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We prove the existence of optimal transport maps for the Monge problem when the cost is a Finsler distance on a compact manifold. Our point of view consists in considering the distance as a Mañé potential, and to rely on recent developments in the theory of viscosity solutions of the Hamilton-Jacobi equation.

Résumé:

On montre l'existence d'une application de transport optimale pour le problème de Monge lorsque le cout est une distance Finslerienne sur une variété compacte. Le nouveau point de vue consiste à considérer la distance comme un potentiel de Mañé, et à exploiter des développements récents sur les solutions de viscostité de l'équation de Hamilton-Jacobi.

The Monge transportation problem is to move one distribution of mass into another in an optimal way. Before we discuss this problem, let us describe a precise setting. We fix a space M , which in the present paper will be a manifold, and a cost function c ∈ C(M × M, R). Given two probability measures µ 0 and µ 1 , we call transport map a Borel map F : M -→ M that transports µ 0 onto µ 1 . An optimal transport map is a transport map F that minimizes the total cost M c(x, F (x))dµ 0 among all transport maps. In many situations, optimal transport maps have remarkable geometric properties, at least at a formal level. Some of these properties were investigated by Monge at the end of the eighteenth century.

The question of existence of optimal transport maps was discussed much later in the literature. Some major steps were made by [START_REF] Kantorovich | On the transfer of masses[END_REF]. He introduced both a relaxed problem and a dual problem that opened new approaches to the existence problem. When the cost is the square of the distance on an Euclidean vector space, Brenier proved the existence of an optimal transport map in [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] and also provided an interesting geometric description on the optimal maps, which have to be the gradient of a convex function. The argument was simplified, taking advantage of the Kantorovich dual problem, by Gangbo, [START_REF] Gangbo | An elementary proof of the polar factorization of vector-valued functions[END_REF], and extended in many directions by Gangbo,McCann,[START_REF] Gangbo | The geometry of optimal transportation[END_REF] and other authors, see our paper [START_REF] Bernard | Optimal mass transportation and Mather theory[END_REF] for more details.

The case where the cost function is the distance on an Euclidean vector space is very natural, but more difficult. Sudakov announced a proof of the existence of an optimal map in 1979, but a gap was recently found in this proof. The strategy was to decompose the space into pieces of smaller dimension on which transport maps can be more easily built, and to glue these maps together. An essential hypothesis of the result is that the measure µ 0 is absolutely continuous. In the construction, it is necessary to control how this hypothesis behaves under decomposition to the subsets. Sudakov was not aware of these difficulties, and made wrong statements at that point, as was discovered only much later. It is interesting to notice for comparison that similar kind of difficulties had been faced and solved ten years earlier by Anosov in his ergodic theory of hyperbolic diffeomorphisms.

Correct proofs in the spirit of the work of Sudakov were written simultaneously by Caffarelli, Feldman and McCann in [START_REF] Caffarelli | Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs[END_REF], Trudinger and Wang in [START_REF] Trudinger | On the Monge mass transfer problem[END_REF] and slightly afterwards by Ambrosio, [START_REF] Ambrosio | Lecture Notes on Optimal Transport Problems[END_REF]. These authors manage to build a decomposition of the space into line segments that have to be preserved by transport maps, called transport rays. They prove that the direction of these rays vary Lipschitz continuously. This regularity implies that the absolutely continuous measure µ 0 has absolutely continuous decompositions on these rays. See [START_REF] Ambrosio | Lecture Notes on Optimal Transport Problems[END_REF] for a remarkably written discussion on these works and of Sudakov's mistake. Before the proof of Sudakov were completed in these papers, Evans and Gangbo had provided a different proof under more stringent hypotheses in [START_REF] Evans | Differential equation methods for the Monge-Kantorovich mass transfer problem[END_REF]. This proof is long and complicated, but it now appears as the first proof of the existence of a transport map in the case where the cost is a distance.

The methods inspired from Sudakov seem to allow many kinds of generalizations. The paper [START_REF] Caffarelli | Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs[END_REF] treats all norms whose unit ball is smooth and strictly convex. It is worth mentioning that flat part in the unit ball represent a major difficulty. An important progress have been recently made in [START_REF] Ambrosio | Existence of optimal transport maps for crystalline norms[END_REF], which studies norms whose unit ball is a polyhedron. In another direction, Feldman and McCann [START_REF] Feldman | Monge's transport problem on a Riemannian manifold[END_REF] have treated the case where the cost is the distance on a Riemannian manifold. In this generalized setting, transport rays are not any more line segments, but pieces of geodesics. It is in this direction we will pursue in the present text.

