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ABSTRACT

This review is devoted to the transient optical phenomena, displayed both in the spatiotemporal
dynamics of ultrashort single - cycle wave pulses in free space and dispersive dielectrics as well
as to interaction of light with non-stationary media. The interplay of diffractive and dispersive
phenomena, including the coupled processes of amplitude and phase reshaping, spectral
variations, polarity reversal for different types of light pulses, is examined in frequency and time
domains. Reflection - refraction effects on the interfaces of media with time-dependent dielectric
susceptibility are considered by means of exact analytical solutions of Maxwell equations for
these media. The non - stationarity - induced dispersion is shown to provide a dynamical regime
of reflectivity of non-stationary media, depending upon both instantaneous dielectric
susceptibility and its temporal derivative; the relevant generalization of Fresnel formulae is

presented



INTRODUCTION :

This paper is devoted to the physical fundamentals and mathematical basis of the optics of
waveforms whose parameters vary in the course of propagation. The dynamics of instantaneous
optical fields, travelling in free space and continuous media, opens many new opportunities for
controlled spatio-temporal reshaping of these fields. The ongoing interest towards such problems
in fueled by several research goals:

- to optimize the processes of light pulses transfer through optical systems; this is particularly
important in view of the applications to optical communication : the use of ultrashort pulses
at high repetition rate is one of the approaches to the increase of the transfer rate.

- to develop methods of fast non-destructive testing of materials and targets, atmospheric
sensing, using ultrashort broadband electromagnetic (EM) pulses;

- to reach a comprehensive understanding of such ultrafast processes as amplitude or phase
modulation of EM waves interacting with non stationary media.

Moreover, an important task is to elaborate an analytical approach to these topics, which
were considered until recently as an exclusive field of computer simulations.

The investigation of coupled processes of spatial and temporal deformations of localized
waveforms is preceded here by a brief description of waveforms widely used in modeling of
such processes. Both frequency and time-domain models are presented below in Section I-1. We
then briefly recall how such waveforms are produced (I-2), and measured experimentally (I-3).

Two opposite statements of the problems of instantaneous optics will then be treated. Section
II is focused on the spatio-temporal dynamics of localized EM pulses interacting with stationary
dielectric media. On the contrary, the reshaping of harmonic CW trains interacting with non-
stationary media is discussed in Section III. In this latter case, a special attention will be given to

some exactly solvable models, providing a better physical insight into these problems.



I. ULTRASHORT EM PULSES : HOW THEY ARE MODELED, PRODUCED,
MEASURED.

It is first necessary to agree upon what will be defined as an ultrashort electromagnetic
pulse. Here we will retain the following definition : a pulse whose duration is of the order of a
few, at most a few tens of periods of the EM field. It is of course almost equivalent to consider
pulses whose spectral width is a substantial fraction of their frequency, except that one rather
adresses in this case the coherence length of the pulse than its duration, so that this definition
would be strictly valid for radiation presenting complete temporal coherence only, a criterion
which is not even satisfied by all lasers. In this section, we will first recall some of the
mathematical models which have been used to represent such pulses (§ I.1), and we will then

briefly recall how such pulses are produced (§ 1.2) and measured (§ 1.3).

I.1) Non-Sinusoidal Waveforms of Electromagnetic Waves.

Let us begin this analysis from the traditional spectral approach. To optimize a waveform

E (t) =EF (t) with respect to a bandwidth-limited communication system or to the width of an

absorption line, it is traditional to work with its Fourier transform (FT). Some properties of
waveforms F(¢), having an essential influence on their spectral bandwidths, such as their duration
and rise time, are considered below.

I.1.1. Square-shaped truncated train of monochromatic waves, are represented by the function :

cos(a)ot) ; t| < |t0|
F(t)= (1.1)

05[>l

The FT of this waveform is known to be

F(w)= —Sin[’; ("fa') ) (1.2)



The spectral density of EM energy E(A) in a pulse F (1.1), localized in some finite
spectral range (& = A/2), writes

2 1 @9
E(A)=|E [ w(a); w(a)=— | |F,| dw (1.3)
27T%_%

The spectral density E calculated for an infinite spectral range, A — o, is given by the
function W(o0). The spectral bandwidth of a pulse is defined as the range of frequencies ah+A4,
containing some given fraction d(e.g., = 90% or 99%) of the pulse energy
w(2)= 5% (w) (1.4)

Substituting the Fourier amplitude F, (1.2) into (1.3) and introducing a variable x=#4 we

obtain the function 7 (A)

w(n)= ;—ZT{Si(bc)— Sii x} (1.5)

where Si(x) is the integral sine function

sin

y

Y dy (1.6)

Si(x) = j

Using the value Si(e)= 172 , one can present eq. (1.4), governing the value of spectral-

time product K=#4. , in a form

)
s ke s (1.7)

Si(2K,)- 5

Considering the central part of the distribution F, (1.2), located between the zeros of Fi,
(K==7), one can see that 90% of the pulse energy is contained in the spectral range ay+77t.
Any further significant growth of this fraction drequires a substantial increase of spectral range :
for 0=0.99, the spectral range K. is increasing by more than a factor 10.

It is worthwhile to compare the broadband square-shaped pulses, characterized by a short
rise time, tending formally towards zero, with other waveforms possessing the same

characteristic duration, but a finite risetime.



