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Abstract

We investigate the invariance principle for set-indexed partial sums
of a stationary field (X );cza of martingale-difference or independent
random variables under standard-normalization or self-normalization
respectively.
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1 Introduction

Let (Xk)reze be a stationary field of real-valued random variables defined on
a given probability space (2, F,P). If A is a collection of Borel subsets of
[0,1]¢, define the smoothed partial sum process {S,(A4); A € A} by

Su(A) = > AnANR)X; (1)

ie{l,...,n}e

where R; =iy — 1,41] X ...xX]ig — 1,44] is the unit cube with upper corner
at i and ) is the Lebesgue measure on R%. We equip the collection A with
the pseudo-metric p defined for any A, B in A by p(A, B) = \/A(AAB). To
measure the size of A one considers the metric entropy: denote by H (A, p, ¢)
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the logarithm of the smallest number N(A, p,e) of open balls of radius ¢
with respect to p which form a covering of A. The function H(A,p,.) is
the entropy of the class A. A more strict tool is the metric entropy with
inclusion: assume that A is totally bounded with inclusion i.e. for each
positive ¢ there exists a finite collection A(e) of Borel subsets of [0, 1]¢ such
that for any A € A, there exist A~ and A" in A(e) with A~ C A C AT
and p(A~, AT) < e. Denote by H(A, p, ) the logarithm of the cardinality
of the smallest collection A(g). The function H(A, p,.) is the entropy with
inclusion (or bracketing entropy) of the class A. Let C(A) be the space of
continuous real functions on A, equipped with the norm ||.|| 4 defined by

[fll.a = sup|f(A)].
AcA

A standard Brownian motion indexed by A is a mean zero Gaussian process
W with sample paths in C(A) and Cov(W(A),W(B))= A(AN B). From
Dudley [§] we know that such a process exists if

/le/H(.A,p,a)d5<+oo. (2)

Since H(A,p,.) < H(A,p,.), the standard Brownian motion W is well de-

fined if .
/\ﬁmAmﬁﬁk<+m. (3)
0

For any probability measure m defined on [0, 1]¢ equipped with its Borel o-
algebra, we define the pseudo-metric p,, by p,, = Vm(AAB) for any A and
B in A. For any positive £ > 0, we denote N (A, e) = sup,, N(A, pm,e) and
we say that the collection 4 has uniformly integrable entropy if

/ g N(A9)de < +oo. (4)

We say that the (classical) invariance principle or functional central limit the-
orem (FCLT) holds if the sequence {n~%2S,(A); A € A} converges in distri-
bution to an A-indexed Brownian motion in the space C'(A). The first weak
convergence results for Qg-indexed partial sum processes were established for
i.i.d. random fields and for the collection Qy of lower-left quadrants in [0, 1]¢,
that is to say the collection {[0,#,] x ... x [0,%4]; (t1,...,ts) € [0,1]¢}. They
were proved by Wichura [PF] under a finite variance condition and earlier by
Kuelbs [[7 under additional moment restrictions. When the dimension d is
reduced to one, these results coincide with the original invariance principle
of Donsker [[]. In 1983, Pyke [B]] derived a weak convergence result for the
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process {S,(A); A € A} for i.i.d. random fields provided that the collection
A satisfies the bracketing entropy condition (J). However, his result required
moment conditions which depend on the size of the collection A. Bass [
and simultaneously Alexander and Pyke [ extended Pyke’s result to i.i.d.
random fields with finite variance. More precisely, the following result is
proved.

Theorem A (Bass (1985), Alexander and Pyke (1986)) Let (Xi)ieza
be a stationary field of independent real random variables with zero mean and
finite variance. If A is a collection of reqular Borel subsets of [0,1]¢ which
satisfies Assumption () then the sequence of processes {n~%2S,(A); A € A}
converge in distribution to \/ E(X2)W where W is a standard Brownian mo-
tion indexed by A.

