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Inférence des seuils de veto d’Electre
a partir d’exemples de surclassement

Résumé

Lorsque 'on considére les relations de surclassement valuées d’Electre, il est dif-
ficile d’intégrer la discordance (effets de veto) aux méthodologies d’agrégation-
désagrégation. Nous présentons une procédure d’inférence partielle pour calculer
la valeur des seuils de veto qui restitue au mieuz des affirmations de surclassement
fournies par un décideur (i.e., des exemples que le modéle Electre doit restituer).

Cet article poursuit des travaux antérieurs sur l’'inference des autres paramétres
préférentiels (coefficients d’importance, niveau de coupe, limites des catégories, ...)
en direction d’une approche intégrée de 'inférence dans les méthodes Electre. Nous
proposons des programmes mathématiques pour inférer les paramétres liés au veto,
tout d’abord dans le cas d’un seul veto, puis dans le cas de veto sur plusieurs cri-
téres, et ceci en utilisant la relation de surclassement floue d’Electre III et deux
variantes.

Ces programmes d’inférence partielle sont considérés comme des routines & utiliser
de facon répétitive dans un processus de désagrégation interactif dans lequel le déci-
deur révise 'information qu’il fournit & mesure qu’il obtient des résultats et apprend
& propos de ses préférences.

Mots-Clés: Relations de Surclassement floues, Effet de veto, Inférence des para-
metres, Flectre
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Inferring Electre’s veto-related parameters
from outranking examples

Abstract

When considering Electre’s valued outranking relations, aggregation /disaggregation
methodologies have difficulties in taking discordance (veto) into account. We present
a partial inference procedure to compute the value of the veto-related parameters
that best restore a set of outranking statements, provided by a decision maker (i.e.,
examples that an Electre model should restore).

This paper complements previous work on the inference of other preference-related
parameters (weights, cutting level, category limits, ...), advancing toward an inte-
grated approach to inference problems in Electre III and Tri methods. We propose
mathematical programs to infer veto-related parameters, first considering only one
criterion, then all criteria simultaneously, using the original version of Electre ou-
tranking relation and two variants. Depending on the case, these inference proce-
dures lead to linear programming, 0-1 linear programming, or separable program-
ming problems.

The partial inference programs are considered as problems to be solved several times
in an interactive process, where decision makers continuously revise the information
they provide as they learn from the results.

Keywords: Parameter Inference Procedures, Valued Qutranking Relations, Electre,
discordance, veto
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Introduction

The use of multiple criteria evaluation methods is often hindered by the need to provide
precise values for many preference-related parameters whose role is not clear to the Decision
Maker (DM). Aggregation/disaggregation methodologies, which have received much attention
lately (see EJOR 30(2), [4]), allow to infer values for such parameters from holistic judgments
(i.e., model results) that the DM is able to provide. Usually, when the underlying evaluation
model is of the Electre type (cf. [5], [7]) or of the value function type (cf. [3], [16]), a ma-
thematical programming problem is solved to find the combination of parameter values that
best restores the examples of results proposed by the DM, by minimizing some error function.
This is particularly useful if the inference procedure is part of an interactive process, where
the DM observes whether his/her result examples can be restored, and reacts accordingly. If
the examples indicated by the DM can be restored, he/she may explore the complete set of
results corresponding to the multiple combinations of parameter values that satisfy the imposed
conditions (robustness analysis), which may help him /her provide further information. If not,
the DM has to discover which of those examples are inconsistent, in order to withdraw some of
them (inconsistency analysis).

|2] have proposed this type of methodology, integrating parameters inference, robustness
analysis, and inconsistency analysis for decision aiding based on the Electre Tri method (for
an overview of Electre methods see [11] and [12]). However, the implementation they proposed
was limited to the situations where Electre’s veto thresholds were not taken into account.

Inferring all the parameters in Electre simultaneously requires solving non-linear programs
with non-convex constraints (see [7]), which are usually difficult. The current paper follows a
different strategy, based on inferring a subset of the parameter values at a time, while main-
taining the remaining ones fixed. These “partial” inference problems, besides simplifying the
mathematical programs to be solved, present important advantages. First, they let the DM
focus his/her attention on a subset of parameters at a time (e.g., concordance-related parame-
ters, then discordance-related parameters, then returning to concordance, etc.). Second, they
allow the DM to control the interactive process in an easier way. Namely, when there are many
alternative combinations of parameter values that satisfy all the requests of the DM, keeping a
subset of the parameters temporarily constant prevents the solutions from being too disparate
(even among alternative optima). Furthermore, the DM is less likely to encounter radically
different solutions when progressing from one iteration to the next one, and is able to better
understand the consequences of changing the examples. Indeed, we believe that inference pro-
grams should not be considered as a problem to be solved only once, but rather as problems to
be solved several times in an interactive learning process, where the DM continuously revises
the information he/she provides as he/she learns from the results of the inference programs.

While [6] considers that the concordance-related parameters were the only variables, this
paper now considers that all parameters are fixed except the discordance-related ones (Elec-
tre’s veto thresholds). Both papers apply to the Electre methods that use valued outranking
relations (Electre III and Tri), although this work has been motivated by the application to the
Electre Tri method. The holistic information provided by the DM consists of pairs of alterna-
tives (a,b) such that, to his/her opinion, “a outranks b” (denoted aSb), or “a does not outrank



b’ (denoted —aSh). Examples of results from the Electre Tri method may easily be translated
into outranking statements of this kind. This paper intends to present how to infer Electre’s
veto thresholds from a set of such “crisp” outranking statements.