I.1.2. To illustrate the influence of increasing rise- and falltime, let us consider the Gaussian-

shaped waveform
() =exs| -~
Flt)=exp| —— 1.8
%) o
the FT of a Gaussian waveform is known to be also Gaussian

F, =toﬂexp{—%} (1.9)

It is often convenient to characterize the pulse by its full width at half-maximum (FWHM). The

Gaussian waveform (1.8) and its FT (1.9) are defined by the FWHM values 7, and .

t. =235, ; w=—— ; tw =555 (1.10)

Using the first of relations (1.10), one can present the Gaussian profile (1.8) in a form, expressed

via the FWHM

F(t):exp[{lfjt U (L11)

Calculating the function W(4) (1.3), related to the FT (1.9), we obtain the equation, governing

the bandwidth A4,
erf(t,0,)=0 (1.12)
Here erf'is the error function. Taking, e.g., 6=0.9, one has K.=t,4~1.17, and thus the
bandwidth 4, of the Gaussian pulse (1.8) is almost three times smaller than that of the square-
shaped pulse (K.=7rfor 6=0.9). This example shows that an increase of rise time, the pulse
duration being fixed, induces a strong spectral narrowing.
Some pulses with extremely steep leading edges have been proposed as prospective
carriers for directed energy transmission in free space. Such a pulse, entitled by Wu [1985]
“clectromagnetic missile”, yields a diffracted wave decaying slower than z 2 in intensity.

Considering a broadband pulse passing through a plane circular aperture with radius a, one can



see that the boundaries of the first Fresnel zone ze=wa’c™ for high frequencies wbecome
extremely distant. Wu [1985] showed that when the pulse spectrum is damping slowly in the
high-frequency limit w- o, even though the energy collected on a detector of finite dimensions
is still tending to zero when z—o0, it can be made to do so in an arbitrarily slow manner. An

example of such pulses is expressed as a function of time via the modified Bessel function K, of

V-th order:

F(t):(iijV[éj (1.13)

Taking the cosine FT from (1.13), we obtain

\/I_TZV“tOF(V +;j

F, = 1 (1.14)
Presenting Vin a form v = —% +y; >0, one finds as asymptotic spectral behavior of
F ., -=w";thus, following Wu [1985], an appropriate choice of parameter yyields an

arbitrarily slow decrease of the high-frequency limit of (1.14), providing a weakened angular

divergence of the pulse at distances z = an’c™.

I.1.3. Until now we have discussed ways to broaden or to narrow the spectral bandwidths for
waveforms of a given duration 2¢. Steepening of the pulse fronts was shown to cause an increase
of the spectral bandwidth; their softening can give rise to a narrowing of the spectrum. However,
it should be mentioned that there is an implicit simplification in all the above developments,
which is that we have not allowed statistical fluctuations between the different spectral
components of the EM field we studied. Any classical source will present such fluctuations, as
well as most of the lasers. All the above developments thus deal with temporally coherent
sources such as single longitudinal mode or mode-locked lasers. One often refers to such pulses

as “Fourier Transform limited pulse” (in the sense that the bandwith of a partially coherent pulse



will be larger than strictly required by the FT). It should be mentioned that there is a stricter
definition of a FT-limited pulse, which is the one having the narrowest pulse width possible for a
given spectral amplitude distribution. The term “amplitude” may be misleading here since the
spectral amplitudes are in reality complex, and the actual temporal shape of the pulse will

depend on the shape of the “spectral phase” p(w) . Fig. 1 illustrates this point by comparing two
pulses having the same power spectrum ( | f (a))|2 ), but different spectral phase behaviors. It

shows that the pulse with the minimum width (and in this sense, strictly speaking FT-limited) is
the one presenting a linear spectral phase frequency dependence.

The physical and computational problems, resulting from the efforts to adjust the Fourier
“ark language to the dynamics of ultrashort waveforms in dispersive media, stimulated the
development of time-domain models, i.e. directly using the temporal dependence of electric and
magnetic strength of EM field, for such waveforms.
I.1.4. Models of pulses assuming equality of rise and fall times have been considered so far.
However, there are many real optical pulses that do not have such symmetry. An example of
strongly asymmetrical waveform, described by a Gaussian rising edge, followed by an

exponentially falling tail

2
1.67¢
Eqexp —[ J ;6<0

‘c

t
EOexp{—] ; t=20
fo

(1.15)

was discussed by Qian and Yamashita (1992). This so-called single-cycle exponential waveform
has a discontinuity of derivative at the maximum t = 0. A double- exponential waveform,

posessing a continuous derivative at the maximum :



E(f)= E{exp(—ﬂ —exp(—éﬂ (1.16)

was used by Ma and Ciric [1992] for the analysis of transient scattering on small targets; in the
case (1,>>t,), profile (1.16) resembles a single-sided waveform, but differs from (1.15) by a
smooth maximum.

Flexible models, describing continuous waveforms with an arbitrary amount of different
extrema and unequal distances between zero-crossing points, were used in time-domain optics by
Shvartsburg [1999]. These waveforms, characterized by well-expressed leading fronts with finite
slope, an arbitrary number of unharmonic oscillations and exponentially damping tails, are
defined by the series of Laguerre functions L, in the time interval 0< ¢ < o
E@Fi%h(i] (1.17)

n=0 ty
The Laguerre functions (Fig. 2)

L=

. y[x” exp(— x)] (1.18)

are known to be orthonormal in the interval 0 < x <o, that is to say :
[2,0L,(x)dx =3, (1.19)
0

These waveforms, localized in time, are suitable for description of plane wave pulses.
However, to consider the dynamics of both spatially and temporally localized fields, other
families of waveforms are needed.

