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Abstract

We revisit in this paper the probabilistic coloring problem ( ) and focus
ourselves on bipartite and split graphs. We first give some general properties dealing with the optimal
solution. We then show that the unique 2-coloring achieves approximation ratio 2 in bipartite graphs
under any system of vertex-probabilities and propose a polynomial algorithm achieving tight approxima-
tion ratio 8/7 under identical vertex-probabilities. Then we deal with restricted cases of bipartite graphs.
Main results for these cases are the following. Under non-identical vertex-probabilities -
  is polynomial for stars, for trees with bounded degree and a fixed number of distinct
vertex-probabilities, and, consequently, also for paths with a fixed number of distinct vertex-probabilities.
Under identical vertex-probabilities,   is polynomial for paths, for even and
odd cycles and for trees whose leaves are either at even or at odd levels. Next, we deal with split graphs
and show that   is NP-hard, even under identical vertex-probabilities. Finally,
we study approximation in split graphs and provide a 2-approximation algorithm for the case of distinct
probabilities and a polynomial time approximation schema under identical vertex-probabilities.

1 Preliminaries

In minimum coloring problem, the objective is to color the vertex-set V of a graph G(V, E) with as few colors

as possible so that no two adjacent vertices receive the same color. Since adjacent vertices are forbidden to be

colored with the same color, a feasible coloring can be seen as a partition of V into independent sets. So, the

optimal solution of minimum coloring is a minimum-cardinality partition into independent sets. The decision

version of this problem was shown to be NP-complete in Karp’s seminal paper ([13]). The chromatic number
of a graph is the smallest number of colors that can feasibly color its vertices.

In the probabilistic version of minimum coloring, denoted by  , we are given:

• a graph G(V, E) of order n, and an n-vector Pr = (p1, . . . , pn) of vertex-probabilities; in other

words, an instance of   is a pair (G,Pr);

• a modification strategy M, i.e., an algorithm that when receiving a coloring C = (S1, . . . , Sk) for V ,

called a priori solution, and a subgraph G′ = G[V ′] of G induced by a sub-set V ′ ⊆ V as inputs, it

modifies C in order to produce a coloring C ′ for G′.

The objective is to determine a coloring C∗ (called optimal a priori solution) of G minimizing the quantity

(commonly called functional) E(G, C, M) =
∑

V ′⊆V Pr[V ′]|C(V ′, M)| where C(V ′, M) is the solution

computed by M(C, V ′) (i.e., by M when executed with inputs the a priori solution C and the subgraph of G
induced by V ′) and Pr[V ′] =

∏

i∈V ′ pi
∏

i∈V \V ′(1− pi) (there exist 2n distinct sets V ′; therefore, explicit

computation of E(G, C, M) is, a priori, not polynomial). The complexity of   is

the complexity of computing C∗.
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In this paper, we study   under the following simple but intuitive modification

strategy M: given an a priori solution C, take the set C ∩ V
′ as solution for G[V′], i.e.,

remove the absent vertices from C. Let us note that motivation of   by two real-

world applications, the former dealing with timetabling and the latter with planning, is given in [17]. Since

the modification strategy M is fixed for the rest of the paper we will simplify notations by using E(G, C)
instead of E(G, C, M) and C(V ′) instead of C(V ′, M). Set k′ = |C(V ′)|, and consider the facts Fj: color Sj

has at least a vertex and F̄j: there is no vertex in color Sj. Then, denoting by 1Fj
and 1F̄j

, respectively,

their indicator functions, k′ can be written as k′ =
∑k

j=1 1Fj
=
∑k

j=1(1 − 1F̄j
), and E(G, C) can be

written as:

E(G, C) =
∑

V ′⊆V

Pr
[

V ′
]





k
∑

j=1

(

1 − 1F̄j

)





=
∑

V ′⊆V

Pr
[

V ′
]

k
∑

j=1

1 −
∑

V ′⊆V

Pr
[

V ′
]

k
∑

j=1

1Sj∩V′=∅

=
k
∑

j=1

∑

V ′⊆V

Pr
[

V ′
]

−
k
∑

j=1

∑

V ′⊆V

Pr
[

V ′
]

1Sj∩V′=∅ = k −
k
∑

j=1

∏

vi∈Sj

(1 − pi)

=
k
∑

j=1



1 −
∏

vi∈Sj

(1 − pi)



 (1)

It is easy to see that computation of E(G, C) can be performed in at most O(n2) steps, consequently,

  ∈ NP. On the other hand, from (1), we can easily characterize the optimal

a priori solution C∗ for  : if the value of an independent set Sj of G is 1 −
∏

vi∈Sj
(1 − pi) then the optimal a priori coloring for G is the partition into independent sets for which the sum

of their values is the smallest over all such partitions.
  has been originally studied in [17, 18], where complexity and approxima-

tion issues have been considered for general graphs and several special configuration graphs such as bipartite

graphs, complements of bipartite graphs and others.

Besides   , restricted versions of routing and network-design probabilistic min-

imization problems defined on complete graphs have been studied in ([2, 4, 5, 6, 8, 9, 10, 11]). In [16] the

minimum vertex covering problem in general and in bipartite graphs is studied, while in [14, 15] the longest

path and the maximum independent set, respectively, are tackled.

Dealing with   in bipartite graphs, it is shown in [17] that it is NP-hard even

if the input has only four distinct vertex-probabilities with one of them being equal to 0. Moreover, a poly-

nomial algorithm was devised, achieving approximation ratio bounded above by 2.773. The NP-hardness

result of [17] left, however, several open questions. For instance, “what is the complexity of 

 when we further restrict inputs, say in paths, or trees, or cycles, or stars, . . . ?”, etc. In this paper,

we prove that, under non-identical vertex-probabilities,   is polynomial for stars

and for trees with bounded degree and a fixed number of distinct vertex-probabilities and we deduce as a

corollary that it is polynomial also for paths with a fixed number of distinct vertex-probabilities. Then, we

show that, assuming identical vertex-probabilities, the problem is polynomial for paths, for even and odd

cycles and for trees all leaves of which are either at even or at odd levels. We finally focus ourselves on split

graphs and show that, in such graphs,   is NP-hard, even assuming identical

vertex probabilities.

Let A be a polynomial time approximation algorithm for an NP-hard minimization graph-problem Π,

let m(G, S) be the value of the solution S provided by A on an instance G of Π, and opt(G) be the value of

the optimal solution for G (following our notation for  , opt(G) = E(G, C∗)).
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Graph-classes Complexity Approximation ratio

Bipartite ? 2

Bipartite, pi > 0.5 Polynomial

Bipartite, pi identical ? 8/7

Trees ?

Trees, bounded degree, k distinct probabilities Polynomial

Trees, all leaves exclusively at even or odd level, identical pi’s Polynomial

Stars Polynomial

Paths ?

Cycles ?

Even or odd cycles, pi identical Polynomial

Split NP-complete 2

Split, pi identical NP-complete 1 + ǫ, for any ǫ > 0

Table 1: Summary of the main results of the paper.