Unfortunately, the bracketing condition (§) is not automatically fulfilled in
the important case of A being a Vapnik-Chervonenkis class of sets. Ziegler
[BG) has covered this case by proving (among other results) that the FCLT of
Bass, Alexander and Pyke (i.e. Theorem A) still holds for classes of sets which
satisfy the uniformly integrable entropy condition (). Recently, Dedecker
[ gave an L>®-projective criterion for the process {n=%2S,(A); A € A} to
converge to a mixture of A-indexed Brownian motions when the collection A
satisfies only the entropy condition (f) of Dudley. This new criterion is valid
for martingale-difference bounded random fields and provides a new criterion
for non-uniform ¢-mixing bounded random fields. In the unbounded case, us-
ing the chaining method of Bass [B] and establishing Bernstein type inequal-
ities, Dedecker proved also the FCLT for the partial sum {S,(A); A € A}
of non-uniform ¢-mixing random fields provided that the collection A sat-
isfies the more strict entropy condition with inclusion () and under both
finite fourth moments and a polynomial decay of the mixing coefficients. In
a previous work (see [[J]), it is shown that the FCLT may be not valid for
p-integrable (0 < p < +o0) martingale-difference random fields. More pre-
cisely, the following result is established.

Theorem B (El Machkouri, Volny, 2002) Let (2, F, 1, T) be an ergodic
dynamical system with positive entropy where () is a Lebesque space, p s a
probability measure and T is a Z-action. For any nonnegative real p, there

exist a real function f € LP(S2) and a collection A of reqular Borel subsets of
[0,1]¢ such that

e For any k in 72, E(foTk|cr(foTi; 1 k:)) = 0. We say that the
random field (foT"*),cza is a strong martingale-difference random field.

e The collection A satisfies the entropy condition with inclusion ([B).



e The partial sum process {n~Y2S,(f A); A € A} is not tight in the
space C(A)

where
SulfiA) = ) AnANR)foT'
ie{l,...,n}?

The above theorem shows that not only Dedecker’s FCLT for bounded ran-
dom fields (see []) cannot be extended to p-integrable (0 < p < +o00) random
fields but also it lays emphasis on that Bass, Alexander and Pyke’s result
for i.i.d. random fields (Theorem A) cannot hold for martingale-difference
random fields without additional assumptions. Recently, El Machkouri [I]]]
has shown that the FCLT still holds for unbounded random fields which sat-
isfy both a finite exponential moment condition and a projective criterion
similar to Dedecker’s one. All these results put on light that the moment
assumption on the random field is very primordial in the FCLT question for
random fields indexed by large classes of sets.

In the present work, we give a positive answer to the validity of the FCLT
for square-integrable martingale-difference random fields which conditional
variances are bounded almost surely (cf. Theorem [l). Next, we consider
self-normalized i.i.d. random fields, more precisely, we investigate the valid-
ity of the FCLT when the stationary random field (X}),cza is assumed to be
independent and the classical normalization n%/? is replaced by U,, defined by
(B) (cf. Theorem ). From a statistical point of view, the self-normalization
is natural and several articles in the literature are devoted to limit theo-
rems for self-normalized sequences (X )rez of independent random variables
with statistical applications. Logan et al. [[[J] investigate the various possi-
ble limit distributions of self-normalized sums. Giné et al. [[[3 prove that
Yo Xi/\/ > X? converges to the Gaussian standard distribution if and
only if Xj is in the domain of attraction of the normal distribution (the
symmetric case was previously treated by Griffin and Mason [[4]). Egorov
[[J investigates the non identically distributed case. Large deviations are
investigated in Shao [B3] without moment conditions. Rackausksas and Su-
quet [ gives invariance principles for various partial sums processes under
self-normalization in C([0,1]) and in the stronger topological framework of

Holder spaces. Our Theorem P below improves on Rackauskas and Suquet’s
result in C([0, 1]).

2 Main results

By a stationary real random field we mean any family (X})eza of real-valued
random variables defined on a probability space (2, F,P) such that for any
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(k,n) € Z*xN* and any (i1, ..., i,) € (Z%)", the random vectors (X;,, ..., X;, )
and (X;, 1k, ..., Xi, k) have the same law.

On the lattice Z¢ we define the lexicographic order as follows: if i = (i1, ..., i)
and j = (ji, ..., ja) are distinct elements of 7%, the notation i <., j means
that either iy < j; or for some pin {2,3,...,d}, i, < j, and i, = j, for 1 < ¢ <
p. A real random field (X}),cza is said to be a martingale-difference random
field if it satisfies the following condition: for any m in Z%, E (X,,|Fn) =0
a.s. where F,, is the o-algebra generated by the random variables X, k <jes
m. Our first result is the following.