I.1.5. The spatiotemporal structure of few-cycle three-dimensional pulsed wave beams can be

described by means of so-called Poisson-spectrum pulses

F(e) = 0ef(e) f(t)=[ & j (1.20)

t'+it,

10



Here Uef indicates the real part of the function £{¢); />0 and m=1 are free parameters, ¢’ is the

retarded time for points located on the beam axis #* =7 —z¢”' . This model, discussed by Porras
[1998], is suitable for presentation of waveforms of any duration and with an arbitrary number of
oscillations (Fig. 3). The FT of waveform (1.20) gives the Poisson spectrum, also called the

power spectrum

! |ed"”
F, =Tij)exp(—|ajto) (121

Unlike the above mentioned waveforms, the function # (1.20) can be used for modeling

of spatio-temporal evolution of narrow directed pulsed beams with curvilinear wave fronts. To

describe the non-stationary three-dimensional structure of such beams one has to replace the
retarded time 7’ by the shifted time 7' 7 / 2cR ; where R and r are the radius of wave front

curvature and the distance between the beam’s axis and the observation point on the wave front.
This non-separable waveform, containing both temporal and spatial variables, provides a useful
analytical tool for investigation of coupled diffraction and dispersion- induced distortions of
localized fields.

The spatiotemporal dynamics of all the aforesaid waveforms has to be investigated by
means of relevant solutions of Maxwell equations. On the contrary, some localized waveforms,
which are packet — like solutions of Maxwell equations in a free space themselves, are recalled
below.

I.1.6. Search of packet-like solutions of the wave equation in free space

0°U ,0°U 0°U _ 10U _
x> dy’ 0z° ¢ o

0 (1.22)

led to the following family of solutions, presented by Bateman [1955] in a form
U(r.1)=g(r.1)1(6) (1.23)

Here r stands for the spatial variables, 8 = H(r,t) is a solution of eikonal equation

11
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and f'is an arbitrary function. Two simple examples of waveform-preserving solutions (1.23) are
(a) plane waves : 8 =z —ct, (b) spherical waves : 8 = R—ct . A third class of solutions (1.23),

reported by Hillion [1983], is based on :

2
O=z-ct+— (1.25)
z+ct—ib

Here b is an arbitrary positive constant, having the dimension of a length. Making use of (1.25)

one can express the solution U of wave equation (1.23) via an arbitrary function f{ 6)

- 1) (1.26)

z+ct—ib
The free choice of function f{ &) provides a remarkable flexibility in the modeling of localized
fields. For instance, in a case considered by Brittingham [1983], f{6) was chosen as
£(6)=exp(ik6) (1.27)
where K is a free real parameter. Separation of real and imaginary parts in (1.27) permits to

separate the amplitude and phase factors in the field presentation (1.26)

rZ
exp[—zj
l 2
U, = —Dexp{—{K(z S PRI r—}} (1.28)

(Z+Ct)2+b2 z+ct b lé

This field is localized around the direction of propagation (z — axis) as a Gaussian — like pulse

with the transversal width

2 2

However, the energy of the pulse (1.28) happens to be infinite, but this approach gave
rise to forthcoming improvements of such packet - like solutions, providing them a finite energy.

Indeed, taking the function f{6) in a form

12



1(6)= exp|:2Kb(l - \/@ﬂ (1.30)

Kiselev and Perel (2000) demonstrated the packet — like behavior of solution (1.26) near by the
point =0, z=ct, 6=0. This point is viewed as the center of the packet, moving along the z -axis
with velocity c¢. Expansion of the function f(1.30) in the vicinity of this point in a case Kb >>1,

brings about the approximation

(z—ct)z} |b
U,=U,exp| —~———| ; [, =,]— (1.31)
2 1 |: l; /I K

Substitution of (1.31) into (1.26) yields the representation of the field near its peak in a form
differing only from solution U; (1.28) by an exponential factor, providing longitudinal

localization

2
1

2
U, =U, exp{— (z-ct) } (132)
Expression (1.32) describes a wave packet, filled with non-sinusoidal oscillations; its envelope
decreases in a Gaussian-like manner, both in longitudinal and transversal directions. Unlike the
pulse U, , the energy of waveform U, is finite.

I.1.7. - New types of waveforms presenting non-separable solutions to the propagation of a pulse

of EM field in a collisionless plasma, characterized by its “plasma frequency” Q, such that

Q? = 47iNe* / m (N,e and m are the electron density, charge and mass respectively) have been

suggested by Shvartsburg [1999]. Starting with the vector potential of the field A4(A4, ,0,0) such

that

—lan ; H ZOA)‘ (1.33)
c Ot ’ 0z

E =

Substitution of (1.33) into the Maxwell equations yields the propagation equation, governing the

vector-potential

x =20 (1.34)

0z ¢* ot ¢t

0’4, 10°4, _Q°
T a2

13



The traditional solution of eq. (1.34) takes the form of harmonic wave trains :

A =4, exp[i (kz - aJ)] . In such a case the wave number k and the frequency ware linked by the

dispersion equation, derived from (1.34)

k*c’ =’ -Q? (1.35)
However, side by side with these sinusoidal wave trains, there is a huge family of exact

non-sinusoidal solutions of eq. (1.34). To analyze the spatiotemporal structure of such

anharmonic EM fields in plasma, it is convenient to introduce the normalized variables 7and 77

and the dimensionless function f’

r=ar ; p="E . f=au (1.36)
C

Making use of (1.36), one can rewrite eq. (1.34) in a dimensionless form

Of _0°f _

1.37
o or f (1.37)