The following section presents the original outranking relation, as well as two variants we
proposed in [6]. Section 2 presents the inference problem in a general format. Section 3 considers
the problem of inferring the veto parameters for one criterion at a time, as a simplification of
the more general problem that may nevertheless be useful in practice, since the veto parameters
are not inter-related among different criteria. Section 4 deals with the more general problem
of inferring the veto parameters for more than one criterion simultaneously. Finally, Section 5
presents illustrative examples, and a closing section offers a summary and some conclusions.

1 Valued Outranking Relations in Electre

In this section we recall how Electre III (see [10]) and Electre Tri (see [15], [12]) build a
valued outranking relation on the set of alternatives. Let A denote a finite set of alternatives
characterized by their evaluations on n criteria gy, ..., g,. gj(a) denotes the evaluation of an
alternative a € A on criterion g;. Without any loss of generality, we will assume that the
evaluations are coded in such a way that the higher the value, the better it is.

1.1 Outranking relations for a single criterion

Electre builds, for each criterion g;, a valued outranking relation S; restricted to a single
criterion. For any ordered pair (a,b) € A%, S;(a,b) is defined by (1) on the basis of g;(a), g,(b)
and two thresholds: indifference ¢; and preference p; (0 < ¢; < p;'). S;(a,b) represents the
degree to which alternative a outranks (is at least as good as) b. In this paper, we consider the
thresholds p; and g; as constant, although it is possible to consider them as affine functions

(see [1]).

0, ?fbgj(b) - gi(a) > p;
Sj(a,b) = § BEUUENl) it g < g;(0) — g5(a) <p; (1)
1, if g;(b) — g;(a) < g

1.2 Concordance relation

The valued concordance relation C(a, b) is grounded on the relations S; (j = 1,2, ...,n) and
represents the level of majority among the criteria in favor of the assertion “a is at least as good
as b”. When computing this majority level, each criterion g; has a weight w; > 0 representing its
voting power. Without any loss of generality, we will consider Z;’Zl w; = 1. Therefore, C(a, b)
can be written as follows:

Cla,b) = Z%le 3 wy5;(0,0) = Y w.5,(0,b) @)

1. We will consider g; < pj, although Electre also allows g; = p;.



1.3 Non-discordance relations

Electre builds, for each criterion g;, a valued discordance relation d; restricted to that
criterion. This relation d;(a, b) is defined by (3) on the basis of g;(a), g;(b), a veto threshold v;
and a preference threshold p; (p; < v;?) (see Figure 1). In this paper, we consider the thresholds
v; (as we already did for p; and ¢;) as constant, although it is possible to consider them as
affine functions (see [1]).

L i 9i(b) = gj(a) = v;
dj(a,b) = § LOZLOD - if p; < g;(b) — g;(a) < v; (3)

0, if g;(b) —gj(a) < p;

dj (a, b)

g;(a) + g g9;(a) + p; g;(a) +v;

F1G. 1: Partial valued outranking relation

An overall valued non-discordance relation ND(a,b) is grounded on C(a,b) and on the
relations d;, 7 = 1,2, ...,n; it represents the degree to which the minority criteria collectively
oppose a veto to the assertion “a is at least as good as b”. A classical way of defining ND(a, b)
is given in (4). ND(a,b) = 0 corresponds to a situation where the minority criteria are totally
opposed to aSb whereas N D(a,b) = 1 means that none of the criteria oppose a veto to a.Sb.

1-— dj(a, b)

1= C(a,b) where F' = {j € F/d;(a,b) > C(a,b)} (4)

ND(a,b) =[]

JEF

This expression is equivalent to (5):

ND(a,b) = H ND;(a,b), (5)
where?:
ND;(a,b) :Min{l,%}. (6)

2. We will consider p; < vj, although Electre also allows p; = v;.
3. Let us remark that we can state C'(a,b) < 1, as the case C(a,b) = 1 corresponds to a situation where no
discordant criterion exists.



As an alternative, [6] propose the valued non-discordance relation defined by (7)-(8), where
u; € [pj,v;| is a new parameter for the j-th criterion:

ND'(a,b) = [[ NDj(a,b) = [] (1 - dj(a, b)) (7)

jEF JEF

1 bif gi(b) — gj(a) > v;
dj(a,b) = § ZEEETE it u; < g;(0) — gj(a) < vy (8)

vj—
0 if g;(b) — gj(a) < u,

d;(a, b)

g(a) + p; g;(a) + g;(a) +vj
FI1G. 2: Partial discordance relation dj(a,b)

The new threshold u; defines the difference of performances in favor of b where the discor-
dance starts weakening the outranking relation (see Figure 2). It can be considered either:

— as an additional preference parameter to be elicited directly through an interaction with
the DM, or indirectly using a disaggregation procedure, or

— as a technical parameter (rather than a preference-related one) that defines the extent
to which differences of evaluation g;(b) — g;(a) < v; should (or should not) weaken the
concordance C(a, b) in the definition of S(a, b) (a reasonable value for u; is p; +0.75(v; —
p;), as discussed in [6]).

