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Abstract

A discrete-time financial market model is considered with a se-

quence of investors whose preferences are described by utility func-

tions Un defined on the whole real line. It is shown, under suitable

hypotheses, that whenever Un tends to a utility function U∞, the re-

spective optimal strategies, the Davis and Hodges-Neuberger prices

converge, too. Under additional assumptions the rate of convergence

can also be estimated.
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∗The authors thank Université Paris 7 and the Computer and Automation Institute

of the Hungarian Academy of Sciences for their hospitality. The visit of L. Carassus was

made possible by the EU Centre of Excellence Programme. M. Rásonyi was supported by
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1 Introduction

In the present article we are interested in the following question: does the
convergence of agents’ preferences entail the convergence of the respective op-
timal strategies? We assume that these preferences are described by means
of utility functions, i.e. strictly concave, increasing functions Un, n ∈ N

converging to some utility function U∞. In [6] the case of a complete Brown-
ian model was studied, where investors’ utility functions were defined on the
positive axis. It was shown that the convergence of optimal strategies indeed
takes place under appropriate conditions.

In this paper we focus on different classes of models and agents: discrete-
time markets with finite time horizon and utility functions defined on the
whole real line. Supposing that prices are bounded and satisfy a uniform no-
arbitrage condition, we prove that the convergence of utility functions (having
“uniform asymptotic elasticity”) implies the convergence of the respective
optimal strategies. Under stronger assumptions on the convergence of Un,
we also show that the convergence rate is the same in both cases.

Note that these financial market models are, unlike the ones in [6], generi-
cally incomplete. Since in incomplete markets the choice of a suitable pricing
rule is a fundamental issue we also establish the convergence of two types of
utility-based prices: Davis price (see [2]) and utility indifference price (see
[3]). Section 2 provides precise definitions and formulations of the principal
results, section 3 recalls some useful facts about utility maximization, the
proofs of the main results are presented in section 4.

2 Main results

Let (Ω,F , (Ft)0≤t≤T , P ) be a discrete-time filtered probability space with
time horizon T ∈ N. We assume that F0 coincides with the family of P -zero
sets. Let {St, 0 ≤ t ≤ T} be a d-dimensional adapted process represent-
ing the discounted – by some numéraire – price process of d securities in a
given economy. The notation ∆St := St − St−1 will often be used. Trading
strategies are given by d-dimensional processes {ψt, 1 ≤ t ≤ T} which are
supposed to be predictable (i.e. ψt is Ft−1-measurable). The class of all such
strategies is denoted by Φ. Denote by L∞, L∞

+ the sets of bounded, nonneg-
ative bounded random variables, respectively, equipped with the supremum
norm ‖ · ‖∞.

Trading is assumed to be self-financing, so the value process of a portfolio

2



ψ ∈ Φ is

V z,ψ
t := z +

t
∑

j=1

〈ψt, ∆Sj〉,

where z is the initial capital of the agent in consideration and 〈·, ·〉 stands
for the inner product in R

d.
Denote by Dt(ω) the smallest affine hyperplane containing the support of

the (regular) conditional distribution of ∆St with respect to Ft−1. We refer
to Proposition 8.1 of [8] for more details about the (random) set Dt.

The following absence of arbitrage condition is standard:

(NA) : ∀ψ ∈ Φ (V 0,ψ
T ≥ 0 a.s. ⇒ V 0,ψ

T = 0 a.s.).

However, we need to assume a certain strengthening of the above concept
hence an alternative characterization is provided in the Proposition below.
Let Ξt denote the set of Ft-measurable d-dimensional random variables,

Ξ̃t := {ξ ∈ Ξt : ξ ∈ Dt+1 a.s. |ξ| = 1 on {Dt+1 6= {0}}}.

Proposition 2.1 (NA) holds if and only if there exist Ft-measurable ran-
dom variables βt, 0 ≤ t ≤ T − 1 such that

ess. inf
ξ∈Ξ̃t

P (〈ξ, ∆St+1〉 < −βt|Ft) > 0 a.s. on {Dt+1 6= {0}}. (1)

Proof. The direction (NA) ⇒ (1) is Proposition 3.3 of [8]. The other direc-
tion is clear from the implication (g) ⇒ (a) of Theorem 3 in [4]. ✷

We formulate a stronger concept of absence of arbitrage which strengthens
the “uniform absence of arbitrage” property figuring in [11].

Assumption 2.2 There exist constants β, κ > 0 such that

ess. inf
ξ∈Ξ̃t

P (〈ξ, ∆St+1〉 < −β|Ft) > κ a.s. on {Dt+1 6= {0}}.

The following technical assumption roughly says that there are no redun-
dant assets, even conditionally.

Assumption 2.3 Dt is almost surely equal to R
d, for all 1 ≤ t ≤ T .

Remark 2.4 Results hold without this hypothesis but proofs get messy.

Introduce the notation N̄ := N ∪ {∞}. Consider a sequence of agents
with preferences converging to some limiting preference.
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Assumption 2.5 Suppose that Un : R → R, n ∈ N̄ is a sequence of strictly
concave and increasing continuously differentiable functions such that for all
x ∈ R

Un(x) → U∞(x), n → ∞.

Remark 2.6 Note that the above Assumption implies the uniform conver-
gence of both Un and U ′

n on compacts, by p. 90 and p. 248 of [9].

A further technical condition needs to be imposed which will guarantee
the existence of optimal strategies as well as their uniform boundedness, see
Theorem 3.4 below.

Assumption 2.7 Assume that there exist 0 < γ < 1, x̃ > 0 such that for
all λ ≥ 1, y ≥ x̃ and for all n ∈ N̄

Un(λy) ≤ λγUn(y). (2)

Remark 2.8 This assumption says that agents’ utility functions satisfy a cer-
tain uniform asymptotic elasticity condition at +∞, consult [7] and Remark
2.4 of [8] about this notion, compare also to property (P3) on p. 135 of [6].
We remark that our results remain true if we replace (2) by some condition
on the asymptotic elasticity of the Un at −∞:

there exists x̃ < 0 < θ such that for all λ ≥ 1, y ≤ x̃ and for all n ∈ N

Un(λy) ≤ λ1+θUn(y),

see Remark 2.6 of [8] and [10].

In case we would like to estimate the rate of convergence a strengthening
of Assumption 2.5 is needed.

