re(αi) < 0 and ∀i = k + 1 . . . (n − r), Re(αi) ≥ 0. Then
there exists a unitary Q ∈ Cn×n such that: Q∗A3Q = D + N where D =
diag(α1, . . . , αn−r) and N ∈ C(n−r)×(n−r) is strictly upper triangular. Moreover
(6) is easily solvable: ∀t ≥ 0, Y2(t) = eA3tY2(0). Hence:

Q∗Y2(t) = eQ∗A3QtQ∗Y2(0)
= e(D+N)tQ∗Y2(0) = eDteNtQ∗Y2(0)

=

eα1t ⋆ ⋆
⋆

eαn−rt

Q∗Y2(0)

Nevertheless we do not need to compute eNt. Indeed, we can recursively
show (by starting from n− r to k + 1) that: ([0|In−r−k]Q∗)Y2(0) = 0
Hence:

∀t ≥ 0, ([0|In−r−k] Q∗)Y2(t) = 0

So under the variable change: Ỹ2 = (Q∗Y2)1..k, the system (4) then becomes:

{

Ẏ1(t) = A1Y1(t) + Ã2Ỹ2(t) +B1u(t)
˙̃Y2(t) = Ã3Ỹ2(t)

where: Ã2 = A2Q

[

Ik
0

]

and Ã3 = (D +N)

[

Ik
0

]

is stable.

We have shown that the analysis of the uncontrollable part of the system (4)
leads to define a subspace of the state space, namely {(Y1, Ỹ2, 0) ∈ R

r × R
k ×

Rn−r−k}. In this subspace, Ỹ2(.) trajectories converge towards 0. From now on,
we therefore restrict our analysis to a system (4) where the matrix A3 is stable.

2.2 Under-Approximation of the Controllable Domain

Now, we assume w.l.o.g that the points si defining the control boundaries are
such that: si /∈ Convj 6=i(sj). Therefore, each point si is a vertex of the polytope

8

Um and we have (cf §1): rk(B) = m, rk([B|AB| . . . |An−1B]) = n. We want
to find the set of controllable points of our system. By time reversal, we come
down to the computation of the attainable set from the target point 0. In [1],
for safety verification, the idea is to compute a conservative over-approximation
of the attainable set. They can thus certify that the system can not escape
from an admissible set of states. On the contrary, we need a guaranty that Y0

is controllable. Therefore we instead compute an under-approximation of this
set.

Let us start by defining the controllable set C in our context: C = {Y ∈

R
n/∃T ≥ 0, ∃u : [0, T] → Um, Y =

∫

T

0
e−AτBu(τ)dτ}. Indeed, any solution

of a linear system Ẏ (t) = AY (t) + Bu(t) has the form: Y (t) = eAtY (0) +
∫ t

0 e
A(t−s)Bu(s)ds.

Proposition 3. The controllable domain C is a convex subset of the state space.

The proof is given in appendix B.2. It defines (by convexity and at maximal
time) a new control from that of some controllable points within C.

Now we can introduce our under-approximation of the domain by time-
reversal of the control polytope:

Corollary 1. Let Yi(.) be the trajectory from 0 by time reversal according to
u = si. If C(t) = Conv1..k(Yi(t)), then

C(t) ⊂ C and ∀Y ∈ C(t), ∃ a control u, Y =

∫ t

0

e−AτBu(τ)dτ.

Any point in C(t) is said controllable at least in time t and C(t) is an under-
approximation of the controllable set in time t.

This gives us an algorithm to build our under-approximation in time T .
Nevertheless for a given time T , the quality of the approximation could be very
poor (see example 1, figure 1-(a)). To refine it, we choose to discretize the
time interval [0, T] in N subintervals. The under-approximation in time T is
the convex hull of under-approximations in time j ∗ h for j = 1..N − 1 (where
h = T/N) and the quality is significantly improved (see example 1, figure 1-(b)).
We have thus defined the following algorithm, UnderApproximation, computing
a set of controllable points.

Algorithm 4 UnderApproximation

Require: A,B,U, T, h (where U = Conv{s1, . . . , sp}).
Ensure: an under-approximation with a step h = T/N of the controllable

domain in time T.
1: ApproxVertices:=[0];
2: for all time step j (from 1 to N) do
3: for all vertex si do
4: Yi(.) = trajectory from 0 with u = si;
5: ApproxVertices:=ApproxVertices ∪{Yi(jh)};
6: end for
7: end for
8: Return ConvexHull(ApproxVertices);

9

Example 1 (2D Under-Approximations). Let us consider the system:

Ẏ =

[

1 0
0 2

]

Y +

[

1 1
0 2

]

u

with u ∈ Conv(

[

0
0

]

,

[

1
0

]

,

[

0
1

]

). The following figures show in dashes

under-approximations of the controllable set (represented in plain line) for three
refinements.

x

y

0
0

-0,2

-0,4

-0,2

-0,6

-0,8

-0,4

-1

-0,6-0,8-1

(a) (b)

Figure 1: Under-approximations in time T = 5 (a) without refinement (N = 1)
(b) by discretizing (N = 5 in dash-dots - N = 30 in dashes)

3 Optimal Solutions

In this section, we present some theoretical results and algorithms for solving
linear optimal control problems. The algorithm is as general and symbolic as
possible to approximate optimal controllers. Recall that we want to control a
linear system:

Ẏ (t) = AY (t) +Bu(t), A ∈ R
n×n, B ∈ R

n×m

from a controllable initial state Y0 to a final state Yf = 0 at an unspecified time
tf using the admissible control functions u ∈ Um = Conv1..p(sp) ⊂ Rm in such

a way that: J(Y0, u(.)) =
∫ +∞

0 l(Y (t), u(t))dt is minimized. According to the
decomposition algorithm developed in section 1, we also assume: rk(B) = p and
rk([B|AB| . . . |An−1B]) = n. To solve this canonical system, we now introduce
the Hamiltonian function:

H(Y, u, λ) = l(Y, u) + λTAY + λTBu

The pseudo-Hamiltonian formulation of the optimal control problem and the
Pontryagin Minimum principle provide us the following optimization problem
[24, §1], [5, §2],[23, §4]:

10

P : “Minimize H with respect to the control variable u ∈ Um under the con-
straints:

Ẏ (t) =
∂H

∂λ
(Y (t), u(t), λ(t)) (7)

λ̇(t)T = −∂H
∂Y

(Y (t), u(t), λ(t)) (8)

and H(Y ⋆(t), λ⋆(t), u⋆(t)) = 0 along the optimal trajectory.”

Our algorithm is divided in two main steps: first, the controllable set is par-
titioned (cf 3.1) in domains (Γ̃i)i∈I , inside which the optimal control is constant
(equal to si). In practice, we need an algorithm computing the boundaries of
these cells (see §3.2). The second step requires to compute an optimal trajectory
from an entry point to the target within each cell. In this section, to the cost
function l is assumed linear in the control: l(Y, u) = l0(Y) + l1(Y)u. The case
were this function is nonlinear is actually simple: in this case, the Hamiltonian
optimization problem could be solved by classical tools. Indeed, ∂H

∂u
= 0 is then

solvable in the control variable u.

3.1 Singular control

Let us consider the optimization problem P . By definition, P is a linear pro-
gram. It thus admits solutions which may occur on the boundary of the polyhe-
dral set Um. Now, any solution (Y, u, λ) of the Hamiltonian system (7) is said
to be extremal and distinguish regular and singular solutions:

Definition 1. An extremal (Y (t), u(t), λ(t)) is called regular on an in-
terval [t0, t1], if there exists k s.t., for almost all t ∈ [t0, t1], λ

T (t)Bsk <
min{λT (t)Bsi; i 6= k}

Therefore, for any regular extremal (Y (t), u(t), λ(t)), the optimal control is
given by the relation:

u(t) = si if λT (t)Bsi < min
j 6=i
{λT (t)Bsj}

Consequently the controllable domain can be partitioned in domains defined as
follows:

Definition 2. An optimal trajectory Y (.) belongs to the domain Γi on a time
interval [t0, t1] if the condition: ∀t ∈ [t0, t1], ∀j ∈ {1, ...,m}− {i}, λT (t)B(si −
sj) < 0 holds. Thus at any point of the domain Γi, the optimal control is
u(.) = si and the associated field vector is AY +Bsi.