(1.37) is the Klein-Gordon (KG) equation. Solutions of this equation, suitable for time-domain

optics, were presented by Shvartsburg [1999] in a form:

f=§ﬁﬁﬂnm (1.38)
JXLW=%Ww@ﬂ%wW@ﬂﬂ (1.39)
A
wq(m){r‘”] Jq( rz—qz) (1.40)
T+n

Here J, is the Bessel function of order g; the coefficients d, and the values g will be determined
from the continuity conditions on the boundary plane 7). The non-separable functions ¢, cannot
be written in the usual form of a product of time-dependent and coordinate-dependent factors.
Let us point out some of their salient features:

(1). They have both spatial and temporal derivatives of arbitrary orders, which may be calculated

by means of recursive formulae:

14



al/lq 1 _

e —E(wq_l w,.) (1.41)
Y, _1

- W v) (1.42)

(i1). The causal condition 7277, which is fulfilled for each observation point /7> 0, results in
restriction of the magnitudes of harmonics ¢, for g=0. The function ¢, on a plane 77=0 reduces

to
v, \,,:0 =J,(r) (1.43)

(ii1). The electric and magnetic components of the EM field are also presented by non-separable

harmonics. Using (1.33), we obtain

E (r,n)=- 4,8 id‘fe" (z.n); H (r.n)=- 4,0 idqhq (r.n) (1.44)
e,(r.1) =%(t//q_2 -2, +¢/q+2) (1.45)
h,(t.n) =%(¢/q_2 ~0,.,) (1.46)

Examples of electric and magnetic harmonics with g=3 are depicted on Fig. 4. One can
see that these harmonics are non-sinusoidal, non-stationary and that their spatiotemporal
structures are quite different.

The models of localized pulses discussed above are far from exhausting the huge variety

of non-sinusoidal waveforms, and were chosen since they will be exploited in Section II.

1.2 : Production of ultrashort EM pulses

Production of such ultrashort EM pulses started long before the lasers were even thought of,
with the advent a long time ago of short pulse radars. We will not address this point here, and
rather concentrate on the production of short optical pulses, and some of their derivatives.
Techniques consisting in optically gating a cw laser have been developed but they do not, so far,

give access to pulse durations below 1 ps, and thus do not really satisfy the above definition. As

15



can be immedialtely deduced from the statement made above that short pulses have broad
spectra, production of short laser pulses requires either materials that can support a large gain
bandwidth, or to develop techniques to increase, in the course of propagation, the spectrum of
the pulse, which therefore pertain to non-linear optics. Obviously, the same materials used for
broadband tuneability can in principle be used for production of ultrashort laser pulses. Indeed,
dye lasers were the first to allow, more than twenty years ago, production of pulses whose
duration were significantly below 107 s. However, it is fair to say that in the past ten years, all-
solid state systems have definitely outruned dye-based systems in the race for production of high
intensity ultrashort pulses. Several materials have been considered for such applications,
including alexandrite, LiSAF crystals, and titanium doped sapphire (ti:sa), definitely the most
commonly used nowadays because of its excellent thermal and spectral qualities, and particular
non-linear properties offering the opportunity of a simple mode-locking mechanism. With a
central wavelength in the near IR, a spectral bandwidth in the 100 nm range, one can expect
pulse durations in the 10 fs range. Three essential functions have to be realized in such a laser :

- broadband amplification, which is provided by the amplifying material

- mode-locking, which is based in such lasers on the “Kerr-lens mode locking” mechanism.
Because of the high intensities reached at the focus of the Z-shaped subcavity, where the
amplifying crystal is located, non-linear contributions to the index of the material’s refractive
index (Kerr effect) cause the appearance of a “Kerr lens” instead of the parallel slab used, which
in turn perturbs the cavity stability. This effect can be corrected by a readjustment of the Z-
shaped subcavity mirrors, with the consequence that the total cavity is now optimized for the
high intensity (pulsed) regime. Besides, it is possible to select the spatial modes corresponding to
a pulsed operation using a slit conveniently placed in the oscillator cavity. It is worth noting that,
if one considers a pulse travelling back and forth in the cavity, the gain perturbation caused by
the appearance of the Kerr effect occurs everytime the pulse passes in the amplifying crystal, i.e.

perturbation of the gain occurs at the intermode frequency, a known condition for obtaining

16



mode-locked operation of a laser. This self-modelocking effect (once known as “magic”
modelocking!) was essential in the success of such lasers.

- Compensation of the Group-Velocity Dispersion (GVD) induced both in the amplifying
crystal and also, to some extent, in the coatings used for the different mirrors included in the
cavity. This function is provided by a “negative dispersion line”, usually consisting of two
identical isoscele prisms placed in one of the arms of the cavity.

With such oscillators, one now currently obtains pulses with duration in the 10 to 20 fs
range, with energies of 1 nJ or more, i.e. peak power in excess of a GigaWatt, making non linear
optics experiments accessible in quite confortable conditions. It should be mentioned that the
world record for pulse duration in such systems (5.8 fs, Matuschek, Gallmann, Sutter Steinmeyer
and Keller [2000]) was obtained using a different GVD principle, based on the use of “chirped
mirrors” proposed by Szipdcs, Ferencz, Spielman and Krausz [1995]. This solution, now
commercially available, also offers excellent compactness and stability. Note that for such short
time durations, the natural bandwidth of the amplifying material is not sufficient. It is Self Phase
Modulation in the amplifying crystal (a temporal counterpart of the Kerr effect) which provides
the extra bandwith needed.