Our goal is to prove the existence of transport maps for Finsler distances on manifolds (possibly non symmetric distances). In order to avoid superficial (and less superficial) additional technicalities, we shall work on a compact manifold M . Our first novelty is a new approach of the geometric part of the proof, that is the decomposition into transport rays. We believe that this new approach is interesting because, beyond being more general, it enlightens new links between the Monge problem and the general theory of Hamilton-Jacobi equations as presented by Fathi in [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF]. In fact, all the relevant properties of the decomposition into transport rays are obtained by straightforward applications of results of [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF]. In order to finish the proof, we rely on a secondary variational principle, in the lines of [START_REF] Ambrosio | Existence and stability results in the L 1 theory of optimal transportation[END_REF] and [START_REF] Ambrosio | Existence of optimal transport maps for crystalline norms[END_REF]. Our treatment of this secondary principle is quite different from these papers, and it is, we believe, shorter and clearer than the methods previously used in the literature.

This paper was born during the visit of the first author to the Bernoulli center in EPFL, Lausanne, in Summer 2003. We wish to thank this institution for its support.

Introduction

We state two versions of our main result, and prove the equivalence between these two statements.

Optimal transport maps for Finsler distances

In the present paper, the space M is a smooth compact connected manifold without boundary. We equip the manifold M with a C 2 Finsler metric, that is the data, for each x ∈ M , of a non-negative convex function v -→ v x on T x M such that

• λv x = λ v x for all λ > 0 and all v ∈ T x M (positive 1-homogeneity),

• the function (x, v) -→ v x is C 2 outside of the zero section,

• for each x ∈ M , the function v -→ v 2
x has positive definite Hessian at all vectors v = 0.

As a consequence, v x = 0 exactly when v = 0 (positivity). Note that • x is not assumed symmetric (that is, -v x = v x is allowed). In standard terminology, the function v -→ v x is a Minkowsky metric on the vector space T x M . See [START_REF] Bao | An introduction to Riemann-Finsler geometry[END_REF] for more one Finsler metrics (in particular Theorem 1.2.2 and paragraph 6.2). We define the length of each smooth curve γ : [0, T ] -→ M by the expression

l(γ) = T 0 γ(t) γ(t) dt.
The Finsler distance c is then given by the expression

c(x, y) = inf γ l(γ)
where the infimum is taken on the set of smooth curves γ : [0, T ] -→ M (where T is any positive number) which satisfy γ(0) = x and γ(T ) = y. Note that the value of the infimum would not be changed by imposing the additional requirement that γ(t) γ(t) ≡ 1. The Finsler distance c(x, y) is not necessarily symmetric, and thus is not properly speaking a distance. It does satisfy the triangle inequality, and c(x, y) = 0 if and only if x = y.

We shall consider the Monge transportation problem for the cost c. Given a Borel measure µ 0 on M , and a Borel map F : M -→ M , we define the image measure F ♯ µ 0 by

F ♯ µ 0 (A) := µ 0 (F -1 (A))
for each Borel set A ⊂ M . The map F is said to transport µ 0 onto µ 1 if F ♯ µ 0 = µ 1 . We will present a short proof of: Theorem 1. Let c(x, y) be a Finsler distance on M . Let µ 0 and µ 1 be two probability measures on M , such that µ 0 is absolutely continuous with respect to the Lebesgue class. Then there exists a Borel map F : M -→ M such that F ♯ µ 0 = µ 1 , and such that the inequality M c(x, F (x))dµ 0 M c(x, G(x))dµ 0 holds for each Borel map G : M -→ M satisfying G ♯ µ 0 = µ 1 . In other words, there exists an optimal map for the Monge transportation problem.

Optimal transport maps for supercritical Mañé potentials

We shall now present a generalization of Theorem 1, which is the natural setting for our proof. A function L : T M -→ R is called a Tonelli Lagrangian if it is C 2 and satisfies: Convexity For each x ∈ M , the function v -→ L(x, v) is convex with positive definite Hessian at each point.

Superlinearity For each x ∈ M , we have L(x, v)/ v x -→ ∞ as v x -→ ∞.
Given a Tonelli Lagrangian L and a time T ∈]0, ∞), we define the cost function

c L T (x, y) = min γ T 0 L(γ(t), γ(t))dt
where the minimum is taken on the set of curves γ ∈ C 2 ([0, T ], M ) satisfying γ(0) = x and γ(T ) = y. That this minimum exists is standard, see [START_REF] Mather | Action minimizing invariant measures for positive definite Lagrangian systems[END_REF] or [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF]. The function

c L (x, y) := inf T ∈]0,∞) c T (x, y)
is called the Mañé potential of L. It was introduced and studied by Ricardo Mañé and then his students in [START_REF] Mãné | Lagrangian flows: the dynamics of globally minimizing orbits[END_REF][START_REF] Contreras | Lagrangian flows: the dynamics of globally minimizing orbits[END_REF]. Without additional hypothesis, the Mañé potential may be identically -∞. So we assume in addition: Supercriticality For each x = y ∈ M 2 , we have c(x, y) + c(y, x) > 0.

