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Abstract

The notion of concordance is central to many multiple criteria techniques
relying on ordinal information, e.g. outranking methods. It leads to compare
alternatives by pairs on the basis of a comparison of coalitions of attributes
in terms of “importance”. This note proposes a characterization of the bi-
nary relations that can be obtained using such comparisons, within a general
framework for conjoint measurement that allows for intransitive preferences.
We show that such relations are mainly characterized by the very rough
differentiation of preference differences that they induce on each attribute.

Keywords: Multiple criteria analysis, Concordance, Outranking methods,
Conjoint measurement, Nontransitive preferences.



1 Introduction

A classical problem in the field of decision analysis with multiple attributes
is to build a preference relation on a set of multi-attributed alternatives on
the basis of preferences expressed on each attribute and “inter-attribute” in-
formation such as weights. The classical way to do so is to build a value
function that aggregates into a real number the evaluations of each alterna-
tive on the set of attributes (see French, 1993; Keeney & Raiffa, 1976). The
construction of such a value function requires a detailed analysis of the trade-
offs between the various attributes. When such an analysis appears difficult,
one may resort to techniques for comparing alternatives that have a more
ordinal character. Several such techniques, the so-called outranking meth-
ods, were proposed by B. Roy (for presentations in English, see Bouyssou,
2001; Roy, 1991, 1996; Vincke, 1992, 1999). Most outranking methods use
the notion of concordance. It leads to compare alternatives by pairs on the
basis of a comparison of coalitions of attributes in terms of “importance”.
Such pairwise comparisons do not lead to preference relations having nice
transitivity properties (Bouyssou, 1996). These relations, henceforth called
concordance relations, are therefore quite distinct from the transitive struc-
tures usually dealt with in conjoint measurement (Krantz, Luce, Suppes, &
Tversky, 1971; Roberts, 1979; Wakker, 1989).

The aim of this paper is to propose a characterization of concordance
relations within a general framework for conjoint measurement allowing for
incomplete and/or intransitive relations that was introduced in Bouyssou and
Pirlot (2002a). It will turn out that, within this framework, the main distinc-
tive feature of concordance relations is the very rough differentiation of pref-
erence differences that they induce on each attribute. Our results extend to
the case of—possibly incomplete—reflexive preference relations (interpreted
as “at least as good as” relations), the results proposed in Bouyssou and
Pirlot (2002b) for asymmetric relations (interpreted as “strict preference”).
Pirlot (1997) proposes an alternative approach to the analysis of concordance
relations that is not based on a conjoint measurement model.

The paper is organized as follows. Section 2 introduces our main defi-
nitions and notation. Concordance relations are defined and illustrated in
section 3. Section 4 characterizes concordance relations within our general
framework for conjoint measurement. A final section compares our results
with other approaches to concordance relations and presents directions for
future research. All proofs are relegated in appendix.
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2 Definitions and Notation

A binary relation R on a set A is a subset of A × A; we write a R b instead
of (a, b) ∈ R. A binary relation R on A is said to be:

• reflexive if [a R a],

• complete if [a R b or b R a],

• symmetric if [a R b] ⇒ [b R a],

• asymmetric if [a R b] ⇒ [Not [ b R a ]],

• transitive if [a R b and b R c] ⇒ [a R c],

• Ferrers if [(a R b and c R d) ⇒ (a R d or c R b)],

• semi-transitive if [(a R b and b R c) ⇒ (a R d or d R c)]

for all a, b, c ∈ A.
A weak order (resp. an equivalence) is a complete and transitive (resp.

reflexive, symmetric and transitive) binary relation. If R is an equivalence on
A, A/R will denote the set of equivalence classes of R on A. An interval order
is a complete and Ferrers binary relation. A semiorder is a semi-transitive
interval order.

In this paper % will always denote a reflexive binary relation on a set
X =

∏n
i=1 Xi with n ≥ 2. Elements of X will be interpreted as alternatives

evaluated on a set N = {1, 2, . . . , n} of attributes and % as a “large preference
relation” (x % y being read as “x is at least as good as y”) between these
alternatives. We note Â (resp. ∼) the asymmetric (resp. symmetric) part
of %. A similar convention holds when % is starred, superscripted and/or
subscripted.

For any nonempty subset J of the set of attributes N , we denote by
XJ (resp. X−J) the set

∏

i∈J Xi (resp.
∏

i/∈J Xi). With customary abuse of
notation, (xJ , y−J) will denote the element w ∈ X such that wi = xi if i ∈ J
and wi = yi otherwise. When J = {i} we shall simply write X−i and (xi, y−i).

Let J be a nonempty set of attributes. We define the marginal preference
%J induced by % on XJ letting, for all xJ , yJ ∈ XJ ,

xJ %J yJ iff (xJ , z−J) % (yJ , z−J), for all z−J ∈ X−J .