Theorem 1 Let (Xy)peza be a stationary field of martingale-difference ran-
dom wariables with finite variance such that E(XE|Fy) is bounded almost
surely and let A be a collection of reqular Borel subsets of [0,1]¢ satisfying
the condition (§). Then the sequence {n~%2S,(A); A € A} converges weakly
in C(A) to \/E(XZ)W where W is the standard Brownian motion indexed
by A.

Comparing Theorem [[] and Theorem B in section 1, one can notice that the
conditional variance F (XZ|Fp) is primordial in the invariance principle prob-
lem for martingale-difference random fields. More generally, the conditional
variance for martingales is known to play an important role in modern mar-
tingale limit theory (see Hall and Heyde [L3]).

For any integer n > 1, we define

Ur =Y X} (5)

€A,

where A,, = {1,...,n}¢. We say that X, belongs to the domain of attraction of

the normal distribution (and we denote Xy € DAN) if there exists a norming

sequence b, of real numbers such that b, 1S, converges in distribution to a

standard normal law. We should recall that if Xy € DAN then || X,||, < 0o

for any 0 < p < 2 and that constants b,, have the form b,, = n%2[(n) for some

function [ slowly varying at infinity. Moreover, for each 7 > 0, we have

nh_)IIOlO n’EXo, =0, nh_)ngo nP(|Xo| > 7b,) = 0 and nh_)ngo b;QndE(Xg,n) =1

(6)

where X, = Xo 1|x,|<-b, (see for instance Araujo and Giné [f]). Note also
that Xo € DAN implies (Raikov’s theorem) that

1 P
g Xt (7)

nieAn



Theorem 2 Let (X)peza be a field of i.i.d. centered random variables and
let A be a collection of reqular Borel subsets of [0,1]¢ satisfying the condition
@B). Then X, € DAN if and only if the sequence {U,'S,(A); A € A}
converges weakly in C(A) to the standard Brownian motion W.

Let us remark that the necessity of Xy € DAN in Theorem [ follows from
Giné et al. ([[J], Theorem 3.3). Our result contrasts with the invariance
principle established by Bass and Alexander and Pyke (cf. Theorem A in
section 1) where square integrable random variables are required. We do not
know if Theorem P still hold if one replace the condition (B) by condition (B).
However, our next result is a counter-example which shows that Theorem A
in section 1 does not hold when the condition (fJ) is replaced by condition

(2)k

Theorem 3 For any positive real number p, there exist a stationary field
(Xk)reza of independent, symmetric and p-integrable real random variables
and a collection A of reqular Borel subsets of [0,1]? which satisfies the con-
dition (B) such that the partial sum process {n~%%S,(A); A € A} do not be
tight in the space C'(A).

Note that Dudley and Strassen [J] have built a sequence of i.i.d. ran-
dom variables X,, with values in the space of continuous functions on [0, 1]
such that E(X;(t)) = 0 and the finite dimensional marginals of Z,(t) =
n~Y23" | X;(t) converge to that of a Gaussian process Z. It was shown
that this process Z has a version with almost sure continuous sample paths
and that the process Z,(t) is not tight for the topology of the uniform metric.
However, contrary to our example, one can check that the limiting process Z
does not satisfy the Dudley’s entropy condition (f]) for the intrinsic distance
p(s,t) = ||Z(s) — Z(t)||2. In fact, it is well known that the condition (B is
sufficient for Gaussian processes to have a version with almost sure continu-
ous sample paths but it falls to be necessary (see van der Vaart and Wellner

B4, p. 445).

3 Proofs

Recall that a Young function v is a real convex nondecreasing function de-
fined on RT which satisfies ¢(0) = 0. We define the Orlicz space Ly, as the
space of real random variables Z defined on the probability space (€2, F,P)
such that E[(|Z|/c)] < +oo for some ¢ > 0. The Orlicz space L, equipped
with the so-called Luxemburg norm ||.||,, defined for any real random variable
Z by

1Z]ly = inf{c>0; E[p(1Z|/c)] <1}
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is a Banach space. For more about Young functions and Orlicz spaces one
can refer to Krasnosel’skii and Rutickii [I6]. Let 11,19 : RT — R be the
Young functions defined by v, (z) = exp(x) — 1 and v¥y(z) = exp(x?) — 1 for
any r € R*. We need the following lemma which is of independent interest.