The following result of Mañé [START_REF] Mãné | Lagrangian flows: the dynamics of globally minimizing orbits[END_REF][START_REF] Contreras | Lagrangian flows: the dynamics of globally minimizing orbits[END_REF] makes this hypothesis natural.

Proposition 1. Let L ∈ C 2 (T M, R) be a Tonelli Lagrangian. For k ∈ R, let c L+k be the Mañé potential associated to the Lagrangian L + k. There exists a constant k 0 such that

• For k < k 0 , then c L+k ≡ -∞ and the Lagrangian L + k is called subcritical. • For k k 0 , the Mañé potential c L+k is a Lipschitz function on M × M that satisfies the triangle inequality c L+k (x, z) c L+k (x, y) + c L+k (y, z)
for all x, y and z in M . In addition, we have c L+k (x, x) = 0 for all x ∈ M .

• For k > k 0 , the Lagrangian L is supercritical, which means that c L+k (x, y)+c L+k (y, x) > 0 for x = y in M .

We will explain that the following theorem is equivalent to Theorem 1.

Theorem 2. Let c L (x, y) be the Mañé potential associated to a supercritical Tonelli Lagrangian L. Let µ 0 and µ 1 be two probability measures on M , such that µ 0 is absolutely continuous with respect to the Lebesgue class. Then there exists an optimal transport map for the Monge transportation problem with cost c L (x, y).

Supercritical Mañé potentials and Finsler distances

We prove the equivalence between Theorem 1 and Theorem 2. To each Tonelli Lagrangian L, we associate the Hamiltonian H ∈ C 2 (T * M, R) defined by

H(x, p) = max v∈TxM p(v) -L(x, v)
and the energy function

E ∈ C 2 (T M, R) defined by E(x, v) = ∂ v L(x, v).v -L(x, v).
The function H is also convex and superlinear. The mapping

∂ v L : T M -→ T * M is a C 1 diffeomorphism, whose inverse is the mapping ∂ p H. We have E = H • ∂ v L.
Lemma 2. Let L be a supercritical Tonelli Lagrangian. There exists a constant K such that, for each x = y in M , there exists a time T ∈]0, K] and a minimizing extremal

γ ∈ C 2 ([0, T ], M ) such that γ(0) = x, γ(T ) = y, and 
T 0 L(γ(t), γ(t))dt = c L T (x, y) = c L (x, y). Moreover, if γ is such a curve, then E(γ(t), γ(t)) ≡ 0.
Proof. We shall prove, and use, this lemma only in the case where L is positive. Note first that the function (x, y, T

) -→ c L T (x, y) is continuous on M × M ×]0, ∞).
It is not hard to see, in view of the superlinearity of L, that the function T -→ c L T (x, y) goes to infinity as T goes to zero if x = y. On the other hand, setting δ = inf L > 0, we obviously have the minoration

c L T δT . Since c L 1 is bounded, this implies the existence of a constant K such that c L T > c L 1 for T K.
As a consequence, the function T -→ c T (x, y) reaches its minimum on ]0, K] for each x = y.

Let x = y be two points on M . There exists a T ∈]0, K] such that c L T (x, y) = c L (x, y). Now by standard results on the calculus of variations, there exists a C 2 curve γ : [0, T ] -→ M satisfying γ(0) = x, γ(T ) = y and T 0 L(γ(t), γ(t))dt = c L (x, y). In addition, this curve satisfies the Euler-Lagrange equations, and in particular the energy E(γ(t), γ(t)) is constant on [0, T ].

Let γ λ : [0, λT ] -→ M be defined by γ λ (t) = γ(t/λ). The function

f (λ) := T λ 0 L(γ λ , γλ )dt = λ T 0 L(γ, λ -1 γ)dt
clearly has to reach its minimum at λ = 1. On the other hand, a classical computation shows that the function f is differentiable, and that f ′ (1) = -T 0 E(γ(t), γ(t))dt. This proves that E(γ(t), γ(t)) ≡ 0.

The following proposition implies that the transportation problem for Finsler distances, the transportation problem for supercritical Mañé potentials, and the transportation problem for the Mañé potentials of positive Tonelli Lagrangians are equivalent problems. Proposition 3. If L is a supercritical Tonelli Lagrangian, then there exists a Finsler distance c (associated to a C 2 Finsler metric) and a smooth function

f : M -→ R such that c(x, y) = c L (x, y) + f (y) -f (x).
Conversely, given a Finsler distance c (associated to a C 2 Finsler metric) there exists a positive Tonelli Lagrangian L such that c(x, y) = c L (x, y).