A second alternative proposed by [6] to define a valued non-discordance relation is the
following:

ND”((J,, b) = MijpND;-(a, b) (9)

1.4 Valued outranking relations

Electre combines the concordance and non-discordance relations in order to define the ou-
tranking relation S as shown in (10)

S(a,b) = C(a,b) . ND(a,b), (10)



or, according to the two alternative definitions,

S'(a,b) = C(a,b) . ND'(a, b) (11)

S"(a,b) = C(a,b) . ND"(a,b) (12)

From the valued outranking relation S(a, b), it is possible to define a family of nested crisp
outranking relations Sy; these crisp relations correspond to A-cuts of S(a, b), where the cutting
level A € [0.5,1] represents the minimum value for S(a, b) so that a.Syb holds. The same applies
when we consider S’(a,b) or S”(a,b) instead of S(a,b).

2 Inference of parameter values from crisp outranking sta-
tements

The construction of the relation S (or S’; or S”) involves determining the evaluation vector of
the alternatives, and setting many parameters: the criteria weights, the various thresholds, and
the cutting level. DMs often find it difficult to provide precise values for all these preference
parameters. Hence, “disaggregation approaches” have been proposed to infer the parameter
values from holistic judgments.

Let us consider a decision process in which the DM is not able (or not willing) to assign
directly values to the preference parameters involved in an outranking relation, but can state
crisp statements about this relation for some specific pairs of alternatives (a, b), either positive
(aSb) or negative (—aSh). Let us denote ST = {(a,b) € A? such that the DM stated aSb} and
S~ = {(a,b) € A? such that the DM stated —aSb}. Then, a combination of parameter values
is able to restore the DM’s request iff S(a,b) > A, V(a,b) € ST and S(a,b) < A, V(a,b) € S™.
The system of constraints below (13) has a solution if and only if there exists a combination of
parameter values that yields all the crisp outranking statements in S* and S~. Some additional
constraints can be added to this system, in order to integrate explicit statements of the DM
concerning the values of some parameters.

S(a,b) > A\, V(a,b) € ST

S(a,b) < A, V(a,b) € S~

A€0.5,1] (13)
v >p;>q; >0, VjeF

Z?lejzl; w; >0, VjeF

The idea of inferring all the parameters by maximizing the minimum slack for the above
system of constraints was proposed by [7] in the context of the Electre Tri method. However,
the resulting mathematical program is very complex (nonlinear and nonconvex constraints).
A solution to circumvent this difficulty is to formulate partial inference programs, where only
a subset of the parameters are considered as variables, while the remaining ones are fixed.
In partial inference problems, if no combination of values for the inferred parameters is able
to restore the statements contained in S* and S—, then the DM should wonder why. Then,
he/she may either revise his/her statements or turn his/her attention to a different subset of
parameters whose value may be inadequate.



Among partial inference problems, previous research concerning Electre methods has focused
mainly on inferring the weights and the cutting level. The problems involving the relation S(a, b)
can be solved using linear programs (LPs), but only if discordance is ignored, i.e., no veto
phenomena occur and ND(a,b) = 1 (e.g., see [8], [2] in the context of Electre Tri). However,
when considering S’(a,b) or S”(a,b), the weights and the cutting level can be inferred using
LP, even in the presence of discordance (see [6]).

In the context of Electre Tri, a procedure exists to infer category limits, i.e., frontiers between
categories and attached indifference and preference thresholds (everything else being fixed),
assuming that no veto phenomena occur (see [9]). This procedure involves linear programs with
0-1 variables.

We next present an approach to infer veto thresholds, when all other parameters have been
fixed. For a more compact notation, we will write:

Aj(b,a) = g;(b) — g;(a), (14)

which is a constant value for each pair (a,b) € A%

3 Inference of veto-related parameters for a single criterion

In this section, we consider that all the parameters are fixed, except the veto threshold of
one criterion (let ¢ be its index). Indeed, contrarily to the weights, the veto thresholds are not
interdependent, i.e., fixing the veto threshold for one criterion is not influenced by the value of
the veto thresholds for the remaining criteria. Hence, the DM may wish to focus on the veto
power of criteria, one criterion at a time. Being v; the only variable, all the requests from the
DM can be satisfied iff the system (15) has a solution:

S(a,b) > A, V(a,b) € ST
S(a,b) < A, V(a,b) €S~ (15)
Vi > Pi

3.1 Inference of v; considering S(a,b)

From (5) and (10), when only v; is considered as variable, S(a,b) is equal to ND;(a,b)
(which is a function of v;) multiplied by a constant value K;(a,b) = C(a,b). [];cp\ iy NDj(a, b).
If this constant is lower than A, then a will not outrank b, even if there is no discordance on

the i-th criterion, since S(a,b) < K;(a,b). Let us define a relation aS_;b, meaning “aSb when
there is no discordance on the i-th criterion”, or “aSb is possible for some values of v;”:

aS ;b < (ND;(a,b) =1 = aSh)

Since K;(a,b), C(a,b), and X are fixed constants, it is easy to perform the following prepro-
cessing:

— if 3(a,b) € ST : —aS_;b or I(a,b) € S~ : C(a,b) =1 (which implies S(a,b) = 1), then the
system (15)has no solution.