The approximation ratio ρA(G) of the algorithm A on G is defined as ρA(G) = m(G, S)/opt(G). An

approximation algorithm achieving ratio, at most, ρ on any instance G of Π will be called ρ-approximation

algorithm. A polynomial time approximation schema is a sequence Aǫ of polynomial time approximation

algorithms which when they run with inputs a graph G (instance of Π) and any fixed constant ǫ > 0, they

produce a solution S such that ρAǫ(G) 6 1 + ǫ.

Dealing with approximation issues, we show that the unique 2-coloring (where all nodes of each par-

tition share the same color) achieves approximation ratio 2 in bipartite graphs under any system of vertex-

probabilities. Furthermore, we propose a polynomial algorithm achieving approximation ratio 8/7 under

identical vertex-probabilities. Both results importantly improve the 2.773 bound of [17]. We also pro-

vide a 2-approximation polynomial time algorithm for split graphs under distinct vertex-probabilities and a

polynomial time approximation schema when vertex-probabilities are identical.

Table 1 summarizes the main results and open questions arising from the paper. Obviously, some of

these results have several important corollaries. For instance, the fact that   is

polynomial in trees with bounded degrees and a fixed number of distinct probabilities, has as consequence

that it is also polynomial in paths with a fixed number of distinct probabilities. Also, since 

 is approximable within ratio 2 in general (i.e., under any system of vertex-probabilities) bipartite

graphs, it is so in general trees, paths and even cycles, also.

2 Properties

2.1 Properties under non-identical vertex-probabilities

We give in this section some general properties about probabilistic colorings, upon which we will be based

later in order to achieve our results. In what follows, given an a priori k-coloring C = (S1, . . . , Sk) we will

set: f(C) = E(G, C), where E(G, C) is given by (1), and, for i = 1, . . . , k, f(Si) = 1−
∏

vj∈Si
(1−pj).

Property 1. Let C = (S1, . . . , Sk) be a k-coloring and assume that colors are numbered so that f(Si) 6

f(Si+1), i = 1, . . . , k − 1. Consider a vertex x (of probability px) colored with Si and a vertex y (of

probability py) colored with Sj , j > i, such that px > py. If swapping colors of x and y leads to a new

feasible coloring C ′, then f(C ′) 6 f(C).

Proof. Between colorings C and C ′ the only colors changed are Si and Sj . Then:

f
(

C ′
)

− f(C) = f
(

S′
i

)

− f (Si) + f
(

S′
j

)

− f (Sj) (2)
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Set now
S′

i = (Si \ {x}) ∪ {y}
S′

j = (Sj \ {y}) ∪ {x}

S′′
i = Si \ {x} = S′

i \ {y}
S′′

j = Sj \ {y} = S′
j \ {x}

(3)

Then, using notations of (3), we get:

f
(

S′
i

)

− f (Si) = 1 − (1 − py)
∏

vh∈S′′

i

(1 − ph) − 1 + (1 − px)
∏

vh∈S′′

i

(1 − ph)

= (py − px)
∏

vh∈S′′

i

(1 − ph) (4)

f
(

S′
j

)

− f (Sj) = 1 − (1 − px)
∏

vh∈S′′

j

(1 − ph) − 1 + (1 − py)
∏

vh∈S′′

j

(1 − ph)

= (px − py)
∏

vh∈S′′

j

(1 − ph) (5)

Using (4) and (5) in (2), we get:

f
(

C ′
)

− f(C) = (py − px)





∏

vh∈S′′

i

(1 − ph) −
∏

vh∈S′′

j

(1 − ph)



 (6)

Recall that, by hypothesis, we have f(Si) 6 f(Sj) and px > py ; consequently, by some easy algebra,

we achieve
∏

vh∈S′′

i
(1 − ph) −

∏

vh∈S′′

j
(1 − ph) > 0 and, since py − px 6 0, we conclude that the

right-hand-side of (6) is negative, implying that coloring C ′ is better than C, qed.

With very similar arguments and operations as for Property 1, the following property, that is a particular

case of Property 1, also holds.

Property 2. Let C = (S1, . . . , Sk) be a k-coloring and assume that colors are numbered so that f(Si) 6

f(Si+1), i = 1, . . . , k−1. Consider a vertex x colored with color Si. If it is feasible to color x with another

color Sj , j > i, (by keeping colors of the other vertices unchanged), then the new feasible coloring C ′

verifies f(C ′) 6 f(C).

Property 3. In any graph of maximum degree ∆, the optimal solution of   contains

at most ∆ + 1 colors.

Proof. If an optimal coloring C uses ∆ + k colors, k > 0, then, by emptying the least-value color (thing

always possible as there are at least ∆+1 colors) and due to Property 2, we achieve a ∆+1-coloring feasible

for G with value better than the one of C.

2.2 Properties under identical vertex-probabilities

Properties seen until now in this section work for any graph and for any vertex-probability system. Let us

now focus ourselves on the case of identical vertex-probabilities. Remark first that, for this case, Property 2

has a natural counterpart expressed as follows.

Property 4. Let C = (S1, . . . , Sk) be a k-coloring and assume that colors are numbered so that |Si| 6 |Si+1|,
i = 1, . . . , k − 1. If it is feasible to inflate a color Sj by “emptying” another color Si with i < j, then the

new coloring C ′, so created, verifies f(C ′) 6 f(C).
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Proof. Simply remark that if |Si| 6 |Sj |, then f(Si) 6 f(Sj) and apply the same proof as for Property 1.

Since, in the proof of Property 4, only the cardinalities of the colors intervene, the following corollary-

property consequently holds.

Property 5. Let C = (S1, . . . , Sk) be a k-coloring and assume that colors are numbered so that |Si| 6

|Si+1|, i = 1, . . . , k − 1. Consider two colors Si and Sj , i < j, and a vertex-set X ⊂ Sj such that,

|Si| + |X| > |Sj |. Consider (possibly unfeasible) coloring C ′ = (S1, . . . , Si ∪ X, . . . , Sj \ X, . . . , Sk).
Then, f(C ′) 6 f(C).

From now on we define those colorings C such that Properties 1, or 2, or 4 hold, as “balanced colorings”.

In other words, for a balanced coloring C, there exists a coloring C ′, better than C, obtained as described

in Properties 1, or 2, or 4. On the other hand, colorings for which transformations of the properties above

cannot apply will be called “unbalanced colorings”.

From the above definition, the following Proposition immediately holds.

Proposition 1. For any balanced coloring, there exist an unbalanced one dominating it.

Let us further restrict ourselves to bipartite graphs. Remark first that the cases of vertex-probability 0 or 1 are

trivial: for the former any a priori solution has value 0; for the latter,   coincides

with the classical (deterministic) coloring problem where the (unique) 2-coloring is the best one.

Consider a bipartite graph B(U, D, E) and, without loss of generality, assume |U | > |D|. Also, denote

by α(B) the cardinality of a maximum independent set of B. Then the following property holds.