Proof. The first part of this proposition is the content of [START_REF] Iturriaga | Finsler metrics and action potentials[END_REF]. For the converse, we consider the Lagrangian

L(x, v) = 1 + v 2 x 2 .
Note that the associated energy function is

Ẽ(x, v) = v 2 x -1 2 .
Let us now consider a positive Tonelli Lagrangian L such that 0 < L L and such that L = L on the set { v x 1/2} ⊂ T M . In order to see that such a Lagrangian exists, consider a smooth convex function f : [0, ∞) → [0, ∞) that vanishes in a small neighborhood of 0 and such that f (s) (1 + s 2 )/2 with equality for s 1/2; and consider a smooth function g(x, v) : T M -→ R such that g is positive and ∂ 2 g(x, v) is positive definite where f ( v x ) vanishes, and such that g is zero on { v x 1/2} ⊂ T M . It is easy to check that the Lagrangian L(x, v) = f ( v x )+ǫg(x, v) satisfies the desired requirements when ǫ > 0 is small enough, Since L L, we have c L c L. Moreover, for x = y, let γ : [0, T ] -→ M be the optimal (for c L ) trajectory obtained by lemma 2. We have E(γ(t), γ(t)) = Ẽ(γ(t), γ(t)) ≡ 0 hence γ ≡ 1. As a consequence,

c L (x, y) = T 0 L(γ(t), γ(t))dt = T 0 L(γ(t), γ(t))dt = l(γ) c(x, y).
We have proved that c c L c L. These are equalities because c L c. Indeed, for all smooth curves γ : [0, T ] -→ M which satisfy γ(0) = x, γ(T ) = y and γ(t) γ(t) ≡ 1 with

T = l(γ) > 0, we get c L (x, y) T 0 L(γ(t), γ(t))dt = l(γ). Since c(x, y
) is the infimum of the lengths of such curves, we have c L(x, y) c(x, y).

General convention

In the sequel, we will prove Theorem 2 for a positive Lagrangian L and denote c L simply by c. In view of Proposition 3, this implies the general form of Theorem 2, as well as Theorem 1. We fix, once and for all, a positive Tonelli Lagrangian L, and a positive number δ > 0 such that

L(x, v) δ for each (x, v) ∈ T M .
The general scheme of our proof is somewhat similar to the one introduced by Sudakov, and followed, in [START_REF] Caffarelli | Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs[END_REF], [START_REF] Trudinger | On the Monge mass transfer problem[END_REF], [START_REF] Ambrosio | Lecture Notes on Optimal Transport Problems[END_REF], [START_REF] Feldman | Monge's transport problem on a Riemannian manifold[END_REF], [START_REF] Ambrosio | Existence of optimal transport maps for crystalline norms[END_REF] and other papers. Like these papers, our proof involves a decomposition of the space M into distinguished curves, called transport rays. We introduce these rays in section 3 and describe their geometric properties. In this geometric part of the proof, our point of view is quite different from the literature as we emphasize the link with the theory of viscosity solutions as developed in [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF], and manage to obtain all the relevant properties of transport rays as a straightforward application of general results of [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF]. For the second part of the proof, all the papers mentioned above involve subtle decompositions of measures on these transport rays. It is at this step that the paper of Sudakov contains a gap. We simplify this step by introducing a secondary variational principle in section 2. Note that secondary variational principles have already been introduced by Ambrosio, Kirchheim and Pratelli in [START_REF] Ambrosio | Existence of optimal transport maps for crystalline norms[END_REF] for related problems. This secondary problem is studied in section 5 by a quite simple method, which, surprisingly, seems new. This methods allows a neat clarification of the end of the proof compared to the existing literature. All the difficulties involving measurability issues and absolute continuity of disintegrated measures are reduced to a single and simple Fubini-like theorem, exposed in section 4.

Transport plans

We introduce our secondary variational principle and recall the necessary generalities on the Monge problem. Beyond the references provided below, the pedagogical texts [START_REF] Ambrosio | Lecture Notes on Optimal Transport Problems[END_REF][START_REF] Rachev | Mass Transportation Problems[END_REF][START_REF] Villani | Topics in Optimal Transportation[END_REF] may help the reader who wants more details. We define the quantity

C(µ 0 , µ 1 ) := inf F M c(x, F (x))dµ 0 ,
where the infimum is taken on the set of Borel maps F : M -→ M that transport µ 0 onto µ 1 . It is useful, following Kantorovich, to relax this infimum to a nicer minimization problem. A Borel measure µ on M × M is called a transport plan if it satisfies the equalities π i♯ µ = µ i , where π 0 : M × M -→ M is the projection on the first factor, and π 1 : M × M -→ M is the projection on the second factor. Clearly, any transport map F can be considered as the transport plan

(Id × F ) ♯ µ 0 .
Following Kantorovich, we consider the minimum

K(µ 0 , µ 1 ) = min µ M ×M cdµ
taken on the set of transport plans. It is well-known and easy to prove that this minimum exists. The equality

K(µ 0 , µ 1 ) = C(µ 0 , µ 1 )
holds if µ 0 has no atom, see [START_REF] Ambrosio | Lecture Notes on Optimal Transport Problems[END_REF], Theorem 2.1. Note that this equality is very general, see [START_REF] Pratelli | On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation[END_REF] for a discussion. As a consequence, if µ 0 has no atom, it is equivalent to prove the existence of an optimal transport map and to prove that there exists an optimal transport plan concentrated on the graph of a Borel function.