Moreover if, for a regular trajectory, there exists (i, j) ∈ {1, . . . ,m}2 such
that: ∀k 6= i, j, λT (t1)Bsi = λT (t1)Bsj < λT (t1)Bsk. Then t1 is a switching
point of the control between si and sj . The switching function is then:

Definition 3 (Switching function).

Si,j(t) = ∂H
∂u

(Y (t), u(t), λ(t))
= l1(Y (t)) + λT (t)B(si − sj)

11

Now, the single zeros of Si,j give us the switching time between the domains
Γi and Γj . However it may also be possible to find time intervals where the
switching function is identically equal to zero. This typically corresponds to
the appearance of singular arcs in each face of the polyhedral control set. Thus
singular trajectories are:

Definition 4. [28] A trajectory Y (t) is called ij-singular on a time interval
[t0, t1] if the condition: λT Bsi ≡ λT Bsj < λT Bsk, k 6=, i, j holds for almost
all t ∈ [t0, t1].

Just note that definition could be naturally extended to I-singular trajecto-
ries (I ⊂ {1, . . . , p}). According to definitions 2 and 4, we show that ij-singular
trajectories geometrically correspond to the boundary between Γi and Γj . On
this singular boundary, the optimal control is said to be singular and we have
the following result on singular controls:

Proposition 4. Let us consider an ij-singular trajectory Y (.) on a time interval
[t0, t1]. Then:

∀t ∈ [t0, t1], u(t) ∈ [si, sj].

Likewise, on an I-singular trajectory, u(t) ∈ Convk∈I (sk).

3.2 Boundaries computation

At this point of our analysis, we have partitioned our state space in domains
delimited by:
- singular boundaries (see e.g. [23, fully optimal problem]).
- mixed and non singular boundaries (see [17, ex. 1]).
- non singular boundaries (see [24, time-optimal problems]).
We now show how to compute those boundaries.

3.2.1 Switch rules

In this paragraph we briefly describe a method to compute the allowable “switch-
ing directions” [17] in the state space.
Let us compute the switching rules between the controls si and sj . In our
linear control problem, the Hamiltonian has the form: H(Y, u, λ) = H0(Y, λ) +
H1(Y, λ)u. From examination of the sign of d

dt
H1(Y (t), λ(t)) at switching points

(i.e. H1(Y (t), λ(t)) = 0 and H0(Y (t), λ(t)) = 0), it is possible to determine
whether switchings from u = si to u = sj are allowed in a given region of the
state space.

3.2.2 Singular boundaries

In this paragraph we present an algorithm for computing singular boundaries
when they exist. This algorithm is essentially based on the Pontryagin maximum
principle [24] and classical results in the theory of singular extrema (see [20, 25,
5] for more details). It uses H with the form: H(Y, v, λ) = l(Y, sj +(si−sj)v)+
λTAY +λTB(sj +(si−sj)v) where v ∈ [0, 1] (indeed u ∈ [si, sj] with proposition
4).

We show on table 2 some performances of this algorithm in high dimension
where Um is a random simplex in Rm and n = m:

12

Algorithm 5 ij-singular boundary

Require: i and j, indices of the considered Γ domains.
Require: H(Y, v, λ).
Ensure: ϕ, where ϕ(X) = 0 defines the ij-boundary
Ensure: u⋆ the ij-singular optimal control.
Ensure: λ⋆ the optimal Pontryagin parameter.
1: Hv = ∂H

∂v
.

2: Compute the smallest integer K such that: ∂
∂v

(d2K

dt2KHv) 6= 0.

3: if The Legendre-Clebsh (LC) condition [20, 25]: (−1)K ∂
∂v

(d2K

dt2KHv) ≥ 0 is
not satisfied then

4: Return “no singular solution”.
5: end if
6: Solve the system {H = 0, Hv = 0,

(

di

dtiHv = 0
)

i=1..2K
} {we then obtain not

only the singular values of v and λ in relation with Y but also the equation
(ϕ(Y) = 0) of the boundary.}

7: Return (ϕ(Y), sj + (si − sj)v(Y), λ(Y)).

n 2 3 4 5 6 7 8

cpu (s) 0.16 0.22 0.35 0.56 0.91 1.51 2.43

n 9 10 11 12 13 14 15

cpu (s) 4.21 7.03 10.53 19.06 31.38 53.85 94.18

Table 2: Singular boundaries timings

Note that we still have to check that the so-computed boundary really exist
in the controllable domain and that the switching conditions are satisfied: ∀k /∈
{i, j}, Si,k < 0. However, we show next that these conditions are not always
sufficient to determine if a computed singular boundary is valid or not. Such
cases appear when the computed singular control explicitly depends of the state
Y . While the related boundary is bounded, the whole boundary between Γi and
Γj is necessarily also made of a regular part. The next paragraph is devoted to
its computation.

3.2.3 Mixed boundaries

In this paragraph we assume that we have already computed the singular bound-
ary between two domains Γi and Γj and check the existence condition of these
boundary. So we have its equation: ϕ(Y) = 0 under the constraint 0 ≤ v(Y) ≤
1, the singular control u∗ and the related λ∗. We now want to compute the
related regular boundary:

In the implementation of the MixedBoundary algorithm, the last step is
algorithmically quite hard to achieve. Our solution is to discretize the given
singular boundary, so that step 3. computes a discretization of the regular part
of the whole boundary. The following example shows that this algorithm enables
new resolutions.

13

Algorithm 6 MixedBoundary

Require: i and j, indices of the considered Γ domains.
Require: ϕ equation of the ij-boundary.
Require: λ⋆ optimal Pontryagin parameter on the ij-boundary.
Ensure: a parameterization of the non singular boundary between Γi and Γj .
1: Parameterize the singular boundary (by the implicit functions theorem)

:ψ(ξ) (i.e. such that ϕ(ψ(ξ)) = 0).
2: Compute the trajectory Y [ψ(ξ), s] from ψ(ξ) by time reversal with u = s

and the corresponding λ[ψ(ξ), s] via the Euler-Lagrange equations (8) with
the initial condition λ[ψ(ξ), s](0) = λ∗.
s ∈ {si, sj} is chosen according the switching rules (cf §3.2.1 i.e., e.g.,
Y [ψ(ξ), si](.) has to evolve in the domain (“Allowable switch from u = sj

to u = si”).
3: Compute the first time t(ξ) < 0 for which the switching condition be-

tween si and sj holds (cf definition 3). The switching curve is defined
by: Y [ψ(ξ), si](t(ξ)) = 0.
No solution t(ξ) invalidates the singular boundary so that the boundary
between Γi and Γj is necessarily regular.

Consider the system [17, Example 1]:

Ẋ(t) =

[

0 1
0 0

]

X(t) +

[

1
−1

]

u(t)

X(0) = X0

(9)

whereX ∈ R2, |u| < 1 and the performance index to be minimized is: J(X,u(.)) =
∫ T

0
1
2x1(t)

2dt. (Note that (9) already is under its canonical form since rk([B|AB]) =
2). [17] provides the full analysis of the singular controls and the graph of
the allowable switching regions [17, fig. 5]. There, the singular boundary
is defined by x1 = −2x2 and −1 ≤ x2 ≤ 1 and the switching function is
S(t) = 2(λ1(t) − λ2(t)). Due to the constraint −1 ≤ x2 ≤ 1, the singular
boundary does not allow us to draw a partition of the state space. However, we
are able to complete [17]’s results by the computation of the whole boundary
between the controls u = 1 and u = −1: as we have a valid singular boundary,
we can now apply our MixedBoundary algorithm as shown on figure 2:
1. Discretize the singular boundary [A,B] in k points (xi).
2/3. For each discretization point xi: compute the trajectory X [xi, 1] from xi

according to u = 1 by time reversal ; compute the related λ with: S(0) =
2(λ1(0)− λ2(0)) = 0 via Euler-Lagrange equations ; and compute the first time
Ti such that: S(T) = 0.
Repeat this step with u = −1.
4. {X [xi, 1](Ti); i = 0 . . . (k − 1)} is the searched discrete approximation of the
boundary.