Property 6. If α(B) = |U |, then 2-coloring C = (U, D) is optimal.

Proof. Suppose a contrario that C is not optimal, then the optimal coloring C ′ uses exactly k > 3 colors

and its largest cardinality color S′
1 has cardinality β. Consider the following exhaustive two cases:

α(B) = β: then, it is sufficient to aggregate all the vertices not belonging to S′
1 into another color,

say S′
2; this would lead to a – possibly unfeasible – solution C ′′ which improves upon C ′ (due to

Proposition 1) and whose value coincides with the value of C;

α(B) < β: assume adding to color S′
1 exactly α(B)−β vertices from the other colors neglecting possible

unfeasibilities; the resulting solution C ′′ dominates C ′ (due to Proposition 1); but then, the largest

cardinality color S′′
1 has in solution C ′′ exactly α(B) vertices; hence, as for case α(B) = β, the

2-coloring C is feasible, and dominates both C ′′ and C ′.

3 General bipartite graphs

We first give an easy result showing that the hard cases for   are the ones where

vertex-probabilities are “small”. Consider a bipartite graph B(U, D, E) and denote by pmin its smallest

vertex-probability.

Proposition 2. If pmin > 0.5, then the unique 2-coloring C = (U, D) is optimal for B.

Proof. If pmin > 0.5, then, for any color Si of any coloring C ′ of B, 1 > f(Si) > 0.5. Hence, for any

feasible coloring C ′ of B, f(C ′) > 0.5|C ′| > 0.5. On the other hand, as f(C) < 2, the optimal coloring

can never use more than 3 colors. So, at a first time, an optimal coloring of B uses either 2, or 3 colors.

Consider any 3-coloring C ′ of B. Due to Properties 1 and 2, the best 3-coloring ever reachable (and

possibly unfeasible) is coloring C ′′ = (S′′
1 , S′′

2 , S′′
3 ) assigning color S′′

1 to a vertex of B with lowest probability

(denote by v such a vertex), color S′′
2 to a vertex with the second lowest probability (denote by p′min this

5



probability and by v′ such a vertex) and color S′′
3 to all the other vertices of B. It is easy to see that

f(S′′
3 ) > f(S′′

2 ) > f(S′′
1 ). More precisely,

f
(

S′′
1

)

= pmin (7)

f
(

S′′
2

)

= p′min > pmin (8)

f
(

S′′
3

)

> p′min > pmin

Using (7) and (8) and the fact that pmin > 0.5, we get:

f
(

S′′
1

)

+ f
(

S′′
2

)

> 2pmin > 1 (9)

We will prove that f(U) + f(D) 6 f(S′′
1 ) + f(S′′

2 ) + f(S′′
3 ). For this, we distinguish the following four

exhaustive cases, depending on the fact that v and v′ belong to U , or to D:

1. v ∈ U and v′ ∈ D;

2. v ∈ D and v′ ∈ U ;

3. v, v′ ∈ U ;

4. v, v′ ∈ D.

We will examine Cases 1 and 3 as Case 2 is exactly specular to the former and Case 4 to the latter.

For Case 1, using (7), (8) and (9), one has to show that

1 + 1 −
∏

vi∈(U∪D)\{v,v′}

(1 − pi) = 2 −
∏

vi∈(U∪D)\{v,v′}

(1 − pi)

> 1 −
∏

vi∈U

(1 − pi) + 1 −
∏

vi∈D

(1 − pi) = 2 −
∏

vi∈U

(1 − pi) −
∏

vi∈D

(1 − pi) (10)

or, equivalently,

∏

vi∈(U∪D)\{v,v′}

(1 − pi) − (1 − pmin)
∏

vi∈U\{v}

(1 − pi) −
(

1 − p′min

)

∏

vi∈D\{v′}

(1 − pi) 6 0 (11)

Set Γ1 =
∏

vi∈U\{v}(1 − pi) and Γ2 =
∏

vi∈D\{v′}(1 − pi). Then, (11) becomes:

Γ1Γ2 − (1 − pmin) Γ1 −
(

1 − p′min

)

Γ2 6 0 (12)

Taking into account that 1 − pmin > Γ1 and 1 − p′min > Γ2, (12) becomes Γ2
1 + Γ2

2 − Γ1Γ2 = (Γ1 −
Γ2)

2 + Γ1Γ2 > 0, that is always true. The proof of Case 1 is complete.

We now analyze Case 3. By analogy with (11), we have to show that

∏

vi∈(U∪D)\{v,v′}

(1 − pi) − (1 − pmin)
(

1 − p′min

)

∏

vi∈U\{v,v′}

(1 − pi) −
∏

vi∈D

(1 − pi) 6 0 (13)

Set this time Γ1 =
∏

vi∈U\{v,v′}(1 − pi) and Γ2 =
∏

vi∈D(1 − pi). Then, (13) becomes:

Γ1Γ2 − (1 − pmin)
(

1 − p′min

)

Γ1 − Γ2 6 0 (14)

or, equivalently Γ2(Γ1 − 1) 6 (1− pmin)(1− p′min)Γ1, which is always true since the left-hand quantity is

negative and right-hand one is positive. This completes the proof of Case 3 and of the proposition.
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1

n + 1

2n

2 n

Figure 1: A tree with a 3-coloring of better value than the one of its 2-coloring.

When vertex-probabilities are generally and typically smaller than 0.5, the situation completely changes

with respect the result of Proposition 2. Indeed, in this case, it is possible to provide instances, even with

identical vertex-probabilities, where the 2-coloring does not provide the optimal solution. For instance,

consider the tree T of Figure 1, where vertex 1 (the tree’s root) is linked to vertices n + 1, . . . , 2n and

vertex 2n is linked to vertices 1, . . . , n.

Assume that vertex-probabilities of the vertices of T are all equal to p ≪ 0.5. Then, the 2-coloring

{{1, . . . , n}, {n + 1, . . . , 2n}} has value f2 = 2(1 − (1 − p)n), while the 3-coloring {{1}, {2, . . . , 2n −
1}, {2n}} has value f3 = 2(1− (1− p)) + (1− (1− p)2n−2). For p small enough and n large enough, we

have f2 ≈ 2 and f3 ≈ 1.

The example of Figure 1 generalizes the counter-example of [17], dealing only with bipartite graphs, and

shows that not only in general bipartite graphs but even in trees (that are restricted cases of bipartite graphs)

the obvious 2-coloring is not always the optimal solution of   .

In [17], it is shown that the natural 2-coloring is a 2.773-approximation of  

in bipartite graphs. In the following proposition, based upon Property 1, we improve this bound to 2.

Proposition 3. In any bipartite graph B(U,D,E), its unique 2-coloring C = (U, D) achieves approximation
ratio bounded by 2. This bound is tight.

