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Abstract

This paper offers a brief and nontechnical introduction to the use of con-
joint measurement in multiple criteria decision making. The emphasis is on
the, central, additive value function model. We outline its axiomatic foun-
dations and present various possible assessment techniques to implement it.
Some extensions of this model, e.g. nonadditive models or models tolerating
intransitive preferences are then briefly reviewed.

Keywords: Conjoint Measurement, Additive Value Function, Preference
Modelling.



1 Introduction and motivation

Conjoint measurement is a set of tools and results first developed in Eco-
nomics [41] and Psychology [127] in the beginning of the ‘60s. Its, ambitious,
aim is to provide measurement techniques that would be adapted to the needs
of the Social Sciences in which, most often, multiple dimensions have to be
taken into account.

Soon after its development, people working in decision analysis realized
that the techniques of conjoint measurement could also be used as tools to
structure preferences [46, 148]. This is the subject of this paper which offers
a brief and nontechnical introduction to conjoint measurement models and
their use in multiple criteria decision making. More detailed treatments may
be found in [57, 72, 108, 121, 191]. Advanced references include [52, 115, 193].

1.1 Conjoint measurement models in Decision Theory

The starting point of most works in Decision Theory is a binary relation %

on a set A of objects. This binary relation is usually interpreted as an “at
least as good as” relation between alternative courses of action gathered in
A.

Manipulating a binary relation can be quite cumbersome as soon as the
set of objects is large. Therefore, it is not surprising that many works have
looked for a numerical representation of the binary relation %. The most
obvious numerical representation amounts to associate a real number V (a)
to each object a ∈ A in such a way that the comparison between these
numbers faithfully reflects the original relation %. This leads to defining a
real-valued function V on A, such that:

a % b ⇔ V (a) ≥ V (b), (1)

for all a, b ∈ A. When such a numerical representation is possible, one can
use V in lieu of % and, e.g. apply classical optimization techniques to find
the most preferred elements in A given %. We shall call such a function V a
value function.

It should be clear that not all binary relations % may be represented by
a value function. Condition (1) imposes that % is complete (i.e. a % b or
b % a, for all a, b ∈ A) and transitive (i.e. a % b and b % c imply a % c, for all
a, b, c ∈ A). When A is finite or countably infinite, it is well-known [52, 115]
that these two conditions are, in fact, not only necessary but also sufficient
to build a value function satisfying (1).
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Remark 1
The general case is more complex since (1) implies, for instance, that there
must be “enough” real numbers to distinguish objects that have to be dis-
tinguished. The necessary and sufficient conditions for (1) can be found
in [52, 115]. An advanced treatment is [13]. Sufficient conditions that are
well-adapted to cases frequently encountered in Economics can be found in
[39]. •

It is vital to note that, when a value function satisfying (1) exists, it is by
no means unique. Taking any increasing function φ on R, it is clear that
φ ◦ V gives another acceptable value function. A moment of reflection will
convince the reader that only such transformations are acceptable and that
if V and U are two real-valued function on A satisfying (1), they must be
related by an increasing transformation. In other words, a value function in
the sense of (1) defines an ordinal scale.

Ordinal scales, although useful, do not allow the use of sophisticated
assessment procedures, i.e. of procedures that allow an analyst to assess
the relation % through a structured dialogue with the decision-maker. This
is because the knowledge that V (a) ≥ V (b) is strictly equivalent to the
knowledge of a % b and no inference can be drawn from this assertion besides
the use of transitivity.

It is therefore not surprising that much attention has been devoted to
numerical representations leading to more constrained scales. Many possible
avenues have been explored to do so. Among the most well-know, let us
mention:

• the possibility to compare probability distributions on the set A [52,
189]. If it is required that, not only (1) holds but that the numbers
attached to the objects should be such that their expected values re-
flects the comparison of probability distributions on the set of objects,
a much more constrained numerical representation clearly obtains,

• the introduction of “preference difference” comparisons of the type: the
difference between a and b is larger than the difference between c and
d, see [41, 115, 163, 181]. If it is required that, not only (1) holds,
but that the differences between numbers also reflect the comparisons
of preference differences, a more constrained numerical representation
obtains.

When objects are evaluated according to several dimensions, i.e. when % is
defined on a product set, new possibilities emerge to obtain numerical repre-
sentations that would specialize (1). The purpose of conjoint measurement
is to study such kinds of models.
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There are many situations in decision theory which call for the study of
binary relations defined on product sets. Among them let us mention:

• Multiple criteria decision making using a preference relation comparing
alternatives evaluated on several attributes [15, 108, 145, 156, 191],

• Decision under uncertainty using a preference relation comparing alter-
natives evaluated on several states of nature [62, 95, 160, 167, 192, 193],

• Micro Economics manipulating preference relations for bundles of sev-
eral goods [40],

• Dynamic decision making using a preference relation between alterna-
tives evaluated at several moments in time [108, 111, 112],

• Social choice comparing distribution of wealth across several individu-
als [5, 16, 17, 198].

The purpose of this paper is to give an introduction to the main models
of conjoint measurement useful in multiple criteria decision making. The
results and concepts that are presented may however be of interest in all of
the afore-mentioned areas of research.

Remark 2
Restricting ourselves to applications in multiple criteria decision making will
not allow us to cover every aspects of conjoint measurement. Among the most
important topics left aside, let us mention: the introduction of statistical
elements in conjoint measurement models [49, 96] and the test of conjoint
measurement models in experiments [121]. •

Given a binary relation % on a product set X = X1 ×X2 × · · · ×Xn, the
theory of conjoint measurement consists in finding conditions under which it
is possible to build a convenient numerical representation of % and to study
the uniqueness of this representation. The central model is the additive value
function model in which:

x % y ⇔
n

∑

i=1

vi(xi) ≥
n

∑

i=1

vi(yi) (2)

where vi are real-valued functions, called partial value functions, on the sets
Xi and it is understood that x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
Clearly if % has a representation in model (2), taking any common increasing
transformation of the vi will not lead to another representation in model (2).

Specializations of this model in the above-mentioned areas give several
central models in decision theory:
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• The Subjective Expected Utility model, in the case of decision-making
under uncertainty,

• The discounted utility model for dynamic decision making,

• Inequality measures à la Atkinson/Sen in the area of social welfare.

The axiomatic analysis of this model is now quite firmly established [41,
115, 193]; this model forms the basis of many decision analysis techniques
[72, 108, 191, 193]. This is studied in sections 3 and 4 after we introduce our
main notation and definitions in section 2.

Remark 3
One possible objection to the study of model (2) is that the choice of an
additive model seems arbitrary and restrictive. It should be observed here
that the functions vi will precisely be assessed so that additivity holds.

It is also useful to notice that this model can be reformulated so as to
make addition disappear. Indeed if there are partial value functions vi such
that (2) holds, it is clear that V =

∑n
i=1 vi is a value function satisfying (1).

Now, since V defines an ordinal scale, taking the exponential of V leads to
another valid value function W . Clearly W has now a multiplicative form:

x % y ⇔ W (x) =
n

∏

i=1

wi(xi) ≥ W (y) =
n

∏

i=1

wi(yi).

where wi(xi) = evi(xi).
The reader is referred to chapter XXX (Chapter 6, Dyer) for the study of

situations in which V defines a scale that is more constrained than an ordinal
scale, e.g. because it is supposed to reflect preference differences or because
it allows to compute expected utilities. In such cases, the additive form (2)
is no more equivalent to the multiplicative form envisaged above. •

In section 5 we envisage a number of extensions of this model going from
nonadditive representations of transitive relations to model tolerating intran-
sitive indifference and, finally, nonadditive representations of nontransitive
relations.

Remark 4
We shall limit our attention in this paper to the case in which alternatives
may be evaluated on the various attributes without risk or uncertainty. Ex-
cellent overviews of these cases may be found in [108, 191]. •

Before starting our study of conjoint measurement oriented towards MCDM,
it is worth recalling that conjoint measurement aims at establishing measure-
ment models in the Social Sciences. To many, the very notion of “measure-
ment in the Social Sciences” may appear contradictory. It may therefore be
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useful to briefly envisage how the notion of measurement can be modelled in
the realm of Physics and to explain how a “measurement model” may indeed
be useful in order to structure preferences.

1.2 An aside: measuring length

Physicists usually take measurement for granted and are not particularly
concerned with the technical and philosophical issues it raises (at least when
they work within the realm of Newtonian Physics). However, for a Social
Scientist, these question are of utmost importance. It may thus help to have
an idea of how things appear to work in Physics before tackling more delicate
cases.

Suppose that you are on a desert island and that you want to “measure”
the length of a collection of rigid straight rods. Note that we do not discuss
here the “pre-theoretical” intuition that “length” is a property of these rods
that can be measured, as opposed, say, to their rigidity, their softness or their
beauty.

r r′

r Â r′
s s′

s ∼ s′

Figure 1: Comparing the length of two rods.

A first simple step in the construction of a measure of length is to place
the two rods side by side in such a way that one of their extremities is at
the same level (see Figure 1). Two things may happen: either the upper
extremities of the two rods coincide or not. This seems to be the simplest
way to devise an experimental procedure leading to the discovery of which
rod “has more length” than the other. Technically, this leads to defining two
binary relations Â and ∼ on the set of rods in the following way:

r Â r′ when the extremity of r is higher than the extremity of r′,

r ∼ r′ when the extremities of r and r′ are at the same level,

Clearly, if length is a quality of the rods that can be measured, it is expected
that these pairwise comparisons are somehow consistent, e.g.,
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• if r Â r′ and r′ Â r′′, it should follow that r Â r′′,

• if r ∼ r′ and r′ ∼ r′′, it should follow that r ∼ r′′,

• if r ∼ r′ and r′ Â r′′, it should follow that r Â r′′.

Although quite obvious, these consistency requirements are stringent. For
instance, the second and the third conditions are likely to be violated if
the experimental procedure involves some imprecision, e.g if two rods that
slightly differ in length are nevertheless judged “equally long”. They repre-
sent a form of idealization of what could be a perfect experimental procedure.

With the binary relations Â and ∼ at hand, we are still rather far from a
full-blown measure of length. It is nevertheless possible to assign numbers to
each of the rods in such a way that the comparison of these numbers reflects
what has been obtained experimentally. When the consistency requirements
mentioned above are satisfied, it is indeed generally possible to build a real-
valued function Φ on the set of rods that would satisfy:

r Â r′ ⇔ Φ(r) > Φ(r′) and

r ∼ r′ ⇔ Φ(r) = Φ(r′).

If the experiment is costly or difficult to perform, such a numerical assignment
may indeed be useful because it summarizes, once for all, what has been
obtained in experiments. Clearly there are many possible ways to assign
numbers to rods in this way. Up to this point, they are equally good for
our purposes. The reader will easily check that defining % as Â or ∼, the
function Φ is noting else than a “value function” for length: any increasing
transformation may therefore be applied to Φ.

r and s r′ and s′

Figure 2: Comparing the length of composite rods.

The next major step towards the construction of a measure of length is
the realization that it is possible to form new rods by simply placing two or
more rods “in a row”, i.e. you may concatenate rods. From the point of view
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of length, it seems obvious to expect this concatenation operation ◦ to be
“commutative” (r ◦ s has the same length as s ◦ r) and associative ((r ◦ s) ◦ t
has the same length as r ◦ (s ◦ t)).