Lemma 1 Let (0;)icza be an arbitrary field of random variables and let H;
denote the o-algebra generated by the random variables 0;, j <jer i, 1 € Z°.
Let also 0 < a < (<1 and 0 <7 <1 be fired and let (¢,)n>1 be a sequence
of real numbers. For any integer n > 1 and any Borel subset A of [0,1]¢,
denote
01’ (TL, «, ﬁ) = 0@ ]]-ozrcn§|9i\<ﬁ7'cn
and
On(4,a,5) = ZAnAﬁR)[ i(n,a, 5) = E(0:(n, o, B)[H)] -
Cn €A,

Assume also that there exists C' > 0 such that for any integer n > 1 and any
i in 79,

d
n
=F (07 1yg,1<c, | Hs) < C. (8)

n

If G1, Gy are finite collections of Borel subsets of [0,1]? then

Jnax On(A, o, B)=6,(B, v, B)|

wlﬁ K[ﬁr¢;1(|g|)+(EB%§gp(A,B)w;1(|g|)]

where G = Gy X Go, |G| is the cardinal of G and K > 0 is a universal constant.

Proof of Lemma [ll. Consider the field of martingale-difference random vari-

ables Y;(n, «, ), 1 € A,, defined by

Yi(n,a, 8) = i()\(nA NR;) — A(nB N Ry))[0;(n, o, B) — E (6;(n, o, B)|H;)]

n

and note that |Y;(n, a, 8)| < 267. Using (§) and keeping in mind that 7 and
[ are less than 1, there exists a universal constant C' > 0 such that

E(Y; H,;) < 4C %(A, B).
3, B0 Y1) A€ e P45

Noting that @n(A, @, B)=O,(B,a,B) = > .., Yi(n,a, 3) and applying The-
orem 1.2A in de la Pena [[], we derive the following Bernstein inequality

P A — 0,(B <2 '
(‘@n< ,Oé,ﬁ) @n< ’Oé,ﬁ)‘ = .CU) = 2 OXP (SCH’I&X(A,B)EQ p2(A7 B) —|—4ﬁ7’$’)

The proof is completed by using Lemma 2.2.10 in van der Vaart and Wellner

22k




3.1 Proof of Theorem
a) Tightness

It suffices to prove that for any = > 0

limlimsupP | sup |n~ 28 (A) — n_d/QSn(B)‘ >z | =0. 9)
=0 n—itoo A,BeA
p(A,B)<d

In the sequel, we write H(z) for H(A,p,z). Let § > 0 be fixed, denote
T = 0/y/H(6/2) > 0 and assume (without loss of generality) that 7 < 1.
Let i € Z%, since X; is a v martingale-difference random variable, we have
X=X — E(Xin|Fi) + Xin — E(Xin|F;) where X;,, = X; 1) x,|<rpa/2 and
71-7” = X, — X, ., hence it follows

P sup |n~ 426, (A) — n’d/QSn(B)} >z | < Ey+ Ey
A,BeA

p(A,B)<é
where
sup (AMANR;) —AX(nBNR,))[Xin— E(XinlFi)]| > xnd/2/2
A,BeA A
AB)<6 i€An
= nP (| Xo| > Tnd/2 —0 (since X, € L?).

n—-+o00

We are going to control F;. Now, for any constants 0 < a < 3 < 1 define
Xi(nv Q, 5) =X, ]]-aTnd/2§|Xi|<,6’Tnd/2 and

Zn(A, o, B) = d/2 > AnANR)[Xi(n, o, B) — E (Xi(n, a, B)| F)].

1€EA,

One can notice that

\)

El <-K sup ‘Zn<A7071) —Zn(B,O,l)‘
X A,BEA
p(A,B)<é

Let 0 = 27%5. If A and B are any sets in A, there exists sets Ay, A), By, B}
in the finite class A(d;) such that Ay, € A C A} and p(Ax, A)) < o,
and similarly for B, By, B;". Let (ax)ren be a sequence of positive numbers
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decreasing to zero sucht that ag = 1. Following the chaining method initiated
by Bass [B], we write

+o0
Zn(A,0,1) = Z,(A0,0,1) = Y Z,(Aps1,0, ar) — Zn (A, 0, ax)
k=0

—+00

+ Z Zn(A7 ag, ak*l) - Zn<Ak7 ag, ak71>-
k=1

So, we have $Fy; < Iy + Fy + F3 where

F,=E max | Z,(A,0,1) = Z,(By,0,1)|
Ao, Bo€A(do)
p(Ao,Bo)<3d0

+o00
F=2YF Zn(Api1, 0, a1) — Zn(Ag, 0,
? AkEA(‘Sk)vnj?iGA(ékJrl)’ ( k+1 a’k) ( k ak;)’
k=0 p(AkyAk+l)§25k