— all constraints associated with pairs (a,b) € S : C(a,b) = 1 or pairs (a,b) € S~ : =aS_;b
are redundant, because they will be respected for any value of v;.

We now assume that this preprocessing has been performed. If the system was not found to
be impossible and if the redundant constraints have been removed, then from (5), (6), and (10),
the system (15)may be replaced by the following one (note that K;(a,b) # 0 and C(a,b) < 1
for all the pairs considered):

NDifa,b) = Min{1,}-4E01 > 220 V(a,b) € 5*:aSib
NDifa,b) = Min {1, -4e01 < A V(a,b) €5, :aS b (16)

Vi > D

Noting that aS_;b = \/K;(a, b) < 1, this system is equivalent to the following one:

1 —di(a,b) > (1—-C(a,b)).=2 V(a,b) € ST :aS_;b
1 —di(a,b) < (1-C(a,0)).% V(a,b) € S :aS_;b (17)
Vi > D

If we now define B;(a,b) =1 — %, then the same system may be written as:

di(a,b) < Bj(a,b), Y(a,b) € ST:aS_;b
di(a,b) > Bi(a,b), Y(a,b) € S™:aS ;b (18)
Vi > Pi

where each d;(a,b) is a function of v; (recall that all other parameters are fixed) that yields a
value in the interval [0, 1] (see (3) and Figure 1).

Since A/K;(a,b) €]0,1] and 1 > C(a,b) > X > 0.5, we conclude that 1 > B;(a,b) > 0. From
(3), each constraint derived from a pair (a,b) € ST : aS_;b can be translated into a lower bound
for v;, and each constraint derived from a pair (a,b) € S~ : aS_;b can be translated into an
upper bound for v;. Therefore, we may search for a solution to the system (19) , knowing that
di(a, b) €]0, 1] iff d;(a, b) = 2ilba)p:.

Vi —Pi

vi > pit SO Y(a,b) € ST aS b
v, < pi+ Ag’;’(z),b_)pi, V(a,b) € S~ :aS ;b (19)
vi > P

Let L; denote the greatest of the lower bounds derived from S*, and let U; denote the lowest

of the upper bounds derived from S~. Then the system (19) has no solution if U; < max{L;, p; }.
Uit+max{L;p;}

Otherwise any value for v; in [max{L;, p;},U;] is acceptable, namely v; = 5 )

3.2 Inference of u; and v; considering S’(a,b)

In the specific case of the outranking relation S’(a, b) (see (11)), a new veto-related parameter
u; has been introduced (see (8) and Figure 2). In this subsection we address the problem of
inferring u; and v; simultaneously (v; > u; > p;). Note that if we considered that u; is fixed

7



and v; is the only variable, then the process would be quite similar to the one followed in §3.1.
Hence, the notations hereafter are similar:

- Ki(a,b) = C(a,b). [T;em gy NDj(a, b) (the product of the factors that do not depend on
u; and v;; this allows to write S’(a,b) = NDj(a,b).K}(a,b));

- aS" b Kl(a,b) > X (aS",;b iff aS’b is possible for some values of u; and v;);

- Bi(a,b) =1 - A/Ki(a,b);

Following the reasoning of §3.1, we may perform a similar preprocessing that may detect
that the problem is infeasible (if 3(a,b) € ST : =aS’ ;b or I(a,b) € S~ : C(a,b) = 1) and allows
to remove redundant constraints (those associated with pairs (a,b) € St : C(a,b) = 1 or pairs
(a,b) € S~ : —aS_;b). After that, inferring u; and v; amounts at solving the following system
of inequalities, where the variables v; and u; affect d}(a,b), whereas B(a,b) are constants:

di(a,b) < Bi(a,b), V(a,b) € ST:aS";b
di(a,b) > Bi(a,b), V(a,b) € S™:aS";b (20)
vi > U 2> P

Since A/K}(a,b) €]0,1], we conclude that 1 > B;(a,b) > 0. Let us define the auxiliary

notation:

- S(J;3>0)z' = {(a,b) € S*:aS" ;b A 1> Bi(a,b) > 0};
fS(EO) {(a,b) € ST :aS" ;b A Bl(a,b) =0}.

For each (a,b) € S(J;g o) we have a constraint d}(a,b) = 0 (note that d.(a,b) cannot be
negative), which from (8) is equivalent to A;(b,a) < u;. The remaining pairs (a,b) € S (B>0)i
and (a,b) € S; : aS’ ;b constrain dj(a,b) to be lower or higher (respectively) than a value in
the interval |0, 1]. Since d}(a, b) €]0, 1] iff d}(a, b) = W the following system is equivalent
to the previous one:

Us 2 A'L (ba CL), V(a, b) € S+B 0):

A;(b,a)—u;
v < w+ SHUS V(a, b)e S : as'_,.b
v > U 2 p;

In this case we may solve the following LP, where ¢ is an arbitrary near-zero constant (to
account for the strict inequalities) and the variables are v;, u; and o:

Max o s.t.
ui > Ay(b,a) + 0, V(a,b) € Sz,

v; + U; (B;(la’b) — 1) > A}(a’ + 0, Y(a,b) € SB>O)z (22)
b)

Uj(a;b)
v; + U; (B;(la’b) — 1) < L;((Z:b)) —o—¢, Y(a,b) € S™:aS" ;b

If the optimum value of the LP (22)is positive or null, then the system (20)has a solution,
i.e., the optimum solution yields a value for v; and u; that respect all the statements provided
by the DM. Otherwise, the system (20)has no solution.