You clearly want to be able to measure the length of these composite ob-
jects and you can always include them in in our experimental procedure out-
lined above (see Figure 2). Ideally, you would like your numerical assignment
Φ to be somehow compatible with the concatenation operation: knowing the
numbers assigned to two rods, you want to be able to deduce the number
assigned to their concatenation. The most obvious way to achieve that is to
require that the numerical assignment of a composite object can be deduced
by addition from the numerical assignments of the objects composing it, i.e.
that

Φ(r ◦ r′) = Φ(r) + Φ(r′).

This clearly places many additional constraints on the results of your experi-
ment. One obvious one is that Â and ∼ should somehow be compatible with
the concatenation operation ◦, e.g.

r Â r′ and t ∼ t′ should lead to r ◦ t Â r′ ◦ t′.

These new constraints may or not be satisfied. When they are, the usefulness
of the numerical assignment Φ is even more apparent: a simple arithmetic
operation will allow to infer the result of an experiment involving composite
objects.

Let us take a simple example. Suppose that you have 5 rods r1, r2, . . . , r5

and that, because space is limited, you can only concatenate at most two
rods and that not all concatenations are possible. Let us suppose, for the
moment, that you do not have much technology available so that you may
only experiment using different rods. You may well collect the following
information, using obvious notation exploiting the transitivity of Â which
holds in this experiment,

r1 ◦ r5 Â r3 ◦ r4 Â r1 ◦ r2 Â r5 Â r4 Â r3 Â r2 Â r1.

Your problem is then to find a numerical assignment Φ to rods such that using
an addition operation, you can infer the numerical assignment of composite
objects consistently with your observations. Let us envisage the following
three assignments:
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Φ Φ′ Φ′′

r1 14 10 14
r2 15 91 16
r3 20 92 17
r4 21 93 18
r5 28 100 29

These three assignments are equally valid to reflect the comparison of single
rods. Only the first and the third allow to capture the comparison of compos-
ite objects. Note that, going from Φ to Φ′′ does not involve just changing the
“unit of measurement”: since Φ(r1) = Φ′′(r1) this would imply that Φ = Φ′′,
which is clearly false. This implies that such numerical assignments have
limited usefulness. Indeed, it is tempting to use them to predict the result
of comparisons that we have not been able to perform. But this turns out
to be quite disappointing: using Φ you would conclude that r2 ◦ r3 ∼ r1 ◦ r4

since Φ(r2)+Φ(r3) = 15+20 = 35 = Φ(r1)+Φ(r4), but, using Φ′′, you would
conclude that r2 ◦ r3 Â r1 ◦ r4 since Φ′′(r2) + Φ′′(r3) = 16 + 17 = 33 while
Φ′′(r1) + Φ′′(r4) = 14 + 18 = 32.

Intuitively, “measuring” calls for some kind of a standard (e.g. the “Mètre-
étalon” that can be found in the Bureau International des Poids et Mesures
in Sèvres, near Paris). This implies choosing an appropriate “standard” rod
and being able to prepare perfect copies of this standard rod (we say here
“appropriate” because the choice of a standard should be made in accordance
with the lengths of the objects to be measured: a tiny or a huge standard will
not facilitate experiments). Let us call s0 the standard rod. Let us suppose
that you have been able to prepare a large number of perfect copies s1, s2, . . .
of s0. We therefore have:

s0 ∼ s1, s0 ∼ s2, s0 ∼ s3, . . .

Let us also agree that the length of s0 is 1. This is your, arbitrary, unit
of length. How can you use s0 and its perfect copies so as to determine
unambiguously the length of any other (simple or composite) object? Quite
simply, you may prepare a “standard sequence of length n”, S(n) = s1 ◦ s2 ◦
. . .◦sn−1 ◦sn, i.e. a composite object that is made by concatenating n perfect
copies of our standard rod s0. The length of a standard sequence of length
n is exactly n since we have concatenated n objects that are perfect copies
of the standard rod of length 1. Take any rod r and let us now compare r
with several standard sequences of increasing length: S(1), S(2), . . .

Two cases may arise. There may be a standard sequence S(k) such that
r ∼ S(k). In that case, we know that the number Φ(r) assigned to r must
be exactly k. This is unlikely however. The most common situation is that
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we will find two consecutive standard sequences S(k− 1) and S(k) such that
r Â S(k − 1) and S(k) Â r (see Figure 3). This means that Φ(r) must be
such that k − 1 < Φ(r) < k. We seem to be in trouble here since, as before,
Φ(r) is not exactly determined. How can you proceed? This depends on your
technology for preparing perfect copies.

r S(k)

s1

s2

s3

s4

s5

s6

s7

s8

r Â S(7), S(8) Â r

7 < Φ(r) < 8

Figure 3: Using standard sequences.

Imagine that you are able to prepare perfect copies not only of the stan-
dard rod but also of any object. You may then prepare several copies (r1,
r2, . . .) of the rod r. You can now compare a composite object made out of
two perfect copies of r with your standard sequences S(1), S(2), . . . As before,
you shall eventually arrive at locating Φ(r1 ◦ r2) = 2Φ(r) within an interval
of width 1. This means that the interval of imprecision surrounding Φ(r) has
been divided by two. Continuing this process, considering longer and longer
sequences of perfect copies of r, you will keep on reducing the width of the
interval containing Φ(r). This means that you can approximate Φ(r) with
any given level of precision. Mathematically a unique value for Φ(r) will be
obtained using a simple limiting argument.

Supposing that you are in position to prepare perfect copies of any object
is a strong technological requirement. When this is not possible, there still
exists a way out. Instead of preparing a perfect copy of r you may also try
to increase the granularity of your standard sequence. This means building
an object t that you would be able to replicate perfectly and such that con-
catenating t with one of its perfect replicas gives an object that has exactly
the length of the standard object s0, i.e. Φ(t) = 1/2. Now considering stan-
dard sequences based on t, you will be able to increase by a factor 2 the
precision with which we measure the length of r. Repeating the process, i.e.
subdividing t, will lead, as before, to a unique limiting value for Φ(r).

The mathematical machinery underlying the measurement process infor-
mally described above (called “extensive measurement”) rests on the theory
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of ordered groups. It is beautifully described and illustrated in [115]. Al-
though the underlying principles are simple, we may expect complications
to occur e.g. when not all concatenations are feasible, when there is some
level (say the velocity of light if we were to measure speed) that cannot be
exceeded or when it comes to relate different measures. See [115, 126, 151]
for a detailed treatment.

Clearly, this was an overly detailed and unnecessary complicated descrip-
tion of how length could be measured. Since our aim is to eventually deal
with “measurement” in the Social Sciences, it may however be useful to keep
the above process in mind. Its basic ingredients are the following:

• well-behaved relations Â and ∼ allowing to compare objects,

• a concatenation operation ◦ allowing to consider composite objects,

• consistency requirements linking Â, ∼ and ◦,

• the ability to prepare perfect copies of some objects in order to build
standard sequences.

Basically, conjoint measurement is a quite ingenious way to perform re-
lated measurement operations when no concatenation operation is available.
This will however require that objects can be evaluated along several dimen-
sions. Before explaining how this might work, it is worth explaining the
context in which such measurement might prove useful.

Remark 5
It is often asserted that “measurement is impossible in the Social Sciences”
precisely because the Social Scientist has no way to define a concatenation
operation. Indeed, it would seem hazardous to try to concatenate the in-
telligence of two subjects or the pain of two patients. Even, when there
seems to be a concatenation operation readily available, it does not always
fit the purposes of extensive measurement. Consider for instance an indi-
vidual expressing preferences for the quantity of the 2 goods he consumes.
The objects therefore take the well structured form of points in the posi-
tive orthant of R

2. There seems to be an obvious concatenation operation
here: (x, y) ◦ (z, w) might simply be taken to be (x + y, z + w). However
a fairly rational person, consuming pants and jackets, may indeed prefer
(3, 0) (3 pants and no jacket) to (0, 3) (no pants and 3 jackets) but at the
same time prefer (3, 3) to (6, 0). This implies that these preferences can-
not be explained by a measure that would be additive with respect to the
concatenation operation consisting in adding the quantities of the two goods
consumed. Indeed (3, 0) Â (0, 3) implies Φ(3, 0) > Φ(0, 3), which implies
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Φ(3, 0) + Φ(3, 0) > Φ(0, 3) + Φ(3, 0). Additivity with respect to concatena-
tion should then imply that (3, 0)◦(3, 0) Â (0, 3)◦(3, 0) that is (6, 0) Â (3, 3).

The power of conjoint measurement will precisely be to provide a means
to bypass this absence of readily available concatenation operation as soon
as the objects are evaluated on several dimensions. •

1.3 An example: Even swaps

The even swaps technique described and advocated in [107, 108, 148] is a
simple way to deal with decision problems involving several attributes that
do not have recourse to a formal representation of preferences, which will be
the subject of conjoint measurement. Because this technique is simple and
may be quite useful, we describe it below using the same example as in [107].
This will also allow to exemplify the type of problems that are dealt with in
decision analysis applications of conjoint measurement.

Example 6 (Even swaps technique)
A consultant considers renting a new office. Five different locations have
been identified after a careful consideration of many possibilities, rejecting
all those that do not meet a number of requirements.

His feeling is that five distinct characteristics, we shall say five attributes,
of the possible locations should enter into his decision: his daily commute
time (expressed in minutes), the ease of access for his clients (expressed as
the percentage of his present clients living close to the office), the level of
services offered by the new office (expressed on an ad hoc scale with three
levels: A (all facilities available), B (telephone and fax), C (no facilities)),
the size of the office expressed in square feet, and the monthly cost expressed
in dollars.

The evaluation of the five offices is given in Table 1 The consultant has

a b c d e
Commute 45 25 20 25 30
Clients 50 80 70 85 75
Services A B C A C

Size 800 700 500 950 700
Cost 1850 1700 1500 1900 1750

Table 1: Evaluation of the 5 offices on the 5 attributes.

well-defined preferences on each of these attributes. His preference increases
with the level of access for his clients, the level of services of the office and
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its size. It decreases with commute time and cost. This gives a first easy
way to compare alternatives through the use of dominance.

An alternative y is dominated by an alternative x if x is at least as good
as y on all attributes while being strictly better for at least one attribute.
Clearly dominated alternatives are not candidate for the final choice and
may, thus, be dropped from consideration. The reader will easily check that,
on this example, alternative b dominates alternative e: e and b have similar
size but b is less expensive, involves a shorter commute time, an easier access
to clients and a better level of services. We may therefore forget about
alternative e. This is the only case of “pure dominance” in our table. It is
however easy to see that d is “close” to dominating a, the only difference in
favor of a being on the cost attribute (50 $ per month). This is felt more
than compensated by the differences in favor of d on all other attributes:
commute time (20 minutes), client access (35 %) and size (150 sq. feet).

Dropping now all alternatives that are not candidate for choice, this initial
investigation allows to reduce the problem to:

b c d
Commute 25 20 25
Clients 80 70 85
Services B C A

Size 700 500 950
Cost 1700 1500 1900

A natural way to proceed is then to assess trade-offs. Observe that all alter-
natives but b have a common evaluation on commute time. We may therefore
ask the consultant, starting with office c, what gain on client access would
compensate a loss of 5 minutes on commute time. We are looking for an
alternative c′ that would be evaluated as follows:

c c′

Commute 20 25
Clients 70 70 + δ
Services C C

Size 500 500
Cost 1500 1500

and judged indifferent to c. Although this is not an easy question, it is clearly
crucial in order to structure preferences.