3.2.4 Non Singular Boundaries

In this paragraph, we consider the case where there is no singular or mixed
boundary between the two domains Γi and Γj . The optimal control is then
called bang-bang (i.e. piecewise constant with values in {si, sj}). Let us dis-
tinguish two possible configurations:

14

-15

y

5

4

3

2

1

0

-1

-2

x

1050-5-10

B

u=1

A

x
i

From u=−1 to u=+1

From u=+1 to u=−1

From u=−1 to u=+1

From u=+1 to u=−1

From u=−1 to u=+1

From u=+1 to u=−1

Approximation of the regular part

Switch rules axes Exact regular part

Singular boundary

Figure 2: MixedBoundary in Gibson’s problem

- For all (i, j) ∈ {1, . . . ,m}2, i 6= j, the boundary between Γi and Γj is non
singular.
In this case, one method is to compute all the switching functions Si,j (cf def-
inition 3). After that we can study the zeros of Si,j and deduce the transition
time τ between two of them. By time reversal, we start from the origin and
build the switching curve. This method is well described in [23].
- There exists k ∈ {1, . . . ,m} − {i, j}, such that the boundary between Γj and
Γk exists and is singular. In this case we come down to the same technique than
for mixed boundaries: the idea is to take a parameterization of the singular
boundary between Γj and Γk. We consider by time reversal the trajectory from
a point of this boundary according to u = s ∈ {sj , sk} and compute the first
negative time for which the switching condition: Sj,k(t) = 0 holds.

This latter algorithm, NonSingBoundary is based on the following propo-
sition:

Proposition 5. Let Y (.) be an optimal trajectory from an initial point Y0 and
u(.) the associated optimal control. We assume that there exists a time T > 0,
such that: ∃ǫ > 0, Y(.) regular over [T − ǫ, T] and Y (T + .) is ij-singular.
Then: ∀t ∈ [T − ǫ, T], u(t) ∈ {si, sj}.

In conclusion, we have proposed three algorithms to compute boundaries
between the domains Γi. We can now define a general one Boundary that
compute the boundary between two given domains Γi and Γj : (ϕ, ω, u) :=
Boundary(i, j) where ϕ is the equation of the boundary, ω is defined by: ω(Y) =
{

1 if ϕ(Y) = 0 is singular
0 otherwise

and u∗ the related optimal control. We therefore

have all the necessary subroutines to solve our problem.

15

3.3 Linear Optimal Control

In this section, we detail the general algorithm for solving any linear optimal
control problem. The principle is as follows: after a virtual partition of the state
space in Γi domains, one follows the trajectory within each cell of the partition.
Indeed, in each cell and in every boundaries, the control is known thanks to
the algorithms of section 3.2. When the trajectory reaches a boundary, there
is a switching of cell and a control change. This goes on till the target is reached.

Algorithm 7 LinearOptimalControl

Require: A, B, Y0, l(Y, u) = l0(Y) + l1(Y)u and {s1, . . . , sm}.
Ensure: Optimal trajectory, control and value function.
1: V := 0; {Initialize switching functions}
2: Si,j = ∂

∂u
H(Y, sj +(si− sj)v, λ) = l1(Y)+λTB(si− sj). {Virtual partition

of the state space}
3: I = {i ∈ [|1,m|]/{λ/∀j 6= i, Si,j < 0} 6= ∅}.
4: for all i ∈ I and j ∈ I such that i < j do
5: (ϕi,j , ωi,j , ui,j) := Boundary(i, j).

6: (Γ̃j)j∈I is the induced partition of the controllable set.
7: end for
{Identification of the domains where u = si}

8: for all j ∈ I do
9: if ∂D̃j ==

⋃

k{Y s.t. ϕi,k(Y) = 0} then

10: Γi := Γ̃j .
11: end if
12: end for
13: k := 0; T0 := 0;
{Within each cell, reach the boundary}

14: while Yk 6= 0 do
15: Find i s.t. Yk ∈ Γi.
16: if Yk ∈ ∂Γi then
17: Find j s.t. ϕi,j(Yk) = 0.
18: u := ui,j(Yk);
19: if ωi,j(Yk) == 1 {0 is reached on this ij-singular boundary.} then
20: Tk+1 := Solution of Y [Yk, u](t) = 0;
21: break while loop;
22: end if
23: else
24: u := si;
25: end if

{Piecewise solution}
26: Compute Tk+1 = inf{t > 0;Y [Yk, u](t) ∈ ∂Γi}
27: Yk+1 := Y [Yk, u](Tk+1).
28: u⋆ := u for t ∈ [Tk, Tk+1];
29: Y := Y [Yk, u] for t ∈ [Tk, Tk+1];

30: V := V +
∫ Tk+1−Tk

0
l(Y [Yk, u](t)dt

31: end while
32: Return (Y, u⋆, V)

16

Once the canonical problem is solved with algorithm 7, we just have to apply
the inverse transformation 3 to come down to optimal solutions of our initial
control problem.

3.4 Implementation in high dimension

In general, examples are developed in dimension n = 2 or n = 3 for obvious
reasons of display. In usual applications, optimal control problems are solved
until the dimension 5. With the expansion of the aerospace, today algorithms
have to deal with dimension 6 and 7.All the algorithms presented in this paper
have been implemented in Maple and work in high dimensions2.

Part II

Hybridization of Nonlinear
Dynamical Systems
We now consider the nonlinear optimal control problem (1)-(2). In the next, we
present a hybrid algorithm controlling the system (1) from an initial state X0

at time t = 0 to a final state Xf = 0 at an unspecified time tf .
Our approach is to approximate the nonlinear dynamic (1) by a continuous and
piecewise affine system. Then in each cell of the implicit build automaton, the
system is fully affine (Ẋ(t) = AX(t) + Bu(t) + c), so that algorithms of part I
are available. Our algorithm is divided in two main steps:

(1) Hybridization of the system (1) in §4

(2) Solving the so build hybrid optimal control problem (see §5)

(a) Under-approximation of the hybrid controllable set (§5.1)

(b) Hybrid solving in (§5.4)

In section 4, we describe the algorithm fot the hybrid approximation of nonlinear
optimal control problems. Then, in section 5, we propose a method to solve the
so-build hybrid optimal control problems: we first develop a new algorithm
to under-approximate the hybrid controllable set in §5.1 and then, describe a
method to compute hybrid local optimal solutions.

4 Hybrid approximation of nonlinear systems

Let us consider the system:

Ẋ(t) = f(X(t), u(t))

where X(t) ∈ Rn and u(t) ∈ Um. The polytope Um is defined as the convex hull
of a finite number of points in Rm: Um = Conv(s1, . . . , sk), such that: 0 ∈ Um.

2The maplets are available online at: www-lmc.imag.fr/lmc-mosaic/Jean-Guillaume.

Dumas/SHOC

17

Moreover we assume that the points si do not belong to the convex hull of the
rest points sj , j 6= i, so that each point si is a vertex of the polytope Um.

In this section the nonlinear optimal control problem (1)-(2) is replaced by a
hybrid one: first we present an algorithm to approach the nonlinear dynamic (1)
by a continuous and piecewise affine system (see §4.1). Then this approximation
allows us, in §4.3, to define a hybrid control problem.

4.1 Hybridization

Let h > 0 be the discretization step. We want to approximate the differential
inclusion (1) by: Ẋ(t) = fh(X(t), u(t)) where fh is a piecewise affine approxi-
mation of the vector field f .

Let us consider the field vector f as a function of Rn+m. We build (∆i)i∈I ,
a mesh of the space Rn × Um, where ∆i is a simplex. As is done e.g. in [13],
we want to approximate f by interpolation at the vertices of ∆i. An affine
function in dimension n+m is uniquely defined by its values in (n+m+1) affine
independent points. Therefore, let us consider the vertices Z1, . . . Zn+m+1 of
the simplex ∆i. ∆i is then the convex hull of the points Z1, . . . , Zn+m+1.