Assumption 2.9 The functions Un, n ∈ N̄ are strictly concave, increasing
and twice continuously differentiable. For all N > 0, the second derivative
satisfies the bounds

ℓ(N) ≤ |U ′′
n(x)| ≤ L(N), x ∈ [−N,N ], n ∈ N̄,

with constants ℓ(N), L(N) > 0 and there exists a sequence of real numbers
g(n) → 0, n → ∞ such that

|Un(0) − U∞(0)| + sup
x∈[−N,N ]

|U ′
n(x) − U ′

∞(x)| ≤ C(N)g(n), n ∈ N, (3)

where the C(N) are suitable constants.
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Remark 2.10 The condition on U ′′
n is a kind of “uniform strict concavity”

property. Under Assumption 2.9 the inequality

|Un(x) − U∞(x)| ≤ |Un(0) − U∞(0)| +
∫ x

0

|U ′
n(y) − U ′

∞(y)|dy (4)

shows that Un tends to U∞ uniformly on compacts with convergence speed
O(g(n)). Note that if Un tends to U∞ uniformly on compacts with conver-
gence speed O(g(n)) then (3) does not always holds true.

If we assume that U ′′
n converges to U ′′

∞ at the rate g(n), that U ′′
∞ < 0 and

also that there exists some x0 ∈ R satisfying Un(x0) and U ′
n(x0) converge

respectively to U∞(x0) and U ′
∞(x0) at the rate g(n), then one can prove (by

an argument similar to (4)) that Assumption 2.9 holds.

Example 2.11 Typical examples are the sequences Un(x) = −e−αnx, x ∈
R, 0 < αn, n ∈ N̄ where αn → α∞ at a given rate O(g(n)).

Fix any element G ∈ L∞
+ and define

un(G, z) := sup
φ∈Φ(Un,G,z)

EUn(V z,φ
T − G),

where Φ(Un, G, z) denotes the family of strategies φ ∈ Φ such that EUn(V z,φ
T −

G) exists. The quantity un(G, z) represents the supremum of expected util-
ity from initial capital z delivering a contingent claim with payoff G at the
terminal date.

Theorem 2.12 Suppose that S is bounded and Assumptions 2.2, 2.3, 2.5
and 2.7 hold. Then there exist almost surely unique optimal strategies
ψ∗

n,t(z), 1 ≤ t ≤ T, n ∈ N̄ satisfying

un(G, z) = EUn(V
z,ψ∗

n(z)
T − G),

and limn→∞ ψ∗
n,t(z) = ψ∗

∞,t(z) almost surely, for all 1 ≤ t ≤ T .
Moreover, un(G, z) tends to u∞(G, z) uniformly on compact sets.

Theorem 2.13 Assume hypotheses of the previous Theorem, with Assump-
tion 2.5 replaced by 2.9. For all N > 0 there exist suitable constants Jt(N)
and J(N) such that, for all 1 ≤ t ≤ T ,

sup
z∈[−N,N ]

|ψ∗
n,t(z) − ψ∗

∞,t(z)| ≤ Jt(N)g(n),

sup
z∈[−N,N ]

|un(G, z) − u∞(G, z)| ≤ J(N)g(n).
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Example 2.14 We now demonstrate that convergence of optimal strategies
may fail for unbounded price processes. Define for all n ∈ N̄

Un(x) := 1−(1−x)2+1/n, x ≤ 0, Un(x) := (4+2/n)
√

x + 1−4−2/n, x > 0,

with the convention 1/∞ = 0. It is easily verified that Assumption 2.5 and
2 holds for this sequence. Now set

α1 :=
∞

∑

n=2

1

n3log2n
, α2 :=

π2

6
=

∞
∑

n=1

1

n2
.

Take T = 1 and ∆S1 such that

P (∆S1 = −n) =
1

2α1n3log2n
, n ≥ 2; P (∆S1 = δn) =

1

2α2n2
, n ≥ 1,

where δ > 0 is to be determined later. Assumption 2.2 holds for β = 1
and κ = 1/3. As

∑

p≥0
1

pαlog2p
= ∞ for α < 1 and < ∞ for α ≥ 1, it is

easy to check that for all n ∈ N and φ 6= 0 we have EUn(φ∆S1) = −∞.
Consequently φ∗

n = 0 is optimal. On the other hand,

EU∞(∆S1) =
1

2
−

∞
∑

n=2

(n + 1)2

2α1n3log2n
+ 2

∞
∑

n=1

√
δn + 1

α2n2
− 2,

which is finite and, for δ sufficiently large, strictly greater than 0, so φ∗
∞

(which exists by Theorem 2.7 of [8]) cannot be 0.

Take again G ∈ L∞
+ , interpreted as the payoff at time T of some derivative

security. A remarkable pricing method has been suggested in [2]: to evaluate
claim G using the measure

dQ

dP
=

U ′(V
z,ψ∗(z)
T )

EU ′(V
z,ψ∗(z)
T )

,

where U is a suitable utility function and ψ∗(z) is the optimal strategy with
initial endowment z, i.e.

u(0, z) = sup
φ∈Φ(U,0,z)

EU(V z,φ
T ) = EU(V

z,ψ∗(z)
T ).

Under appropriate conditions (see section 6 of [8]) Q indeed defines an equiv-
alent risk-neutral measure. In this way individual preferences of agents are
taken into account when choosing the pricing functional by some “marginal
rate of substitution argument”, see [2] or p. 229 of [1] for more economic
justifications of this method. Theorem 2.12 permits us to establish the con-
tinuity of Davis price with respect to changes in the agents’ preferences.
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Theorem 2.15 Suppose that hypotheses of Theorem 2.12 hold. Let ψ∗
n(z), n ∈

N̄ be the optimal strategies figuring in Theorem 2.12. Then the Radon-
Nykodim derivatives

dQn

dP
=

U ′
n(V

z,ψ∗

n(z)
T )

EU ′
n(V

z,ψ∗

n(z)
T )

,

define equivalent martingale measures for S and Qn → Q∞ in the total
variation norm. Consequently,

EQnG → EQ∞G, (5)

for any contingent claim G ∈ L∞
+ , i.e. the respective Davis prices converge,

too.
Moreover under the additional assumption of Theorem 2.13, there exists

some constant A such that

|EQnG − EQ∞G| ≤ Ag(n).

Now consider another pricing concept, originating from [3]. The Hodges-
Neuberger or utility indifference price of some bounded contingent claim G
is the minimal amount of money to be paid to the seller and added to her
initial capital so that her utility when selling G is at least as the one she
could get without selling it.

Definition 2.16 For any G ∈ L∞
+ and x ∈ R, the utility indifference price

pn(G, x) is defined as

pn(G, x) = inf{z ∈ R : un(G, x + z) ≥ un(0, x)}, n ∈ N̄.

It is easy to check that this quantity is well-defined and 0 ≤ pn(G, x) ≤ ‖G‖∞.
In our case un(G, ·), un(0, ·) are strictly increasing (see the statement of
Proposition 3.6), so un(G, x + pn(G, x)) = un(0, x).