8



3.3 Inference of u; and v; considering S”(a, b)

Finally, we consider the outranking relation S”(a, b). Let us define M;(a, b) = minjem (53 N Dj(a, b).
As only wv; is considered as variable, M;(a,b) is a constant value such that:

S"(a,b) = C(a,b). min {M;(a,b),1 — di(a,b)} < C(a,b).M;(a,b). (23)
Following the reasoning of §3.1, we may define a relation analogous to S_; and S’ ;:
aS” b < C(a,b)M;(a,b) > X (aS”,b iff aS"b is possible for some values of u; and v;)  (24)

We perform a similar preprocessing that may detect that the problem is infeasible (if 3(a, b) €
St :=aS",bor 3(a,b) € S : C(a,b) = 1) and allows to remove redundant constraints (those
associated with pairs (a,b) € ST : C(a,b) =1 or pairs (a,b) € S~ : =aS",;b). Hence, we consider
the system:

S"(a,b) > A, V(a,b) € ST:aS";b
S"(a,b) < A, VY(a,b) € S :aS"b (25)
vi > U > P

From (23), each constraint S”(a,b) > A holds iff M;(a,b) > A/C(a,b) and 1 — d}(a,b) >
A/C(a,b). However, aS”.b = M;(a,b) > A\/C(a,b); hence, S"(a,b) > X < 1 — dj(a,b) >
A/C(a,b),Y(a,b) : aS",b. Therefore, if we now define B} (a,b) =1 — A/C(a,b), then the system
(26) can be written as:

di(a,b) < B!(a,b), V(a,b) € ST:aS";b
di(a,b) > B!(a,b), V(a,b) € S~ :aS";b (26)
Vi > U > P

This system is similar to the system (20) that we found in §3.2, hence we may proceed as
proposed in that section: the process is the same, with a different definition for the relation
S’ ., and the constants Bi(a,b).

4 Inference of all veto-related parameters simultaneously

In this section we consider that all the parameters are fixed, except some of the veto thre-
sholds, possibly all of them. This situation will occur when the DM does not wish to focus on
the veto power of one criterion at a time. Let V' C F be the set of indices of the criteria whose
veto threshold is not fixed. The criteria whose indices are in F'\V are either fixed or do not
possess any veto power (v; = 00).

Being v;, j € V the only variables, all the requests from the DM can be satisfied iff the
system (27) has a solution:

S(a,b) > A V(ab) e St
S(a,b) < A V(ab) €S (27)
v; > Py, V]EV



4.1 Inference of v; considering S(a,b) or S'(a,b)

Let us consider the outranking S(a, b) (see (10)) and define Ky (a,b) = C(a,b). [ [;cpv NDj(a,b),
which is a constant value for (a,b). We can now write S(a,b) = Kv(a,b).[[;cy NDj(a,b) <
Ky (a,b). Let us define a relation aS_y b, meaning “aSb is possible for some values of v;, j € V”:

aS_vb & Kv(a, b) >\ (28)

Since Ky (a,b), C(a,b), and X\ are fixed constants, it is easy to perform the following pre-
processing:

— if 3(a,b) € ST : =aS_yb or I(a,b) € S~ : C(a,b) = 1 (which implies S(a,b) = 1), then
the system (27) has no solution.

— all constraints associated with pairs (a,b) € ST : C(a,b) = 1 or pairs (a,b) € S~ : =aS_yb
are redundant, because they will be respected for any value of v;, j € V.

We now assume that this preprocessing has been performed. If the system was not found
to be impossible and if the redundant constraints have been removed, then the system (27)
may be replaced by the following one, with By (a,b) = A/Ky(a,b) (note that Ky (a,b) # 0 and
C(a,b) < 1 for all the pairs considered):

[l;ey NDj(a,b) > By(a,b), V(a,b) € ST:aS yb
[I;cy NDj(a,b) < By(a,b), V(a,b) € S™:aS yb (29)
V; > Dj, Vj eV

This is a nonlinear system of inequalities, where the variables are v;, j € V, as arguments
of NDj(a,b) (see §1.3):

. v;—Aj(b,a)
) 1—d,(a,b) _ mln{l,max{o, DT }}
ND.: — 1. — 1\ 1 J
i (a,b) mm{ T=Ca.b) } min ¢ 1, = Clab) (30)

If Aj(b,a) < pj, then NDj(a,b) = 1, regardless of the value of v;. Hence, if we denote
Vi =1{j €V :Aj(b,a) > p,}, we can write the system (29) above as:

[Ljev,, NDj(a,b) > By(a,b), ¥(a,b) € S*:aS vb
Hjeva,, NDj(a,b) < By(a,b), VY(a,b)€ S~ :aS_yb (31)
v > Dy, V] eV
Note also that:
max {0, Z%A_y}
NDj(a, b) =min<K 1, ;- , V] € Vap (32)

1—C(a,b)

We will now transform this system using logarithms. Let us define:

fi(a,b,v5) =logmax{0.1, ND;(a,b)}, Vj € Vq, (33)
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This definition considers that ND;(a,b) = 0.1, whenever its real value is below 0.1 (we
need this to ensure we are taking the logarithm of a positive quantity). However, note that
if NDj(a,b) < 0.5, for some j € Vg, then S(a,b) < A, regardless of any other parameters,
since A > 0.5. Hence, this modification will not influence the results (any value in ]0,0.5] could
replace 0.1).