Now we can compute the approximation fi(X,u) = AiX +Biu+ ci of f by
interpolation at the vertices of ∆i:

∀j ∈ {1, . . . , n+m+ 1}, f(Zj) =
[

Ai Bi

]

Zj + ci

i.e., for all j = 1, . . . , n+m+ 1:

f(Zj)− f(Z1) =
[

Ai Bi

]

(Zj − Z1)

We define Mi the (n+m)× (n+m) matrix, whose columns are the vectors:
{Zj −Z1; j = 2, . . . , n+m+ 1} and Fi the (n+m)× n matrix, whose columns
are the vectors: {f(Zj)− f(Z1); j = 2, . . . , n+m+1}). By linear independence
of the vertices of the simplex ∆i, Mi is non singular. So we obtain:

[

Ai Bi

]

= Fi(Mi)
−1

ci = f(Z1)−
[

Ai Bi

]

Z1

(10)

Remark 1. The ci can be solved as well with any column:

∀j = 1, . . . , n+m+ 1, f(Zj)−
[

Ai Bi

]

Zj = ci

Consequently the piecewise affine approximation of (1) is defined by:

fh(X(t), u(t)) = AiX(t) +Biu(t) + ci, if (X(t), u(t)) ∈ ∆i

The key point is how to define the mesh. We show now that a meshing of the
whole space is not mandatory. We rather compute the mesh as we go.

18

4.2 Implicit simplicial mesh

In previous section, we have seen how to build a piecewise affine approximation
of the nonlinear dynamic f for a given simplicial mesh of the state and control
domain. So to perform our hybrid approximation, we need now a method to
build a simplicial mesh of Rn × Um.
As Rn×Um is not bounded, it’s algorithmically inconceivable to mesh the whole
space Rn × Um. Our approach is then to implicitly define a mesh of our space,
so that the simplicial subdivision is made on the fly (see section 5).

Let h > 0 be the discretization step introduced in §4.1. Our algorithm is
divided into three main parts: first we build a simplicial mesh (Di)i of the state
space Rn. Then we compute a triangulation of the control domain Um. Lastly
we deduce a simplicial mesh (∆i)i∈I of Rn × Um. Moreover we impose:

(P1) If 0 ∈ ∆i, then 0 is a vertex of ∆i

(P2) The mesh (Di)i is the projection of (∆j)j over Rn

The property (P1) ensures that 0 is an equilibrium point of the piecewise
affine approximation fh (Indeed if ∆i is a cell of our so computed mesh and
Ẋ = AiX+Biu+ci the related dynamic, then, according to remark 1, we have:
0 ∈ ∆i ⇒ ci = 0). The property (P2) will allow us in section 5 to have the
same output constraints in each cell ∆i such that: ∀i, p

Rn(∆i) = Dq.

Simplicial mesh of Rn The state space Rn is implicitly cut into n-dimensional
cubes. Each cube is then meshed into n! simplices and the resulting partition
is a mesh of Rn (see [12],[14, chapter 11]) for more details):
Let us consider a n-cube C = [a1, a1 + h] × · · · × [an, an + h]. We then intro-
duce Sn the set of permutations of {1, . . . , n}. Dϕ = {(x1, . . . , xn) ∈ Rn; 0 ≤
xϕ(1) − aϕ(1) ≤ · · · ≤ xϕ(n) − aϕ(n) ≤ h} is a simplex in R

n, whose vertices are
defined by:

{

∀i = 1, . . . , p, xϕ(i) = aϕ(i)

∀i = p+ 1, . . . , n, xϕ(i) = aϕ(i) + h
, p = 0, . . . , n (11)

(Dϕ)ϕ∈Sn
is [12] a mesh of the cube C.

Triangulation of Um Um is a bounded polyhedron, defined as the con-
vex hull of its vertices. The study of simplicial subdivisions of such polytopes
has been extensively developed in recent years and provides us some efficient
tools to compute them (e.g. Delaunay triangulation of the polymake software3).

Simplicial mesh of Rn × Um We let (Di)i and (Uj)j respectively be the
simplicial subdivisions of R

n and Um. We just build the triangulation (∆q)q of
Rn × Um without new vertices. This last criterion guaranties the property
(P2) to be satisfied.

In this section, we have described the main steps of the construction of an
implicit simplicial mesh. In the next, we will see that this mesh actually defines
a hybrid approximation of the initial dynamical system (1).

3tool for the algorithmic treatment of convex polyhedra and finite simplicial complexes by
E. Gawrilow and M. Joswig, http://www.math.tu-berlin.de/diskregeom/

19

4.3 Hybrid automaton

In sections 4.1 and 4.2, we build a piecewise affine approximation of the nonlinear
vector field f over a mesh ∆ = (∆q)q∈I of the space Rn × Um.

We thus have defined a hybrid automaton H = (Q,D,U , E ,F ,G) (similar to
those of [7, 14]), as follows:

1. Q the countable set of the indices of the simplexes ∆q.

2. D = {Dq / q ∈ Q} the collection of domains induced by ∆ over the state
space: ∀q ∈ Q, Dq = p

Rn(∆q)

∀(q, q′) ∈ Q2, [int(Dq) ∩ int(Dq′) 6= ∅ ⇒ Dq = Dq′]

3. U = {Uq / q ∈ Q} ⊂ Um the collection of control domains induced by ∆
(note that Uq depends on the state X , see figure 3).

4. E = {(q, q′) ∈ Q ×Q/ ∂Dq ∩ ∂Dq′ 6= ∅} the transition set.

5. F = {fq / q ∈ Q} the collection of the affine field vectors of section 4.1:

fq : ∆q → Rn

(X,u) → AqX +Bqu+ cq

6. G = {Ge / e ∈ E} the collection of the guards: ∀e = (q, q′) ∈ E , Ge =
∂Dq ∩ ∂Dq′

7. R = {Re/e ∈ E} the collection of Reset functions: ∀e = (q, q′) ∈ E , ∀x ∈
Ge, Re(x) = {x} (Here, we do not need to reinitialize the continuous
variable x, since the Dq are adjacent).

u

x

(a , u
k i

) k

k

(a +h, u
i
)

(a +h, u +h)
i

∆
q

(x, u) ∈ ∆q

m
x ∈ Dq = [ak, ak + h]

and
u ∈ Uq = {u ∈ U1; 0 ≤ u− ui ≤ x− ak}

Figure 3: Definition of Dq and Uq in cell ∆q for n = m = 1

By definition, Dq is the set of state constraints and Uq the set of mixed state
and control constraints in the mode q. Moreover the ∆q are simplices in Rn+m,
so that these (inequality) constraints are both linear in the state and in the
control. From now on, we will make the following assumption:

Hypothesis 1. The hybrid automaton H is assumed not Zeno4

4Zeno executions correspond to an infinite number of switch in a finite time. That often
involves problems in the simulation of hybrid system. Indeed the transition times come closer
and closer and in simulations, we can not differentiate them any more (see [14, 29]).

20

Once the hybrid automaton H is defined, we can then build a new optimal
control problem (PH) as the hybrid approximation of the initial one (1)-(2):
Let X0 be a point of R

n. We want to find a trajectory under the H’s dynamic
that steers the initial point X0 to the target point 0, locally minimizing the cost
function J(X0, u(.)).

In the next paragraph, we will define the notion of solution of the hybrid
optimal control problem. We will also present an algorithm for solving this
problem.

5 Solving the hybrid optimal control Problem

In §4, we have defined a hybrid automaton H approaching the behavior of our
initial problem (1)-(2). In this section we present a method for solving the re-
lated hybrid optimal control problem (PH).

Let us start by defining the solutions of the hybrid control problem: to guar-
antee existence and uniqueness of solutions of the system (1), the function f
has to satisfy the assumptions of the Cauchy-Lipschitz theorem. In addition we
assume the function l to have the same regularity properties than f:

- f : Rn ×Um → Rn continuous application, Lipschitz in the variable X and
bounded on Rn × Up. Furthermore: f(0, 0) = 0.

- l : Rn×Um → Rn -instantaneous cost- continuous (non-coarse) application,
Lipschitz in x and bounded on Rn × Up. Furthermore: l(0, 0) = 0.
Under these assumptions, the system (1) admits an unique solution X [u,X0].

The optimal control problem consists in computing the best admissible con-
trol u that steers the state from X0 to the target point 0 at an unspecified final
time.