Remark 7
We do not envisage in this paper the possibility of lexicographic preferences,
in which such tradeoffs do not occur, see [53, 54, 143]. Lexicographic pref-
erences may also be combined with the possibility of “local” tradeoffs, see
[20, 58, 122]. •
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Suppose that the answer is that for δ = 8, it is reasonable to assume that
c and c′ would be indifferent. This means that the decision table can now be
reformulated as follows:

b c′ d
Commute 25 25 25
Clients 80 78 85
Services B C A

Size 700 500 950
Cost 1700 1500 1900

It is then apparent that all alternatives have a similar evaluation on the first
attribute which, therefore, is not useful to discriminate between alternatives
and may be forgotten. The reduced decision table is now as follows:

b c′ d
Clients 80 78 85
Services B C A

Size 700 500 950
Cost 1700 1500 1900

There is no case of dominance in this reduced table. Therefore further simpli-
fication calls for the assessment of new tradeoffs. Using cost as the reference
attribute, we then proceed to “neutralize” the service attribute. Starting
with office c′, this means asking for the increase in monthly cost that the
consultant would just be prepared to pay to go from level “C” of service to
level “B”. Suppose that this increase is roughly 250 $. This defines alterna-
tive c′′. Similarly, starting with office d we ask for the reduction of cost that
would exactly compensate a reduction of services from “A” to “B”. Suppose
that the answer is 100 $ a month, which defines alternative d′. The decision
table is now reshaped as:

b c′′ d′

Clients 80 78 85
Services B B B

Size 700 500 950
Cost 1700 1750 1800

We may now forget about the second attribute which does not discriminate
any more between alternatives. When this is done, it is apparent that c′′ is
now dominated by b and can be suppressed. Therefore, the decision table at
this stage looks like the following:
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b d′

Clients 80 85
Size 700 950
Cost 1700 1800

Unfortunately, this table reveals no case of dominance. New tradeoffs have
to be assessed. We may now ask, starting with office b, what additional cost
the consultant would be ready to incur to increase its size by 250 square feet.
Suppose that the rough answer is 250 $ a month, which defines b′. We are
now facing the following table:

b′ d′

Clients 80 85
Size 950 950
Cost 1950 1800

Attribute size may now be dropped from consideration. But, when this is
done, it is clear that d′ dominates b′. Hence it seems obvious to recommend
office d as the final choice. 3

The above process is simple and looks quite obvious. If this works, why
be interested at all in “measurement” if the idea is to help someone to come
up with a decision?

First observe that in the above example, the set of alternatives was rel-
atively small. In many practical situations, the set of objects to compare is
much larger than the set of alternatives in our example. Using the even swaps
technique could then require a considerable number of difficult tradeoff ques-
tions. Furthermore, as the output of the technique is not a preference model
but just the recommendation of an alternative in a given set, the appear-
ance of new alternatives (e.g. because a new office is for rent) would require
starting a new round of questions. This is likely to be highly frustrating.
Finally, the informal even swaps technique may not be well adapted to the,
many, situations, in which the decision under study takes place in a complex
organizational environment. In such situations, having a formal model to be
able to communicate and to convince is an invaluable asset. Such a model
will furthermore allow to conduct extensive sensitivity analysis and, hence,
to deal with imprecision both in the evaluations of the objects to compare
and in the answers to difficult questions concerning tradeoffs.

This clearly leaves room for a more formal approach to structure prefer-
ences. But where can “measurement” be involved in the process? It should
be observed that, beyond surface, there are many analogies between the even
swap process and the measurement of length envisaged above.
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First, note that, in both cases, objects are compared using binary rela-
tions. In the measurement of length, the binary relation Â reads “is longer
than”. Here it reads “is preferred to”. Similarly, the relation ∼ reading be-
fore “has equal length” now reads “is indifferent to”. We supposed in the
measurement of length process that Â and ∼ would nicely combine in exper-
iments: if r Â r′ and r′ ∼ r′′ then we should observe that r Â r′′. Implicitly,
a similar hypothesis was made in the even swaps technique. To realize that
this is the case, it is worth summarizing the main steps of the argument.

We started with the following decision table 1. Our overall recommenda-
tion was to rent office d. This means that we have reason to believe that d is
preferred to all other potential locations, i.e. d Â a, d Â b, d Â c, and d Â e.
How did we arrive logically at such a conclusion?

Based on the initial table, using dominance and quasi-dominance, we
concluded that b was preferable to e and that d was preferable to a. Using
symbols, we have b Â e and d Â a. After assessing some tradeoffs, we
concluded, using dominance, that b Â c′′. But remember, c′′ was built so as
to be indifferent to c′ and, in turn, c′ was built so as to be indifferent to c.
That is, we have c′′ ∼ c′ and c′ ∼ c. Later, we built an alternative d′ that is
indifferent to d (d ∼ d′) and an alternative b′ that is indifferent to b (b ∼ b′).
We then concluded, using dominance, that d′ was preferable to b′ (d′ Â b′).
Hence, we know that:

d Â a, b Â e,

c′′ ∼ c′, c′ ∼ c, b Â c′′,

d ∼ d′, b ∼ b′, d′ Â b′.

Using the consistency rules linking Â and ∼ that we envisaged for the mea-
surement of length, it is easy to see that the last line implies d Â b. Since
b Â e, this implies d Â e. It remains to show that d Â c. But the second
line leads to, combining Â and ∼, b Â c. Therefore d Â b leads to d Â c and
we are home. Hence, we have used the same properties for preference and
indifference as the properties of “is longer than” and “has equal length” that
we hypothesized in the measurement of length.

Second it should be observed that expressing tradeoffs leads, indirectly,
to equating the “length” of “preference intervals” on different attributes.
Indeed, remember how c′ was constructed above: saying that c and c′ are
indifferent more or less amounts to saying that the interval [25, 20] on com-
mute time has exactly the same “length” as the interval [70, 78] on client
access. Consider now an alternative f that would be identical to c except
that it has a client access at 78%. We may again ask which increase in client
access would compensate a loss of 5 minutes on commute time. In a tabular
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form we are now comparing the following two alternatives:

f f ′

Commute 20 25
Clients 78 78 + δ
Services C C

Size 500 500
Cost 1500 1500

Suppose that the answer is that for δ = 10, f and f ′ would be indifferent.
This means that the interval [25, 20] on commute time has exactly the same
length as the interval [78, 88] on client access. Now, we know that the prefer-
ence intervals [70, 78] and [78, 88] have the same “length”. Hence, tradeoffs
provide a means to equate two preference intervals on the same attribute.
This brings us quite close to the construction of standard sequences. This,
we shall shortly do.

How does this information about the “length” of preference intervals re-
late to judgements of preference or indifference? Exactly as in the even swaps
technique. You can use this measure of “length” modifying alternatives in
such a way that they only differ on a single attribute and then use a simple
dominance argument.

Conjoint measurement techniques may roughly be seen as a formaliza-
tion of the even swaps technique that leads to building a numerical model
of preferences much in the same way that we built a numerical model for
length. This will require assessment procedures that will rest on the same
principles as the standard sequence technique used for length. This process
of “measuring preferences” is not an easy one. It will however lead to a
numerical model of preference that will not only allow us to make a choice
within a limited number of alternatives but that can serve as an input of
computerized optimization algorithms that will be able to deal with much
more complex cases.

2 Definitions and notation

Before entering into the details of how conjoint measurement may work, a
few definitions and notation will be needed.

2.1 Binary relations

A binary relation % on a set A is a subset of A×A. We write a % b instead
of (a, b) ∈ %. A binary relation % on A is said to be:
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• reflexive if [a % a],

• complete if [a % b or b % a],

• symmetric if [a % b] ⇒ [b % a],

• asymmetric if [a % b] ⇒ [Not[b % a]],

• transitive if [a % b and b % c] ⇒ [a % c],

• negatively transitive if [ Not[ a % b ] and Not[ b % c ] ] ⇒ Not[ a % c ] ,

for all a, b, c ∈ A.
The asymmetric (resp. symmetric) part of % is the binary relation Â

(resp. ∼) on A defined letting, for all a, b ∈ A, a Â b ⇔ [a % b and Not(b %

a)] (resp. a ∼ b ⇔ [a % b and b % a]). A similar convention will hold when
% is subscripted and/or superscripted.

A weak order (resp. an equivalence relation) is a complete and transitive
(resp. reflexive, symmetric and transitive) binary relation. For a detailed
analysis of the use of binary relation as tools for preference modelling we refer
to [4, 52, 60, 144, 150, 152]. The weak order model underlies the examples
that were presented in introduction. Indeed, the reader will easily prove the
following.

Proposition 8
Let % be a weak order on A. Then:

• Â is transitive,

• Â is negatively transitive,

• ∼ is transitive,

• [a Â b and b ∼ c] ⇒ a Â c,

• [a ∼ b and b Â c] ⇒ a Â c.

2.2 Binary relations on product sets

In the sequel, we consider a set X =
∏n

i=1 Xi with n ≥ 2. Elements x, y, z, . . .
of X will be interpreted as alternatives evaluated on a set N = {1, 2, . . . , n}
of attributes. A typical binary relation on X is still denoted as %, interpreted
as an “at least as good as” preference relation between multi-attributed al-
ternatives with ∼ interpreted as indifference and Â as strict preference.
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For any non empty subset J of the set of attributes N , we denote by
XJ (resp. X−J) the set

∏

i∈J Xi (resp.
∏

i/∈J Xi ). With customary abuse
of notation, (xJ , y−J) will denote the element w ∈ X such that wi = xi if
i ∈ J and wi = yi otherwise. When J = {i} we shall simply write X−i and
(xi, y−i).

Remark 9
Throughout this paper, we shall work with a binary relation defined on a
product set. This setup conceals the important work that has to be done in
practice to make it useful:

• the structuring of objectives [3, 14, 15, 104, 105, 106, 141, 146],

• the definition of adequate attributes to measure the attainment of ob-
jectives [73, 85, 103, 109, 156, 190, 197],

• the definition of an adequate family of attributes [22, 108, 156, 157,
191],

• the modelling of uncertainty, imprecision and inaccurate determination
[21, 25, 108, 154].

The importance of this “preliminary” work should not be forgotten in what
follows. •

2.3 Independence and marginal preferences

In conjoint measurement, one starts with a preference relation % on X. It is
then of vital importance to investigate how this information makes it possible
to define preference relations on attributes or subsets of attributes.

Let J ⊆ N be a nonempty set of attributes. We define the marginal
relation %J induced on XJ by % letting, for all xJ , yJ ∈ XJ :

xJ %J yJ ⇔ (xJ , z−J) % (yJ , z−J), for all z−J ∈ X−J ,

with asymmetric (resp. symmetric) part ÂJ (resp. ∼J). When J = {i}, we
often abuse notation and write %i instead of %{i}. Note that if % is reflexive
(resp. transitive), the same will be true for %J . This is clearly not true for
completeness however.

Definition 10 (Independence)
Consider a binary relation % on a set X =

∏n
i=1 Xi and let J ⊆ N be a

nonempty subset of attributes. We say that % is independent for J if, for all
xJ , yJ ∈ XJ ,

[(xJ , z−J) % (yJ , z−J), for some z−J ∈ X−J ] ⇒ xJ %J yJ .
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If % is independent for all non empty subsets of N , we say that % is inde-
pendent. If % is independent for all subsets containing a single attribute, we
say that % is weakly independent.

In view of (2), it is clear that the additive value model will require that
% is independent. This crucial condition says that common evaluations on
some attributes do not influence preference. Whereas independence implies
weak independence, it is well-know that the converse is not true [193].

Remark 11
Independence, or at least weak independence, is an almost universally ac-
cepted hypothesis in multiple criteria decision making. It cannot be overem-
phasized that it is easy to find examples in which it is inadequate.