Theorem 2.17 Under the hypotheses of Theorem 2.12, pn(G, x) → p∞(G, x)
as n → ∞.

3 Facts about utility maximization

In this section we use a dynamic programming procedure to prove the exis-
tence of optimal strategies and to derive bounds on them. Results of Theo-
rem 3.4 hold true under weaker hypotheses on (Un)n∈N than Assumption 2.5.
What we need is the Assumption below:
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Assumption 3.1 The function Un : R → R, n ∈ N̄ are concave, nonde-
creasing and continuously differentiable,

sup
n∈N̄

|Un(x)| < ∞ for all x ∈ R, inf
n∈N̄

U ′
n(0) > 0.

In what follows, it is crucial that the asymptotic elasticity property (2)
admits a reformulation which is preserved during the dynamic programming
procedure. This is the content of the next Condition. Let V : R → R be a
function.

Condition 3.2 There exists C1 > 0 and C2 > 0 such for all x ∈ R and
λ ≥ 1:

V (λx) ≤ λγV (x + C1) + C2λ
γ,

V (λx) ≤ λV (x + C1) + C2λ
γ.

Fix some G ∈ L∞
+ and set Un,T (x, ω) := Un(x − G(ω)). Proposition 3.3

below initiates the dynamic programming procedure.

Proposition 3.3 Under Assumptions 2.7 and 3.1, Un,T satisfies Condition
3.2 almost surely with constants C1, C2 independent from n.

Proof. Set C1 := ‖G‖∞, C3(x) := supn∈N̄
|Un(x)| and C4 := C3(0). These

are finite by our hypotheses. Define Ũn(x) := Un(x) − Un(0). Then by
Assumption 2.7 we have for x ≥ x̃ and λ ≥ 1 :

Ũn(λx) ≤ λγUn(x) + C4 ≤ λγŨn(x) + C4λ
γ + C4 ≤ λγŨn(x) + 2C4λ

γ.

For 0 ≤ x ≤ x̃, using monotonicity:

Ũn(λx) ≤ Ũn(λx̃) ≤ λγUn(x̃) + C4 ≤ λγC3(x̃) + C4

≤ λγŨn(x) + λγ[2C4 + C3(x̃)],

using that Ũn(x) ≥ 0 if x ≥ 0. For x ≤ 0, again by concavity:

Ũn(λx) ≤ Ũn(x) + Ũ ′
n(x)(λ − 1)x ≤ Ũn(x) +

Ũn(x) − Ũn(0)

x
(λ − 1)x

≤ λŨn(x) ≤ λγŨn(x).

Putting together the estimations so far, we obtain that Condition 3.2 holds
for Ũn, n ∈ N̄ with uniform constants C̃1 := 0, C̃2 := 2C4 + C3(x̃). Now for
Un,T we get

Un,T (λx) ≤ Un(λx) ≤ Ũn(λx) + C4

≤ λγŨn(x) + [C̃2 + C4]λ
γ ≤ λγUn(x) + [C̃2 + 2C4]λ

γ

≤ λγUn,T (x + C1) + [C̃2 + 2C4]λ
γ,
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showing that the first inequality of Condition 3.2 is true for Un,T , n ∈ N̄ with
the choice C2 := C̃2 + 2C4, uniformly in n. The second inequality follows in
the same way. ✷

The starting point of the following Theorem is Remark 7.2 of [8].

Theorem 3.4 Suppose that Assumptions 2.2, 2.7 and 3.1 hold. For all
n ∈ N̄, we introduce the following random functions :

Un,T (x) := Un(x − G),

Un,s(x) := ess. sup
ξ∈Ξs

E(Un,s+1(x + 〈ξ, ∆Ss+1〉)|Fs), 0 ≤ s ≤ T − 1.

For all n ∈ N̄, 0 ≤ s ≤ T , Un,s are well-defined and satisfy

Un,s(x) < ∞. (6)

The functions Un,s have almost surely concave and increasing continuously
differentiable versions satisfying Condition 3.2 with constants uniform in n.
For all n ∈ N̄, 0 ≤ s ≤ T − 1 and x ∈ R, there exists ξ̃n,s+1(x) ∈ Ξs such
that ξ̃n,s+1 ∈ Ds+1 a.s. and

Un,s(x) = E(Un,s+1(x + 〈ξ̃n,s+1(x), ∆Ss+1〉)|Fs). (7)

For all 0 ≤ s ≤ T − 1, there exist nondecreasing functions Ms, M̂s and Hs :
R+ → R+ such that for all n ∈ N̄, x ∈ R:

|ξ̃n,s+1(x)| ≤ M̂s+1(|x|), (8)

Un(x − Ms+1(|x|)) ≤ Un,s+1(x) ≤ Un(x + Ms+1(|x|)), (9)

U ′
n,s(x) = E(U ′

n,s+1(x + 〈ξ̃n,s+1(x), ∆Ss+1〉)|Fs), (10)

U ′
n(Hs+1(|x|)) ≤ U ′

n,s+1(x) ≤ U ′
n(−Hs+1(|x|)). (11)

For all n ∈ N̄, z ∈ R the utility maximization problems

EUn(V z,ψ
T − G) → max., ψ ∈ Φ(Un, G, z),

admit optimal solutions ψ∗
n(z) given by

ψ∗
n,1(z) := ξ̃n,1(z), ψ∗

n,t+1(z) := ξ̃n,t+1(z +
t

∑

k=1

〈ψ∗
n,k(z), ∆Sk〉). (12)

There exists nondecreasing functions Υt : R+ → R+ such that for all n ∈ N̄,
z ∈ R

|ψ∗
n,t(z)| ≤ Υt(|z|). (13)

and the value functions of the optimization problems are finite, i.e. un(G, z) =
Un,0(z) < ∞.
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Proof. Suppose d = 1 for notational simplicity and let R denote a constant
bound for the process |∆S|.

Sections 4 and 5 of [8] will be used, but the estimations have to be car-
ried out in a more explicit way. The hypotheses which are needed there:
E(Un,s) > −∞, (6) and Condition 3.2 for Un,s ; these will be shown in the
reasonings below.

First note that E(Un,s) > −∞ holds true by backward induction for
all s = 0, . . . , T because Un,s(x) ≥ E(Un,s+1(x)|Fs) and Un,T (x) ≥ Un(x −
‖G‖∞). From standard arguments, Un,s are concave functions.