Proof. Consider a bipartite graph B(U, D, E). A trivial lower bound on the optimal solution cost (due to

Property 1) is given by the unfeasible 1-coloring U ∪ D with all the vertices having the same color. Hence,

denoting by C∗, an optimal coloring of B, we have:

f(U ∪ D) 6 f (C∗) (15)

Assume that f(U) 6 f(D). Then, since D ⊆ U ∪ D, f(D) 6 f(U ∪ D). Therefore, using (15)

f(C) = f(U) + f(D) 6 2f(D) 6 2f(U ∪ D) ≤ 2f(C∗), qed.

For tightness, consider the 4-vertex path of Figure 2. The 2-coloring has value 2 − 2ǫ + 2ǫ2, while the

3-coloring {1, 4}, {2}, {3} has value 1 + 2ǫ − ǫ2. For ǫ → 0, the latter is the optimal solution and the

approximation ratio of the two coloring tends to 2.

From the tightness of the bound provided in Proposition 3, the following corollary holds immediately.

Corollary 1. The natural 2-coloring is not always optimal even when dealing with paths (or trees), under distinct
vertex-probabilities. This coloring constitutes a tight 2-approximation for all these graph-families.

We now restrict ourselves to the case of identical vertex-probabilities and consider the following algorithm,

denoted by 3-COLOR in what follows:

1. compute and store the natural 2-coloring C0 = (U, D);

2. compute a maximum independent set S of B;
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Figure 2: Ratio 2 is tight for the 2-coloring of a bipartite graph.

3. output the best coloring among C0 and C1 = (S, U \ S, D \ S).

Obviously, 3-COLOR is polynomial, since computation of a maximum independent set can be performed in

polynomial time in bipartite graphs ([7]).

Proposition 4. Algorithm 3-COLOR achieves approximation ratio bounded above by 8/7 in bipartite graphs with
identical vertex-probabilities. This bound is asymptotically tight.

Proof. Consider an optimal solution C∗ = (S∗
1 , S∗

2 , . . . S∗
k), and assume that |S∗

1 | > |S∗
2 | > . . . > |S∗

k |.
Set n = |U ∪ D|, n1 = |S| and n2 = n − |S| = n − n1. Obviously, n1 > n2.

Based upon Property 4, the worst case for C0 is reached when it is completely balanced, i.e., when

|U | = |D|. In other words,

f (C0) = f(U) + f(D) 6 2
(

1 − (1 − p)
n1+n2

2

)

(16)

By exactly the same reasoning,

f (C1) = f(S) + f(U \ S) + f(D \ S) 6 1 − (1 − p)n1 + 2
(

1 − (1 − p)
n2
2

)

(17)

Remark also that |S∗
1 | 6 |S1| = n1. If this inequality is strict, then, applying Property 4, one, by emptying

some colors S∗
j , j > 1, can obtain a (probably infeasible) coloring C ′ such that f(C ′) 6 f(C∗) and the

largest color of C ′ is of size n1; in other words,

f (C∗) > f
(

C ′
)

> 1 − (1 − p)n1 + 1 − (1 − p)n2 (18)

Setting β = (1 − p)n1/2, α = (1 − p)n2/2 and using (16), (17) and (18), we get (omitting, for simplicity,

to index ρ by 3-COLOR):

ρ(B) = min

{

f (C0)

f (C∗)
,
f (C1)

f (C∗)

}

6 min

{

2(1 − αβ)

2 − α2 − β2
,
3 − β2 − 2α

2 − α2 − β2

}

(19)

Since n2 6 n1, 0 6 β 6 α < 1. We now show that function f1(x) = 2(1 − βx)/(2 − x2 − β2) is

decreasing with x in [β, 1[, while function f2(x) = (3 − β2 − 2x)/(2 − x2 − β2) is increasing with x in

the same interval. Indeed, by elementary algebra, one immediately gets:

f ′
1(x) =

−2β(x − β)
(

x −
(

2−β2

β

))

(2 − x2 − β2)2
(20)

f ′
2(x) =

−2(x − 1)
(

x −
(

2 − β2
))

(2 − x2 − β2)2
(21)
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In (20), (2 − β2)/β > 1; so, f ′
1(x) is positive for x ∈ [β, 1[ and, consequently f1 is increasing with x in

this interval. On the other hand, in (21), since x < 1 and β < 1, x − 1 6 0 and x − (2 − β2) 6 0. So,

f ′
2(x) is negative for x ∈ [β, 1[ and, consequently f2 is decreasing with x in this interval.

In all, quantity min{f1(α), f2(α)} achieves its maximum value for α verifying f1(α) = f2(α), or when

2(1 − αβ) = 3 − β2 − 2α, i.e., when α = (1 + β)/2. In this case (19) becomes (for β 6 1):

ρ(B) 6

2
(

1 −
(

1+β
2

)

β
)

2 −
(

1+β
2

)2
− β2

=
8 − 4β − 4β2

7 − 2β − 5β2
6

8

7

and the claim about the approximation ratio is proved.

For tightness, fix an n ∈ N and consider the following bipartite graph B(U, D, E) consisting of:

• an independent set S1 on 2n2 vertices; n2 of them, denoted by v1
U , . . . , vn2

U belong to U and the n2

remaining ones, denoted by v1
D, . . . , vn2

D belong to D;

• n paths P1, . . . , Pn of size 4 (i.e. on 3 edges); set, for i = 1, . . . , n, Pi = (p1
i , p

2
i , p

3
i , p

4
i ); S1 and

the n paths Pi are completely disjoint;

• two vertices u ∈ U and v ∈ D; u is linked to all the vertices of D and v to all the vertices of U ;

• for any vi ∈ U ∪ D, pi = p = ln 2/n.

The graph so-constructed is balanced (i.e., |U | = |D|) and has size 2n2 + 4n + 2. Figure 3 shows such a

graph for n = 2.

v1
U v2

U v3
U v4

U

v1
D v2

D v3
D v4

D

p1
1

p2
1

p3
1

p4
1

p1
2

p2
2

p3
2

p4
2

u

v

Figure 3: An 8/7 tightness instance with n = 2.

Apply algorithm 3-COLOR on the so-constructed graph B. Coloring C0 = (U, D) has value

f (C0) = 2
(

1 − (1 − p)n2+2n+1
)

(22)

On the other hand, one can see that a maximum independent set of B consists of the 2n2 vertices of S1 plus

two vertices per any of the n paths Pi, i = 1, . . . , n. Assume without loss of generality that the maximum

independent set computed in Step 2 of algorithm 3-COLOR is S = S1 ∪i=1,...,n {p1
i , p

4
i }. In this case,

|S| = 2n2 + 2n, and |U \ S| = |D \ S| = n + 1; hence, the value of the coloring C1 = (S, U \ S, D \ S)
examined in Step 3 has value

f (C1) = 1 − (1 − p)2n2+2n + 2
(

1 − (1 − p)n+1
)

(23)

Finally, consider the coloring Ĉ = (Ŝ1, Ŝ2, Ŝ3) of B where:
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• Ŝ1 = S1 ∪i=1,...,n {p1
i , p

3
i };

• Ŝ2 = {v} ∪i=1,...,n {p2
i , p

4
i };

• Ŝ3 = {u}.