Now, the system (29) has a solution iff the following mathematical program has a non-
negative optimal value (¢ is an arbitrary near-zero constant to account for the strict inequali-
ties):

Max o s.t.
> iev, fi(a;,b,v;5) > log By (a,b) + 0, VY(a,b) € ST :aS_vb
> jev, fi(a,b,v5) <log By (a,b) —o —¢, V(a,b) € S™:aS_vyb
v >pj+e, VjEV

(34)

The advantage of using logarithms is that we obtain a separable nonlinear program, which
may be solved by 0-1 linear programming techniques. In the separable program (34), each func-
tion f; (a,b,v;) may be approximated by a piecewise linear function of v;. Since the feasible
region is not convex, these problems may be solved either introducing some integer (0-1) va-
riables or using a special branch and bound technique for dealing with SOS2 (special ordered
sets of variables where at most two consecutive ones are non-zero) are used. 13| (chapter 7 and
9) and [14] (chapter 5 and 7) overview separable programs, including how to formulate them
and solve them using either integer 0-1 programming or SOS2 branch and bound.

If we considered the outranking relation S’(a,b) (see (11)) instead of S(a,b), the process
would be analogous to the one described here, with the difference of placing N Dj(a, b) instead of
NDj(a,b). The only significant consequence is that N Dj(a, b) depends also on the variables u;
(j € V) (besides v;), which increases the number of binary variables in the 0-1 linear programs
to solve.

4.2 Inference of u; and v; considering S”(a, b)
)

Considering the outranking relation S”(a, b) (see (12)) and the variables u; and v; (j € V),
we will follow the similar reasoning, as we did for S(a,b). The relation aS”,b plays the same
role as aS_yb in §4.1, but has a different definition:

aS” b < C(a,b). min ND'(a,b) > A (35)
JEF\V

We perform a similar preprocessing that may detect that the problem is infeasible (if
J(a,b) € ST : =aS"bor 3(a,b) € S~ : C(a,b) = 1) and allows to remove redundant constraints
(those associated with pairs (a,b) € ST : C(a,b) = 1 or pairs (a,b) € S~ : —aS”,b). Hence, we
consider the following system, with B”(a,b) = A\/C(a,b) (recall the definition of S”(a,b) (see

(12)):

minjep ND(a,b) > B"(a,b), V(a,b) € S*:aS",b
minjep NDj(a,b) < B"(a,b), VY(a,b) €S~ :aS"yb (36)
Vi > U > DPj, VieV

where the variables u; and v; (j € V) are arguments of N.D’(a, b).
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i —Aj(b,a)

Noting that NDj(a,b) = min {1,max{0, ”J;j_uj }} (see (7)-(8)), and since aS” b =

B"(a,b) €]0,1], the system (36) is equivalent to the following one:

minjep%jxﬂ) > B"(a,b), VY(a,b)€St:aS",b (37.a)
minjep%ju(j’a) < B"(a,b), Y(a,b)€S :aS",b (37.h) (37)
v; > Uijj, VieV

The values of %ﬂéba) are fixed for j € F\V and variable for j € V, hence we may readily

j %
verify that one of the fixed values makes a constraint (37.a) impossible to respect (hence there
would be no solution) or makes a constraint (37.b) redundant (hence may be deleted).
We can now build a mathematical program to test if system (37) has a solution. Since

vj > uj, each of the constraints (37.a)may be rewritten as:

min vj — Aj (b’ CL)

JEF Vj — Uj

Uj — Aj(b, (1,)
’Uj — U]’

& (1-B"(a,b).v; + B"(a,b).u; > As(b,a), Vj € F (38)

— B"(a,b) >0

& — B"(a,b) >0,Vj€F

On the other hand, since v; > u;, each of the constraints (37.b) may be rewritten as:

AL
min vi= A5(ha) B"(a,b) <0
JEF Vj — Uj
AL
& JdjeF: M—B”(a,b) <0
Vj — Uy
& JjeF: (1-B"(a,b)).v;+ B'(a,b).u; < Aj(b,a) (39)
(1 - B”(CL, b)) v+ B”(CL, b)u] + M-éjab <M + A]'(b, CL), VjeF

g ZjeF Ojab > 1 (40)

djaw € {0,1}, Vj € F

where M is a large positive constant greater than %ﬁ’a), Vi € F,¥(a,b) € S~ : aS"b.
The system (40) uses binary variables to account for the disjunctive nature of (39). Note that
> e d;jap > 1 forces at least one of the binary variables ¢4, to be have the value 1, thus forcing
(39). Considering these transformations, the system (37) has a solution iff the following 0-1
linear program has a non-negative optimal value (¢ is an arbitrary near-zero constant):

Max o s.t.
( (1 — B”(a, b)) Uy + B”(a, b)u] > Aj(b, a) + o,
Vj € F,(a,b) € ST :aS" b
(1—-B"(a,b)) .v; + B"(a,b).uj + M.5jep < M + Aj(b,a) — 0 —k,
$ Vi€ F, (a,b) €S :aS",b
> jerOjan > 1, V(a,b) € S 1 aS”yb
vj—e>u; >pj, VjeV
| djap € {0,1}, Vj € F, (a,b) € S™ :aS" b, o free.