We shall apply backward induction to prove (7) to (11). First, (6) is
trivial for s = T , (9) and (11) are trivial for s = T − 1 and Condition 3.2 for
Un,T holds by Proposition 3.3. Moreover, as S and G are bounded, it is easy
to see that (6) holds true for s = T − 1. So from Proposition 4.4, Lemma 4.9
and Proposition 6.5 of [8], Un,T−1 have almost surely concave and increasing
continuously differentiable versions and (7) and (10) hold. Finally, (8) will
follow just like in the induction step below.

Let us proceed supposing that the induction hypotheses hold for s ≥ t.
We get from (8) for s = t that

x + ξ̃n,t+1(x)∆St+1 ∈ [x − M̂t+1(|x|)R, x + M̂t+1(|x|)R],

and from (9) for s = t

Un,t+1(x + M̂t+1(|x|)R) ≤ Un

(

x + M̂t+1(|x|)R + Mt+1(|x| + M̂t+1(|x|)R)
)

because Mt+1 and Un are nondecreasing. Also

Un,t+1(x − M̂t+1(|x|)R) ≥ Un

(

x − M̂t+1(|x|)R − Mt+1(|x| + M̂t+1(|x|)R)
)

.

Defining

Mt(u) := M̂t+1(u)R + Mt+1(u + M̂t+1(u)R), u ∈ R+,

Mt is nondecreasing as M̂t+1 and Mt+1 are. Using (7) for s = t and the fact
that Un,t+1 is nondecreasing, we get that almost surely

Un(x − Mt(|x|)) ≤ Un,t(x) ≤ Un(x + Mt(|x|)), (14)

showing (9) for s = t − 1. Moreover, as S and G are bounded, it is easy to
see that (6) holds true for s = t−1. Then Condition 3.2 holds for Un,t−1 with
the same constants as in Proposition 3.3, by the argument of Proposition 5.2
of [8]. So we can again apply Proposition 4.4 and Lemma 4.9 of the cited
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article and (7) holds for s = t− 1 and Un,t−1 have almost surely concave and
increasing versions. Moreover, we get that from Proposition 6.5 of the same
paper that Un,t−1 has almost surely continuously differentiable versions and
(10) is satisfied.

It is also clear from (8), (10), (11) for s = t and from the facts that Ht+1

is nondecreasing and U ′
n,t+1 nonincreasing:

U ′
n,t(x) = E(U ′

n,t+1(x + ξ̃n,t+1(x)∆St+1)|Ft) ≥ U ′
n(Ht+1(|x| + RM̂t+1(|x|))),

This, together with an upper estimate of the same kind, shows (11) for
s = t − 1 with the choice

Ht(u) := Ht+1(u + RM̂t+1(u)), u ∈ R+.

Now we want to prove that a bounded optimal strategy ξ̃n,t(x) exists. Let
y > 0. As Un,t is concave

Un,t(−y) ≤ Un,t(0) − yU ′
n,t(0). (15)

Using condition (9) for s = t − 1 we see that Un,t(0) ≤ Un(Mt(0)), and from
Assumption 3.1 we get that

sup
n∈N̄

Un,t(0) < ∞. (16)

We now prove that infn∈N̄ U ′
n,t(0) > 0. For this purpose, introduce the fol-

lowing sets:
An,s+1 = {ξ̃n,s+1(0)∆Ss+1 ≤ 0}, s ≥ t.

From Assumption 2.2, P (An,s+1|Fs) ≥ κ. Apply (7) for s ≥ t:

U ′
n,t(0) = E(U ′

n,t+1(ξ̃n,t+1(0)∆St+1)|Ft) ≥ E(IAn,t+1U
′
n,t+1(0)|Ft)

≥ E(IAn,t+1 . . . IAn,T
U ′

n,T (0)|Ft),

iterating the same reasoning. As U ′
n,T (0) = U ′

n(−G) and G ≥ 0, we obtain
that

U ′
n,t(0) ≥ U ′

n(0)E(IAn,t+1 . . . IAn,T
|Ft) ≥ κT−t inf

n∈N̄

U ′
n(0),

which is strictly positive by Assumption 3.1. So by (15) and (16) there exists
a constant Nt (independent of n) such that Un,t(−Nt) < −1 with probability
one, for all n ∈ N̄.
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Apply the estimations of the proof of Lemma 4.8 in [8] with the choice
V := Ut to an arbitrary ξ ∈ Ξt−1, ξ ∈ Dt, |ξ| 6= 0. In that Lemma C1 is
taken to be 0, but the argument can be easily adapted to yield

E(Un,t(x + ξ∆St)|Ft−1) ≤ |ξ|γLn,t(x) + 2C2|ξ|γ − |ξ|(1+γ)/2κ/2, (17)

whenever

C1 +
|x|

|ξ|(1+γ)/2
− |ξ|(1−γ)/2β < −Nt,

here Ln,t(x) is a random variable such that

0 ≤ Ln,t(x) ≤ 2U+
n,t(x + C1 + R) ≤ 2U+

n (|x| + C1 + R + Mt(|x| + C1 + R))

≤ 2 sup
n∈N̄

U+
n (|x| + C1 + R + Mt(|x| + C1 + R)) =: Gt(|x|),

and the latter is a deterministic function, nondecreasing in |x| and indepen-
dent of n, by Assumption 3.1.

Now there exists some deterministic function u → M̂t(u), u ∈ R+ (chosen
to be nondecreasing) such that if |ξ(ω)| > M̂t(|x|) then

|ξ(ω)|γGt(|x|) + 2C2|ξ(ω)|γ − |ξ(ω)|(1+γ)/2κ/2 < inf
n∈N̄

Un(x − Mt(|x|)),

C1 +
|x|

|ξ(ω)|(1+γ)/2
− |ξ(ω)|(1−γ)/2β < −Nt,

here the infimum is finite by Assumption 3.1 again. Define A = {|ξ| >
M̂t(|x|)} ∈ Ft−1. Then on A, from (17) and (9) for s = t − 1,

E(Un,t(x + ξ∆St)|Ft−1) < Un(x − Mt(|x|)) ≤ E(Un,t(x)|Ft−1),

hence

E(Un,t(x + ξ∆St)|Ft−1) ≤ IAE(Un,t(x)|Ft−1) + IAcE(Un,t(x + ξ∆St)|Ft−1)

≤ E(Un,t(x + ξIAc∆St)|Ft−1),

with strict inequality on A. Assume that P (A) > 0 and apply the last
inequality for ξ = ξ̃n,t; then the strategy ξ̃n,t(x)IAc contradicts optimality. So
(8) holds for s = t − 1.

It remains to prove that the strategies defined by (12) are optimal. Just
like in Proposition 5.3 of [8], we obtain that for any trading strategy ψ ∈
Φ(Un, G, z):

E(Un(V z,ψ
T )|F0) ≤ Un,0(z) = E(Un(V

z,ψ∗

n(z)
T )|F0).