If a meal is described by the two attributes, main course and wine, it
is highly likely that most gourmets will violate independence, preferring red
wine with beef and white wine with fish. Similarly, in a dynamic decision
problem, a preference for variety will often lead to violating independence:
you may prefer Pizza to Steak, but your preference for meals today (first
attribute) and tomorrow (second attribute) may well be such that (Pizza,
Steak) preferred to (Pizza, Pizza), while (Steak, Pizza) is preferred to (Steak,
Steak).

Many authors [106, 156, 191] have argued that such failures of indepen-
dence were almost always due to a poor structuring of attributes (in our
choice of meal, preference for variety should be explicitly modelled). •

When % is a weakly independent weak order, marginal preferences are
well-behaved and combine so as to give meaning to the idea of dominance
that we already encountered. The easy proof of the following is left as an
easy exercise.

Proposition 12
Let % be a weakly independent weak order on X =

∏n
i=1 Xi. Then:

• %i is a weak order on Xi,

• [xi %i yi, for all i ∈ N ] ⇒ x % y,

• [xi %i yi, for all i ∈ N and xj Âj yj for some j ∈ N ] ⇒ x Â y,
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3 The additive value model in the “rich” case

The purpose of this section and the following is to present the conditions
under which a preference relation on a product set may be represented by
the additive value function model (2) and how such a model can be assessed.
We begin here with the case that most closely resembles the measurement of
length envisaged in section 1.2.

3.1 Outline of theory

When the structure of X is supposed to be “adequately rich”, conjoint mea-
surement is a quite clever adaptation of the process that we described in
section 1.2 for the measurement of length. What will be measured here are
the “length” of preference intervals on an attribute using a preference interval
on another attribute as a standard.

3.1.1 The case of two attributes

Consider first the two attribute case. Hence the relation % is defined on a
set X = X1 × X2. Clearly, in view of (2), we need to suppose that % is an
independent weak order. Consider two levels x0

1, x
1
1 ∈ X1 on the first attribute

such that x1
1 Â1 x0

1, i.e. x1
1 is preferable to x0

1. This makes sense because, we
supposed that % is independent. Note also that we shall have to exclude the
case in which all levels on the first attribute would be indifferent in order to
be able to find such levels.

Now choose any x0
2 ∈ X2. The, arbitrarily chosen, element (x0

1, x
0
2) ∈ X

will be our “reference point”. The basic idea is to use this reference point
and the “unit” on the first attribute given by the reference preference interval
[x0

1, x
1
1] to build a standard sequence on the preference intervals on the second

attribute. Hence, we are now looking for an element x1
2 ∈ X2 that would be

such that:
(x0

1, x
1
2) ∼ (x1

1, x
0
2). (3)

Clearly this will require the structure of X2 to be adequately “rich” so as
to find the level x1

2 ∈ X2 such that the reference preference interval on the
first attribute [x0

1, x
1
1] is exactly matched by a preference interval of the same

“length” on the second attribute [x0
2, x

1
2]. Technically, this calls for a solv-

ability assumption or, more restrictively, for the supposition that X2 has a
(topological) structure that is close to that of an interval of R and that % is
“somehow” continuous.

20



If such a level x1
2 can be found, model (2) implies:

v1(x
0
1) + v2(x

1
2) = v1(x

1
1) + v2(x

0
2) so that

v2(x
1
2) − v2(x

0
2) = v1(x

1
1) − v1(x

0
1). (4)

Let us now fix the origin of measurement letting:

v1(x
0
1) = v2(x

0
2) = 0,

and our unit of measurement letting:

v1(x
1
1) = 1 so that v1(x

1
1) − v1(x

0
1) = 1.

Using (4), we therefore obtain v2(x
1
2) = 1. We have therefore found an

interval between levels on the second attribute ([x0
2, x

1
2]) that exactly matches

our reference interval on the first attribute ([x0
1, x

1
1]). We may now proceed

to build our standard sequence on the second attribute (see Figure 4) asking
for levels x2

2, x
3
2, . . . such that:

(x0
1, x

2
2) ∼ (x1

1, x
1
2),

(x0
1, x

3
2) ∼ (x1

1, x
2
2),

. . .

(x0
1, x

k
2) ∼ (x1

1, x
k−1
2 ).

As above, using (2) leads to:

v2(x
2
2) − v2(x

1
2) = v1(x

1
1) − v1(x

0
1),

v2(x
3
2) − v2(x

2
2) = v1(x

1
1) − v1(x

0
1),

. . .

v2(x
k
2) − v2(x

k−1
2 ) = v1(x

1
1) − v1(x

0
1),

so that:
v2(x

2
2) = 2, v2(x

3
2) = 3, . . . , v2(x

k
2) = k.

This process of building a standard sequence of the second attribute therefore
leads to defining v2 on a number of, carefully, selected elements of X2.

Remember the standard sequence that we built for length in section 1.2.
An implicit hypothesis was that the length of any rod could be exceeded
by the length of a composite object obtained by concatenating a sufficient
number of perfect copies of a standard rod. Such an hypothesis is called
“Archimedean” since it mimics the property of the real numbers saying that
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Figure 4: Building a standard sequence on X2.

for any positive real numbers x, y it is true that nx > y for some integer n, i.e.
y, no matter how large, may always be exceeded by taking any x, no matter
how small, and adding it with itself and repeating the operation a sufficient
number of times. Clearly, we will need a similar hypothesis here. Failing it,
there might exist a level y2 ∈ X2 that will never be “reached” by our standard
sequence, i.e. such that y2 Â2 xk

2, for k = 1, 2, . . .. For measurement models
in which this Archimedean condition is omitted, see [139, 176].

Remark 13
At this point a good exercise for the reader is to figure out how we may extend
the standard sequence to cover levels of X2 that are “below” the reference
level x0

2. This should not be difficult. •

Now that a standard sequence is built on the second attribute, we may use
any part of it to build a standard sequence on the first attribute. This will
require finding levels x2

1, x
3
1, . . . ∈ X1 such that (see Figure 5):

(x2
1, x

0
2) ∼ (x1

1, x
1
2),

(x3
1, x

0
2) ∼ (x2

1, x
1
2),

. . .

(xk
1, x

0
2) ∼ (xk−1

1 , x1
2).
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Figure 5: Building a standard sequence on X1.

Using (2) leads to:

v1(x
2
1) − v1(x

1
1) = v2(x

1
2) − v2(x

0
2),

v1(x
3
1) − v1(x

2
1) = v2(x

1
2) − v2(x

0
2),

. . .

v1(x
k
1) − v1(x

k−1
1 ) = v2(x

1
2) − v2(x

0
2),

so that:
v1(x

2
1) = 2, v1(x

3
1) = 3, . . . , v1(x

k
2) = k.

As was the case for the second attribute, the construction of such a sequence
will require the structure of X1 to be adequately rich, which calls for a solv-
ability assumption. An Archimedean condition will also be needed in order
to be sure that all levels of X1 can be reached by the sequence.

We have now defined a “grid” in X (see Figure 6) and we have v1(x
k
1) = k

and v2(x
k
2) = k for all elements of this grid. Intuitively such numerical

assignments seem to define an adequate additive value function on the grid.
We have to prove that this intuition is correct. Let us first verify that:

α + β = γ + δ = ε ⇒ (xα
1 , xβ

2 ) ∼ (xγ
1 , x

δ
2). (5)

When ε = 1, (5) holds by construction because we have: (x0
1, x

1
2) ∼ (x1

1, x
0
2).

When ε = 2, we know that (x0
1, x

2
2) ∼ (x1

1, x
1
2) and (x2

1, x
0
2) ∼ (x1

1, x
1
2) and the

claim is proved using the transitivity of ∼.
Consider now the ε = 3 case. We have (x0

1, x
3
2) ∼ (x1

1, x
2
2) and (x0

1, x
3
2) ∼

(x1
1, x

2
2). It remains to be shown that (x2

1, x
1
2) ∼ (x1

1, x
2
2) (see the dotted arc in

Figure 6). This does not seem to follow from the previous conditions that we
more or less explicitly used: transitivity, independence, “richness”, Archime-
dean. Indeed, it does not. Hence, we have to suppose that: (x2

1, x
0
2) ∼ (x0

1, x
2
2)
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Figure 6: The grid.

and (x0
1, x

1
2) ∼ (x1

1, x
0
2) imply (x2

1, x
1
2) ∼ (x1

1, x
2
2). This condition, called the

Thomsen condition, is clearly necessary for (2). The above reasoning now
easily extends to all points on the grid, using weak ordering, independence
and the Thomsen condition. Hence, (5) holds on the grid.

It remains to show that:

ε = α + β > ε′ = γ + δ ⇒ (xα
1 , xβ

2 ) Â (xγ
1 , x

δ
2). (6)

Using transitivity, it is sufficient to show that (6) holds when ε = ε′ + 1.
By construction, we know that (x1

1, x
0
2) Â (x0

1, x
0
2). Using independence this

implies that (x1
1, x

k
2) Â (x0

1, x
k
2). Using (5) we have (x1

1, x
k
2) ∼ (xk+1

1 , x0
2)

and (x0
1, x

k
2) ∼ (xk

1, x
0
2). Therefore we have (xk+1

1 , x0
2) Â (xk

1, x
0
2), the desired

conclusion.
Hence, we have built an additive value function of a suitably chosen grid

(see Figure 7). The logic of the assessment procedure is then to assess
more and more points somehow considering more finely grained standard
sequences. The two techniques evoked for length may be used here depend-
ing on the underlying structure of X. A limiting process then unambiguously
defines the functions v1 and v2. Clearly such v1 and v2 are intimately related.
Once we have chosen an arbitrary reference point (x0

1, x
0
2) and a level x1

1 defin-
ing the unit of measurement, the process just described entirely defines v1

and v2. It follows that the only possible transformations that can be applied
to v1 and v2 is to multiply both by the same positive number α and to add
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Figure 7: The entire grid.

to both a, possibly different, constant. This is usually summarized saying
that v1 and v2 define interval scale with a common unit.

The above reasoning is a very rough sketch of the proof of the existence
of an additive value function when n = 2, as well as a sketch of how it could
be assessed. Careful readers will want to refer to [52, 115, 193].

Remark 14
As was already the case with the even swap technique, it is worth emphasiz-
ing that this assessment technique makes no use of the vague notion of the
“importance” of the various attributes. The “importance” is captured here
in the lengths of the preference intervals on the various attributes.

A common but critical mistake is to confuse the additive value function
model (2) with a weighted average and to try to assess weights asking whether
an attribute is “more important” than another. This makes no sense. •

Remark 15
The measurement of length through standard sequences envisaged above
leads to a scale that is unique once the unit of measurement is chosen. At
this point, a good exercise for the reader is to find an intuitive explanation to
the fact that, when measuring the “length” of preference intervals, the origin
of measurement becomes arbitrary. The analogy with the the measurement

25



of duration on the one hand and dates, as given in a calendar, on the other
hand should help. •

3.1.2 The case of more than two attributes

The good news now is that the process is exactly the same when there are
more than two attributes. With one surprise: the Thomsen condition is no
more needed to prove that the standard sequences defined on each attribute
lead to an adequate value function on the grid. A heuristic explanation of
this strange result is that, when n = 2, there is no difference between in-
dependence and weak independence. This is no more true when n ≥ 3 and
assuming independence is much stronger than just assuming weak indepen-
dence.