(41)
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5 Illustrative example

In this section, we present an example that illustrates the procedures presented in §3 and §4.
This example deals with a multiple criteria sorting problem using the Electre Tri method (see
[12] and [15]). Within this framework, we infer the veto thresholds (the value of all other pa-
rameters being fixed) from assignment examples using Electre Tri pessimistic assignment rule.
Let us note that this problem amounts at inferring a relation S from outranking statements
(see §2) as in it holds a is assigned to Cy, iff aSby A —aSby 1.

5.1 Scheme of the experiment

The experiment will proceed as follows. First, we define an Electre Tri model by specifying
all preference parameters (including veto thresholds). Applying this model allows us to assign
each alternative to a specific category. Next, we consider these results as assignment examples.
These examples are used as an input of the inference procedures defined in §3 and §4 where we
consider one/several veto-related parameters unknown. This experimental scheme (see Figure
3) enables us to compare the inferred model to the initial one, to analyze the behavior of the
inference procedures.

Let us consider a sorting problem in which alternatives have to be assigned to three catego-
ries, good > medium > bad, defined by two profiles, b; and by (B = {1,2}), taking into account
their evaluations on 7 criteria, g1,...,g7 (F = {1,...,7}). The evaluations on each criterion
take their values in the interval [0,100]. The Electre Tri model is defined by the values for
preference parameters specified in Table 1. Note that the veto parameters are v;(by) and v;(bs),
i.e., defined as associated with the limits of the categories. Electre Tri pessimistic assignment
rule (using these parameters and posing A = 0.61) defines the 6 assignment examples given in
Table 2.

®

Specify an compare the inferred model
Electre Tri model to the initial one \
apply
@ the
model
Assignment infer veto Infered
examples parameters Electre Tri model

F1G. 3: Ezperimental scheme
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These assignment examples result in the following positive and negative outranking state-
ments: S+ = {(alﬂb1)7 (a27b2)a (Clg,bz), (a’ﬁabl)} and S~ = {(a'labZ)a (a'4ab1)7 (a57b1)a (a6ab2)}-

5.2

We first infer the veto parameters for criterion gi, i.e., vi(b;) and vi(be). Following the
method defined in §3.1, the sets S* and S~ lead to v1(by) € [32.7,35.4] and vy (be) € [30.2,39.7].
These intervals result from the computations given in Table 3 and Table 4. As expected, the
values for v1(b;) = 33 and v;(by) = 33 in the initial model (the one from which the assignment

91 92 93 94 95 9e
w;j 0.143 | 0.143 | 0.143 | 0.143 | 0.143 | 0.143 | 0.143
gj(b1) | 33 33 33 33 33 33
g;(b) 3 3 3 3 3 3
pi(b1) | 5 5 5 5 5 5
vi(by) | 33 33 33 00 00 00
9;(b) | 66 | 66 | 66 | 66 | 66 | 66
gi(b) | 3 3 3 3 3 3
p;(be) 5 5 5 5 5 5
vi(by) | 33 33 33 00 00 00
TAB. 1: preference parameters
91| 92 | 93| 94| 95 | g | g7 | Category
a1 | 39| 55 | 59 | 65 | 65 | 65 | 65 Cy
as | 45| 55 | B9 | 65 | 65 | 65 | 65 Cs
az | 49| 55 | 89 | 65 | 65 | 65 | 65 Cs
ag | 7 | 27 |29 | 25| 65|65 |65 &
as | 6 | 27 |29 | 65 | 65 | 65 | 65 &
ag | 8 | 6.5]29|65|65|65]|65 Cy

TAB. 2: Set of assignment examples

inferring one veto using the relation S

examples were derived) are contained in the computed intervals.

oF

a; | by | g1(a;) | g1(by) | Ki(as,by) | Inconsistent? | By(as, by) | v (by)
ar | b 39 33 1.000 no 1.000 -6.00
as | by 45 66 0.625 no 0.634 30.24
as | by 45 66 0.625 no 0.634 23.93
ag | b 8 33 0.6875 no 0.723 32.67

TAB. 3: Computation of lower bounds for vy (bp)
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5=
a; | by | g1(a;) | 91(bp) | K1(ai,by) | Redundant? | By(ag, by) | v (by)
a; | by | 39 66 0.625 no 0.634 39.70
as | by 7 33 0.5625 yes - -

as | b 6 33 0.6875 no 0.723 35.44
ag bg 8 66 0 yes - -

TAB. 4: Computation of upper bounds for vi(by)

5.3 inferring one veto using the relation S’

In the case of the outranking relation S’ (see (11)), a new veto-related parameter u; is in-
troduced (see (8) and Figure 2). If we pose u; = p; +0.75(v; — p;) (v; being the only variable),
then the calculations are very similar to the preceding case and lead to the following intervals:
Ul(bl) € [313,333] and ’U1(b2) S [262, 341]

If we consider the threshold u; as a parameter to be inferred, and we impose both thresholds
to be equal (i.e., u1(b1) = u1(by) = uy and v;(by) = v1(be) = v1), the mathematical program to
be solved is the following:

Max o s.t.