Let us define the second cost function

σ(x, y) = (c(x, y)) 2 .
This cost is chosen in order that the following refined form of Theorem 1 holds.

Theorem 3. Let O be the set of optimal transport plans for K(µ 0 , µ 1 ) with the cost c. The minimum min µ∈O σdµ exists. In addition, if µ 0 is absolutely continuous, then there is one and only one transport plan µ realizing this optimum, and this transport plan is concentrated on the graph of a Borel function that is an optimal transport map for the cost c. This result will be proved in section 5. The idea of introducing secondary variational problem as in this statement has already been used by Ambrosio, Kirchheim, and Pratelli, see [START_REF] Ambrosio | Existence of optimal transport maps for crystalline norms[END_REF] and also [START_REF] Ambrosio | Existence and stability results in the L 1 theory of optimal transportation[END_REF]. Our treatment in section 5 is inspired from these references, although it is somewhat different. It allows substantial simplifications compared to the literature.

Kantorovich potential and calibrated curves

We present the decomposition in transport ray, which is the standard initial step in the construction of optimal maps. This construction is based on well-understood general results on viscosity sub-solutions of the Hamilton-Jacobi equation, as presented in [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF]. Making this connection is one of the novelties of the present paper.

Since the cost function we consider satisfies the triangle inequality c(x, z) c(x, y) + c(y, z) for all x, y and z in M , as well as the identity c(x, x) = 0 for all x ∈ M , we can take advantage of the following general duality result, inspired from Kantorovich, see for example [START_REF] Villani | Topics in Optimal Transportation[END_REF], [START_REF] Evans | Partial differential equations and Monge-Kantorovich mass transfer. Current developments in mathematics[END_REF] and [START_REF] Feldman | Monge's transport problem on a Riemannian manifold[END_REF].

Proposition 4. Given two measures µ 0 and µ 1 , there exists a function u ∈ C(M, R) that satisfies u(y) -u(x) c(x, y)

for all x and y in M , and

K(µ 0 , µ 1 ) = M ud(µ 1 -µ 0 ).
In addition, for each optimal transport plan µ, the equality u(y) -u(x) = c(x, y) holds for µ-almost every (x, y) ∈ M 2 . The function u is called a Kantorovich potential.

The present paper is born from the observation that the Kantorovich potentials are viscosity subsolutions of the Hamilton-Jacobi equation as studied in [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF]. In order to explain this connection, it is necessary to define the Hamiltonian function [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF] that the following properties are equivalent for a function w ∈ C(M, R).

H ∈ C 2 (T * M, R) by H(x, p) = max v∈TxM p(v) -L(x, v).

Note that the mapping

∂ v L : T M -→ T * M is a C 1 diffeomorphism, whose inverse is the mapping ∂ p H. It is proved in
1. The function w satisfies the inequality w(y) -w(x) c(x, y) for all x and y in M .

2. The function w is a viscosity sub-solution of the Hamilton-Jacobi equation H(x, dw) = 0, i.e. each smooth function f : M -→ R satisfies the inequality H(x, df (x)) 0 at each point of minimum x of the difference f -w.

3. The function w is Lipschitz and satisfies the inequation H(x, dw x ) 0 at almost every point. This inequality then holds at all point of differentiability x of w.

4. The function w is Lipschitz and, for almost every x ∈ M , it satisfies the inequation ∀v ∈ T x M L(x, v) dw x (v). This inequality then holds at all point of differentiability x of w.

Although there may exist several Kantorovich potentials, we shall fix one of them, u, for the sequel.

Definition 5. Following Fathi [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF], we call calibrated curve a continuous and piecewise C 1 curve γ :

I -→ M that satisfies u(γ(t)) -u(γ(s)) = t s L(γ(τ ), γ(τ ))dτ = c(γ(s), γ(t)) (1) 
whenever s t in I, where I is a non empty interval of R (possibly a point). A calibrated curve γ : I -→ M is called non-trivial if the interval I has non-empty interior.

Note that the first of the equalities in (1) implies the second, since the inequalities

u(γ(t)) -u(γ(s)) c(γ(s), γ(t)) t s L(γ(τ ), γ(τ ))dτ
hold for any curve γ. It is obvious that non-trivial calibrated curves are minimizing extremals of L, and as a consequence they are C 2 curves. In addition, the concatenation of two calibrated curves is calibrated, so that each calibrated curve can be extended to a maximal calibrated curve, that is, its domain I cannot be further extended without loosing calibration. Note that I is closed when γ is a maximal calibrated curve. Definition 6. We call transport ray the image of a non-trivial maximal calibrated curve.