12



As Un,0(z) is finite and F0 is trivial one gets that un(G, z) = Un,0(z) < ∞
and for all ψ ∈ Φ(Un, G, z), E(Un(V z,ψ

T )) ≤ E(Un(V
z,ψ∗

n(z)
T )) = un(G, z) < ∞.

Thus ψ∗
n(z) is the solution of

EUn(V z,ψ
T ) → max., ψ ∈ Φ(Un, G, z).

It is easy to see by induction from (8) that (13) holds with

Υ1(u) = M̂1(u) and Υt+1(u) = M̂t+1

(

u + R

t
∑

s=1

Υs(u)

)

.

✷

Corollary 3.5 Under the conditions of Theorem 3.4, there exist nondecreas-
ing functions Ft : R+ → R+, 0 ≤ t ≤ T such that for all n ∈ N̄

|V z,ψ∗

n(z)
t | ≤ Ft(|z|) a.s.

for the optimal strategies ψ∗
n(z) constructed in the previous Theorem.

Proof. Indeed, define Ft(u) := u + R
[

∑t
j=1 Υj(u)

]

. ✷

Proposition 3.6 If we assume, in addition to conditions of Theorem 3.4,
that the Un are strictly concave for n ∈ N̄ then the Un,t (and thus un(G, ·) =
Un,0) are strictly concave for all t = 0, . . . , T and there exists a unique optimal
strategy ψ∗

n such that almost surely ψ∗
n,t ∈ Dt, for all t = 1, . . . , T .

Proof. To see strict concavity we argue by backward induction : the case
s = T is trivial, suppose that for some s < T and x 6= y and 0 < α < 1 we
have

Un,s(αx + (1 − α)y) = αUn,s(x) + (1 − α)Un,s(y),

on a set A ∈ Fs of positive probability. By concavity of Un,s+1 and optimality
of ξ̃n,s+1(αx + (1 − α)y) we always have

E(αUn,s+1(x + ξ̃n,s+1(x)∆Ss+1) + (1 − α)Un,s+1(y + ξ̃n,s+1(y)∆Ss+1)|Fs) ≤
E(Un,s+1(αx + (1 − α)y + [αξ̃n,s+1(x) + (1 − α)ξ̃n,s+1(y)]∆Ss+1)|Fs) ≤

E(Un,s+1(αx + (1 − α)y + ξ̃n,s+1(αx + (1 − α)y)∆Ss+1)|Fs).

On A, the first and the third lines are equal, so from the equality of the first
and the second lines we get

IA

(

αUn,s+1(x + ξ̃n,s+1(x)∆Ss+1) + (1 − α)Un,s+1(y + ξ̃n,s+1(y)∆Ss+1)
)

=

IAUn,s+1(αx + (1 − α)y + [αξ̃n,s+1(x) + (1 − α)ξ̃n,s+1(y)]∆Ss+1).

13



So by strict concavity of Un,s+1 one has on A

x + ξ̃n,s+1(x)∆Ss+1 = y + ξ̃n,s+1(y)∆Ss+1,

As x 6= y, the quantity ξ̃n,s+1(x) − ξ̃n,s+1(y) is nonzero, so we have

x − y

ξ̃n,s+1(y) − ξ̃n,s+1(y)
= ∆Ss+1

and Ds+1 6= {0} on A. The left-hand side is Fs-measurable, which is impossi-
ble as ∆Ss+1 has nondegenerate conditional distribution by Assumption 2.2,
a contradiction finishing the proof of strict concavity. Unicity of ξ̃n,t is a
consequence of Theorem 2.8 in [8]. ✷

Corollary 3.7 Suppose that Assumptions 2.2, 2.5 and 2.7 hold. Then Un,t

converges to U∞,t almost surely, uniformly on compacts, for all 0 ≤ t ≤ T .
In particular, un(G, ·) = Un,0(·) converges to u∞(G, ·) = U∞,0(·) uniformly
on compacts.

Proof. It suffices to establish almost sure convergence pointwise as by mono-
tonicity and concavity of Un,t this entails almost sure uniform convergence
on compact sets, see p. 90 of [9]. Assumption 2.5 and strict monotonicity of
U∞ imply that Assumption 3.1 holds and hence Theorem 3.4 applies. It is
clear from (7) that

Un,t(x) = E(Un(x +
T

∑

i=t+1

〈φ∗
n,i, ∆Si〉)|Ft),

where

φ∗
n,t+1 := ξ̃n,t+1(x), φ∗

n,j := ξ̃n,j(x +

j−1
∑

i=t+1

〈φ∗
n,i, ∆Si〉), j > t + 1.

Define

ln := x +
T

∑

i=t+1

〈φ∗
n,i, ∆Si〉, n ∈ N̄.

Then we have

lim inf
n→∞

Un,t(x) = lim inf
n→∞

E(Un(ln)|Ft)

≥ lim inf
n→∞

E(Un(l∞)|Ft) = E(U∞(l∞)|Ft) = U∞,t(x),
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by optimality of φ∗
n, Assumption 2.5, Remark 2.6 and the fact that the ran-

dom variable l∞ is bounded by (13).
In fact, all the ln are bounded, uniformly in n ∈ N̄ (we will denote by K

such a bound) and recalling (9), the random variables Un,t(x) = E(Un(ln)|Ft)
are also uniformly bounded in n ∈ N̄. As

lim sup
n→∞

Un,t(x) = lim sup
n→∞

E(Un(ln)|Ft),

by Lemma 2 of [5], there exists a random subsequence σn such that Uσn,t(x) =
E(Uσn

(lσn
)|Ft) converge to the limsup.

Using again Lemma 2 of [5] for the uniformly bounded sequence lσn
we

can extract another random subsequence (for which we will keep the same
notation) such that lσn

converges to some l∗.

|E(Uσn
(lσn

)|Ft) − E(U∞(l∗)|Ft)| ≤ |E(Uσn
(lσn

)|Ft) − E(U∞(lσn
)|Ft)| +

|E(U∞(lσn
)|Ft) − E(U∞(l∗)|Ft)|.

The first term is o(1) using the uniform convergence on compact sets of Un

to U∞ and the fact that lσn
are uniformly bounded by K. As lσn

→ l∗, U∞ is
continuous, |U∞(lσn

)| is uniformly bounded, we can use Lebesgue’s theorem
and the second term is also o(1). As the set of portfolio values is closed in
probability (see e.g. the argument of Theorem 1 in [5]), l∗ is itself the value
of a portfolio. Now

lim sup
n→∞

Un,t(x) = lim
n→∞

EUσn
(lσn

) = E(U∞(l∗)|Ft)

≤ E(U∞(l∞)|Ft) = U∞,t(x),

by optimality of l∞, finishing the proof of this Corollary. ✷

The following Lemma will be used to establish the rate of convergence of
the optimal strategies.