3.2 Statement of results

We use below the “algebraic approach” [113, 115, 127]. A more restrictive
approach using a topological structure on X is given in [41, 193]. We for-
malize below the conditions informally introduced in the preceding section.
The reader not interested in the precise statement of the results or, better,
having already written down his own statement, may skip this section.

Definition 16 (Thomsen condition)
Let % be a binary relation on a set X = X1 × X2. It is said to satisfy the
Thomsen condition if

(x1, x2) ∼ (y1, y2) and (y1, z2) ∼ (z1, x2) ⇒ (x1, z2) ∼ (z1, y2),

for all x1, y1, z1 ∈ X1 and all x2, y2, z2 ∈ X2.

Figure 8 shows how the Thomsen condition uses two “indifference curves”
to place a constraint on a third one. This was needed above to prove that
an additive value function existed on our grid. Remember that the Thomsen
condition is only needed when n = 2; hence, we only stated it in this case.

Definition 17 (Standard sequences)
A standard sequence on attribute i ∈ N is a set {ak

i : ak
i ∈ Xi, k ∈ K} where

K is a set of consecutive integers (positive or negative, finite or infinite) such
that there are x−i, y−i ∈ X−i satisfying Not[ x−i ∼−i y−i ] and (ak

i , x−i) ∼
(ak+1

i , y−i), for all k ∈ K.

A standard sequence on attribute i ∈ N is said to be strictly bounded if
there are bi, ci ∈ Xi such that bi Âi ak

i Âi ci, for all k ∈ K. It is then clear
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Figure 8: The Thomsen condition.

that, when model (2) holds, any strictly bounded standard sequence must be
finite.

Definition 18 (Archimedean)
For all i ∈ N , any strictly bounded standard sequence on i ∈ N is finite.

The following condition rules out the case in which a standard sequence
cannot be built because all levels are indifferent.

Definition 19 (Essentiality)
Let % be a binary relation on a set X = X1×X2×· · ·×Xn. Attribute i ∈ N
is said to be essential if (xi, a−i) Â (yi, a−i), for some xi, yi ∈ Xi and some
a−i ∈ X−i.

Definition 20 (Restricted Solvability)
Let % be a binary relation on a set X = X1 × X2 × · · · × Xn. Restricted
solvability is said to hold with respect to attribute i ∈ N if, for all x ∈ X, all
z−i ∈ X−i and all ai, bi ∈ Xi, [(ai, z−i) % x % (bi, z−i)] ⇒ [x ∼ (ci, z−i), for
some ci ∈ Xi].

Remark 21
Restricted solvability is illustrated in Figure 9 in the case where n = 2. It
says that, given any x ∈ X, if it is possible find two levels ai, bi ∈ Xi such
that when combined with a certain level z−i ∈ X−i on the other attributes,
(ai, z−i) is above x and (bi, z−i) is below x, it should be possible to find a level
ci, “in between” ai and bi, such that such that (ci, z−i) is exactly indifferent
to x.
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A much stronger hypothesis is unrestricted solvability asserting that for
all x ∈ X and all z−i ∈ X−i, x ∼ (ci, z−i), for some ci ∈ Xi. Its use leads
however to much simpler proofs.

It is easy to imagine situations in which restricted solvability might hold
while unrestricted solvability would fail. Suppose, e.g. that a firm has to
choose between several investment projects, two attributes being the Net
Present Value (NPV) of the projects and their impact on the image of the
firm in the public. Consider a project consisting in investing in the software
market. It has a reasonable NPV and no adverse consequences on the image
of the firm. Consider now another project that could have dramatic conse-
quences on the image of the firm, because it leads to investing the market of
cocaine. Unrestricted solvability would require that by sufficiently increas-
ing the NPV of the second project it would become indifferent to the more
standard project of investing in the software market. This is not required by
restricted solvability. •

X1

X2

x
•

z2

b1
a1c1

w
•
y

•
z

•

z Â x
x Â y

}

⇒ there is a w such that x ∼ w

Figure 9: Restricted Solvability on X1.

We are now in position to state the central results concerning model (2).
Proofs may be found in [115, 194].

Theorem 22 (Additive utility when n = 2)
Let % be a binary relation on a set X = X1×X2. If restricted solvability holds
on all attributes and each attribute is essential then % has a representation
in model (2) if and only if % is an independent weak order satisfying the
Thomsen and the Archimedean conditions
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Furthermore in this representation, v1 and v2 define an interval scale with
a common unit, i.e. if v1, v2 and w1, w2 are two pairs of functions satisfying
(2), there are real numbers α, β1, β2 with α > 0 such that, for all x1 ∈ X1

and all x2 ∈ X2

v1(x1) = αw1(x1) + β1 and v2(x2) = αw2(x2) + β2

When n ≥ 3 and at least three attributes are essential, the above result
simplifies in that the Thomsen condition can now be omitted.

Theorem 23 (Additive utility when n ≥ 3)
Let % be a binary relation on a set X = X1 × X2 × . . . Xn with n ≥ 3.
If restricted solvability holds on all attributes and at least 3 attributes are
essential then % has a representation in model (2) if and only if % is an
independent weak order satisfying the Archimedean condition.

Furthermore this representation defines an interval scale with a common
unit.

Remark 24
As mentioned in introduction, the additive value model is central to several
fields in decision theory. It is therefore not surprising that much energy
has been devoted to analyze variants and refinements of the above results.
Among the most significant ones, let us mention:

• the study of cases in which solvability holds only on some or none of
the attributes [76, 77, 78, 138],

• the study of the relation between the “algebraic approach” introduced
above and the topological one used in [41], see e.g. [102, 110, 193, 194].

The above results are only valid when X is the entire Cartesian product
of the sets Xi. Results in which X is a subset of the whole Cartesian product
X1 × X2 × . . . × Xn are not easy to obtain, see [34, 164] (the situation is
“easier” in the special case of homogeneous product sets, see [195, 196]). •

3.3 Implementation: Standard sequences and beyond

We have already shown above how additive value functions can be assessed
using the standard sequence technique. It is worth recalling here some of the
characteristics of this assessment procedure:
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• It requires the set Xi to be rich so that it is possible to find a preference
interval on Xi that will exactly match a preference interval on another
attribute. This excludes using such an assessment procedure when
some of the sets Xi are discrete.

• It relies on indifference judgements which, a priori, are less firmly es-
tablished than preference judgements.

• It relies on judgements concerning fictitious alternatives which, a priori,
are harder to conceive than judgements concerning real alternatives.

• The various assessments are thoroughly intertwined and, e.g., an im-
precision on the assessment of x1

2, i.e. the endpoint of the first interval
in the standard sequence on X2 (see Figure 4) will propagate to many
assessed values.

The assessment procedure based on standard sequences is therefore rather
demanding; this should be no surprise given the proximity between this form
of measurement and extensive measurement illustrated above on the case of
length. Hence, the assessment procedure based on standard sequences seems
to be seldom used in the practice of decision analysis [108, 191].

Many other simplified assessment procedures have been proposed that
are less firmly grounded in theory. In many of them, the assessment of the
partial value functions vi relies on direct comparison of preference differences
without recourse to an interval on another attribute used as a “meter stick”.
We refer to [45] for a theoretical analysis of these techniques. They are also
studied in detail in Chapter XX of this volume (Chapter 6, Dyer).

These procedures include:

• direct rating techniques in which values of vi are directly assessed with
reference to two arbitrarily chosen points [47, 48],

• procedures based on bisection, the decision-maker being asked to assess
a point that is “half way” in terms of preference two reference points,

• procedures trying to build standard sequences on each attribute in
terms of “preference differences” [115, ch. 4].

An excellent overview of these techniques may be found in [191].
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4 The additive value model in the “finite”

case

4.1 Outline of Theory

We suppose in this section that % is a binary relation on a finite set X ⊆
X1 × X2 × · · · × Xn (contrary to the preceding section, dealing with sub-
sets of product sets will raise no difficulty here). The finiteness hypothesis
clearly invalidates the standard sequence mechanism used till now. On each
attribute there will only be finitely many “preference intervals” and exact
matches between preference intervals will only happen exceptionally.

Clearly, independence remains a necessary condition for model (2) as
before. Given the absence of structure of the set X, it is unlikely that this
condition is sufficient to ensure (2). The following example shows that this
intuition is indeed correct.

Example 25
Let X = X1 ×X2 with X1 = {a, b, c} and X2 = {d, e, f}. Consider the weak
order on X such that, abusing notation in an obvious way,

ad Â bd Â ae Â af Â be Â cd Â ce Â bf Â cf.

It is easy to check that % is independent. Indeed, we may for instance check
that:

ad Â bd and ae Â be and af Â bf,

ad Â ae and bd Â be and cd Â ce.

This relation cannot however be represented in model (2) since:

af Â be ⇒ v1(a) + v2(f) > v1(b) + v2(e),

be Â cd ⇒ v1(b) + v2(e) > v1(c) + v2(d),

ce Â bf ⇒ v1(c) + v2(e) > v1(b) + v2(f),

bd Â ae ⇒ v1(b) + v2(d) > v1(a) + v2(e).

Summing the first two inequalities leads to:

v1(a) + v2(f) > v1(c) + v2(d).

Summing the last two inequalities leads to:

v1(c) + v2(d) > v1(a) + v2(f),
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a contradiction.
Note that, since no indifference is involved, the Thomsen condition is

trivially satisfied. Although it is clearly necessary for model (2), adding it to
independence will therefore not solve the problem. 3

The conditions allowing to build an additive utility model in the finite
case were investigated in [1, 2, 162]. Although the resulting conditions turn
out to be complex, the underlying idea is quite simple. It amounts to finding
conditions under which a system of linear inequalities has a solution.

Suppose that x Â y. If model (2) holds, this implies that:

n
∑

i=1

vi(xi) >
n

∑

i=1

vi(yi). (7)

Similarly if x ∼ y, we obtain:

n
∑

i=1

vi(xi) =
n

∑

i=1

vi(yi). (8)

The problem is then to find condition on % such that the system of finitely
many equalities and inequalities (7-8) has a solution. This is a classical
problem in Linear Algebra [74].

Definition 26 (Relation E
m)

Let x1, x2, . . . , xm, y1, y2, . . . , ym ∈ X. We say that

(x1, x2, . . . , xm)Em(y1, y2, . . . , ym)

if, for all i ∈ N , (x1
i , x

2
i , . . . , x

m
i ) is a permutation of (y1

i , y
2
i , . . . , y

m
i ).

Suppose that (x1, x2, . . . , xm)Em(y1, y2, . . . , ym) then model (2) implies
that

m
∑

j=1

n
∑

i=1

vi(x
j
i ) =

m
∑

j=1

n
∑

i=1

vi(y
j
i ).

Therefore if xj % yj for j = 1, 2, . . . ,m − 1, it cannot be true that xm Â ym.
This condition must hold for all m = 2, 3, . . ..

Definition 27 (Condition C
m)

We say that condition Cm holds if

[xj % yj for j = 1, 2, . . . ,m − 1] ⇒ Not[ xm Â ym ]

for all x1, x2, . . . , xm, y1, y2, . . . , ym ∈ X such that

(x1, x2, . . . , xm)Em(y1, y2, . . . , ym).
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Remark 28
It is not difficult to check that:

• Cm+1 ⇒ Cm,

• C2 ⇒ % is independent,

• C3 ⇒ % is transitive. •

We already observed that Cm was implied by the existence of an additive
representation. The main result for the finite case states that requiring that
% is complete and that Cm holds for m = 2, 3, . . . is also sufficient. Proofs
can be found in [52, 115].