Obviously,

f
(

Ĉ
)

= 1 − (1 − p)2n2+2n + 1 − (1 − p)2n+1 + p (24)

One can easily see that, for n → ∞ and for p = ln 2/n, (22), (23) and (24) give respectively: f(C0) → 2,

f(C1) → 2 and f(C∗) 6 f(Ĉ) → 7/4. This proves the statement about tightness of 3-COLOR and

completes the proof of the proposition.

Algorithm 3-COLOR is a simplified version of the following algorithm, denoted by MASTER-SLAVE1:

1. compute and store the natural 2-coloring (U, D);

2. set B1(U1, D1) = B(U, D);

3. set i = 1;

4. repeat the following steps until possible:

(a) compute a maximum independent set Si of Bi;

(b) set (Ui+1, Di+1) = (Ui \ Si, Di \ Si);

(c) compute and store coloring (S1, . . . , Si, Ui+1, Di+1);

5. compute and store coloring (S1, S2, . . .), where Si’s are the independent sets computed during the

executions of Step 4a;

6. output C, the best among the colorings computed in Steps 1, 4c and 5.

This algorithm, obviously provides solutions that are at least as good as the ones provided by 3-COLOR.

Therefore its approximation ratio for   is at most 8/7. We prove that it cannot

do better. Indeed, consider the counter-example of Proposition 4. After computation of S the surviving

graph consists of the vertex-set ∪i=1,...,n{p
2
i , p

3
i } ∪ {u, v}. In this graph, the maximum independent set

is of size n + 1 (say the vertices of the surviving subset of U ). In other words, colorings Ci computed, for

i > 2 by MASTER-SLAVE are the same as coloring C1 computed by 3-COLOR. So, the following corollary is

immediately concluded.

Corollary 2. Algorithm MASTER-SLAVE achieves approximation ratio bounded above by 8/7 in bipartite graphs
with identical vertex-probabilities. This bound is asymptotically tight.

Notice that the tightness of the bound 8/7 can be shown for algorithm 3-COLOR also on trees by means

of the following instance T presented in Figure 4, for n = 2. There, the root-vertex a0 of T has n2 + 1
children a1, . . . , an2 , b0. Vertices {a1, . . . , an2} have no children, while vertex b0 has n2 + 1 children

b1, . . . , , bn2 , c0. Again, vertices b1, . . . , bn2 have no children, while vertex c0 has 2n children c1, . . . , c2n.

Finally, vertex c2n has no children while any vertex ci, with i = 1, . . . , 2n − 1, has a single child-vertex di.

The tree T so-constructed gives, as in the previous example, a balanced bipartite graph (i.e., |U | = |D|)
and has size 2n2 + 4n + 2. Apply algorithm 3-COLOR to T . The 2-coloring C ′

0 = (U, D) has the same

value of before:

f
(

C ′
0

)

= 2
(

1 − (1 − p)n2+2n+1
)

(25)

1This kind of algorithms approximately solving a “master” problem ( in this case) by running a subroutine for a
maximization “slave” problem (   here) appears for first time in [12]; appellation “master-slave” for these
algorithms is due to [19].
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Figure 4: Lower bound 8/7 is attained for 3-COLOR even in trees (n = 4).

Also in this case, a maximum independent set of T consists of 2n2 + 2n vertices and we can assume,

without loss of generality, that the maximum independent set computed in Step 2 of algorithm 3-COLOR is

S′ = {a1, . . . , an2 , b1, . . . , bn2 , cn+1, . . . , c2n, d1, . . . , dn}. Then the coloring C ′ = (S′, U \ S′, D \ S′)
examined in Step 3 has value

f
(

C ′
)

= 1 − (1 − p)2n2+2n + 2
(

1 − (1 − p)n+1
)

(26)

Besides, coloring Ĉ ′ = (Ŝ′
1, Ŝ′

2, Ŝ′
3) with

• Ŝ′
1 = {a1, . . . , an2 , b1, . . . , bn2 , c1, . . . , c2n},

• Ŝ′
2 = {a0, c0, d1, . . . , d2n−1},

• Ŝ′
3 = {b0},

has value

f
(

Ĉ
)

= 1 − (1 − p)2n2+2n + 1 − (1 − p)2n+1 + p (27)

and, as all values in (25), (26) and (27) correspond to those related to the example of Figure 3, we get the

same 8/7 tight bound. Notice, however, that the proposed example does not guarantee the same tightness if

algorithm MASTER-SLAVE is applied instead of algorithm 3-COLOR.

4 Particular families of bipartite and “almost” bipartite graphs: trees and cycles

Let us first note that for “trivial” families of bipartite graphs, as graphs isomorphic to a perfect matching, or

to an independent set (i.e., collection of isolated vertices),   is polynomial, under

any system of vertex-probabilities. In fact, for the former case, the optimal solution is given by a 2-coloring

where for each pair of matched vertices, the one with largest probability is assigned to the first color, while

the other one is assigned to the second color. For the latter case, trivially, the 1-coloring is optimal.
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4.1 Trees

Recall that the counter-example of Figure 2 shows that the natural 2-coloring is not always optimal in paths

under distinct vertex-probabilities. In what follows, we exhibit classes of trees where  -

 is polynomial. As previously, we assume, that |U | > |D|.

Proposition 5.   is polynomial in trees with bounded degree and with bounded
number of distinct vertex-probabilities.

Proof. Consider a tree T (N, E) of order n and denote by ∆ its maximum degree. Let p1, . . . , pk be

the k distinct vertex-probabilities in T , ni be the number of vertices of T with probability pi and set M =
∏k

i=1{0, . . . , ni}. Recall finally that, from Property 3, any optimal solution of  

in T uses at most ∆ + 1 colors.

Consider a vertex v ∈ N with δ children and denote them by v1, . . . , vδ. Let c ∈ {1, . . . , ∆ + 1} and

Q = {q1, . . . , q∆+1} ∈ M∆+1 where, for any j ∈ {1, . . . , ∆+1}, qj = (qj1 , . . . , qjk
) ∈ M . We search if

there exists a coloring of T [v], i.e., of the sub-tree of T rooted at v verifying both of the following properties:

• v is colored with color c;

• qij vertices with probability pi are colored with color j.