+oo
=23 E| max  swp |Zu(A ap ap 1) — Za(Ag g, a5 )|
=1 Ap, ALEAWGK) AycACAT

In the sequel, we denote by K any universal positive constant. Applying
Lemma [ with ¢, = n%?, we derive

F<K (TH((SO) + 50\/]141(50)) , (10)
similarly

F2 S Kf(akTH(ékH) + 5kVH<5k+1>>- (11)

k=0
Now, we are going to control the last term F3. For any Borel subset A of
[0,1]%, we denote

~ 1
ZnlA; ar, 1) = 5 > AMANR)[| Xi(n, ak, ap—1)|—E (| Xi(n, ax, ax_1)|| F3)].

1€AR



One can check that

sup  |Zn(A, ak, ar—1) — Zn(Ag, ag, ax_1)|

AyCACAS
1
< —5 Y (AMAL N Ri) = AnAk 0 R))[|Xi(n, ax, ag1)| — B (|Xi(n, ax, a1 || F)]
nd/ €A
2

+ Z (A(nAL N R;) — A(nAy N R))E (| Xi(n, ak, ar—1)||F:)

€A,
— Zn(Af ag, ax_1) — Zn( A, an, ag_1)

MZA (AN\AL) N R)E (| X;(n, ak, ax—1)||F;)

€A,

nd/2

Recall that by assumption we have E(X?|F;) < C for some C' > 0. So, using
Lemma [I], it follows

max }ZTL(A;ua]makfl)_gn(Akuak?
Ag, A €A()

Moreover, one can check that

E(X!F) _ C

ap™? T qpTnd/?’

E (|Xz<n7 ag, ak*l)”ﬂ) S

Consequently, we obtain

<K (—’—f ak,er(ék) + g <5k) + 5—;) (12)

k=1 k

Now, we choose ay = 6 /(T/H(dy1)) for all & € N (note that ay = 1),
hence, we obtain the following estimations:

F < Kéx/H(é/Q)
F, < Kz(sk\/ (Ok+1)

F3 < KZ%% H(0k+1)

k=1

Now, recall that %El < F} + I3, + F3 and keep in mind that the entropy
condition (B)) holds then

9 5
limsup —F; < KZékﬂ H(ox) < K/ VH(z)dx = 0.
O e

X
n—00 1
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Finally, the condition () holds and the sequence {n~%2S,(A); A € A} is
tight in the space C'(A).

b) Finite dimensional convergence

The convergence of the finite-dimensional laws is a simple consequence of
both the central limit theorem for random fields ([f], Theorem 2.2) and the
following lemma (see [f]). For any subset I' of Z? we consider

O = {i€T;3j ¢TI such that |i — j| = 1}.
For any Borel set A of [0,1]¢, we denote by I',,(A) the finite subset of ZZ
defined by T',(A) = nA N Z%.
Lemma 2 (Dedecker, 2001) Let A be a reqular Borel set of [0,1]¢ with
A(A) > 0. We have

o | Te(A)] . [0, (A)]
(4) nErJlrlooT = A(4) (22) ngffwm

Let (X)ieza be a stationary random field with mean zero and finite variance.
Assume that ), ;4 |E(XoXy)| < +00. Then

Su(A) = D X,

keln(A)

= 0.

=0.

2

lim n~4?
n—-4o0o

3.2 Proof of Theorem

Similarly, we are going to prove both the convergence of the finite-dimensional
laws and the tightness of the sequence of processes {U,; 'S, (A); A € A} in
the space C(A).

a) Tightness

It suffices to establish that for any x > 0

limlimsupP | sup |U,'S.(A) —U,'S,(B)| >z | =0 (13)
-0 p—too A,BeA
p(A,B)<é
Let 6 > 0 and 0 < 7 < 1 defined as in the proof of theorem [I. In the sequel,
we denote (b,),>1 the sequence which satisfies condition (B) and we define
Xin = Xi 1x,/<7b,- One can check that