5.1 Hybrid automaton controllability

In this paragraph, we want to compute the set of controllable points in Rn, i.e.
the set of initial points for which the hybrid problem (PH) admits a solution.
By time reversal, we come down the computation of the attainable set from
0. In [1], for safety verification, the idea is to compute a conservative over-
approximation of the attainable set. They can thus certify that the system can
not escape from an admissible set of states. On the contrary, we need a guaranty
that X0 is controllable. Therefore we instead compute an under-approximation
of this set.

5.1.1 Under-approximation of the controllable set

Let q be a discrete mode verifying: 0 ∈ Dq. We want to compute an under-
approximation of the controllable set inside the cell Dq (∈ Rn) when u ∈ Um =
Conv{s1, . . . , sk}. In the next, X [0, si](.) denotes the trajectory according to
u = si that goes through 0 for i = 1, . . . , k ; then Xq,i denotes the first intersec-
tion of this trajectory with one of the guards of Dq:

Xq,i = X [0, si](Ti)

21

0
X

X

X

Xq,1

X

q,2

q,3

q,4

q,5

s1

s2

s3 s4

s5

Figure 4: Under-approximation in state q of the controllable set

where: ∀i = 1, . . . , k, Ti = sup{t < 0/ X [0, si](t) ∈ ∂Dq} as is shown on figure
4.

By construction of our hybrid approximation, the dynamic inside Dq is linear
both in the state and the control. So, as shown in [26, Proposition 3], the
controllable domain inside Dq is a convex subset of the state space:

Proposition 6. [26] Every point of Conv(Xq,1, . . . , Xq,k) is controllable.
Conv(Xq,1, . . . , Xq,k) is an under-approximation of the controllable set in time
T = max

1≤i≤k
Ti

From each guard of Dq, we pursue the under-approximation, the same way.
The difference is just that the reverse starting point is not 0 any more, but
the extremal points of the intersection between the guard ∂Dq and the current
under-approximation. The algorithm is illustrated on figure 5.

X0q0

q2

q1

q
3

q4

G

0

0 1
(q ,q)

Figure 5: Construction of an under-approximation of the controllable set in a
given path q = (q0, q1, q2, q3, q4) of discrete modes - X0 is controllable

Example 2 (In dimensions n = 3 and m = 2).

Ẋ(t) =

1 0 0
0 1 0
0 0 1

X(t) +

1 0
0 1
1 1

u(t)

22

in the domain D = Conv(

0
0
0

 ,

0
0
1

 ,

1
1
1

 ,

0
1
1

)

with U2 = Conv(

[

0
0

]

,

[

1
0

]

,

[

0
−1

]

).

In this example, our under-approximation algorithm is performed on the
state domain D, which is a simplex in R3 belonging to the mesh build in §4.2.
Figure 6 shows the approximation of the controllable set to reach a given target:
it coincides with the intersection of the domain D and the controllable set of the
considered system without any state constraints.

Figure 6: Under-Approximation in dimensions n = 3, m = 2

Example 3 (Some runtimes). The under-approximation algorithm, imple-
mented in Maple, is performed on a simplex in Rn for u(t) ∈ Um = Conv(s1, . . . , sk)
and A = In.

n 2 3 4 5 6

cpu (s) 0.1816 0.2048 0.2356 0.3057 0.3870

Table 3: Under-Approximation timings

23

Algorithm 8 UnderApproximation

Require: H, q = (i)i=1..r a sequence of discrete modes.
Ensure: an under-approximation Λ of the controllable domain.
1: Initial under-approximation: Λ := ∅;
2: Target: K := {0};
3: i:=1;
{In each cell Di, computation of the set of the reachable points by time
reversal from the vertices of K}

4: while i ≤ r and K 6= ∅ do

5: Σ := ∅;
{For each vertex of K}

6: for all time step j (from 1 to card(K)) do
7: j-th vertex of K: M:=K[j];

{Computation of the intersection time between trajectories from M ac-
cording to u = sp and the boundary of the current cell Di}

8: Tp := sup{t < 0;Xqi
[M, sp](t) ∈ ∂Dqi

}, p = 1..k where: Um =
Conv(s1, . . . , sk).
{Σ is the set of the so-computed intersection points}

9: Σ := {Xqi
[M, sp](Tp); p = 1..k} ∪ Σ;

10: end for
11: Λ := Λ ∪Conv(Σ);

12: K :=

{

V ertices(Conv(Σ) ∩Gi,i+1) if i < r
∅ otherwise.

13: i:=i+1;
14: end while

15: Return Λ.

5.1.2 Controllability of the initial point

Let X0 be a given initial point in Rn. We now want to define the controllability
of X0. To perform our under-approximation algorithm, we need to first compute
the sequence of adjacent boxes Dq0

, . . . , Dqr
such that: X0 ∈ Dqr

and 0 ∈ Dq0
.

This problem leads us to introduce the notion of solution of our hybrid problem
PH:

Definition 5. (X(.), u(.)) is a solution of the hybrid control problem (PH) (i.e.
X0 controllable) if there exists a finite execution χ = (τ, q,X) satisfying:

i. (q(τ0), X(τ0)) = (q0, X0) such that: X0 ∈ Dq0
.

ii. ∀i,X(.) is continuously differentiable, q(t) = qi and X(t) ∈ Dqi
over

]τi, τi+1[(τi < τi+1)

iii. ∀i = 1, . . . , r,X(τi) ∈ G(qi−1,qi)

iv. (q(τr+1), X(τr+1)) = (qr , 0)

where: τ = (τi)0≤i≤r+1 (τ0 = 0) and q = (qi)0≤i≤r.

From this definition, the difficulty is to determine the optimal sequence of
modes. Some directions to solve this problem include numerical pre-simulations
as done in [4] or a variable change ds = l(X(t), u(t))dt to come down to a

24

time optimal control problem. From now on, we then consider the following
assumption:

Hypothesis 2. let q = (qi)i=1...r be a given admissible sequence of discrete
modes i.e. there exists (τ,X), such that χ = (τ, q,X) is a finite execution of the
hybrid automaton H that steers the initial point X0 to the target 0.

5.2 Local optimal solutions in each cell

We thus are given a sequence of discrete modes q = (qi)1...r in our hybrid
automaton (H) as defined in hypothesis 2. In this section, we want to analyze the
dynamic behavior of our hybrid approximation in one given mode qi. According
to previous construction, in this cell we define a constrained affine optimal
control problem (Pqi

):

Minimize the cost function J(X0, u(.)) =
tf
∫

0

l(X(t), u(t))dt with respect to the

control u(.) under the dynamic:

{

Ẋ(t) = Aqi
X(t) +Bqi

u(t) + cqi

X(0) = X0
X(tf) ∈ G(qi,qi+1)

and the constraints: ∀t ∈ [0, tf], (X(t), u(t)) ∈ ∆qi
, where the final time tf is

unspecified.

We then are typically in the context of affine optimal control problems.
Methods and algorithms have been developed in [26] to solve that kind of prob-
lems via their Hamiltonian formulations: the principle is to come down to an
optimization problem in the control. Indeed we first introduce he Hamiltonian
function:

Hqi
(X,u, λ) = l(X,u) + λT (Aqi

X +Bqi
u+ cqi

)

The system is subjected to both state and mixed affine inequality constraints
(induced by Dqi

and Uqi
, see §4.3): Cqi

(X(t)) ≤ 0 and (Mqi
(X(t), u(t)) ≤ 0).

Optimal control under state inequality constraints is a hard and subtle problem.
However we can show that, in the context of our hybrid approximation, as soon
as a inequality constraint is broken, the trajectory switches from the present
mode to the next one. In consequence, we are inside a new mode without any
constraints at the new initial time. We therefore directly apply the algorithms
described in part I.

The constrained affine optimal control problem (Pqi
) is actually a linear pro-

gram, so that optimal solutions (X∗, u∗) occur on the edges of the cell ∆qi
(see

e.g. figure 7). We can thus deduce that the mixed inequality constraints are
satisfied as long as the state constraints are not broken. Moreover once a state
constraint is broken, the guard of the mode qi is reached and the system switches
into the next mode qi+1 (and a new local optimal control problem (Pqi+1

)).

In each cell of our hybrid automaton (H), we have come down to a local
affine optimal control problem solved with part I.