Amplification of such laser pulses in solid-state amplifiers was the occasion of another
revolution, with the appearance of the “Chirped Pulse Amplification” technique (Maine,
Strickland, Badot, Pessot and Mourou, [ 1988]) —first applied to Table-Top Terawatt (T
neodymium lasers — which will not be detailed here. Let us just mention that it relies on a three
stage manipulation of the pulse : stretching of the ultrashort pulse to nanosecond durations,
amplification (which under these conditions can extract efficiently the energy stored in the
amplifiers material without reaching the material breakdown threshold) and recompression of the
pulse almost to its original duration. Pulses of typically 25 fs/25 J can be produced this way in

the most advanced ti:sa systems, allowing to reach intensities in excess of 10*°W.cm™.
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At much lower intensities (typically 10'* W.cm™), interaction with dense gaseous targets
allows to produce with a rather high efficiency a large number of odd harmonics of the incident
frequency (Saliéres, L Huillier, Antoine and Lewenstein, [1999]). A typical harmonic spectrum
generated in such interactions is shown on Fig. 5, which shows a case where both the
fundamental beam and its second harmonic have been focused simultaneously to generate a
complete spectrum (odd an even harmonics : the fundamental alone generates only odd
harmonics). It has a very typical shape, consisting in a rather fast decrease of efficiency for the
lowest order harmonics, followed by a “plateau” whose width and height depends on the gas
used (rare gases, most often), and finally a cut-off region. The emitted harmonics have excellent
spatial and temporal coherence properties, thanks to the coherent nature of the process producing
them, and pulse duration smaller than that of the exiting laser. The number of photons per
harmonic pulses is quite high (typically 10® in a common case where one does not seek to
produce the shortest possible wavelength), and such sources, in some applications requiring short
UV pulses are a serious competitor to synchrotron radiation (which is still leading the race,
though, in terms of average power). Concerning the shortest wavelength that can be generated
with such techniques, the latest results showed evidence of generation of the 255™ harmonic of
the ti:sa laser, i.e. a wavelength close to 3nm !

The particular shape of the spectrum shown on Fig. 5 has suggested a possible way of
reducing the pulse duration of such harmonic far below 1 fs. If one could lock the phases
between the different harmonics in the plateau region, modelisation predicts that pulse durations
in the range of a few attoseconds (one attosecond equals 10™® s) could be obtained. Very
recently, the relative phase of the different harmonics were measured using a two photon IR-
VUYV ionization experiment (Paul, Toma, Breger, Mullot, Augé, Balcou, Muller and Agostini,
[2001]), which allowed to reconstruct the harmonic pulse train, arriving to the conclusion that
one individual harmonic pulse had a maximum duration of 250 as, the shortest EM pulse

produced to date.
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The search for ultrashort pulses has also been successful in the IR range. It has been
known for some times that IR free electron lasers produce, in the leading edge of the
“macropulse” (a train of 100 or more micropulses with picosecond or less duration)
characteristic of such machines, pulses with durations of typically one picosecond, which, given
the wavelength range considered (10 um or more) satisfies the definition given above. Such
lasers now almost routinely operate between 5 and 50 pm.

In the communication domain, lots of efforts have also been made to develop very high
repetition rate-ultrashort optical sources. Usually starting from semiconductor lasers for
compactness and cost efficiency reasons, such sources are based on compression techniques
using propagation in different optical fibers. Limited for some times to the ps duration regime,
recent progresses have allowed to obtain compression levels down into the 20 fs range, that is to
say equivalent to that of the ti:sa lasers described above. In particular, starting from a 7.5-ps
pulses generated from a gain-switched semiconductor laser at (A=1.55 pm, rep. Rate 2 GHz),
Matsui, Pelusi and Suzuki [1999] achieved their compression down to 20 fs using a four-stage
fiber soliton pulse compressor consisting of standard single-mode transmission, Er-doped,
dispersion-decreasing, and dispersion-flattened fibers, respectively. They confirmed
experimentally that the soliton self-frequency shift plays an important role in obtaining such high
compression in very short fibers, and also in minimizing the inherent undesirable pedestal
component.

Finally, let us mention that the ultrashort laser pulses discussed above have been used to
generate single or half-cycle Terahertz pulses. The principle of the experiment is the following :
a piece of semi-conductor is irradiated during a short time using a subpicosecond laser pulse
(You, Jones, Bucksbaum and Dykaar [1993]). The carriers injected in the sc thus allow a current
to circulate in the sc, biased under a high dc voltage, as long as it is maintained in the conducting
state by the laser illumination. The field radiated by the moving electrons has the temporal shape

close to a single arch, and can be modeled as 2 cycle pulse of a radiation whose frequency is
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determined by the illumination laser pulse duration, and falls in the Terahertz range. More
recently this technique has been refined and THz emission obtained from unbiased GaAs (Code,
Fraser, De-Camp, Bucksbaum and van Driel [1999]), originating from ballistic photocurrents
generated via quantum interference of one- and two-photon absorption in low-temperature-
grown and semi-insulating GaAs. At a 250 kHz repetition rate, up to 3 nW of THz power have
been measured.