P| sup |U,'S.(A)—U,;'S.(B)| >z | <Ei+Ey+E;+E,
A,BEA
p(A,B)<é

11



where

Ey=P| sup |> (AnANR) = AnBNR))[X;, — EX;p]| > ab, /2
A, BeA i€An
p(A,B)<é

E, =P (U, <b,/2) — 0 (by Raikov’s theorem)
B3 = nP (| Xo| > 7b,) P 0 (by (@)

Ey =27, ' EXq,| —0  (by @)).
So, it suffices to control E;. As in the proof of Theorem [[, we apply the
chaining method by Bass [J] with the following notations: for any constants

0 <a<pB <1, wedefine X;(n,a, 8) = X; Lorp, <|xo|<prb, and

Zn(A a,B) = 1 > AnANR)[X(n, o, B) — EX;(n,a, B)].

b,
€A,
So, we obtain
2 2
Elg_ sup ‘Zn(A7071)_Zn<B7071)} §_<FI+F2+F3)
x A,BeA x

p(A,B)<é

where F, F, and Fj are defined in the proof of Theorem [. Applying Lemma
[ with ¢,, = b, the estimations ([[0) and ([[1) still hold for F} and F; respec-
tively. In order to control the last term Fj, for any Borel subset A of [0, 1]%,
we denote

~ 1
Zn(A, ak, ag-1) = 0 Z AnAN R)[|Xi(n, ax, ap—1)| — E|Xi(n, ar, ag-1)]].

n

i€An
We have
sup | Zn(A, ak, ax—1) — Zn( Ak, ar, ax1)]
AyCACAS
< % (A(nAf N R) — A(ndy, N R)[| Xi(n, ak, ap—1)| — E|Xi(n, ag, ag_1)]]
i€An

n )
+ 2b—E|X0(n,ak,ak_1)| i

d
~ ~ n
= Zn(A;:a ag, a’k—l) - Zn(Ak7 ag, ak—l) + Qb—E|X0(’I'L, A, a’k—l)| 5]3

12



Using Lemma [, we derive

max }ZTL(A;ualmak1>_Zn<Ak7ak7akl>}’
A, Af € A(Sk)

In the other hand
n? 62 nd

b E|X0(n, akaak—1)| 5;% < %—Tb—QEXSH\XO\@n-

So, the estimation ([J) still hold for F3 and choosing again ay = &/ (7/H(x41)),

we derive

2 = g
limsup —FE; < K E k1 VH(6) < K/ v H(z)dx = 0.
k=1 0 -

S K(ak,er(ék)—l—ékv H(ék))
Y1

n—0o0 x

Finally, the condition ([[3) holds and the sequence {U,'S,(A); A € A} is
tight in the space C(.A).

b) Finite dimensional convergence

For any Borel set A of [0, 1]¢ recall that T',(A) is the finite set defined by
I (A) =nANZ*and denote St,,(4) = Eian(A) X;.

Lemma 3 Let A be a reqular Borel set of [0,1]¢ with A(A) > 0. For any
x >0, we have

lim P (U, "|Sn(A) = Sr,(a)| > z) =0.

n—oo

Proof of Lemma[]. Consider the subsets of Z4

and set a; = A(nAN R;) — Ler, (). Since a; equals zero if ¢ belongs to A,
we have

1€ A3
Let 7 > 0 and recall that X, = X; 1,x,/<7,. We have

P (U, 'S0(A) = St > x) < P+ P+ Py
Z a'iXi,n

P1:P< >l‘bn/2>
1€Asg

Py =P (Uy <0,/2) —— 0 (by (@)
Py = nP (|X,| > 7b,) — 0 (by @)

where

13



Moreover
4] A3 n* 2
r*n b2 ’

Keeping in mind that n~%| 43| tends to zero as n goes to infinity (cf. Dedecker
[B]) and using (f]) then the proof of Lemma [J is complete.

Lemma 4 For any regular Borel set A in A, the sequence (Un_lSpn(A))n>1

converge in distribution to \/A(A) e where € has the standard normal law.

Proof of Lemma[. Let > 0, n € N* and A € A be fixed. We have

zan (A zan A)

—1 SFn

n2(A
nl(A

Using Theorem 3.3 in [[J], we derive that T,,1(A) converges in distribution
to the standard normal law. So, it suffices to prove that T} ,(A) converges
in probability to A(A). Let 7 > 0 be fixed. Denoting X;,, = X; 1 x,j<s, and
Xin=X; — Xi,, we have

T25(A) - Zz’gz“‘ —A(A)].