25

a

0

h

u

2hh xx
0

b

Figure 7: Example of admissible trajectory in R× U1

5.3 Choice of cell for a given phase location

In this section, we propose an algorithm for solving the hybrid optimal control
problem (PH). Our algorithm is based on a piecewise resolution of our hybrid
optimal control problem. However to a given initial point in the state space
correspond several possible cells ∆q and as many possible local optimal control
problems. Therefore to build our algorithm, we first have to define a method
for choosing the optimal cell ∆q.

Let X0 ∈ Rn be a given initial point of the state space. The main step
for solving the local optimal control problem is to consider a “column” of cells.
More precisely, the algorithm has three steps:

1. Computation of the simplex D0 ∈ D such that: X0 ∈ D0 as explained in
§4.2.

2. Test if X0 ∈ D0 is controllable thanks to the UnderApproximation algo-
rithm (in the next steps, X0 is assumed controllable).

3. Consider the set Q(X0) = {q; p
Rn(∆q) = D0}. It is actually a “column”

of cells ∆q, whose projection in the state space is D0 (see property (P2) in §4.2).
Just note that Um is assumed bounded, so that card(Q(X0)) < +∞.
The idea is to solve the local optimal control problem (Pq) in each ∆q as pre-
sented in previous section 5.2 ; and then to compute the local optimal trajectory
(X∗

q , u
∗
q) and the related value function Vq(X0). After that, we perform a finite

discrete optimization over these cells, i.e. find the mode q0 such that:

Vq0
= min

q∈Q(X0)
Vq(X0)

However the last optimization step can sometimes be avoided. Indeed, as ex-
plained in section 5.2, any optimal trajectory (X(.), u(.)) evolves along the edges
of our mesh ∆ of Rn × Um. Let us take the example of the figure 7 and con-
sider the trajectory between the cells a and b. We assume that we have already
computed the optimal control in each cell so that:

- in cell a, the optimal control is constant, equal to h.

- in cell b, the optimal control depends on the state and: u∗ = x− 3h

26

As shown on figure 7, the optimal trajectory in cell b evolves along the boundary
between the two cells a and b. In consequence, it could belong to both cells
a and b. Moreover we have seen that the optimal trajectory in cell b is not
optimal in cell a. We so conclude that the cell a is a best choice than the cell b
for our optimal control problem.
So the discrete optimization can be avoided by the application of that kind of
analysis (see figure 8).

a

b

a

b

a

b

a

b

Figure 8: Example of optimal choices between two cells in dimension 2

5.4 Hybrid solver

In regard of previous results, we can now describe the HybridSolving algorithm:
as expressed in hypothesis 2, we assumed a sequence of state given. The principle
of our solving algorithm is to compute cells columns by cells columns a piecewise
optimal solution of our hybrid problem.

Algorithm 9 HybridSolver

Require: X0, H, q = (qi)i=1..r a sequence of discrete modes s.t. X0 ∈
Dq0

and 0 ∈ Dqr
.

Ensure: (τ,X, u), V (X0)
where (τ, q,X) is a local optimal execution of H, V (X0).

1: if X0 /∈ UnderApproximation(H,q), then
2: Return “X0 may not be controllable”.
3: end if
4: τ0 := 0;V := 0;
{Piecewise Affine Resolution}

5: for all time step i (from 1 to r) do
6: {Linear Approximation}:

(A,B, c) := (Aqi
, Bqi

, cqi
) (see eq (10))

7: {Output Condition}: target := G(qi,qi+1);
8: {Mixed and State Inequality Constraints}

U := Uqi
;D := Dqi

;
9: Solve the affine problem Pqi

→ (X(.), u(.), tf , Vf)
10: X0 := X(tf); τi+1 := τi + tf ;V := V + Vf ;
11: end for
12: Return (τ,X, u, V).

Example 4. Let us consider the nonlinear dynamical system:

ẋ(t) = x2(t) + x(t)u(t) + u(t)2 (12)

The problem is to control the system (12) in minimum time from a given initial

27

point X0 ∈ R to the origin 0 under the control constraint: ∀t ≥ 0,−1 ≤ u(t) ≤ 1.

Exact resolution
Let us consider the vector field: f(x, u) = x2+xu+u2 as a polynom of degree 2 in
the variable u. Its discriminant is: −3x2 < 0 ; we so deduce: ∀(x, u), f(x, u) >
0. Hence ∀t ≥ 0, ẋ(t) > 0, so that x(.) is increasing and the controllability
conditions: x0 ≤ 0. We can also numerically check that the exact controllable
domain of our problem is]−∞, 0].

Let us introduce the Hamiltonian: H(X,u, λ) = 1+λ(x2+xu+u2). According
to the Pontryagin minimum principle ([24]), we come down to the problem of
minimizing H with respect to u under the constraints:

λ̇(t) = −2x(t)λ(t)− λ(t)u(t)

H(X(t), u(t), λ(t) = 0 along the optimal trajectory
(13)

Let us first assume that the optimal control takes values in]− 1, 1[. We so have
to solve:

∂H

∂u
= 0⇔ λx + 2λu = 0

under the condition: ∂2H
∂u2 > 0. As H ≡ 0 along the optimal trajectory, we

necessarily have: λ 6= 0 (otherwise: H ≡ 1), so that: u∗ = −x
2 while −2 ≤ x ≤ 2

(to fulfill the control constraints). In consequence, we can now explicitely solve
the system (12) and we obtain:

x(t) = 4x0(4 − 3x0t)
−1 and λ(t) = −4

3
x(t)−2

In consequence λ(t) < 0 and the previous u∗ is not minimizing H. Hence:
∀t ≥ 0, u(t) ∈ {−1, 1}.

To choose between u∗ = −1 and u∗ = 1, we compute the value function
associated to each possible control. The comparison of these functions shows that
u∗ = −1 is the exact solution of our initial nonlinear optimal control problem
and the value function is:

V (x0) = −1

9
(6 arctan(

1

3
(−1 + 2x0)

√
3) + π)

√
3

Hybrid Approximation
Let h = 1/N our discretization step.
Let us build a simplicial mesh (Dk)k of R (see methods in §4.2): here we have:
Dk = [kh, (k + 1)h].

Then the control domain [−1, 1] is subdivise into N intervals [ui, ui+1], i =
0 . . .N − 1, where: ui = −1 + 2ih. To ensure that 0 would be a vertex of our
triangulation (see property (P1)), N is assumed even.

Lastly we just have to triangulate [kh, (k + 1)h] × [ui, ui+1] and we can so
define our global mesh ∆ of R× [−1, 1] by:

∆
(1)
k,i = {(x, u); 0 ≤ u− ui ≤ x− kh ≤ h}

∆
(2)
k,i = {(x, u); 0 ≤ x− kh ≤ u− ui ≤ h}

28

We now perform the hybrid approximation fh over the cells ∆
(j)
k,i , j ∈ {1, 2}:

fh(x, u) = a
(j)
k,ix+ b

(j)
k,iu+ c

(j)
k,i , for (x, u) ∈ ∆

(j)
k,i

where:
a
(1)
k,i = 2kh+ h− 1 + 2ih

b
(1)
k,i = −2 + 3h+ kh+ 4ih

c
(1)
k,i = −k2h2 + kh− 2ih2k − 1 + 4ih− 4i2h2 − h2k + 3h− 6ih2

a
(2)
k,i = 2kh+ 3h− 1 + 2ih

b
(2)
k,i = kh− 2 + 4ih+ 2h

c
(2)
k,i = −k2h2 + kh− 2ih2k − 1 + 4ih− 4i2h2 − 3h2k + 2h− 4ih2

We have so define the hybrid automaton related to the considered optimal
control problem. In the next, we will so apply the algorithm described in §5.
Let x0 be a given initial point: x0 ∈ Dk with k = E[x0

h
] and a fixed sequence

of state q = (Dj)j=0...k ; We then want to compute the optimal solution of the
hybrid problem over the path q:
As presented in §5.2, the first step is to solve the local affine optimal control
problem in each cell of ∆ and we have:

u∗ =

{

ui when (x, u) ∈ ∆
(1)
k,i

x+ ui − kh when (x, u) ∈ ∆
(2)
k,i

After that, we have to find the optimal cell ∆
(j)
k,i , j ∈ {1, 2}, i = 0, . . . , N to

consider. We then can notice that for all i, ∆
(1)
k,i and ∆

(2)
k,i play respectively the

roles of the cells a and b of the figure 8, so that:

u∗ = ui when (x, u) ∈ ∆
(1)
k,i ∪∆

(2)
k,i

Recursively, we can so conclude that over the whole columns on cells ∆
(j)
k,i , j ∈

{1, 2}, i = 0, . . . , N , the optimal choice is the cell ∆
(1)
k,0 with u∗ = −1. We can

then compute the local value function Vk(x0).
x0 is then re-initialized to kh in the cell Dk−1, and so one.