The examples given above show that it is possible, using the different techniques briefly
summarized here, to obtain ultrashort EM pulses at almost any wavelength between milimeters

(at least hundreds of pm) and nanometers.

1.3 — Measurement of ultrashort EM pulses.

Another problem is to measure such ultrashort EM pulses. If one excepts the case of
ultrashort RF pulses, which can be measured using standard electronic techniques, no electronic
equipment possesses a sufficient bandwidth to allow direct measurement of any, e.g.,
subpicoscond optical pulses. Therefore a number of optical techniques were proposed, and some
of them are routinely in use, for measurement of not only the pulse duration, but also of various
ultrashort laser pulses characteristics. A comprehensive review of such techniques can be found
in Dorrer and Joffre [2001] to which the reader is referred for a detailed description of the many
different possibilities demonstrated so far, and we will concentrate here on the methods that are
most commonly applied, and those offering the most complete and detailed information on the
pulse characteristics and therefore appearing as the most promising.

The first of them is second harmonic generation, which was proposed very early as a
mean of measuring short pulses (Weber, Mathieu and Meyer [1966]). If obtained using two

replicas of the pulse to be measured delayed by a time interval 7, it allows to deduce the
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autocorrelation function of the pulse intensity with the measurement, for different delays of the

quantity :
I (1) = T[(z)](r - 1)dt (1.33)

I representing the intensity profile of the pulse to be measured. Autocorrelators based on this
technique (which can be exploited in two variants : the intensimetric mode, and the
interferometric one, in which the autocorrelator is simply a Michelson interferometer associated
with a frequency doubling crystal) are implanted on basically all subpicosecond laser systems.
They allow to obtain not only the pulse duration (FWHM), but also some information on the
pulse shape. They allowed for instance to realize that the pulse shape generated in femtosecond
ti:sa oscillators were generally closer to the “squared-cosech” profile than to the exponential one
described by eq. (1.11), the latter being still generally used due to its analytic simplicity.
However, due to the symmetrical nature of the autocorrelation function, such a method is
helpless in the case of asymmetrical pulses. It should also be mentioned that such methods are
limited to measurements in the visible part of the spectrum essentially because the GVD of most
non linear materials (which would produce an artificial lengthening of the pulse) is large in the
UV range, thus limiting their thickness to values that preclude collection of a usable signal.

So, for the measurements of pulse durations in the UV or VUV range, one has to
substitute to SHG another non-linear process allowing to couple the pulse to be measured to a
well characterized optical pulse. Two photon absorption or ionization has often been employed
to this aim. Note that the electronic nature of the non linear process is essential since it warrants
— because of the fast response time of electrons — the accuracy of the measurement. For instance,
the pulse duration of X-rays pulses generated by intense irradiation of a metallic target could be
measured by monitoring the sidebands induced in the Auger electron spectrum of atomic Ar,
subject to the combined irradiation the of X-ray pulse and a delayed IR subpicosecond pulse

(Schins, Breger, Agostini, Constantinescu, Muller, Grillon, Antonetti and Mysyrowicz [1994]).
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Needless to say, such methods are difficult to employ and generally do not give birth to
apparatuses that could be considered as “measurement equipment”.

It is sometimes not enough to know the pulse duration. This was for instance the case in
he example mentioned above of the measurement of the respective phases of the different high
order harmonics. A commonly encountered example of such problem concerns the measurement
of the so called “chirped” pulses, in which the frequency of light varies along the pulse. One then
first has to locate the energy density in the time-frequency space, which is generally done using
spectrographic techniques. One of them is based on the Frequency Resolved Optical Gating
(FROG) principle (Kane and Trebino [1993]), consisting in measuring the spectrum of the pulse
after gating through a correlation process. However, retrieval of the field, which requires the use
of quite heavy algorithmic techniques, is a slow and uneasy task.

Interferometry-based techniques have emerged which appear to be the most powerful
ones presently available. This is the case in particular of the Spectral-Phase Interferometry for
Direct Electric field Reconstruction technique (SPIDER — Iaconis and Walmsley, [1998]) which
is a frequency domain counterpart of shearing interferometry, allowing to obtain single-shot
measurements of the spectral phase of ultrashort pulses (Dorrer, de Beauvoir, Le Blanc, Ranc,
Rousseau, Rousseau and Chambaret [1999]). In this technique, whose experimental principle is
sketched on Fig. 6, two time delayed frequency upshifted replica of the ultrashort pulse to be
analyzed are generated by frequency mixing with a chirped pulse. In such a chirped pulse, the
instantaneous frequency depends linearly on time (w=ta+f), and will be supposed constant
throughout the duration on the ultrashort pulse. If 71is the time delay between the two replicas, a
frequency shear Q=7q is introduced between both replicas. One then measures the spectrum of
the pair of upshifted replicas which consists in a series of fringes, whose structure is determined
principally by the frequency shear (2, but also bears information on the spectral phase of the
original pulse as a continuous function of frequency (Fittinghof, Bowie, Sweetser, Jennings,

Krumbugel, DeLong, Trebino and Walmsley [1996]; Lepetit, Cheriaux and Joffre [1995]). By
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this technique it is thus possible, in a single laser shot, to obtain a complete information on both

the amplitude and the phase of the EM pulse.