(. J
~~

*) (+)

T2,(A) — A(A)| < ‘Zzernm
ZGA

(14)

Now, noting that X? = X2 + X7 we derive

zn7

) B ’ Zz’eAn X@%n Zz’ern(A X‘2 - Zz’eA X'2 Zz‘el‘n(A) X@%n
N EzeAn X2 ZzeAn X2
EzeA i,n Ezern B ZzeA Xz N Zzel‘ Xzzn ’
ZzEA X P Dienn Xin

2

X
S 9 ZzeAn Z,2'n
ZieAn XZ
=2(1—R,)
where )
R _ ZieAn Xivn < 1
n — Z R X—2 ~ a.s.
1€ENARp )

14



Let x > 0 be fixed. Using () we derive that

P((x) > 3z) < P((+) > 0) < P(R, < 1) < n?P(|Xo| > 7b,) — 0. (15)

n—-400
In the other hand,
Dier (A) X? 1
e YR L o SR
ZZEA Xj bn i€l (A) bn iely
<oy X i
n 1€, n 1€l (A)
I, (A
DL L D A |
ZGA n ’LEFn(A) N n -~ v
"/‘nfl 7:2 Tn,3
By (B) and the point (i) of Lemma B, it is clear that
Yn,3 — 0. (16)
Noting that
X2
b2 Z = 7Z6A” X R, as.
€Ay "
we have
X2
P(yn1 > 2) <P (|1 = Ry| > 2/2) + P < 1— % > :L’/Q)
o X?
<P(R, < 1)+IP’(‘1 - % >x/2)
X2
< nP(|Xo| > 7b,) + P (’1 - % > x/2) :
Using () and ([7), we obtain
P(vyp1 > x) —— 0. (17)

n—0o0

15



We have also

P(ype > 1) < 2 F X}, — EX2,
1€l (A)

40,4

472652 9
< T n(A)EXZ,
B 472 |1, (A)| " nd

dy2 2
nix b2

<

EX,.

Consequently, using (f) and the point (i) in Lemma [, we derive

, 472\(A)
nkrfw P(yn2 > x) < o

Now, combining ([[@), ([7) and ([§), we obtain
472\ (A)

2

lim P((x%) > 3x) <

n—-+oo T

Combining ([[4)), (15) and ([L9), it follows that

lim P (|T2,(A) — M(4)| > 62) <

n— 00 SU2

Since 7 > 0 can be arbitrarily small, we obtain

lim P (|T7,(A) — M(A)| > 6x) = 0.

n—-4o0o

Fn(A)‘E (X02,n - EXg,n)2

472)\(A)

(18)

(19)

Finally, 77 ,(A) converges in probability to A(A) and the proof of Lemma [
is complete. The convergence of the finite-dimensional laws of the sequence
{U1S,(A); A € A} follows then from Lemmas B and l. The proof of Theo-

rem B is complete.

3.3 Proof of Theorem

Without loss of generality, we assume that p is a positive integer. Consider
the field X = (Xj)gpeza of i.i.d. integer-valued random variables defined on
a probability space (2, F, i) by the following property: the random variable

16



X is symmetric and satisfies u(Xy = 0) = 0 and u(|Xo| > k) = k777! for
any integer k > 1. The random field X is p-integrable since

E(|XoPP) =) ullXo| = k'7)

k>1

= Z EVP < 4o

k>1
Let us fix an integer r > 1 and consider the following numbers:
n, =47,
o=l =2t
ke = nfu(Xo > B;) = 2707,
e\ /2
67’ — _r — 2_Td(p+1)/2
ng
One can notice that (n,),>1, (8r)r>1 and (k,),>1 are increasing sequences
of positive integers while (g,),>1 is a decreasing sequence of positive real
numbers which converges to zero. We define the class A, as the collection of

all Borel subsets A of [0, 1]¢ with the following property: A is empty or there
exist 4 = (i1, ..., i1.4) in {1,...,n,}% 1 <1 <k, such that

ke - . . . .
u1—1 14, ua—1 14
PR o S N R BV U T |
ny ny ny ny

=1

Now, denote

A=DB,UC,

where

r—1 +o00
Br = U.Aj and Cr = U.Aj
j=1 j=r
nd
For any integer j > 1, the cardinal |A;| of A; equals 1 + ( kj ), hence
J

r—1 d
N<Br7p78r> < Z (1 —+ ( 7;] )) < QTngkr.
j J

Jj=1

On the other hand, since each element of the class C, belongs to the ball with
center () and radius &,, it follows that N(C,, p,e,) = 1. Noting that

N(A, p,e.) < N(B,,p,er) + N(Cr,p,er),

17



we obtain
N(A, p,e.) <1+ 2rnde

and also
H(A, p,e,) =log N(A,p,e,) < 3dk,log n,.