It will be useful to consider, following [START_REF] Caffarelli | Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs[END_REF] and [START_REF] Feldman | Monge's transport problem on a Riemannian manifold[END_REF], the functions α and β : M -→ [0, ∞) defined as follows:

• α(x) is the supremum of all times T 0 such that there exists a calibrated curve γ : [-T, 0] -→ M that satisfies γ(0) = x.

• β(x) is the supremum of all times T 0 such that there exists a calibrated curve γ : [0, T ] -→ M that satisfies γ(0) = x (the fact that α and β are finite is a consequence of Lemma 9 below). Definition 7. Let us denote by T the subset of M obtained as the union of all transport rays, or equivalently the set of points x ∈ M such that α(x) + β(x) > 0. For ǫ 0, we denote by T ǫ the set of points x ∈ M that satisfy α(x) > ǫ and β(x) > ǫ. Clearly T ǫ ⊂ T for all ǫ 0. The set E := T -T 0 is the set of ray ends. Proposition 8. The function u is differentiable at each point of T 0 . For each point x ∈ T 0 , there exists a single maximal calibrated curve

γ x : [-α(x), β(x)] -→ M such that γ x (0) = x. (2) 
This curve satisfies the relations

du x = ∂ v L(x, γx (0)) or equivalentely γx (0) = ∂ p H(x, du x ).
For each ǫ > 0, the differential x -→ du x is Lipschitz on T ǫ , or equivalently the map x -→ γx (0) is Lipschitz on T ǫ .

Proof. This proposition is Theorem 4.5.5 of Fathi's book [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF]. Proof. Since u is a viscosity sub-solution of the Hamilton-Jacobi equation, see the equivalence below Proposition 4, we have L(x, v) du x (v) for all v ∈ T x M at each point of differentiability of u. As a consequence, the inequality

L(γ(t), γ(t)) du γ(t) ( γ(t)) holds for each t ∈]a, b[. Integrating the above inequality gives b a L(γ(t), γ(t))dt u(γ(b)) -u(γ(a)),
which is an equality because the curve γ is calibrated. As a consequence, we have

du γ(t) ( γ(t)) = L(γ(t), γ(t)) δ for all t ∈]a, b[.
Lemma 10. The functions α and β are bounded and upper semi-continuous, hence Borel measurable. As a consequence, the sets T and T ǫ , ǫ 0, are Borel.

Proof. We shall consider only the function α. We have just seen that, for each non-trivial calibrated curve γ :

I -→ M , the function f (t) = u • γ(t) is differentiable and satisfies f ′ (t) δ.
Since the continuous function u is bounded on the compact manifold M , we conclude that the functions α and β are bounded. In order to prove that the function α is semi-continuous, let us consider a sequence x n ∈ M that is converging to a limit x and is such that α(x n ) T . We have to prove that α(x) T . There exists a sequence γ n : [-T, 0] -→ M of calibrated curves such that γ n (0) = x n . There exists a subsequence of γ n that is converging uniformly on [-T, 0] to a curve γ : [-T, 0] -→ M . It is easy to see that the curve γ is calibrated and satisfies γ(0) = x.

As a consequence, we have α(x) T .

Definition 11. For x ∈ M , let us denote by R x the union of the transport rays containing x.

We also denote by R + x the set of points y ∈ M such that u(y) -u(x) = c(x, y).

Note that R x = γ x ([-α(x), β(x)]) when x ∈ T 0 , where γ x is given in (2).

Lemma 12. We have R + x = γ x ([0, β(x)]) when x ∈ T 0 , and R + x = {x} when x ∈ M -T .

Proof. Let x be a point of T 0 . By the calibration property of γ x , we have, for t ∈ [0, β(x)], γ x (t) -γ x (0) = c(γ x (0), γ x (t)), which is precisely saying that γ x (t) ∈ R + x . Conversely, let us fix a point x ∈ M and let y be a point of R +

x . There exists a time T 0 and a curve γ : [0, T ] -→ M such that T 0 L(γ(t), γ(t))dt = c(x, y), γ(0) = x and γ(T ) = y. Since c(x, y) = u(y) -u(x), the curve γ is calibrated. If x ∈ T 0 , then γ = γ x [0,T ] hence y = γ(T ) = γ x (T ) ∈ γ x ([0, β(x)]). If x ∈ T , then there is no nontrivial calibrated curve starting at x, so we must have y = x in the above discussion, and R + x = {x}.