II. SPATIOTEMPORAL RESHAPING OF ULTRASHORT PULSES IN STATIONARY
MEDIA.

The variety of applications of few-cycle optical pulses in different branches of physics is
extending continuously. These applications range from time-domain spectroscopy of dielectrics
(Smith, Auston and Nuss [1988]) to impulse photoionization of molecules, (Jones, You and
Bucksbaum [1993]), new principles of imaging, suggested by Hu and Nuss [1995] and shape-
dependent absorption of broadband pulses in the space plasma, examined by Akimoto [1996], to
name just a few.

In any of such studies, one has to know the spatio-temporal parameters of the pulse at the
target location. However, these parameters may change on the path between source and target. It
was argued by Wolf [1986], [1987], that free-space propagation of a polychromatic radiation
beam produces variations of the beam’s spectrum, unless the radiation source possesses some
particular coherence properties (which fortunately happens to be the case of many classical
sources). Nevertheless, the general rule is that the spectrum does not have to be conserved upon
propagation, and this particularly when broadband coherent radiation is considered. During the
last two decades, great efforts were put into the understanding of the optics of broadband
waveforms localized in time and space. Spatial and temporal dynamics of these waveforms
cannot be analyzed separately, as in the quasimonochromatic case, but become coupled even in
free space. The spatial frequencies, arising due to the finite transverse size of a real wave beam,
provide free space dispersion, inducing changes in the pulse shape during propagation. The
interplay of these effects in the dynamics of different waveforms, travelling both in

dispersionless and dispersive media, is discussed below.
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I1.1 - Dynamics of ultrashort waveforms in dispersionless optical systems.

Propagation of ultrashort few-cycle pulsed beams in linear homogeneous lossless media
is accompanied by a coupled evolution of their spatial and temporal parameters. To understand
the fundamental role of the coupling between spatial and temporal reshaping of the pulse, it is
worthwhile to show first how these processes are developing during propagation in free space (§
I1.1.1), paragraph II.1.2 is devoted to spatial and temporal variations of waveforms passing
through an optical system and waveform-preserving reflection on curvilinear mirrors is discussed
in paragraph I1.1.3.

II.1.1. : The interplay between transversal, longitudinal and temporal distortions of localized

pulses is described by the paraxial equation for electric field E(r, z, ¢) (Einziger and Raz - 1987)

ALE == 2.1.)

with Ay =03 +07 ;#'=¢—zc” . We will use a non-separable solution of eq. (2.1), which writes:
iL, r?
E(r,z,1)= =2 F| - — (2.2)
q 2¢q
here 7* = x*+ )%, g=z+iLr and Lg is the diffraction length (Rayleigh range), F is an arbitrary
function. The pulsed beam diffraction, arising due to its finite transversal size, induces, through
the factor iLr/q in eq. (2.2), propagation changes in the on-axis waveform. Presenting this factor

in a form

iy _ explig) P Amg(ij 2.3)
q R
(72,)
one can link the factor [1 +(z/Lg ) ]_% with the pulse amplitude attenuation, meanwhile the phase
@ is responsible for the evolution of the pulse shape : (2.2) is real at z = 0 to and purely
imaginary for large z (z >> Lg). Parameter ¢ in (2.3) is known as the Gouy phase shift, and takes

values from -772 to 772. Independently of the choice of function F the coupling of its spatial and

temporal variations comes from the complex space-dependent time shift —/2¢q. Its real part
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2
zr

B 2c|q|2

Iy =

(2.4)

is an actual time of arrival of the pulse at each plane. This shift is connected with the paraxial

spherical phase front of radius

R(:) :% . {1 +(L7Rﬂ 2.5)

The imaginary part of time shift i > / 2c|q| determines the spatial distribution of pulse

attenuation. Let us illustrate the spatio-temporal coupling phenomena, choosing the function F in

a form (1.20), corresponding to the Poisson-spectrum pulse. The 1/e width of the real pulse F'is

T=t, exp(zj -1 (2.6)
\ m

which can represent a large variety of pulses, the value m=1 relating to a single maximum of F,

whereas large values of parameter m correspond to a growing number of oscillations with almost
constant frequency @, =mt,' in the central part of the pulse. To examine the forming of a
spatiotemporal structure in the course of paraxial propagation of the pulse (2.2) one can use eq.

(1.20), replacing the time # by a complex time ¢'-7> / 2cq and multiplying the function F (1.20)

by the Gouy factor
E(r,zt)=te| o 2.7)
Tp-" +i,
¢q

" r2LR !
L o7 2
E(r, z, t) = x o 1 (2.8)
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of which, according to (1.20), one should take the real part. One can see that solution (2.8)

derives from (2.7) through a time shift, connected with the spherical pulse fronts of radius R
(2.5) and replacement of parameter #y by ¢, +r°L, / 2c|q|2 . These changes result in an increase of

the pulse duration 7, as compared with (2.6)

2
2ct, ‘q‘ m
The frequency of oscillations being redshifted :
-1
rL
w, =m| ty+—= (2.10)
2c‘q‘

As shown by Porras [1999], the off-axis spatial structure of the pulse (2.8) is

characterized by the factor (1 + 2L R / 2cto|q|2 )_m , indicating a decrease of the pulse amplitude

when moving away from the axis. The Gouy factor iLr/q describes the pulse temporal reshaping,
including its polarity reversal during the pulse travel from z<<-Ly to z>>Ly (Fig. 7).

It should be pointed out that the pulse spectrum has an essential influence on the
dynamics of its spatio-temporal evolution. The above mentioned results relate to the Poisson-
spectrum pulses (1. 21). This spectrum, determined by two parameters only - m and £, - proves to
be flexible enough for modeling of such phenomena as pulse lengthening, frequency redshifting
and polarity reversal. Such transformations were observed experimentally by Feng and Winful
[1998] in the diffraction of ultrashort pulses.