Theorem 29
Let % be a binary relation on a finite set X ⊆ X1×X2×· · ·×Xn. There are
real-valued functions vi on Xi such that (2) holds if and only if % is complete
and satisfies Cm for m = 2, 3, . . ..

Remark 30
Contrary to the “rich” case envisaged in the preceding section, we have here
necessary and sufficient conditions for the additive value model (2). However,
it is important to notice that the above result uses a denumerable scheme
of conditions. It is shown in [163] that this denumerable scheme cannot be
truncated: for all m ≥ 2, there is a relation % on a finite set X such that Cm

holds but violating Cm+1. This is studied in more detail in [125, 183, 199].
Therefore, no finite scheme of axioms is sufficient to characterize model (2)
for all finite sets X.

Given a finite set X of given cardinality, it is well-known that the denu-
merable scheme of condition can be truncated. The precise relation between
the cardinality of X and the number of conditions needed raises difficult
combinatorial questions that are studied in [70, 71]. •

Remark 31
It is clear that, if a relation % has a representation in model (2) with functions
vi, it also has a representation using functions v′

i = αvi + βi with α > 0.
Contrary to the rich case, the uniqueness of the functions vi is more complex
as shown by the following example.

Example 32
Let X = X1 × X2 with X1 = {a, b, c} and X1 = {d, e}. Consider the weak
order on X such that, abusing notation in an obvious way,

ad Â bd Â ae Â cd Â be Â ce.
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This relation has a representation in model (2) with

v1(a) = 3, v1(b) = 1, v1(c) = 0, v2(d) = 3, v2(e) = 0.5.

An equally valid representation would be given taking v1(b) = 2. Clearly
this new representation cannot be deduced from the original one applying a
positive affine transformation. 3

Remark 33
Theorem 29 has been extended to the case of an arbitrary set X in [100].
The resulting conditions are however quite complex. This explains why we
spent time on this “rich” case in the preceding section. •

Remark 34
The use of a denumerable scheme of conditions in theorem 29 does not fa-
cilitate the interpretation and the test of conditions. However it should be
noticed that, on a given set X, the test of the Cm conditions amounts to
finding if a system of finitely many linear inequalities has a solution. It is
well-known that Linear Programming techniques are quite efficient for such
a task. •

4.2 Implementation: LP-based assessment

We show how to use LP techniques in order to assess an additive value model
(2), without supposing that the sets Xi are rich. For practical purposes, it
is not restrictive to assume that we are only interested in assessing a model
for a limited range on each Xi. We therefore assume that the sets Xi are
bounded so that, using independence, there is a worst value xi∗ and a most
preferable value x∗

i . Using the uniqueness properties of model (2), we may
always suppose, after an appropriate normalization, that:

v1(x1∗) = v2(x2∗) = . . . = vn(xn∗) = 0 and (9)
n

∑

i=1

vi(x
∗
i ) = 1. (10)

Two main cases arise (see Figures 10 and 11):

• attribute i ∈ N is discrete so that the evaluation of any conceivable
alternative on this attribute belongs to a finite set. We suppose that
Xi = {xi∗, x

1
i , x

2
i , . . . , x

ri

i , x∗
i }. We therefore have to assess ri + 1 values

of vi,
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Figure 10: Value function when Xi is discrete.
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Figure 11: Value function when Xi is continuous.

• the attribute i ∈ N has an underlying continuous structure. It is hardly
restrictive in practice to suppose that Xi ⊂ R, so that the evaluation
of an alternative on this attribute may take any value between xi∗

and x∗
i . In this case, we may opt for the assessment of a piecewise

linear approximation of vi partitioning the set Xi in ri +1 intervals and
supposing that vi is linear on each of these intervals. Note that the
approximation of vi can be made more precise simply by increasing the
number of these intervals.

With these conventions, the assessment of the model (2) amounts to giving a
value to

∑n
i=1(ri + 1) unknowns. Clearly any judgment of preference linking

x and y translate into a linear inequality between these unknowns. Similarly
any judgment of indifference linking x and y translate into a linear equality.
Linear Programming (LP) offers a powerful tool for testing whether such a
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system has solutions. Therefore, an assessment procedure can be conceived
on the following basis:

• obtain judgments in terms of preference or indifference linking several
alternatives in X,

• convert these judgments into linear (in)equalities,

• test, using LP, whether this system has a solution.

If the system has no solution then one may envisage either to propose a so-
lution that will be “as close as possible” from the information obtained, e.g.
violating the minimum number of (in)equalities or to suggest the reconsid-
eration of certain judgements. If the system has a solution, one may explore
the set of all solutions to this system since they are all candidates for the
establishment of model (2). These various techniques depend on:

• the choice of the alternatives in X that are compared: they may be
real or fictitious, they may differ on a different number of attributes,

• the way to deal with the inconsistency of the system and to eventually
propose some judgments to be reconsidered,

• the way to explore the set of solutions of the system and to use this set
as the basis for deriving a prescription.

Linear programming offers of simple and versatile technique to assess
additive value functions. All restrictions generating linear constraints of the
coefficient of the value function can easily be accommodated. This idea has
been often exploited, see [15]. We present below two techniques using it. It
should be noticed that rather different techniques have been proposed in the
literature on Marketing [32, 92, 93, 101, 118].

4.2.1 UTA [99]

UTA (“UTilité Additive”, i.e. additive utility in French) is one of the oldest
technique belonging to this family. It is supposed in UTA that there is a
subset Ref ⊂ X of reference alternatives that the decision-maker knows well
either because he/she has experienced them or because they have received
particular attention. The technique amounts to asking the DM to provide a
weak order on Ref . Each preference or indifference relation contained in this
weak order is then translated into a linear constraint:

• x ∼ y gives an equality v(x) − v(y) = 0 and
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• x Â y gives an inequality v(x) − v(y) > 0,

where v(x) and v(y) can be expressed as a linear combination of the un-
knowns as remarked earlier. Strict inequalities are then translated into large
inequalities as is usual in Linear Programming, i.e. v(x)− v(y) > 0 becomes
v(x) − v(y) ≥ ε where ε > 0 is a very small positive number that should be
chosen according to the precision of the arithmetics used by the LP package.

The test of the existence of a solution to the system of linear constraints
is done via standard Goal Programming techniques [33] adding appropriate
deviation variables. In UTA, each equation v(x)−v(y) = 0 is translated into
an equation v(x)− v(y) + σ+

x − σ−
x + σ+

y − σ−
y = 0, where σ+

x , σ−
x , σ+

y and σ−
y

are nonnegative deviation variables. Similarly each inequality v(x)−v(y) ≥ ε
is written as v(x) − v(y) + σ+

x − σ−
x + σ+

y − σ−
y ≥ ε. It is clear that there

will exist a solution to the original system of linear constraints if there is a
solution of the LP in which all deviation variables are zero. This can easily
be tested using the objective function

Minimize Z =
∑

x∈Ref

σ+
x + σ−

x (11)

Two cases arise. If the optimal value of Z is 0, there is an additive value
function that represents the preference information. It should be observed
that, except in exceptional cases (e.g. if the preference information collected
is identical to the preference information collected with the standard sequence
technique), there are infinitely many such additive value functions (that are
not related via a simple change of origin and of unit, since we already fixed
them through normalization (9-10)). The one given as the “optimal” one by
the LP does not have a special status since it is highly dependent upon the
arbitrary choice of the objective function; instead of minimizing the sum of
the deviation variables, we could have as well, and still preserving linearity,
minimized the largest of these variables. The whole polyhedron of feasible
solutions of the original (in)equalities corresponds to adequate additive value
functions: we have a whole set V of additive value functions representing the
information collected on the set of reference alternatives Ref .

Using standard techniques in LP, several functions in V may be obtained,
e.g. the ones maximizing or minimizing, within V , vi(x

∗
i ) for each attribute

[99]. The size of V is clearly dependent upon the choice of the alternatives
in Ref . It is often interesting to present them to the decision-maker in the
pictorial form of Figures 10 and 11.

If the optimal value of Z strictly greater than 0, there is no additive
value function representing the preference information available. The solu-
tion given as optimal (note that it is not guaranteed that this solution leads to
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the minimum possible number of violations w.r.t. the information provided—
this would require solving an integer linear programme) is, in general, highly
dependent upon the choice of the objective function.

This absence of solution to the system might be due to several factors:

• the piecewise linear approximation of the vi for the “continuous” at-
tributes may be too rough. It is easy to test whether an increase in
the number of linear pieces on some of these attributes may lead to a
nonempty set of additive value functions.

• the information provided by the decision-maker may be of poor qual-
ity. It might then be interesting to present to the decision-maker one
additive value function (e.g. one may present an average function af-
ter some post-optimality analysis) in the pictorial form of Figures 10
and 11 and to let him react to this information either by modifying
his/her initial judgments or even by letting him/her react directly on
the shape of the value functions. This is the solution implemented in
the well-known PREFCALC system [97].

• the preference provided by the decision-maker might be inconsistent
with the conditions implied by an additive value function. The sys-
tem should then help locate these inconsistencies and allow the DM
to reflect on them. Alternatively, since many alternative attribute de-
scription are possible, it may be worth investigating whether a different
definition of the various attributes may lead to a preference model con-
sistent with model (2). Several examples of such analysis may be found
in [106, 108, 191]

When the above techniques fail, the optimal solution of the LP, even if not
compatible with the information provided, may still be considered as an ad-
equate model. Again, since the objective function introduced above is some-
what arbitrary and it is recommended in [99] to perform a post-optimality
analysis, e.g. considering additive value functions that are “close” to the
optimal solution through the introduction of a linear constraint:

Z ≤ Z∗ + δ,

where Z∗ is the optimal value of the objective function of the original LP
and δ is a “small” positive number. As above, the result of the analysis is
a set V of additive value functions defined by a set of linear constraints. A
representative sample of additive value functions within V may be obtained
as above.

It should be noted that many possible variants of UTA can be conceived
building on the following comments. They include:
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• the addition of monotonicity properties of the vi with respect to the
underlying continuous attributes,

• the addition of constraints on the shape of the marginal value functions
vi, e.g. requiring them to be concave, convex or S-shaped,

• the addition of constraints linked to a possible indication of preference
intensity for the elements of Ref given by the DM, e.g. the difference
between x and y is larger than the difference between z and w.

For applications of UTA-like techniques, we refer to [35, 42, 43, 94, 98,
133, 168, 169, 170, 171, 172, 173, 175, 178, 179, 200, 202, 201, 204, 203].
Variants of the method are considered in [18, 19, 174]. This method is also
studied in detail in chapter XXX of this volume (Chapter 9, Siskos, UTA).

4.2.2 MACBETH [12]

It is easy to see that (9) and (10) may equivalently be written as:

x % y ⇔
n

∑

i=1

kiui(xi) ≥
n

∑

i=1

kiui(yi), (12)

where

u1(x1∗) = u2(x2∗) = . . . un(xn∗) = 0, (13)

u1(x
∗
1) = u2(x

∗
2) = . . . un(x∗

n) = 1 and (14)
n

∑

i=1

ki = 1. (15)

With such an expression of an additive value function, it is tempting to break
down the assessment into two distinct parts: an value function ui is assessed
on each attribute and, then, scaling constants ki are assessed taking the shape
of the value functions ui as given. This is the path followed in MACBETH.