Proposition 13. The transport plan µ is optimal for the cost c if and only if it is concentrated on the closed set

∪ x∈M {x} × R + x = {(x, y) ∈ M 2 : c(x, y) = u(y) -u(x)}.
Proof. Recall from Proposition 4 that any optimal transport plan is concentrated on this set. Reciprocally, if µ is a transport plan concentrated on this set, then

K(µ 0 , µ 1 ) = M ud(µ 1 -µ 0 ) = M 2 (u(y) -u(x))dµ = M 2 cdµ
and µ is thus optimal.

of embedded disks of M forms a web which intersects all non-trivial curves of M , hence all transport rays. We have constructed a countable family of embedded disks which intersects all transport rays. For each (i, j) ∈ N 2 let us consider the set Ω i,j = D ∩ ψ -1 i (T 1/j ). Let a i,j (ω) and b i,j (ω) : Ω i,j -→ R be the functions -α • ψ i and β • ψ i . Let B i,j be the set of points (ω, s) ⊂ Ω i,j × R such that a i,j (ω) s b i,j (ω). To finish, we define the map χ i,j : B i,j -→ M by χ i,j (ω, s) = γ ψ i (ω) (s).

We claim that, for each (i, j) ∈ N 2 , the map χ i,j is Lipschitz, so that the pair (B i,j , χ i,j ) is a transport beam. In order to prove this claim, remember that there exists a vector field E on T M , the Euler-Lagrange vector field, such that the extremals are the projections of the integral curves of E. Because of energy conservation, this vector field generates a complete flow, denoted by f s : T M → T M for s ∈ R. From the fact that the Hamiltonian H is C 2 and f s is in Legendre duality with the Hamiltonian flow, we deduce that (s,

x, v) → f s (x, v) is C 1 . We have χ i,j (x, s) = P M • f s (x, γψ i (x) (0)) ∀(x, s) ∈ B i,j ,
where P M : T M → M is the canonical projection on M . This map is Lipschitz in view of Proposition 8. If R is a transport ray, it is clear that R is contained in one of the images χ i,j (B i,j ).

The distinguished transport plan

We shall now prove Theorem 2, and hence Theorem 1. Our approach is based on remarks in [START_REF] Ambrosio | Existence and stability results in the L 1 theory of optimal transportation[END_REF] and [START_REF] Ambrosio | Existence of optimal transport maps for crystalline norms[END_REF], however it seems new, and is surprisingly simple. Let µ be a transport plan that is optimal for the cost c, and, among these optimal transport plans, minimizes the functional σdµ. The existence of such a plan is straightforward.

Proposition 19. There exists a set

Γ ⊂ ∪ x∈M {x} × R + x , (3) 
which is a countable union of compact sets, such that µ(Γ) = 1 and which is monotone in the following sense: If (x i , y i ), i ∈ {1, . . . , k} is a finite family of points of Γ and if j(i) is a permutation such that y j

(i) ∈ R + x i then k i=1 σ(x i , y j(i) ) k i=1 σ(x i , y i ).
Proof. Let us consider the cost function ζ, where ζ(x, y) : [START_REF] Ambrosio | Existence and stability results in the L 1 theory of optimal transportation[END_REF] implies the existence of a Borel set Γ on which µ is concentrated, and which is monotone. By interior regularity of the Borel measure µ, there exists a set Γ ⊂ Γ which is a countable union of compact sets and on which µ is concentrated. Being a subset of the monotone set Γ, the set Γ is itself monotone.

M × M -→ [0, ∞] is the lower semi-continuous function defined by ζ(x, y) = σ(x, y) if u(y) -u(x) = c(x, y) and ζ(x, y) = ∞ if not. Note that ζdµ = σdµ is finite. Theorem 3.2 of
Definition 20. Let Λ be the set of points x ∈ M such that the set Γ x := {y ∈ M : (x, y) ∈ Γ} contains more than one point, where Γ is defined in (3).

Lemma 21. The set Λ is Borel measurable.

Proof. Let K n , n ∈ N be an increasing sequence of compact sets such that Γ = ∪K n . For each x ∈ M , let δ n (x) be the diameter of the compact set K n x of points y ∈ M such that (x, y) ∈ K n . It is not hard to see that the function δ n (x) is upper semi-continuous, hence Borel measurable. Since Γ x = ∪ n∈N K n x , we have δ(x) = sup n δ n (x), where δ(x) is the diameter of Γ x . As a consequence, the function δ is Borel measurable, and the set Λ = {x ∈ M, δ(x) > 0} is Borel.

Proposition 22. We have Λ ⊂ T , and the intersection Λ ∩ R is at most countable for each transport ray R.

Proof. If x ∈ T , then R + x = {x} hence Γ x ⊂ {x}, and x ∈ Λ. Let us now consider a transport ray R that is the image of a maximal calibrated curve γ : [α, β] -→ M . Let us denote by h : [α, β] -→ R the function u • γ, which is strictly increasing (Lemma 9). Note that σ(γ(s), γ(t)) = (h(t) -h(s)) 2 for s t in [α, β]. In view of the monotonicity of Γ, we have (h(t) -h(s)) 2 + (h(t ′ ) -h(s ′ )) 2 (h(t) -h(s ′ )) 2 + (h(t ′ ) -h(s)) 2 or equivalently (h(t) -h(t ′ ))(h(s) -h(s ′ )) 0 ( 4) whenever (γ(s), γ(t)) ∈ Γ, (γ(s ′ ), γ(t ′ )) ∈ Γ, s ′ t, and s t ′ . Following [START_REF] Gangbo | The geometry of optimal transportation[END_REF] or [START_REF] Ambrosio | Existence and stability results in the L 1 theory of optimal transportation[END_REF], we observe that this implies the property:

(γ(s), γ(t)) ∈ Γ, (γ(s ′ ), γ(t ′ )) ∈ Γ, s < s ′ =⇒ t t ′ .