The above analysis was treating the pulse propagation in an homogeneous medium. We
now turn to the study of the effects arising from transportation of such pulses through an optical
system.

I1.1.2. Let us consider the spatio-temporal transformation of an ultrashort pulse with Poisson
spectrum (1.21), passing through a thin lens. The main features of such a transformation can be
revealed in a simple case, that of the so-called isodiffracting pulses. These pulses, characterized

by a frequency-independent Rayleigh range, were examined by Melamed and Felsen [1998].
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Feng, Winful and Hellwarth [1999] showed that such pulses can be generated, e.g., in a cavity
resonator consisting of two curved mirrors of equal radii of curvature R, separated by a distance

L. The confocal parameter for this geometry is given by

2
d:27;W =/L2R-1) 2.11)

Here W is the beam waist, W =+/1 , and the Rayleigh range is

L, :%./LZZR—Lj (2.12)

This fixed confocal parameter provides the same values of wave front radius of curvature R(z)
for all the wavelengths and thus for the entire pulse.

Making a one-sided inverse FT of the isodiffracting pulse with Poisson-spectrum (1. 21) with
m=3, Feng and Winful [1999] obtained the following expression for the field :

_ iy exp[— 3iArctg(T )]
4 2 Va1 4 a
(1+T V{l az(z)}

where parameter g =z +iL, represents the Gouy phase shift and the z-dependent amplitude

(2.13)

attenuation factor; the normalized local time scale T is

¢—1{+2R()}
t{HaZr(zJ

Here the radius of curvature R(z) is defined in (2.5), the beam width a(z) is given by

a*(z)=2et,L, [1 + (Li] } (2.15)

R

T= (2.14)

The g parameter of the pulse is linked to the values of R(z) and a(z) by

1_ 1 2,
g R(z) a’(2)

(2.16)
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Let us consider such a pulse, passing through a thin non-dispersive lens with focal length
£, placed in the vacuum at plane z=0. Upon propagation through this lens the entire pulse can be
characterized by a new value of parameter g=¢,, which is related to the parameter ¢; of incoming
pulse by the so-called ABCD transformation, developed by Dijaili, Dienes and Smith [1990]

_Agq, +B

oD (2.17)
1

q,

Here g,=d,+iLg, d; being the distance from the beam waist of the incoming pulse to the lens. For
the pulse passing through the aforesaid thin lens to any point z,, the values A,B,C and D were

found by Feng and Winful [1999]:

/1:1—272 . B=z, ; c:—%r . D=1 (2.18)

(2.18), (2.17) and (2.16) give the transformed ¢ parameter at z,

(l_zzf_l)(dl +iLR)+ZZ
1_(d1 +il, )f_l

2

(2.19)

Making use of (2.16) with the value g=¢, (2.19) yields the values of the new Rayleigh range L’

and new beam waist az(dz), located at the distance d> from the lens :

L, :%R L a?(d)= 2? (2.20)
d, =%[d1 a2+ 2) s k=(-a Y+ () 2.21)
The total phase shift between the input and output beam waist is

@ = Arctg (2.22)

1
These results illustrate the spatiotemporal evolution of pulse (2.14), caused by its passage

through a thin dispersionless lens in vacuum. The following salient features of such evolution

can be stressed out
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(1) The phase shift, introduced by the lens, can change drastically the pulse’s temporal profile at
the focus. For instance in a case d,=f, it follows from eq. (2.22), that =772 ; herein a unipolar
(bipolar) pulse is transformed into a bipolar (unipolar) one.

(11) Considering the planes z=d, and z=d, as the object and image planes with respect to the beam
waists, one can see that the image pulses are different both is space (beam size) and in time
(pulse width) at different locations

(ii1) The variations of the spatial and temporal structures of the off-axis field at the beam waist
(z=d>) can be found by means of substitution of parameters (2.20)-(2.21) into the expression
(2.14), meanwhile the on-axis pulse width remains invariant.

Feng and Winful [1999] showed that the spatio-temporal reshaping of Poisson-spectrum pulses,
reflected from a concave spherical mirror with radius R, is described by formulae (2.19)-(2.22)
after replacement of the lens focal length f by the mirror radius R. Another geometry of
curvilinear mirror providing invariance of the reflected pulse shape, is considered now.

I1.1.3. To design curvilinear reflectors, with the purpose of controling the properties of transient
fields, Bateman [1955] developed an elegant time-domain approach to the analysis of EM field
in a free space. Following this approach, let us introduce a vector M, which is the linear
combination of electric ( E ) and magnetic (H) components of this field (assumed to be linearly
polarized):

M=E +iH (2.23)
The equation governing vector M, can be derived from the Maxwell equations

OxM =_iaa_1‘t‘ (2.24)
C

Further, representing vector M by scalar fields U and {/in the form
M =0Ux0Oy (2.25)

and substituting eq (2.25) into eq (2.24), we obtain an equation, describing these scalar fields:

OU xOy :—é(z—(jmw—z—‘f’mj (2.26)
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It should be noted that, as well as vector M, defined by eq (2.25), any other vector M;

M, = F(U,p)0U xOy (2.27)
containing any arbitrary function F(U, ¢) also obeys eqn (2.24). The determination of vector M
for the scattered field is appreciably easier than the traditional solution of the scattering problem.
The components of this vector being know