For this, let us define predicate Pv(c, Q) with value true if such a coloring exists. In other words, we consider

any possible configuration (in terms of number of vertices of any probability in any of the possible colors)

for all the feasible colorings for T [v].
One can determine value of Pv if one can determine values of Pvi

, i = 1, . . . , δ. Indeed, it suffices that

one looks-up the several alternatives, distributing the qij vertices (of probability pi colored with color j) over

the δ children of v (qij may be qij − 1 if p(v) = pi and c = j). More formally,

Pv(c, Q) =
∨

(c1,...,cδ)

∨

(Q1,...,Qδ)

(

Pv1

(

c1, Q
1
)

∧ . . . ∧ Pvδ

(

cδ, Q
δ
))

(28)

where in the clauses of (28):

• for j = 1, . . . , δ, cj 6= c (in order that one legally colors v with color c),

• for s = 1, . . . , δ, Qs ∈ M∆+1 and

• for any pair (i, j):
δ
∑

s=1

qs
ji

=

{

qij − 1 if p(v) = pi and c = j
qij otherwise

Observe now that |M | 6 (n+1)k and, consequently, |M∆+1| 6 (n+1)k(∆+1). For any vertex v, there ex-

ist at most n|M∆+1| values of Pv to be computed and for any of these computations, at most (n|M∆+1|)δ

conjunctions, or disjunctions, have to be evaluated. Hence, the total complexity of this algorithm is bounded

above by n(n|M∆+1|)δ+1 ≤ (n + 1)∆(k∆+k+1)+1. To conclude it suffices to output the coloring corre-

sponding to the best of the values of predicate Pr(c, Q), where r is the root of T .

Corollary 3.   can be optimally solved in trees with complexity bounded above by
(n + 1)∆(k∆+k+1)+1 where k denotes the number of distinct vertex-probabilities.

Since paths are trees of maximum degree 2, we get also the following result.

Proposition 6.   is polynomial in paths with bounded number of distinct vertex-
probabilities. Consequently, it is polynomial for paths under identical vertex-probabilities.
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Let us note that for the second statement of Proposition 6, one can show something stronger, namely that 2-
coloring is optimal for paths under identical vertex-probabilities. Indeed, this case can be seen as an application

of Property 6. The maximum independent set in a path coincides with U as any vertex of D is adjacent (and

hence cannot have the same color) to a distinct vertex of U . This suffices to prove the proposition.

Consider now two particular class of trees, denoted by TE and TO, where all leaves lie exclusively either

at even or at odd levels, respectively (root been considered at level 0). Obviously trees in both classes can

be polynomially checked. We are going to prove that, under identical vertex-probabilities, 

 is polynomial for both TE and TO. To do this, we first prove the following lemma where, for a

tree T , we denote by NE (resp., NO) the even-level (resp., odd-level) vertices of T .

Lemma 1. Consider T ∈ TO (resp. in TE). Then NO (resp., NE) is a maximum independent set of T .

Proof. We prove the lemma for T ∈ TO; case T ∈ TE is completely similar. Set no = |NO|, ne = |NE |
and remark that no > 0 (otherwise, T consists of a single isolated vertex). We will show ab absurdo that

there exists a maximum independent set S∗ of T such that S∗ = NO (resp., S∗ = NE).

Suppose a contrario that any independent set S∗ verifies |S∗| > no. Then the following two cases can

occur.

S∗ ⊆ NE. This implies |S∗| 6 ne. Since any vertex in NE has at least a child, ne 6 no, hence |S∗| 6 no,

absurd since No is also an independent set and S∗ is supposed to be the maximum one.

S∗ ⊆ NO ∪ NE. In other words, S∗ contains vertices from both NO and NE . Then, for any vertex

e ∈ NE ∩ S∗ that is parent of a leaf, e has at least a children with no other neighbors in S∗. We

can then switch between S∗ and its children, obtaining so an independent set at least as large as S∗.

We can iterate this argument with the vertices of this new independent set (denoted also by S∗ for

convenience) lying two levels above e (i.e., the great-grandparents of the leaves). Let g be such a vertex

and assume that g ∈ S∗. Obviously, all its children are odd-level vertices and none of them is in S∗

(a contrario, S∗ would not be an independent set). Furthermore, none of these children can have a

child c ∈ S∗ because e is an even-level vertex previously switched off from S∗, in order to be replaced

by its children. Thus, we can again switch between g and its children, getting so a new independent

set S∗ larger than the previous one. We again iterate up to the root, always obtaining a new “maximum

independent set” larger than the older one. Moreover, at the end, the independent set obtained will

verify S∗ = NO.

Proposition 7. Under identical vertex-probabilities,   is polynomial in TO and TE .

Proof. By Lemma 1, trees in TO and TE fit Property 6. So, for these trees, 2-coloring is optimal.

To conclude this paragraph, we deal with stars and show that   is polynomial

there, under any probability system.

Proposition 8. Under any vertex-probability system 2-coloring is optimal for stars.

Proof. Remark first that the center of the star constitutes a color per se in any feasible coloring. Then,

Property 2 applied on star’s leaves suffices to conclude the proof.

4.2 Cycles

In what follows in this section, we deal with cycles Cn of size n with identical vertex-probabilities. We will

prove that in such cycles,   is polynomial.

Proposition 9.   is polynomial in even cycles with identical vertex-probabilities.

Proof. Remark that in even cycles, Property 6 applies immediately; therefore, the natural 2-coloring is

optimal.
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Proposition 10.   is polynomial in odd cycles with identical vertex-probabilities.

Proof. Consider an odd cycle C2k+1, denote by 1, 2, . . . , 2k + 1 its vertices and fix an optimal solution C∗

for it. By Property 3, |C∗| 6 3. Since C2k+1 is not bipartite, we can immediately conclude that |C∗| = 3.

Set C∗ = (S∗
1 , S∗

2 , S∗
3) and denote by S∗ a maximum independent set of C2k+1; assume S∗ = {2i : i =

1, . . . , k}, ie., |S∗| = k. By Property 2,

f (C∗) > f (S∗) + f∗
r = 1 − (1 − p)k + fr (29)

where f∗
r is the value of the best coloring in the rest of C2k+1, i.e., in the sub-graph of C2k+1 induced by

V (C2k+1)\S∗. This graph, of order k+1 consists of edge (v1, vk+1) and k−1 isolated vertices. Following,

once more Property 2, in a graph of order k + 1 that is not a simple set of isolated vertices, the ideal coloring

would be an independent set of size k and a singleton of total value 1− (1− p)k + p. So, using (29), we get:

f(C∗) > 2 − 2(1 − p)k + p. But the coloring Ĉ = (S∗, {2i − 1 : i = 1, . . . , k}, {2k + 1}) attains this

value; therefore it is optimal for C2k+1, qed.

5 Split graphs

We deal now with split graphs. This class of graphs is quite close to bipartite ones, since any split graph of

order n is composed by a clique Kn1
, on n1 vertices, an independent set S of size n2 = n − n1 and some

edges linking vertices of V (Kn1
) to vertices of S. These graphs are, in some sense, on the midway between

bipartite graphs and complements of bipartite graphs. In what follows, we first show that 

 is NP-hard in split graphs even under identical vertex-probabilities. For this, we prove that

the decision counterpart of   in split graphs is NP-complete. This counterpart,

denoted by   (K) is defined as follows: “given a split graph G(V, E) a system of

identical vertex-probabilities for G and a constant K 6 |V |, does there exist a coloring the functional of

which is at most K?”.

Proposition 11.   (K) is NP-complete in split graphs, even assuming identical
vertex-probabilities.