Lemma 3.8 Suppose that S is bounded, Assumptions 2.2, 2.3, 2.7 and 2.9
hold. Consider ξ̃n,s, n ∈ N̄, 1 ≤ s ≤ T as defined in Theorem 3.4. Then for
all N > 0, almost surely,

sup
x∈[−N,N ]

|U ′
n,s(x) − U ′

∞,s(x)| ≤ Cs(N)g(n), n ∈ N, (18)

ℓs(N) ≤ |U ′′
n,s(x)| ≤ Ls(N), x ∈ [−N,N ], n ∈ N̄, (19)

sup
x∈[−N,N ]

|ξ̃n,s(x) − ξ̃∞,s(x)| ≤ Ks(N)g(n), n ∈ N, (20)

sup
x∈[−N,N ]

|Un,s(x) − U∞,s(x)| ≤ C̃s(N)g(n), n ∈ N, (21)
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with suitable constants ℓs(N), Ls(N), Cs(N), Ks(N), C̃s(N) > 0 and for all
0 ≤ s ≤ T .

Proof. Assumption 2.3 assures the uniqueness of the optimal strategy on
whole R

d by Proposition 3.6, which will crucial in the arguments of Sublemma
below.

Firstly, we remark that under Assumption 2.9, Assumption 3.1 is satisfied,
so Theorem 3.4 applies. From now on we suppose d = 1 for the sake of
simplicity. Let R be a constant bound for the process |∆S|. The proof is by
backward induction. (21), (18) and (19) are clear for s = T from Assumption
2.9 and Remark 2.10, (20) follows just like in the induction step below, so
let us proceed to the induction step immediately.

Assume that (21), (18), (19) and (20) hold for s ≥ t. Let us establish
them for s = t − 1. Let N > 0 and x ∈ [−N,N ], we apply (7), (10) and (8)
of Theorem 3.4 for s = t − 1 and call Xt = N + RM̂t(N). Then, using the
induction hypotheses, (18) holds true because of

|U ′
n,t−1(x) − U ′

∞,t−1(x)| ≤ E(|U ′
n,t(x + ξ̃n,t(x)∆St) − U ′

∞,t(x + ξ̃∞,t(x)∆St)||Ft−1)

≤ E(|U ′
n,t(x + ξ̃n,t(x)∆St) − U ′

∞,t(x + ξ̃n,t(x)∆St)||Ft−1) +

E(|U ′
∞,t(x + ξ̃n,t(x)∆St) − U ′

∞,t(x + ξ̃∞,t(x)∆St)||Ft−1)

≤ Ct(Xt)g(n) + E(|∆St(ξ̃n,t(x) − ξ̃∞,t(x))| sup
y∈[−Xt,Xt]

|U ′′
∞,t(y)||Ft−1)

≤ Ct(Xt)g(n) + Lt(Xt)RKt(N)g(n) =: Ct−1(N)g(n),

Let us define the random functions

hn,t(x, ξ) := E(Un,t(x + ξ∆St)|Ft−1), x, ξ ∈ R, n ∈ N̄.

Set also

fn,t(x, ξ) := E(U ′
n,t(x + ξ∆St)∆St|Ft−1), x, ξ ∈ R, n ∈ N̄.

Sublemma 3.9 We claim that for all n ∈ N̄ the random functions hn,t have
versions which are almost surely twice continuously differentiable (in both
variables), fn,t have differentiable versions (in both variables). Un,t−1 have
twice continuously differentiable versions (in x), ξ̃n,t(x) have continuously
differentiable versions (in x). Furthermore,

ξ̃′n,t(x) = −∂1fn,t(x, ξ̃n,t)

∂2fn,t(x, ξ̃n,t)
, (22)

∂1fn,t(x, ξ) = E(U ′′
n,t(x + ξ∆St)∆St|Ft−1), (23)

∂2fn,t(x, ξ) = E(U ′′
n,t(x + ξ∆St)(∆St)

2|Ft−1), (24)

U ′′
n,t−1(x) = E(U ′′

n,t(x + ξ̃n,t(x)∆St)(1 + ξ̃′n,t(x)∆St)|Ft−1). (25)
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Proof of Sublemma. In Proposition 6.4 of [8] the existence of a continuously
differentiable version for hn,t is shown. Twice continuous differentiability of
hn,t as well as the form of the derivatives can be established similarly to that
Proposition, using the bounds in Theorem 3.4 and the induction hypotheses
of Lemma 3.8. Then continuous differentiability of fn,t as well as (23) and
(24) follow. Smooth version of ξ̃n,t will be provided by the implicit function
theorem. To see this, notice that by optimality of ξ̃n,t and regularity of hn,t,

∀x fn,t(x, ξ̃n,t(x)) = 0, (26)

on a set of probability one, and for all N > 0,

|∂2fn,t(x, ξ)| ≥ ℓt(N + R|ξ|)E((∆St)
2|Ft−1)

≥ ℓt(N + R|ξ|)E((∆St)
21{∆St>β}|Ft−1)

≥ β2ℓt(N + R|ξ|)P (∆St > β|Ft−1)

≥ κβ2ℓt(N + R|ξ|) > 0, x ∈ [−N,N ],

by (19) and Assumption 2.2. Hence by the implicit function theorem (see
p. 150 of [12]) there exist continuously differentiable (random) functions
ζn : R → R such that on a set of probability one

fn,t(y, ζn(y)) = 0, y ∈ R.

Indeed, the result holds true on some neighbourhood of any real point and by
unicity of the implicit function it remains true on the whole real line. Again,
by unicity of the implicit function we necessarily have

∀x ζn(x) = ξ̃n,t(x) a.s.

so ξ̃n,t can be choosen to be continuously differentiable in x. Finally, U ′′
n,t−1

exists and is of the form (25) by (10) for s = t−1 and arguments akin to those
of Proposition 6.4 in [8]. One has to establish that Lebesgue’s theorem applies
when taking the derivative behind the expectation: (22), the estimates (8),
(19) and Assumption 2.2 testify that

U ′′
n,t(x + ξ̃n,t(x)∆St)(1 + ξ̃′n,t(x)∆St)

is uniformly bounded when x stays in a compact, so we may indeed differen-
tiate under the expectation. ✷

Now we turn our attention to (19) for s = t−1. Define the new measures
Wn by

αn := −EU ′′
n,t(x + ξ̃n,t(x)∆St),

dWn

dP
:=

−U ′′
n,t(x + ξ̃n,t(x)∆St)

αn

,

χn,t−1 := E(αn
dWn

dP
|Ft−1).