Finally, there exists K > 0 such that

+00 +oo
Z er1VH(A, pe) < Z er—11/3dk, log n,
r=2 r=2

10 Hrd(p—1)/2
2rdp=1)/2 /r
S K Z ord(p+1)/2

r=2
+o0o

\/F
r=2

Consequently, the class A satisfies the metric entropy condition (B). Now, we
are going to see that the partial sum process {n=%25,(A); A € A} defined
by ([) is not tight in the space C'(A). It is sufficient (Pollard, 1990) to show
that there exists ¢ > 0 such that

limlimsup p | sup n’d/Q‘Sn(A) — Su(B)| =6 | >o0.
0—0 p—too A,BeA
p(A,B)<é

For any integer r > 1, denote A, = {1,...,n,}¢ and define W, as the set of
all w in €2 such that

D xiwzsy = k-

€N,

Lemma 5 There exists a constant ¢ > 0 such that for any integer r > 1,
p(Wy) = c. (20)
Proof of Lemma[]. Let r > 1 be fixed. For any i in A,, denote
Y = lix,>5,) — u(Xo > Br).

The family {Y;; ¢ € A, } is a finite sequence of i.i.d. centered random variables
bounded by 2. So, using a lower exponential inequality due to Kolmogorov
(Ledoux and Talagrand, 1991, Lemma 8.1), it follows that for any v > 0,
there exist positive numbers K () (large enough) and £(7y) (small enough)

18



depending on 7y only, such that for every ¢ satisfying t > K(v)b and 2t <
e(y)b?,
L (Z Y, > t) > exp (—(1 4 7)t*/2b%)
i€,

where b* = 37\
stant K such that

EY?. In particular, there exists a positive universal con-

m <Z Y; > Kb) > exp (—K?).

€N,

Noting ¢ = exp(—K?) > 0 and keeping in mind the definitions of the constant
k, and the random variable Y;, we derive

) (Z ﬂ{XzZ,@r} > Kb+ kr> > c.
1€EA,

Finally, Inequality (B0) follows from the fact that Kb > 0 and the proof of
the lemma is complete. The proof of Lemma [ is complete.

Let w be fixed in the set W, and denote

P:(w) = {'L € Ar§ Xz(w) > ﬁr}
By definition of the set W,., we know that |['}(w)| > k.. Let [';(w) be a subset
of I'(w) such that |I';(w)| = k, and define

. S
Aw) = | }“n ZL—l}x x}ld ,Z—d}eArcA.
1€l (w) T T

ny ny

For any w in W, and any 7 in A,., we have

)‘(nrAr(w) N Rz) - HFT(W) (Z)

19



Consequently, we have

28, (An(w)) = 0,7y " A, Ar(w) N Ry) Xi(w)
€A,
=n 7 Y Xi(w)
1€l (w)
> n, 2|0, (w)] B,
= n_d/riﬁr
= nd/2/~L<XO > ﬁr)ﬁr

d/Qﬁ P

5
Thus, for any integer r > 1 and any w in W,., we have

n, 428, (A (w))] > 1/2. (21)

Let 6 > 0 be fixed. There exists an integer R such that for any » > R and
any w in W,, M(A,(w)) = k./n? < §%. Then, using the lower bounds (20)
and (R1)), it follows that for any r > R,

pl| sup |0 Y28, (A) —n Y28, (B)| > 1/2
A,BeA
p(A,B)<é

> | sup ’n 25, (A )’ >1/2
AeA
A(A)<§?

ZM({WGWr

= p(W,) > ¢ >0.

125, (A ()] 2 1/2} )

Finally, we have shown that for any § > 0,

limsupp | sup |n~ 426, (A) — n’d/QSn(B)‘ >1/2 | >¢>0.
n—-+o0o A,BEA
p(A,B)<6

The proof of Theorem { is complete.
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