Proof. Inclusion of   (K) in NP is immediate. In order to prove completeness,

we will reduce 3-  ([7]) to our problem. Given a family S = {S1, S2, . . . , Sm} of subsets of

a ground set Γ = {γ1, γ2, . . . , γn} (we assume that ∪Si∈SSi = Γ) such that |Si| = 3, i = 1, . . . , m, we

are asked if there exists a sub-family S ′ ⊆ S , |S ′| = n/3, such that S ′ is a partition on Γ. Obviously, we

assume that n is a multiple of 3.

Consider an instance (S, Γ) of 3-  and set q = n/3. The split graph G(V, E) for -

  will be constructed as follows:

• family S is replaced by a clique Km (i.e., we take a vertex per set of S); denote by s1, . . . , sm its

vertices;

• ground set Γ is replaced by an independent set X = {v1, . . . , vn};

• (si, vj) ∈ E iff γj /∈ Si;

• p > 1 − (1/q);

• K = mp + q(1 − p) − q(1 − p)4.
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Figure 5 illustrates the split graph obtained, by application of the three first items of the construction above,

on the following 3- -instance:

Γ = {γ1, γ2, γ3, γ4, γ5, γ6}
S = {S1, S2, S3, S4, S5}

S1 = {γ1, γ2, γ3}
S2 = {γ1, γ2, γ4}
S3 = {γ3, γ4, γ5}
S4 = {γ4, γ5, γ6}
S5 = {γ3, γ5, γ6}

(30)

v1 v2 v3 v4 v5 v6

s1

s2
s3 s4 s5

Figure 5: The split graph obtained from 3- -instance described in (30).

Suppose that a partition S ′ ⊆ S , |S ′| = q = n/3 is given for (S, Γ, q). Order S in such a way that

the q first sets are in S ′. For any Si ∈ S ′, set Si = {γi1 , γi2 , γi3}. Then, subset {si, vi1 , vi2 , vi3} of V is an

independent set of G. Construct for G the coloring C = ({si, vi1 , vi2 , vi3}i=1,...,q, {sq+1}, . . . , {sm}). It

is easy to see that f(C) = q(1 − (1 − p)4) + (m − q)p = mp + q(1 − p) − q(1 − p)4 = K.

Conversely, suppose that a coloring C is given for G with value f(C) 6 K. There exist, in fact, two

types of feasible coloring in G:

1. C is as described just above, i.e., of the form: C = ({si, vi1 , vi2 , vi3}i=1,...,q, {sq+1}, . . . , {sm});

2. up to reordering of colors, C is of the form:

C = (S1, . . . , Sq4
, Sq4+1, . . . , Sq4+q3

, Sq4+q3+1, . . . , Sq4+q3+q2
,

{vq4+q3+q2+1} , . . . , {vm} , X ′
)

(31)

where:

• the q4 first sets are of the form: {si, vi1 , vi2 , vi3}, i = 1, . . . , q4,

• the q3 next sets are of the form: {si, vi1 , vi2}, i = q4 + 1, . . . , q4 + q3,

• the q2 next sets are of the form: {si, vi1}, i = q4 + q3 + 1, . . . , q4 + q3 + q2,

• the m− (q4 + q3 + q2) singletons are the remaining vertices of Km which form a color per such

vertex and

• X ′ is the subset of X not contained in the colors above;

remark that coloring C ′ = ({s1}, . . . , {sm}, X) is a particular case of (31) with q1 = q2 = q3 = 0.
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If C is of Type 1, then for any color {si, vi1 , vi2 , vi3}, i = 1, . . . , q, we take set Si in S ′. By construction

of G, set Si covers elements γi1 , γi2 and γi3 of the ground set Γ. The q sets so selected form a partition on Γ
of cardinality q.

Let us now assume that C is of Type 2 (see (31)). Note first that, for coloring C ′ mentioned at the end

of Item 2 above, and for p > 1 − (1/q):

f
(

C ′
)

= mp + (1 − (1 − p)n) > mp + q(1 − p) − q(1 − p)4 = K (32)

Remark first that color X ′ (see Item 2) can never satisfy |X ′| > 4; a contrario, using the unbalancing

argument of Property 4, since X ′ is the largest color, coloring C ′ would have value smaller than the one

of C; hence the latter value would be greater than K (see (32)). Therefore, we can assume |X ′| 6 3. In this

case, one can, by keeping the q4 colors of size 4 unchanged, progressively unbalance the rest of the colors

in order to create new (possibly unfeasible) 4-colors. This can be done by moving vertices from the smaller

colors to the larger ones and is always possible since n − 3q4 is a multiple of 3. Therefore, at the end of this

processus, one can obtain exactly q (possibly unfeasible) 4-colors, the remaining vertices been colored with

one color by vertex. Denoting by C ′′ the “coloring” so obtained, we have obviously, f(C ′′) = K < f(C).
Therefore, by the discussion above, the only coloring having value at most K is the one of Type 1, qed.

Split graphs are particular cases of larger graph-family, the chordal graphs (graphs for which any cycle of

length at least 4 has a chord ([3])).

Corollary 4.   is NP-hard in chordal graphs even under identical vertex-probabi-
lities.

For the rest of this section we deal with approximation of   in split graphs.

Let G(K, S, E) be such a graph, where K is the vertex set of the clique (|K| = m) and S is the independent

set (|S| = n). Fix an optimal   -solution C∗ = (S∗
1 , S∗

2 , . . . , S∗
k) in G(K, S, E).

Lemma 2. m 6 k 6 m + 1.

Proof. Since vertex-set K forms a clique, any solution in G will use at least m colors. On the other hand,

if C∗ uses more than m colors, this is due to the fact that there exist elements of S that cannot be included in

any of the m colors associated with the vertices of K. If at least two such colors are used, then, since both of

them are proper subsets of S (recall that S is an independent set), the unbalancing argument of Property 1,

would conclude the existence of a solution better than C∗, a contradiction.

Consider now the natural coloring, denoted by C, consisting of taking an unused color for any vertex

of K and a color for the whole set S (in other words C uses m + 1 colors for G).

Proposition 12. Coloring C is a 2-approximation for split graphs under any system of vertex-probabilities.