So our HybridSolving algorithm returns the optimal solution to our hybrid
optimal control problem:

u∗ = −1 and Vh(x0) =
k
∑

j=0

Vj(xj) where:

{

x0 given
xj = (k − j)h, j = 1 . . . k

Figure 9 shows in dot the real value function V (x0) and two hybrid value
functions for two differents discretization steps h. Our approximation converges
towards the real curve.

Conclusion
In this report, we have presented a full analysis and implementation for solving
both linear and complex optimal control problems.

29

-2-3

x0

-4-5

1,2

0,8

0,6

0

0,4

-1

1

0,2

0

Figure 9: Hybrid approximations of the exact value function (in green dashed-
dots) for: h = .1 and h = 0.05

First we have presented an algorithm for solving general linear optimal control
problems: we propose an explicit method to transform any problem into a
canonical one by the way of a block Kalman decomposition. We have also
developed generic algorithms solving the canonical problem even when complex
boundaries occur. Yet, two important new features of our algorithms are that
we give a full generic implementation and most of the algorithms are symbolic.
Further developments already are in progress:

• Complete the whole algorithm for a cost function nonlinear in the control.
In this case, the Hamiltonian optimization problem could be solved by
classical tools. Indeed, ∂H

∂u
= 0 can now be solved in the control variable.

• The UnderApproximation and solving algorithms have been performed
on linear dynamical systems under the canonical form where A2 = 0 (cf
§2.2 and section 3). These two algorithms have to be extended for any
canonical form (cf (4)). In practice, this corresponds to the appearance of
a perturbation time function t → A2e

A3tY2(0) in the dynamical system.
The technique does not change, but practical implementations are slightly
more complex.

• The UnderApproximation could be refined and a study of the approxi-
mation error has still to be made. The idea is to consider cases where
the dynamical system for u = si admits one (or an infinite number of)
equilibrium point Pi (note that 0 is an equilibrium point when u = 0).
The under-approximation can e.g. be completed by the convex hull of
trajectories from Pj that go through (or tend towards) Pj by time re-
versal according to u = si. Also, a rigorous proof of the convergence of
our under-approximation towards the real controllable set has still to be

30

completed.

Then we achieved a hybrid optimal control of non-linear dynamical systems.
First we propose a hybrid approximation, by way of a hybrid automaton with
piecewise affine dynamics, of complex systems. Then we solve the affine optimal
control problem and give an explicit and fully analytical algorithm.
This algorithm however guarantees only a local optimization. Next step will be
to give a way to find a sequence of cells containing an optimal trajectory. As
mentioned, several directions to solve this problem include:

• Exploring different sequences of states. This could unfortunately induce
a combinatorial explosion.

• Partial numerical simulations could give some information on the local-
ization of an optimal trajectory and thus reduce the exploration.

• Replace l(X(t), u), the cost function with an admissible variable change
ds = l, so that the problem comes down to a time optimal control problem.
Finding the optimal sequence would then be to minimize the time to reach
0. To do this, one can use a time reversal, then perform an attainability
test on X0. The first time step when X0 is reached gives an estimation
of the total time and moreover the direction from which it was reached.
This direction is the new goal of the affine optimal control. When a guard
is reached in this direction, this gives a new point X1, closer to zero than
X0, and from which we iterate the same loop.

• Another idea would be to perform an optimal control in the whole space
with the local affine system. This would also give a possible direction.
Unfortunately, convergence is then not guaranteed anymore.

Further developments are also:

• F (X,U) could have a fixed point which disappears in Fh. This would
augment the approximation error. A way to avoid this phenomenon is to
augment the resolution. For the fixed point at 0 this could be avoided by
setting 0 on a node of the mesh. At other fixed points, multi-resolution
meshing could become handy.

• An exhaustive study of the approximation error, similar to [14, Theorem
10.2.2], has still to be made.

Appendix

A Proof of theorem 2

0. Facts: the LQUP factorization [16] of KT gives:

KT = LQ

[

U1 U2

0 0

]

P = (LQ

[

Ir
0

]

)[U1|U2]P (14)

Then, from [10, section 4.3], QTKT is the product of a permutation, a lower
and an upper triangular matrix:

31

d

1 U2
Uδ

P
T

Q LQ [U |U]P =
T

Q K =
T

0

I r
21

r

This shows that G = δ[U1|U2]P . Now, from its definition, we see that the matrix
K satisfies that any block column vector of AK is a linear combination of the
block column vectors of K (since An is a linear combination of the Ai, namely
that of its characteristic polynomial). Well this is also true of the permuted
independent columns of K. In other words, there exist a linear combination Γ
such that GAT = ΓG (see e.g. [15, §7.4] or [21, §3] for more details).

1. We now have to prove that GAT = C1G. Unfortunately, C1 might
be different form Γ since G is not square. But the fact that there exist a
solution is sufficient as we will see next. First, C1GP

T = C1δ[U1|U2]. Then,

by the definition of C1, we obtain C1GP
T = GATPT

[

Ir
0

]

[Ir|U−1
1 U2]. We

replace now GAT by ΓG to prove that the latter permutes. Then C1GP
T =

Γδ[U1|U2]PP
T

[

Ir
0

]

[Ir|U−1
1 U2], so that C1GP

T = Γδ[U1|U2] = ΓGPT . We

thus get C1G = ΓG = GAT since the permutation matrix P is invertible.

2. Then note that the inverse of

[

G
[0|In−r]P

]

= T T is

T−T = PT

[

U−1
1 δ−1 −U−1

1 U2

0 I

]

. (15)

This enables to compute T−1AT or, equivalently, T TATT−T as follows:

T TATT−T =

[

G
[0|In−r]P

]

ATT−T =

[

GAT

[0|In−r]PA
T

]

T−T

=

[

C1G

[0|In−r]PA
T

]

T−T

=

C1GP
T

[

U−1
1 δ−1

0

]

C1G

[

−U−1
1 U2

I

]

C2 C3

=

[

C1 0
C2 C3

]

as GPT = [δU1|δU2].

3. There only remains to prove that (T−1B)T = [B1|0]: just remark that
BTT−T = [Im|0]KTT−T which, from (14) and (15), gives

BTT−T = [Im|0](QQT)LQ

[

Ir
0

]

[U1|U2]PT
−T

= [Im|0]Q

[

δ
d

]

[δ−1|0] = [Im|0]Q

[

Ir | 0
dδ−1 | 0

]

Moreover if B is assumed full rank (equal to m ≤ r), the permutation Q has no
influence on the m first rows of KT . In this case, B1 is just the identity.