( 1.56 Uy + v — O Z —15.38

4066 u; + v1 — o > 875

40.66 u; + v1 — o > 708.33

7.87 U, + v — o Z 221.77
—40.39u; — vy — o > —1117.55+¢
—786u; — vy — o > —239.21 +¢
u; > pj(g;) +¢

L Vi 2= Uy

In this mathematical program, the four first constraints result from the positive outranking
statements in ST (a1Sb1, a2Sby, a3Sbs, agSby) and the two following ones result from negative
outranking in S~ (—a4Sh and —agSbe, the two other negative outranking statements being
redundant). At the optimum v; = 25.6 and u; = 25.5.

5.4 inferring one veto using the relation S”

To illustrate the case of the outranking relation S” we pose u; = p; +0.75(v; — p;) (v; being
the only variable). In this case, the calculations are similar to §5.2 and lead to the following
intervals: v1(by) € [30.7,33.3] and v;(by) € [26.2,34.1].

5.5 inferring several veto using the relation S”

Let us suppose that the DM wants to infer all veto simultaneously. In this case, we will
suppose that u; = p; + 0.75(v; — p;) (v; being the only variables). As the DM considers that
only the first three criteria can have a veto effect, we infer vy, v and v3 from the assignment
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examples. In this case, the mathematical program to be solved is given below. At the optimum, it
holds: ’Ul(bl) = 320, Ul(bg) = 275, Ug(bl) = 339, UQ(b2) = 143, U3(b1) = 5.0 and ’1)3(62) = 22.2.

Max o s.t.

( 0.61(1.25 4 0.75v1(by)) + 0.39v1(b1) —0 > —6
0.61(1.25 + 0.75v9(b1)) + 0.39v4(by) — 0 > —22
0.61(1.25 + 0.75v3(b1)) + 0.39v3(by) — 0 > —26
0.976(1.25 4+ 0.75v1(by)) + 0.024v(be) — 0 > 21
0.976(1.25 4+ 0.75v5(by)) + 0.024vq(be) — o > 11
0.976(1.25 + 0.75v3(b3)) + 0.024v3(be) — 0 > 17
0.976(1.25 + 0.75v1(b3)) + 0.024v1(be) — 0 > 17
0.976(1.25 + 0.75v4(bs)) + 0.024v9(by) — o > 11
0.976(1.25 + 0.75v3(b3)) + 0.024v3(bs) — 0 > 7
0.8873(1.25 + 0.75v1(b1)) + 0.1127v1(b1) —0 > 25
0.8873(1.25 4+ 0.75v5(by)) + 0.1127v9(by) — 0 > 26.5

< 0.8873(1.25 4+ 0.75v3(b1)) + 0.1127w3(by) — 0 > 4
—0.97584(1.25 + 0.75v1(bg)) — 0.02416v; (be) — M1y, —0 > —M — 27+ ¢
—0.97584(1.25 + 0.75v9(b2)) — 0.02416v5(be) — Mdogp, —0 > —M — 11+ ¢
—0.97584(1.25 + 0.75v3(bg)) — 0.02416v3(be) — M3, —0 > —M —T+¢
51a1b2 + 520.1()2 + 530.1()2 > 1
—08871(125 + 075U3(b1)) — 01129’()3(b1) — M<53a5b1 — 0 Z —-M -4 + €
Otasb; + 0256, + 0305, > 1
Uj(bh) Z pj(bh) +8] = 1,2,3, h = 1,2
vj(b2) —v;(b1) > g;(b1) — g;(b2) 1 =1,2,3

| djab, € {0,1},7=1,2,3,i=1,...,6, h=1,2

Conclusion

This paper presents a contribution to a methodology to infer the parameter values of an
Electre model from crisp outranking statements provided by the DM (statements that the
model should restore). This is a difficult problem when all parameters have to be inferred si-
multaneously, hence we limit ourselves to an interactive process of partial inference problems.
Partial inference problems are frequently a wise choice as regards the interaction with a DM,
since they allow greater control and comprehension of the interactive process.

This paper focusses on the inference of the discordance-related parameters (veto thresholds),
thus complementing previous work on the inference of the concordance-related parameters
(weights, cutting level and limits of categories). In [6] we used two variants of the original va-
lued outranking relation S (denoted S” and S”) to simplify inference problems. In this paper,
we show that regarding the inference of the veto thresholds, S and S’ originate mathematical
programs of similar complexity, while S” yields simpler versions. Table 5 summarizes the type
of mathematical programs corresponding to each situation. Although we have considered veto
thresholds as independent from the performances, this table applies to the more general case
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where thresholds are affine functions of g;(.) (see details in [1]).

S Sl SII
Inference of weights | Global (non-convex) | Linear  program- | Linear program-
and cutting level programming ming ming
Inference of veto for | Linear programming | Linear  program- | Linear program-
a single criterion ming ming
Inference of veto for | Separable  nonlinear | Separable  nonli- | 0-1 linear pro-
all the criteria programming near programming | gramming

TAB. 5: Mathematical programs corresponding to the different veto inference problems

Ilustrative examples provided in §5 show how the inference procedures can be used in a
sorting problem based on an Electre Tri model. Further research should be conducted in order
to study empirically the behavior of the inference procedures.
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