Proof. Denote by C∗ = (S∗
1 , S∗

2 , . . . , S∗
k), an optimal solution in G and assume that colors are ranged in

decreasing-value order, i.e., f(S∗
i ) > f(S∗

i+1), i = 1, . . . , k − 1. From Lemma 2, m 6 k 6 m + 1. If

k = m + 1 and S∗
1 is the color that is a subset of S, then unbalancing arguments of Property 2 conclude

that C is optimal. Hence, assume that S∗
1 is a color including a vertex of K and vertices of S. For reasons

of facility assume also that, upon a reordering of vertices, vertex vi ∈ K is included in color S∗
i ; also denote

by pi, the probability of vertex vi ∈ K and by qi the probability of a vertex vi ∈ S. Then,

f(C) =
m
∑

i=1

pi +

(

1 −
n
∏

i=1

(1 − qi)

)

(33)

f (C∗) >

m
∑

i=2

pi +

(

1 − (1 − p1)

n
∏

i=1

(1 − qi)

)

(34)
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where (34) holds thanks to unbalancing arguments leading to Property 2, when we charge color S∗
1 with all

vertices of S. Observe also that:

1 −

n
∏

i=1

(1 − qi) 6 1 − (1 − p1)

n
∏

i=1

(1 − qi) (35)

1 − (1 − p1)
n
∏

i=1

(1 − qi) > p1 (36)

Combining (33) and (34), and using also (35) and (36), we get:

f(C)

f (C∗)
6

p1 +
m
∑

i=2
pi +

(

1 −
n
∏

i=1
(1 − qi)

)

m
∑

i=2
pi +

(

1 − (1 − p1)
n
∏

i=1
(1 − qi)

)

(35)

6

p1 +
m
∑

i=2
pi +

(

1 − (1 − p1)
n
∏

i=1
(1 − qi)

)

m
∑

i=2
pi +

(

1 − (1 − p1)
n
∏

i=1
(1 − qi)

)

= 1 +
p1

m
∑

i=2
pi +

(

1 − (1 − p1)
n
∏

i=1
(1 − qi)

)

(36)

6 1 +
p1

p1 +
m
∑

i=2
pi

6 2

and the proof of the proposition is complete.

We now restrict ourselves in the case of identical graph probabilities. We will devise a polynomial time

approximation schema for   in split graphs. For this we first need the following

lemma.

Lemma 3. Given a split graph G(K, S, E), if there exists a vertex in S with degree m, then coloring C using
m + 1 colors, one color per vertex of K and one color for the whole of vertices of S is optimal.

Proof. Obviously, if the condition of the lemma is verified, any feasible coloring of G will have no less than

m + 1 colors. Then, using either Property 4, either Property 5, one can immediately prove that any coloring

of at least m + 1 colors has value at least f(C), qed.

Assume now that we deal with split graphs that do not verify condition of Lemma 3, i.e., that any vertex

in S has degree strictly smaller than m. Then the following lemma holds (recall that S is an independent

set).

Lemma 4. Any subset of S the vertices of which have all the same neighbors in K, will be colored with the same
color in any optimal coloring of G.

Proof. Suppose a contrario that the statement of the lemma is false. Let X = {x1, x2, . . . , xj} be a subset

of S the vertices of which have the same neighbors but are colored with different colors. Let Si be the largest

color containing one of the vertices of X . Then, it is feasible to add the rest of the vertices of X in Si by

“improving” (by Properties 4, or 5) the value of the optimal solution.

We are ready now to prove the following proposition that is the central part for the devising of our

approximation schema. It affirms that if the size of the clique in G is fixed, then  

can be solved in polynomial time.

Proposition 13. If m, the size of K in G(K, S, E), is fixed, then   can be solved
in linear time.

Proof. Recall that we deal with the case where vertices of S have degree at most m − 1. We will count the

number of all the distinct-value colorings of G. For this, we will construct a bipartite graph B(U, D, E′)
with:

• U = K;
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• D is in bijection with all the subsets of S, each such subset consisting of vertices of S having the

same neighbors ; in other words, we contract any set of Lemma 4 into a single vertex; note that

|D| 6
∑m−1

i=1 Ci
m < 2m;

• for any subset S′ of S for which the neighbors of its vertices are {vi1 , . . . , vik}, the vertex of D
corresponding to S′ is linked to vertices vi1 , . . . , vik in U .

The graph B just built has at most m + 2m vertices. The number of all the possible m-colorings of its

vertices is then bounded by mm+2m
which bounds also the number of the possible m-colorings of D, and

this bound is a constant if m is so.

So, one can choose the best among the m + 1-coloring of Lemma 3 and the m-colorings discussed just

above, in order to produce an optimal solution for   in linear time, since for any

such coloring, its storing can be performed in linear time. The proof of the proposition is now complete.

Consider now the following algorithm for   , denoted by SCHEMA:

1. fix an ǫ > 0;

2. if m 6 1/ǫ, then optimally solve   by exhaustive look-up of all the feasible

m-colorings as well as of coloring C of Proposition 13;

3. if m > 1/ǫ, then output coloring C of Proposition 12.

Proposition 14. Algorithm SCHEMA is a polynomial time approximation schema for  

in split graphs, under identical vertex-probabilities.

Proof. By Proposition 13, if Step 2 is executed, the solution computed, in polynomial time since ǫ is a fixed

constant, is optimal for   . We deal now with Step 3 and the coloring C produced

at this step. Denote by C∗ an optimal coloring of G. Taking into account Property 4 (for (38) below), the

following expressions hold:

f(C) = m × p + (1 − (1 − p)n) (37)

f (C∗) > (m − 1)p +
(

1 − (1 − p)n+1
)

(38)

Combination of (37) and (38), we get:

f(C)

f (C∗)
6

m × p + (1 − (1 − p)n)

(m − 1)p + (1 − (1 − p)n)
6

m + 1

m
6 1 + ǫ

So, one can fix any arbitrarily small ǫ and then SCHEMA can solve   in polynomial

time within ratio 1+ǫ; hence, this algorithm is a polynomial time approximation schema for 

 , qed.

6 Concluding remarks and open problems

The problem dealt in this paper is quite different from the ones studied in [15, 16]. There, when strategies

consisted of dropping absent vertices out of the a priori solution, the optimal a priori solutions were a

maximum weight independent set, or a minimum weight vertex-covering, of the input graph considering

that vertices are weighted by their probabilities. Here, as we have seen, the weight of an independent set

is not an additive function and this makes that   becomes very particular with

respect to the probabilistic problems mentioned just above.

There exists a list of interesting open problems dealing with the results of this paper. For example, the

complexity of   remains open, notably for natural graph-families as: bipartite

graphs with identical vertex-probabilities, paths and cycles with distinct vertex-probabilities, trees, etc.
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In another order of ideas, an interesting approximation strategy for solving hard minimization problem is

the so-called “master-slave” approximation. It consists of solving a minimization problem (the master one) by

iteratively solving a maximization one (the slave problem) (for more details on this technique, cf., [1, 12, 19]).

This kind of technique has a very natural application in the case of minimum coloring where the slave

problem is the maximum independent set. It consists of iteratively computing an independent set in the

graph, of coloring its vertices with the same unused color, of removing it from the graph and of repeating

these stages in the subsequent surviving subgraphs until all vertices are colored. The slave independent set

problem for   is the one of determining the independent set S∗ maximizing

quantity |S|/(1 −
∏

vi∈S(1 − pi)) over any independent set of the input graph. Obviously, this problem

is NP-hard in general graphs since for pi = 1 for any vertex of the input graph we recover the classical

maximum independent set problem. However, approximation of it in general graphs and complexity and,

eventually, approximation results in graph-families as the ones dealt in this paper seem us interesting to be

studied.
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