32

B Proofs of the propositions

B.1 Proof of proposition 2

Let us state: X = TY . (Y ∗, ũ∗) is an optimal solution of problem 5, so that:
Ṽ (Y0) = J̃(Y0, ũ

∗). Let us prove that the control Ψũ∗ is optimal in the problem
(3):

J(X0,Ψũ
∗) =

∫ +∞

0 l(X(t),Ψũ∗(t))dt

=
∫ +∞

0 l̃(Y (t), ũ∗(t))dt

= J̃(Y0, ũ
∗) = Ṽ (Y0)

Moreover, Ψũ∗ is an admissible control for (3), so, by definition of the value
function: J(X0,Ψũ

∗) ≥ V (X0). But, if (3) possesses some solutions from X0,
then there exists a control u∗ such that: V (X0) = J(X0, u

∗). So, according to
table 1:
V (X0) =

∫ +∞

0
l(X(t), u∗(t))dt =

∫ +∞

0
l̃(Y (t),Φu∗(t))dt

= J̃(Y0,Φu
∗) ≥ Ṽ (Y0)

The only possibility is then J(X0,Ψũ
∗) = Ṽ (Y0) = V (X0)

B.2 Proof of proposition 3

We take some controllable points (Yi)1≤i≤k ∈ Ck and another point Y0 ∈
Conv(Yi; 1 ≤ i ≤ k) ; by convexity: ∃(αi)1≤i≤k ∈ [0, 1]k,

∑k
i=1 αi = 1 and

Y0 =
∑k

i=1 αiYi. We want to prove that Y0 is controllable. By definition, each
Yi satisfies:
∃Ti ≥ 0, ∃ui : [0, T] → Um, Yi =

∫ Ti

0 e−AτBui(τ)dτ . Consequently, Y0 =
∑k

i=1 αi

∫ Ti

0 e−AτBui(τ)dτ . We then fix T to the maximal time Ti and de-
fine a new control as follows:

ûi(τ) =

{

ui(τ) if τ ≤ Ti

0 if Ti < τ ≤ T
and u(τ) =

∑

k

i=1
αiûi(τ).

Clearly u(.) is an admissible control function (i.e. ∀τ ≥ 0, u(τ) ∈ Um) and we

conclude: Y0 =
∫ T

0 e−AτBu(τ)dτ , hence: Y0 ∈ C.

B.3 Proof of proposition 4

We consider an ij-singular trajectory at a time t ∈ [t0, t1]. Let us show that:
u(t) ∈ [si, sj]. As we know, the control is defined on a polyhedral convex set,
so that: ∃(αk(t))k=1...m ∈ [0, 1]m,

∑m
k=1 αk(t) = 1 and u(t) =

∑m
k=1 αk(t)sk.

So we come down equivalently to minimize the Hamiltonian H with respect to
α = (αk(t))k=1...m,k 6=i. H is redefined by: H = l(X) + λT f(X) + λT g(X)si +
∑m

k=1,k 6=i αk(t)λT g(X)(sk − si) Moreover according to the definition 4 of an

ij-singular trajectory, we have: ∀k 6= i, j, λT g(X)(sk − si) > 0. So necessarily,
we must have: ∀k 6= i, j, αk(t) = 0 i.e.: u(t) ∈ [si, sj]. The control of an
I-singular trajectory is shown likewise to belong to Conv(sk).

B.4 Proof of proposition 5

By assumptions, the trajectory Y (.) is regular over [T − ǫ, T]. So we have:
∃k ∈ {1, . . . ,m}, ∀t ∈ [T − ǫ, T], u(t) = sk. Moreover u(.) is the optimal
control, so that (cf definition 1): ∀t ∈ [T − ǫ, T], Sk,j(t) < 0 and consequently:
∀ǫ′ ∈]0, ǫ[, ∀t ∈ [T − ǫ′, T], Sk,j(t) < 0.

33

Moreover λ(.) is a continuous time function, so does Sk,j ; therefore we have:
Sk,j(T) ≤ 0 when ǫ′ → +∞. Moreover the singular trajectory’s definition 4
involves: Si,j(T) = 0 and Sj,k(T) < 0. Hence we necessarily have: k ∈ {i, j}.

References

[1] E. Asarin, T. Dang, and A. Girard. Reachability of non-linear systems using
conservative approximations. In Proceedings of the 2003 Hybrid Systems:
Computation and Control, pages 20–35. Springer, April 2003.

[2] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[3] M. Bergounioux. Optimisation et contrôle des systèmes linéaires. Dunod,
2001.

[4] J.F. Bonnans and S. Maurin. An implementation of the shooting algorithm
for solving optimal control problems. Technical Report RT-0240, INRIA,
2000.

[5] A.E. Bryson and Y. Ho. Applied Optimal Control. Hemisphere, 1975.

[6] D.F. Delchamps. State Space and Input-Output Linear Systems. Springer-
Verlag, 1988.

[7] J. Della Dora, A. Maignan, M. Mirica-Ruse, and S. Yovine. Hybrid com-
putation. In Proceedings of the 2001 International Symposium on Symbolic
and Algebraic Computation. Bernard Mourrain editor, ACM Press, July
2001.

[8] J.-G. Dumas and A. Rondepierre. Modeling the electrical activity of a
neuron by a continuous and piecewise affine hybrid system. In Proceedings
of the 2003 Hybrid Systems: Computation and Control, pages 156–171.
Springer, April 2003.

[9] Jean-Guillaume Dumas, Thierry Gautier, and Clément Pernet. Finite field
linear algebra subroutines. In Teo Mora, editor, Proceedings of the 2002
International Symposium on Symbolic and Algebraic Computation, Lille,
France, pages 63–74. ACM Press, New York, July 2002.

[10] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. FFPACK: Fi-
nite Field Linear Algebra Package. In Jaime Gutierrez, editor, Proceedings
of the 2004 International Symposium on Symbolic and Algebraic Computa-
tion, Santander, Spain. ACM Press, New York, July 2004.

[11] R. Fierro, A. K. Das, V.Kumar, and J. P. Ostrowski. Hybrid control of
formations of robots. In IEEE Proceedings of the International Conference
on Robotics and Automation, 2001.

[12] H. Freudenthal. Simplizialzerlegungen von beschraeukter flachkeit. Annals
of Math. in Science and Engin., 43:580–582, 1942.

[13] A. Girard. Approximate solutions of ordinary differential equations using
piecewise linear vector fields. In Proceedings of the 2002 Computer Algebra
in Scientific Computing. Springer Verlag, September 2002.

34

[14] A. Girard. Analyse Algorithmique des Systèmes hybrides. PhD thesis,
Institut National Polytechnique, Grenoble, 2004.

[15] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hop-
kins Studies in the Mathematical Sciences. The Johns Hopkins University
Press, Baltimore, MD, USA, third edition, 1996.

[16] O.H. Ibarra, S. Moran, and R. Hui. A generalization of the fast lup matrix
decomposition algorithm and applications. Journal of Algorithms, 3:45–56,
1982.

[17] C.D. Johnson and J.E. Gibson. Singular solutions in problems of optimal
control. IEEE Transactions on Automatic Control, 8:4–15, 1963.

[18] R.E. Kalman. Canonical structure of linear dynamical systems. In Pro-
ceedings of the National Academy of Sciences, pages 596–600, 1961.

[19] R.E. Kalman. Mathematical description of linear dynamical systems. Siam
Journal on Control, 1:152–292, 1963.

[20] H.J. Kelley, R. Kopp, and H. G. Moyer. Singular Extremals, pages 63–101.
Academic Press, 1967.

[21] Clément Pernet. Calcul du polynôme caractéristique sur des corps finis.
Master’s thesis, Université Joseph Fourier, jun 2003.

[22] H.J. Pesch. A practical guide to the solutions of real-life optimal control
problems. Parametric Optimization. Control Cybernet, 23:7–60, 1994.

[23] E.R. Pinch. Optimal Control and the Calculus of Variations. Oxford Uni-
versity Press, 1993.

[24] L. Pontryagin, V. Boltiansky, R. Gamkrelidze, and E. Michtchenko.
Théorie mathématique des processus optimaux. Editions de Moscou, 1974.

[25] H.M. Robbins. A generalized legendre-clebsch condition for the singu-
lar cases of optimal control. IBM Journal of Research and Development,
11(4):361–372, 1967.

[26] Aude Rondepierre and Jean-Guillaume Dumas. Algorithms for hybrid op-
timal control. parti: Symbolic/numeric control of affine dynamical systems.
submitted.

[27] B. D. Saunders. Black box methods for least squares problems. In Pro-
ceedings of the 2001 International Symposium on Symbolic and Algebraic
Computation. Bernard Mourrain editor, ACM Press, July 2001.

[28] M.I. Zelikin and V.F. Borisov. Optimal chattering feedback control. Journal
of Mathematical Sciences, 114(3):1227–1344, 2003.

[29] J. Zhang, K.H. Johansson, J. Lygeros, and S. Sastry. Zeno hybrid systems.
International Journal of Robust and Nonlinear Control, 11:435–451, 2001.

35