Remark 35
Again, note that we are speaking here of ki as scaling constants and not as
weights. As already mentioned weights that would reflect the “importance”
of attributes are irrelevant to assess the additive value function model. No-
tice that, under (12-15) the ordering of the scaling constant ki is dependent
upon the choice of xi∗ and x∗

i . Increasing the width of the interval [xi∗, x
∗
i ]

will lead to increasing the value of the scaling constant ki. The value ki has,
therefore, nothing to do with the “importance” of attribute i. This point is
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unfortunately too often forgotten when using a weighted average of some nu-
merical attributes. Changing the units in which the attributes are measured
should imply changing the “weights” accordingly. •

The assessment procedure of the ui is conceived in such a way as to
avoid comparing alternatives differing on more than one attribute. In view
of what was said before concerning the standard sequence technique, this is
clearly an advantage of the technique. But can it be done? The trick here
is that MACBETH asks for judgments related to the difference between the
desirability of alternatives and not only judgments in terms of preference or
indifference. Partial value functions ui are approximated in a similar way
than in UTA: for discrete attributes, each point on the function is assessed,
for continuous ones, a piecewise linear approximation is used.

MACBETH asks the DM to compare pairs of levels on each attribute.
If no difference is felt between these levels, they receive an identical partial
value level. If a difference is felt between xk

i and xr
i , MACBETH asks for

a judgment qualifying the strength of this difference. The method and the
associated software propose three different semantical categories:

Categories Description
C1 weak
C2 strong
C3 extreme

with the possibility of using intermediate categories, e.g. between weak and
strong (giving a total of six distinct categories). This information is then
converted into linear inequations using the natural interpretation that if the
“difference” between the levels xk

i and xr
i has been judged larger than the

“difference” between xk′

i and xr′

i then it should follow that ui(x
k
i )− ui(x

r
i ) >

ui(x
k′

i ) − ui(x
r′

i ). Technically the six distinct categories are delimited by
thresholds that are used in the establishment of the constraints of the LP.
The software associated to MACBETH offers the possibility to compare all
pairs of levels on each attribute for a total of (ri +1)ri/2 comparisons. Using
standard Goal Programming techniques, as in UTA, the test of the compat-
ibility of a partial value function with this information is performed via the
solution of a LP. If there is a partial value function compatible with the infor-
mation, a “central” function is proposed to the DM who has the possibility
to modify it. If not, the results of the LP are exploited in such a way to
propose modifications of the information that would make it consistent.
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The assessment of the scaling constant ki is done using similar principles.
The DM is asked to compare the following (n + 2) alternatives by pairs:

(x1∗, x2∗, . . . , xn∗),

(x∗
1, x2∗, . . . , xn∗),

(x1∗, x
∗
2, . . . , xn∗),

. . .

(x1∗, x2∗, . . . , x
∗
n) and

(x∗
1, x

∗
2, . . . , x

∗
n),

placing each pair in a category of difference. This information immediately
translates into a set of linear constraints on the ki. These constraints are pro-
cessed as before. It should be noticed that, once the partial value functions
ui are assessed, it is not necessary to use the levels xi∗ and x∗

i to assess the
ki since they may well lead to alternatives that are too unrealistic. The au-
thors of MACBETH suggest to replace xi∗ by a “neutral” level which appears
neither desirable nor undesirable and x∗

i by a desirable level that is judged
satisfactory. Although this clearly impacts the quality of the dialogue with
the DM, this has no consequence on the underlying technique used to process
information.

We refer to [6, 7, 8, 9, 10, 11] for applications of the MACBETH technique.
This method is also studied in detail in chapter XXX of this volume (Chapter
10, Bana, MACBETH).

5 Extensions

The additive value model (2) is the central model for the application of
conjoint measurement techniques to decision analysis. We envisage in this
section various extensions to this model.

5.1 Transitive Decomposable models

The transitive decomposable model has been introduced in [115] as a natural
generalization of model (2). It amounts to replacing the addition by a general
function that is increasing in each of its arguments.

Definition 36
Let % be a binary relation on a set X =

∏n
i=1 Xi. The transitive decomposable

model holds if, for all i ∈ N , there is a real-valued function vi on Xi and a
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real-valued function g on
∏n

i=1 vi(Xi) that is increasing in all its arguments
such that:

x % y ⇔ g(v1(x1), . . . , vn(xn)) ≥ g(v1(y1), . . . , vn(yn)), (16)

for all x, y ∈ X.

An interesting point with this model is that it admits an intuitively ap-
pealing simple characterization. The basic axiom for characterizing the above
transitive decomposable model is weak independence, which is clearly implied
by (16). The following theorem is proved in [115, ch. 7].

Theorem 37
A preference relation % on a finite or countably infinite set X has a repre-
sentation in the transitive decomposable model iff % is a weakly independent
weak order.

Remark 38
This result can be extended to sets of arbitrary cardinality adding a, neces-
sary, condition implying that the weak order % has a numerical representa-
tion. •

The weak point of such a model is that the function g is left unspecified.
Hence, the uniqueness results for vi and g are clearly much less powerful
than what we obtained with model (2), see [115, ch. 7]. Therefore, practical
applications of this model generally imply specifying the type of function g,
possibly by verifying further conditions on the preference that impose that
g belongs to some parameterized family of functions, e.g. some polynomial
function of the vi. This is studied in detail in [115, ch. 7] and [125, 124, 140,
149, 184]. Since such models have, to the best of our knowledge, never been
used in decision analysis, we do not analyze them further.

The structure of the decomposable model however suggests that assess-
ment techniques for this model could well come from Artificial Intelligence
with its “rule induction” machinery. Indeed the function g in model (16) may
also be seen as a set of “rules”. We refer to [86, 87, 89, 90] for a thorough
study of the potentiality of such an approach.

Remark 39
A simple extension of the decomposable model consists in simply asking for
a function g that would be nondecreasing in each of its arguments. The
following result is proved in [29] (see also [89]) (it can easily be extended to
cover the case of an arbitrary set X, adding a, necessary, condition implying
that % has a numerical representation).
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We say that % is weakly separable if, for all i ∈ N and all xi, yi ∈
Xi, it is never true that (xi, z−i) Â (yi, z−i) and (yi, w−i) Â (xi, w−i), for
some z−i, w−i ∈ X−i. Clearly this is a weakening of weak independence
that tolerates to have at the same time (xi, z−i) Â (yi, z−i) and (xi, w−i) ∼
(yi, w−i).

Theorem 40
A preference relation % on a finite or countably infinite set X has a repre-
sentation in the weak decomposable model:

x % y ⇔ g(u1(x1), . . . , un(xn)) ≥ g(ui(y1), . . . , ui(yn))

with g nondecreasing in all its arguments iff % is a weakly separable weak
order.

A recent trend of research has tried to characterize special functional
forms for g in the weakly decomposable model, such as max, min or some
more complex forms. The main references include [24, 89, 91, 165, 177]. •

Remark 41
The use of “fuzzy integrals” as tools for aggregating criteria has recently
attracted much attention [44, 79, 80, 82, 83, 84, 128, 130, 129, 131], the
Choquet Integral and the Sugeno integral being among the most popular.
It should be strongly emphasized that the very definition of these integrals
requires to have at hand a weak order on ∪n

i=1Xi, supposing w.l.o.g. that the
sets Xi are disjoint. This is usually called a “commensurability hypothesis”.
Whereas this hypothesis is quite natural when dealing with an homogeneous
Cartesian product, as in decision under uncertainty (see e.g. [193]), it is far
less so in the area of multiple criteria decision making. A neat conjoint mea-
surement analysis of such models and their associated assessment procedures
is an open research question, see [81]. •

5.2 Intransitive indifference

Decomposable models form a large family of preferences though not large
enough to encompass all cases that may be encountered when asking subjects
to express preferences. A major restriction is that not all preferences may
be assumed to be weak orders. The example of the sequence of cups of
coffee, each differing from the previous one by an imperceptible quantity of
sugar added [119], is famous; it leads to the notions of semiorder and interval
order [4, 51, 60, 119, 144], in which indifference is not transitive, while strict
preference is.
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Ideally, taking intransitive indifference into account, we would want to
arrive at a generalization of (2) in which:

x ∼ y ⇔ |V (x) − V (y)| ≤ ε,

x Â y ⇔ V (x) > V (y) + ε,

where ε ≥ 0 and V (x) =
∑n

i=1 vi(xi).
In the finite case, it is not difficult to extend the condition envisaged in

section 4 to cover such a case. Indeed, we are still looking here for the solution
to a system of linear constraints. Although this seems to have never been
done, it would not be difficult to adapt the LP-based assessment techniques
to this case.

On the contrary, extending the standard sequence technique of section 3 is
a formidable challenge. Indeed, remember that these techniques crucially rest
on indifference judgments which lead to the determination of “perfect copies”
of a given preference interval. As soon as indifference is not supposed to be
transitive, “perfect copies” are not so perfect and much trouble is expected.
We refer to [75, 114, 120, 144, 180] for a study of these models.

Remark 42
Even if the analysis of such models proves difficult, it should be noted that
the semi-ordered version of the additive utility model may be interpreted as
having a “built-in” sensitivity analysis via the introduction of the threshold
ε. Therefore, in practice, we may usefully view ε not as a parameter to be
assessed but as a simple trick to avoid undue discrimination, because of the
imprecision inevitably involved in our assessment procedures, between close
alternatives •

Remark 43
Clearly the above model can be generalized to cope with a possibly non-
constant threshold. The literature on the subject remains minimal however
[144]. •

5.3 Nontransitive preferences

Many authors [132, 185] have argued that the reasonableness of supposing
that strict preference is transitive is not so strong when it comes to comparing
objects evaluated on several attributes. As soon as it is supposed that sub-
jects may use an “ordinal” strategy for comparing objects, examples inspired
from the well-known Condorcet paradox [159, 166] show that intransitivities
will be difficult to avoid. Indeed it is possible to observe predictable intran-
sitivities of strict preference in carefully controlled experiments [185]. There
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may therefore be a descriptive interest to studying such models. Now, when
it comes to decision analysis, intransitive preferences are often dismissed on
two grounds:

• on a practical level, it is not easy to build a recommendation on the
basis of a binary relation in which Â would not be transitive. Indeed,
social choice theorists, facing a similar problem, have devoted much
effort to devising what could be called reasonable procedures to deal
with such preferences [38, 56, 116, 117, 134, 142, 161]. This literature
does not lead, as was expected, to the emergence of a single suitable
procedure in all situations.

• on a more conceptual level, many others have questioned the very ra-
tionality of such preferences using some version of the famous “money
pump” argument [123, 147].

P. C. Fishburn has forcefully argued [67] that these arguments might not be
as decisive as they appear at first sight. Furthermore some MCDM techniques
make use of such intransitive models, most notably the so-called outranking
methods [23, 155, 186, 187]. Besides the intellectual challenge, there might
therefore be a real interest in studying such models.

A. Tversky [185] was one of the first to propose such a model generalizing
(2), known as the additive difference model, in which:

x % y ⇔
n

∑

i=1

Φi(ui(xi) − ui(yi)) ≥ 0 (17)

where Φi are increasing and odd functions.
It is clear that (17) allows for intransitive % but implies its completeness.

Clearly, (17) implies that % is independent. This allows to unambiguously
define marginal preferences %i. Although model (17) can accommodate in-
transitive %, a consequence of the increasingness of the Φi is that the marginal
preference relations %i are weak orders. This, in particular, excludes the pos-
sibility of any perception threshold on each attribute which would lead to an
intransitive indifference relation on each attribute. Imposing that Φi are
nondecreasing instead of being increasing allows for such a possibility. This
gives rise to what is called the “weak additive difference model” in [20]

As suggested in [20, 64, 63, 66, 188], the subtractivity requirement in (17)
can be relaxed. This leads to nontransitive additive conjoint measurement
models in which:

x % y ⇔

n
∑

i=1

pi(xi, yi) ≥ 0 (18)
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where the pi are real-valued functions on X2
i and may have several additional

properties (e.g. pi(xi, xi) = 0, for all i ∈ {1, 2, . . . , n} and all xi ∈ Xi).
This model is an obvious generalization of the (weak) additive difference

model. It allows for intransitive and incomplete preference relations % as well
as for intransitive and incomplete marginal preferences %i. An interesting
specialization of (18) obtains when pi are required to be skew symmetric i.e.
such that pi(xi, yi) = −pi(yi, xi). This skew symmetric nontransitive additive
conjoint measurement model implies that % is complete and independent.