17



First note that χn,t−1 ≥ ℓt(N +RM̂t(N)), by (8) and (19) for s = t. If we de-
note W -conditional expectation and variance by EW (·|Ft−1) and D2

W (·|Ft−1),
we get

EWn(∆St|Ft−1)
2χn,t−1

EWn((∆St)2|Ft−1)
=

E(dWn

dP
∆St|Ft−1)

2E(αn
dWn

dP
|Ft−1)E(dWn

dP
|Ft−1)

E(dWn

dP
|Ft−1)2E(dWn

dP
(∆St)2|Ft−1)

= αn

E(dWn

dP
∆St|Ft−1)

2

E(dWn

dP
(∆St)2|Ft−1)

.

From (25) we get that for x ∈ [−N,N ]

−U ′′
n,t−1(x) = E

(

αn
dWn

dP

(

1 − E(αn
dWn

dP
∆St|Ft−1)

E(αn
dWn

dP
(∆St)2|Ft−1)

∆St

)

|Ft−1

)

= χn,t−1 −
EWn(∆St|Ft−1)

2χn,t−1

EWn((∆St)2|Ft−1)

= χn,t−1

D2
Wn

(∆St|Ft−1)

EWn((∆St)2|Ft−1)

≥ ℓt(N + RM̂t(N))
1

R2
D2

Wn
(∆St|Ft−1),

The right-hand side is greater than or equal to

ℓ2
t (N + RM̂t(N))

Lt(N + RM̂t(N))

1

R2
β2κ =: ℓt−1(N),

by Assumption 2.2 and

dWn

dP
≥ ℓt(N + M̂t(N)R)

Lt(N + M̂t(N)R)
,

which is true again by (19) for s = t. This shows the first inequality of (19)
for s = t − 1. The proof of the second inequality is easy and hence omitted.
We know from Assumption 2.2, (24) and (19) (which has just been proved
for t − 1) that for all n ∈ N̄:

1

infn,|ξ|≤M̂t−1(N),|x|≤N |∂2fn,t−1(x, ξ)| ≤
1

κβ2ℓt−1(N + RM̂t−1(N))
=: mt−1.

By the Lagrange mean-value theorem applied to ξ → fn,t−1(x, ξ), for x ∈
[−N,N ] one has

|ξ̃n,t−1(x) − ξ̃∞,t−1(x)| ≤ mt−1|fn,t−1(x, ξ̃n,t−1(x)) − fn,t−1(x, ξ̃∞,t−1(x))|
= mt−1|f∞,t−1(x, ξ̃∞,t−1(x)) − fn,t−1(x, ξ̃∞,t−1(x))|
≤ mt−1Ct−1(N + M̂t−1(N)R)Rg(n) =: Kt−1(N)g(n),
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where we used (26) for the first equality and (18) for s = t− 1 in the second
inequality. This ends the proof of (20) for s = t− 1. Let x ∈ [−N, N ]. Then
(21) follows from

|Un,t−1(x)−U∞,t−1(x)| ≤ |Un,t−1(0)−U∞,t−1(0)|+
∫ x

0

|U ′
n,t−1(y)−U ′

∞,t−1(y)|dy

As
∫ x

0
|U ′

n,t−1(y)−U ′
∞,t−1(y)|dy ≤ NCt−1(N)g(n), it remains to estimate the

first term of the righthand side.

|Un,t−1(0) − U∞,t−1(0)| ≤ |E(Un,t(ξ̃n,t(0)∆St)|Ft−1) − E(U∞,t(ξ̃∞,t(0)∆St)|Ft−1)|
≤ sup

y∈[−M̂t(0)R,M̂t(0)R]

|Un,t(y) − U∞,t(y)|

+E(U ′
∞,t(−M̂t(0)R)|ξ̃n,t(0) − ξ̃∞,t(0)|R|Ft−1)

≤ C̃t(M̂t(0)R)g(n) + U ′
∞(−Ht(M̂t(0)R))Kt(0)Rg(n),

using (7) and (18) for s = t − 1, U ′
∞,t is nonincreasing, (21), (11) and (20)

for s = t. This completes the induction step, if we call

C̃t−1(N) =: C̃t(M̂t(0)R) + U ′
∞(−Ht(M̂t(0)R))Kt(0)R + NCt−1(N)

and hence the proof. ✷

4 Proof of the main results

Proof of Theorem 2.12. Suppose that the Theorem fails and we have
ψ∗

n,t(z) 9 ψ∗
∞,t(z) for some t and z ∈ R. We may and will suppose ψ∗

n,s(z) →
ψ∗
∞,s(z) a.s. 1 ≤ s < t. The ψ∗

n,t(z), n ∈ N are uniformly bounded by
(13), hence an argument similar to that of Lemma 2 in [5] provides an Ft−1-
measurable random subsequence n(k) such that

ψ∗
n(k),t(z) → ψ̂t a.s., k → ∞,

and ψ̂t differs from ψ∗
∞,t(z) on a set A ∈ Ft−1 of positive measure. Define

ψ̂s := ψ∗
∞,s(z) for s < t. Then V

z,ψ∗

∞
(z)

t−1 = V z,ψ̂
t−1 and by (7) and (12),

U∞,t−1(V
z,ψ∗

∞
(z)

t−1 ) = E(U∞,t(V
z,ψ∗

∞
(z)

t−1 + ξ̃∞,t(V
z,ψ∗

∞
(z)

t−1 ))|Ft−1)

= E(U∞,t(V
z,ψ∗

∞
(z)

t )|Ft−1).