This property implies that the set of values of s in [α, β] such that Γ γ(s) contains more than one element is at most countable. Indeed, for all integers n 1, let S n be the set of values of s ∈ [α, β] such that there exist t 1 , t 2 ∈ [α, β] with (γ(s), γ(t 1 )) ∈ Γ, (γ(s), γ(t 2 )) ∈ Γ and t 2 -t 1 1/n. If s < s ′ are in S n and if t 1 , t 2 and t ′ 1 , t ′ 2 are as above with respect to s and s ′ , then α t 1 t 2 -1/n < t 2 t ′ 1 t ′ 2 -1/n < t ′ 2 β and thus β -α 2/n. More generally, if S n contains at least j points, then β -α j/n. As the interval [α, β] is bounded, the set S n is finite for all n, which leads to the conclusion.

Theorem 2 can now be proved in a very standard way. In view of section 4, the set Λ has zero Lebesgue measure in M . The set Z = M -Λ is a Borel set of full Lebesgue measure, µ 0 (Z) = 1. Denoting by π 0 : M × M -→ M the projection on the first factor, we observe that the set Γ Z = Γ ∩ π -1 0 (Z) is a Borel graph on which µ is concentrated (because µ(Γ) = 1). By the easy Proposition 2.1 of [START_REF] Ambrosio | Lecture Notes on Optimal Transport Problems[END_REF], we conclude that the plan µ is induced from a transport map F . We then have M ×M cdµ = M c(x, F (x))dµ 0 (x) = K(µ 0 , µ 1 ) = C(µ 0 , µ 1 ), so that the map F is optimal for the cost c. This ends the proof of Theorem 2 and Theorem 1.

Lemma 9 .

 9 Let γ : [a, b] -→ M be a non-trivial calibrated curve. Then, for all t ∈]a, b[, the function u is differentiable at γ(t) and du γ(t) ( γ(t)) δ, (see 1.4 for the definition of δ). As a consequence, the map γ : [a, b] -→ M is an embedding (it is one to one and has non-zero derivative on ]a, b[) and transport rays are non-trivial embedded arcs.

Fubini Theorem

The geometric informations on transport rays that have been obtained in the preceding section imply the following crucial Fubini-like result, whose proof is the goal of the present section : Proposition 14. Let Λ be a Borel subset of T such that the intersection Λ ∩ R has zero 1-Hausdorff measure for each transport ray R. Then the set Λ has zero Lebesgue measure.

For comparison with the literature, see [START_REF] Caffarelli | Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs[END_REF] Lemma 25, [START_REF] Trudinger | On the Monge mass transfer problem[END_REF] section 4 or [START_REF] Feldman | Monge's transport problem on a Riemannian manifold[END_REF] Lemma 24, we mention:

Corollary 15. The set E = T -T 0 of ray ends has zero Lebesgue measure.

We now turn to the proof of Proposition 14, which occupies the end of this section. The method is standard. Let k be the dimension of M . Definition 16. We call transport beam any given pair (B, χ), where B is a bounded Borel subset of R k and χ : B -→ M is a Lipschitz map (not necessarily one-to-one) such that:

• There exists a bounded Borel set Ω ∈ R k-1 and two bounded Borel functions a < b : Ω -→ R such that We can now conclude the proof of Proposition 14 by the following lemma.

Lemma 18. There exists a countable family (B i,j , χ i,j ), (i, j) ∈ N 2 of transport beams such that the images χ i,j (B i,j ) cover the set T .

Proof. Let D be the closed unit ball in R k-1 . Let ψ i : D -→ M, i ∈ N be a countable family of smooth embeddings such that, for each maximal calibrated curve γ : [a, b] -→ M , the curve γ(]a, b[) intersects the image of ψ i for some i ∈ N. In order to build such a family of embeddings, let us consider a finite atlas Θ of M composed of charts θ : B 3 -→ M , where B r is the open ball of radius r centered at zero in R k . We assume that the finite family of open sets θ(B 1 ), θ ∈ Θ covers M . For n = 1, . . . , k and q ∈ Q ∩ [-1, 1], we consider the embedded disk D n,q ⊂ B 3 formed by points x = (x 1 , . . . , x k ) ∈ B2 which satisfy x n = q. The countable family θ(D n,q ); θ ∈ Θ; n = 1, . . . , k; q ∈ Q ∩ [-1, 1]