An excellent overview of these nontransitive models is [67]. Several axiom
systems have been proposed to characterize them. P.C. Fishburn gave [64, 63,
66] axioms for the skew symmetric version of (18) both in the finite and the
infinite case. Necessary and sufficient conditions for a nonstandard version
of (18) are presented in [69]. [188] gives axioms for (18) with pi(xi, xi) = 0
when n ≥ 4. [20] gives necessary and sufficient conditions for (18) with and
without skew symmetry in the denumerable case when n = 2.

The additive difference model (17) was axiomatized in [68] in the infinite
case when n ≥ 3 and [20] gives necessary and sufficient conditions for the
weak additive difference model in the finite case when n = 2. Related studies
of nontransitive models include [36, 58, 122, 137]. The implications of these
models for decision-making under uncertainty were explored in [65] (for a
different path to nontransitive models for decision making under risk and/or
uncertainty, see [59, 61]).

It should be noticed that even the weakest form of these models, i.e.
(18) without skew symmetry, involves an addition operation. Therefore it is
unsurprising that the axiomatic analysis of these models share some common
features with the additive value function model (2). Indeed, except in the
special case in which n = 2, this case relating more to ordinal than to conjoint
measurement (see [115]), the various axiom systems that have been proposed
involve either:

• a denumerable set of cancellation conditions in the finite case or

• a finite number of cancellation conditions together with unnecessary
structural assumptions in the general case (these structural assump-
tions generally allow us to obtain nice uniqueness results for (18): the
functions pi are unique up to the multiplication by a common positive
constant).

A different path to the analysis of nontransitive conjoint measurement
models has recently been proposed in [29, 27, 30]. In order to get a feeling
for these various models, it is useful to envisage the various strategies that
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are likely to be implemented when comparing objects differing on several
dimensions [37, 135, 136, 158, 182, 185].

Consider two alternatives x and y evaluated on a family of n attributes
so that x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

A first strategy that can be used in order to decide whether or not it
can be said that “x is at least as good as y” consists in trying to measure
the “worth” of each alternative on each attribute and then to combine these
evaluations adequately. Abandoning all idea of transitivity and completeness,
this suggests a model in which:

x % y ⇔ F (u1(x1), . . . , un(xn), u1(y1), . . . , un(yn)) ≥ 0 (19)

where ui are real-valued functions on the Xi and F is a real-valued function on
∏n

i=1 ui(Xi)
2. Additional properties on F , e.g. its nondecreasingness (resp.

nonincreasingness) in its first (resp. last) n arguments, will give rise to a
variety of models implementing this first strategy.

A second strategy relies on the idea of measuring “preference differences”
separately on each attribute and then combining these (positive or negative)
differences in order to know whether the aggregation of these differences leads
to an advantage for x over y. More formally, this suggests a model in which:

x % y ⇔ G(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0 (20)

where pi are real-valued functions on X2
i and G is a real-valued function

on
∏n

i=1 pi(X
2
i ). Additional properties on G (e.g. its oddness or its non-

decreasingness in each of its arguments) or on pi (e.g. pi(xi, xi) = 0 or
pi(xi, yi) = −pi(yi, xi)) will give rise to a variety of models in line with the
above strategy.

Of course these two strategies are nor incompatible and one may well
envisage to use the “worth” of each alternative on each attribute to measure
“preference differences”. This suggests a model in which:

x % y ⇔ H(φ1(u1(x1), u1(y1)), . . . , φn(un(xn), un(yn))) ≥ 0 (21)

where ui are real-valued functions on Xi, φi are real-valued functions on
ui(Xi)

2 and H is a real-valued function on
∏n

i=1 φi(ui(Xi)
2).

Clearly the use of very general functional forms, instead of additive ones,
greatly facilitate the axiomatic analysis of these models. It mainly relies
on the study of various kinds of traces induced by the preference relation
on coordinates and does not require a detailed analysis of tradeoffs between
attributes.

The price to pay for such an extension of the scope of conjoint mea-
surement is that none of these models is likely to possess any remarkable
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uniqueness properties. Therefore, although proofs are constructive, these
results will not give direct hints on how to devise assessment procedures.
The general idea here is to use numerical representations as guidelines to
understand the consequences of a limited number of cancelation conditions,
without imposing any transitivity or completeness requirement on the pref-
erence relation and any structural assumptions on the set of objects. Such
models have proved useful to:

• understand the ordinal character of some aggregation models proposed
in the literature [153, 155], known as the “outranking methods” (see
Chapters 3, 4, 5 of this Volume) as shown in [26],

• understand the links between aggregation models aiming at enriching
a dominance relation and more traditional conjoint measurement ap-
proaches [29],

• to include in a classical conjoint measurement framework, noncom-
pensatory preference in the sense of [20, 31, 50, 54, 55] as shown in
[26, 28, 88].
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[110] V. Köbberling. Comment on: Edi Karni & Zvi Safra (1998) The
hexagon condition and additive representation for two dimensions: An
algebraic approach. Journal of Mathematical Psyvhology, 47(3):370,
2003.

[111] T. C. Koopmans. Stationary ordinal utility and impatience. Econo-
metrica, 28:287–309, 1960.

[112] T. C. Koopmans. Representation of prefernce orderings over time. In
C. B. McGuire and R. Radner, editors, Decision and Organization,
pages 57–100. Noth-Holland, Amsterdam, 1972.

[113] D. H. Krantz. Conjoint measurement: the Luce-Tukey axiomatization
and some extensions. Journal of Mathematical Psychology, 1:248–277,
1964.

[114] D. H. Krantz. Extensive measurement in semiorders. Philos. Sci.,
34:348–362, 1967.

57



[115] D. H. Krantz, R. D. Luce, P. Suppes, and A. Tversky. Foundations
of measurement, vol. 1: Additive and polynomial representations. Aca-
demic Press, New-York, 1971.

[116] G. Laffond, J.-F. Laslier, and M. Le Breton. Condorcet choice cor-
respondences: A set-theoretical comparison. Mathematical Social Sci-
ences, 30:23–36, 1995.

[117] J.-F. Laslier. Tournament solutions and majority voting. Springer-
Verlag, Berlin, 1997.

[118] J. Louvière. Analyzing Decision Making: Metric Conjoint Analysis.
Sage, Park, CA, 1988.

[119] R. D. Luce. Semiorders and a theory of utility discrimination. Econo-
metrica, 24:178–191, 1956.

[120] R. D. Luce. Three axiom systems for additive semiordered structures.
SIAM Journal of Applied Mathematics, 25:41–53, 1973.

[121] R. D. Luce. Conjoint measurement: A brief survey. In David E. Bell,
Ralph L. Keeney, and Howard Raiffa, editors, Conflicting objectives in
decisions, pages 148–171. Wiley, New York, 1977.

[122] R. D. Luce. Lexicographic tradeoff structures. Theory and Decision,
9:187–193, 1978.

[123] R. D. Luce. Utility of gains and losses: Measurement-theoretical and
experimental approaches. Lawrence Erlbaum Publishers, Mahwah, New
Jersey, 2000.

[124] R. D. Luce and M. Cohen. Factorizable automorphisms in solvable
conjoint structures. I. Journal of Pure and Applied Algebra, 27(3):225–
261, 1983.

[125] R. D. Luce, D. H. Krantz, P. Suppes, and A. Tversky. Foundations of
measurement, vol. 3: Representation, axiomatisation and invariance.
Academic Press, New-York, 1990.

[126] R. D. Luce and A. A. J. Marley. Extensive measurement when con-
catenation is restricted. In S. Morgenbessser, P. Suppes, and M. G.
White, editors, Philosophy, science and method: Essays in honor of
Ernest Nagel, pages 235–249. St. Martin’s Press, New York, 1969.

58



[127] R. D. Luce and J. W. Tukey. Simultaneous conjoint measurement:
a new type of fundamental measurement. Journal of Mathematical
Psychology, 1:1–27, 1964.

[128] J.-L. Marichal. An axiomatic approach of the discrete Choquet integral
as a tool to aggregate interacting criteria. IEEE Transactions on Fuzzy
Systems, 8, 2000.

[129] J.-L. Marichal. On Choquet and Sugeno integrals as aggregation func-
tions. In M. Grabisch, T. Murofushi, and M. Sugeno, editors, Fuzzy
measures and integrals, pages 247–272. Physica Verlag, Heidelberg,
2000.

[130] J.-L. Marichal. On Sugeno integralsas an aggregation function. Fuzzy
Sets and Systems, 114, 2000.

[131] J.-L. Marichal and M. Roubens. Determination of weights of interacting
criteria from a reference set. European Journal of Operational Research,
124:641–50, 2000.

[132] K. O. May. Intransitivity, utility and the aggregation of preference
patterns. Econometrica, 22:1–13, 1954.

[133] G. Mihelis, E. Grigoroudis, Y. Siskos, Y. Politis, and Y. Malandrakis.
Customer satisfaction measurement in the private bank sector. Euro-
pean Journal of Operational Research, 130(2):347–360, April 2001.

[134] N. R. Miller. Graph theoretical approaches to the theory of voting.
American Journal of Political Science, 21:769–803, 1977.

[135] H. Montgomery. A study of intransitive preferences using a think aloud
procedure. In H. Jungerman and G. de Zeeuw, editors, Decision-making
and Change in Human Affairs, pages 347–362, Dordrecht, 1977. D.
Reidel.

[136] H. Montgomery and O. Svenson. On decision rules and information pro-
cessing strategies for choice among multiattribute alternatives. Scan-
dinavian Journal of Psychology, 17:283–291, 1976.

[137] Y. Nakamura. Lexicographic additivity for multi-attribute preferences
on finite sets. Theory and Decision, 42:1–19, 1997.

[138] Y. Nakamura. Additive utility on densely ordered sets. Journal of
Mathematical Psychology, 46:515–530, 2002.

59



[139] L. Narens. Abstract measurement theory. MIT press, Cambridge,
Mass., 1985.

[140] L. Narens and R. D. Luce. The algebra of measurement. Journal of
Pure and Applied Algebra, 8(2):197–233, 1976.

[141] A. Ostanello. Action evaluation and action structuring – Different
decision aid situations reviewed through two actual cases. In C. A.
Bana e Costa, editor, Readings in multiple criteria decision aid, pages
36–57. Springer Verlag, Berlin, 1990.

[142] J. E. Peris and B. Subiza. Condorcet choice correspondences for weak
tournaments. Social Choice and Welfare, 16:217–231, 1999.

[143] M. Pirlot and Ph. Vincke. Lexicographic aggregation of semiorders.
Journal of Multicriteria Decision Analysis, 1:47–58, 1992.

[144] M. Pirlot and Ph. Vincke. Semiorders. Properties, representations,
applications. Kluwer, Dordrecht, 1997.

[145] J.-Ch. Pomerol and S. Barba-Romero. Multicriterion Decision in Man-
agement, Principles and Practice. Kluwer, Dordrecht, 2000.
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