As Assumption 2.3 holds, the maximizer is unique (see Proposition 3.6) so
on A we obtain

E(U∞,t(V
z,ψ̂
t )|Ft−1) < E(U∞,t(V

z,ψ∗

∞
(z)

t )|Ft−1). (27)
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Then,

|E(Un(k),t(V
z,ψ∗

n(k)

t )|Ft−1) − E(U∞,t(V
z,ψ̂
t )|Ft−1)| ≤

E(|Un(k),t(V
z,ψ∗

n(k)

t ) − U∞,t(V
z,ψ∗

n(k)

t )||Ft−1) + E(|U∞,t(V
z,ψ∗

n(k)

t ) − U∞,t(V
z,ψ̂
t )||Ft−1)

By Corollaries 3.5, 3.7, Lebesgue’s theorem, the first term is o(1). As

ψ∗
n(k),s(z) → ψ̂s, s ≤ t, V

z,ψ∗

n(k)

t → V z,ψ̂
t and by continuity of U∞,t, Corol-

lary 3.5 and Lebesgue’s theorem, the second term is also o(1).
Using Corollaries 3.5, 3.7 and continuity of U∞,t−1, we can prove that

Un(k),t−1(V
z,ψ∗

n(k)

t−1 ) = E(Un(k),t(V
z,ψ∗

n(k)

t )|Ft−1) → U∞,t−1(V
z,ψ∗

∞

t−1 ) = E(U∞,t(V
z,ψ∗

∞

t )|Ft−1) a.s.

as k → ∞, and E(U∞,t(V
z,ψ∗

∞

t )|Ft−1) = E(U∞,t(V
z,ψ̂
t )|Ft−1) a.s.,

we get a contradiction to (27).
✷

Proof of Theorem 2.13. By forward induction, the first step is as follows.
Let N > 0, from (12) we have:

sup
z∈[−N,N ]

|ψ∗
n,1(z) − ψ∗

∞,1(z)| = sup
z∈[−N,N ]

|ξ̃n,1(z) − ξ̃∞,1(z)| ≤ K1(N)g(n),

using (20), so we can set J1(N) = K1(N). By Theorem 3.4, Corollary 3.5,
Lemma 3.8, Sublemma 3.9, Assumption 2.2 and the induction hypotheses:

sup
z∈[−N,N ]

|ψ∗
n,t(z) − ψ∗

∞,t(z)| = sup
z∈[−N,N ]

|ξ̃n,t(V
z,ψ∗

n(z)
t−1 ) − ξ̃∞,t(V

z,ψ∗

∞
(z)

t−1 )| ≤

sup
z∈[−N,N ]

|ξ̃n,t(V
z,ψ∗

n(z)
t−1 ) − ξ̃∞,t(V

z,ψ∗

n(z)
t−1 )| + sup

z∈[−N,N ]

|ξ̃∞,t(V
z,ψ∗

n(z)
t−1 ) − ξ̃∞,t(V

z,ψ∗

∞
(z)

t−1 )| ≤

Kt(Ft−1(N))g(n) + |V z,ψ∗

n(z)
t−1 − V

z,ψ∗

∞
(z)

t−1 | sup
y∈[−Ft−1(N),Ft−1(N)]

|ξ̃′∞,t(y)| ≤

Kt(Ft−1(N))g(n) + R

(

t−1
∑

j=1

Jj(N)

)

g(n)
Lt(Ft−1(N) + M̂t(N)R)R

ℓt(Ft−1(N) + M̂t(N)R)β2κ
=: Jt(N)g(n).

Convergence rate of un(G, x) = Un,0(x) follows from (21). ✷

Proof of Theorem 2.15. Theorem 6.2 of [8] shows that Qn is indeed an
equivalent martingale measure. By Scheffé’s theorem it suffices to establish
almost sure convergence of dQn/dP and this will imply convergence in the
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total variation norm as well as (5). To see almost sure convergence we proceed
as follows:

|U ′
n(V

z,ψ∗

n(z)
T ) − U ′

∞(V
z,ψ∗

∞
(z)

T )| ≤ |U ′
n(V

z,ψ∗

n(z)
T ) − U ′

∞(V
z,ψ∗

n(z)
T )| +

+|U ′
∞(V

z,ψ∗

n(z)
T ) − U ′

∞(V
z,ψ∗

∞
(z)

T )|.

As |V z,ψ∗

n(z)
T | ≤ FT (|z|), remark 2.6 implies that the first term goes to zero a.s.

By Theorem 2.12, V
z,ψ∗

n(z)
T → V

z,ψ∗

∞
(z)

T and as U ′
∞ is continuous, the second

term tends to 0 a.s. Thus

U ′
n(V

z,ψ∗

n(z)
T ) → U ′

∞(V
z,ψ∗

∞
(z)

T ), n → ∞,

almost surely. As this sequence is bounded by supn∈N
U ′

n(−FT (|z|)) ( which
is finite as U ′

n tends to U ′
∞), Lebesgue’s theorem implies

EU ′
n(V

z,ψ∗

n(z)
T ) → EU ′

∞(V
z,ψ∗

∞
(z)

T ), n → ∞.

Now, it is easy to see that if two sequences xn and yn converge to x∞ and y∞
respectively and yn is bounded away from 0, then xn/yn converges to x∞/y∞.
This observation is still true if the convergences are at the same rate g(n). We

want to apply to the present case with the choice xn := U ′
n(V

z,ψ∗

n(z)
T ), yn :=

Exn. As xn ≥ infn∈N U ′
n(FT (|z|)) > 0 by convergence of the U ′

n → U ′
∞ and

strict monotonicity of U ′
∞, we get that dQn

dQ
→ dQ∞

dQ
a.s.

Under the additional Assumption 2.9 of Theorem 2.13, the previous esti-
mations get more precise, indeed for all z ∈ [−N,N ],

|U ′
n(V

z,ψ∗

n(z)
T ) − U ′

∞(V
z,ψ∗

∞
(z)

T )| ≤ sup
y∈[−FT (|z|),FT (|z|)]

|U ′
n(y) − U ′

∞(y)| +

|V z,ψ∗

n(z)
T − V

z,ψ∗

∞
(z)

T | sup
y∈[−FT (|z|),FT (|z|)]

|U ′′
∞(y)|

≤ C(FT (N))g(n) +

(

T
∑

j=1

Jj(N)

)

Rg(n)L(FT (N)).

This prove that xn → x∞ at the given rate g(n) and by Lebesgue Theorem
it holds also for yn. ✷

Proof of Theorem 2.17. Let p be any accumulation point of the sequence
pn(G, x) and let nk be a subsequence along which

lim
k→∞

pnk
(G, x) = p.
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As u′
∞ is non decreasing by concavity (see Theorem 3.4), it is clear that

|unk
(G, x + pnk

(G, x)) − u∞(G, x + p)| ≤ |unk
(G, x + pnk

(G, x)) −
−u∞(G, x + pnk

(G, x))| + |u∞(G, x + pnk
(G, x)) − u∞(G, x + p)|.

The first term tends to 0 by Corollary 3.7 and the fact that x + pnk
(G, x) ∈

[−|x|, |x| + ‖G‖∞]. The second one from the continuity of u∞(G, .) and
pnk

(G, x) → p. As by definition of pnk
(G, x),

unk
(G, x + pnk

(G, x)) = unk
(0, x),

and we know from Corollary 3.7 that unk
(0, x) → u∞(0, x), we get that

u∞(G, x + p) = u∞(0, x),

and then necessarily p = p∞(G, x), by definition. ✷
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