When J = {i} we write %i instead of %{i}.
If, for all xJ , yJ ∈ XJ , (xJ , z−J) % (yJ , z−J), for some z−J ∈ X−J implies

xJ %J yJ , we say that % is independent for J . If % is independent for all
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nonempty subsets of attributes we say that % is independent. It is not difficult
to see that a binary relation is independent if and only if it is independent
for N \ {i}, for all i ∈ N (Wakker, 1989). A relation is said to be weakly
independent if it is independent for all subsets containing a single attribute;
while independence implies weak independence, it is clear that the converse
is not true (Wakker, 1989).

We say that attribute i ∈ N is influent (for %) if there are xi, yi, zi, wi ∈
Xi and x−i, y−i ∈ X−i such that (xi, x−i) % (yi, y−i) and Not [ (zi, x−i) %
(wi, y−i) ] and degenerate otherwise. It is clear that a degenerate attribute
has no influence whatsoever on the comparison of the elements of X and may
be suppressed from N .

We say that attribute i ∈ N is weakly essential for % (resp. essential) if
(xi, a−i) Â (yi, a−i), for some xi, yi ∈ Xi and some a−i ∈ X−i (resp. if Âi is not
empty). For a weakly independent relation, weak essentiality and essentiality
are equivalent. It is clear that an essential attribute is weakly essential and
that a weakly essential attribute is influent. The reverse implications do
not hold. In order to avoid unnecessary minor complications, we suppose
henceforth that all attributes in N are influent. This does not imply that all
attributes are weakly essential.

3 Concordance relations

3.1 Definition

The following definition, building on Bouyssou and Pirlot (2002c) and Fargier
and Perny (2001), formalizes the idea of a concordance relation, i.e. a prefer-
ence relation that has been obtained comparing alternatives by pairs on the
basis of the “importance” of the attributes favoring each element of the pair.

Definition 1 (Concordance relations)
Let % be a reflexive binary relation on X =

∏n
i=1 Xi. We say that % is a

concordance relation (or, more briefly, that % is a CR) if there are:

• a complete binary relation Si on each Xi (i = 1, 2, . . . , n),

• a binary relation ¥ between subsets of N having N for union that is
monotonic w.r.t. inclusion, i.e. such that for all A,B,C,D ⊆ N ,

[A ¥ B,C ⊇ A,B ⊇ D,C ∪ D = N ] ⇒ C ¥ D, (1)

such that, for all x, y ∈ X,

x % y ⇔ S(x, y) ¥ S(y, x), (2)
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where S(x, y) = {i ∈ N : xi Si yi}. We say that 〈¥, Si〉 is a representation
of %.

Hence, when % is a CR, the preference between x and y only depends on
the subsets of attributes favoring x or y in terms of the complete relation
Si. It does not depend on “preference differences” between the various levels
on each attribute besides the distinction between levels indicated by Si. As
shown below, although our definition imposes a comparison between two
coalitions of attributes in order to decide whether or not x is at least as good
as y, it is sufficiently flexible to include the case in which x is declared at least
as good as y as soon as the attributes in S(x, y) are “sufficiently” important,
as in ELECTRE I (see Roy, 1968).

Let % be a CR with a representation 〈¥, Si〉. We denote by Ii (resp. Pi)
the symmetric part (resp. asymmetric part) of Si. For all A,B ⊆ N , we define
the relations ,, ¤ and ./ between subsets of N having N for union letting:
A , B ⇔ [A ¥ B and B ¥ A], A ¤ B ⇔ [A ¥ B and Not [ B ¥ A ]],
A ./ B ⇔ [A ∪ B = N,Not [ A ¥ B ] and Not [ B ¥ A ]].

The following lemma takes note of some elementary properties of concor-
dance relations; it uses the hypothesis that all attributes are influent.

Lemma 1
If % is a CR with a representation 〈¥, Si〉, then:

1. for all i ∈ N , Pi is nonempty,

2. for all A,B ⊆ N such that A ∪ B = N exactly one of A ¤ B, B ¤ A,
A , B and A ./ B holds and we have N , N ,

3. for all A ⊆ N , N ¥ A,

4. N ¤ ∅,

5. % is independent,

6. % is marginally complete, i.e., for all i ∈ N, all xi, yi ∈ Xi and all
a−i ∈ X−i, (xi, a−i) % (yi, a−i) or (yi, a−i) % (xi, a−i),

7. for all i ∈ N , either %i = Si or xi ∼i yi for all xi, yi ∈ Xi,

8. % has a unique representation.

Proof

See appendix.
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We say that a CR % is responsive if, for all A ⊆ N , [A 6= ∅] ⇒ N ¤ N \ A.
As shown by the examples below, there are CR that are not responsive. It
is not difficult to see that a CR is responsive if and only if all attributes are
(weakly) essential on top of being influent. This implies %i = Si. This shows
that in our nontransitive setting, assuming that all attributes are (weakly)
essential is far from being as innocuous an hypothesis as it traditionally is in
conjoint measurement.

The main objective of this paper is to characterize CR within a general
framework of conjoint measurement, using conditions that will allow us to
isolate their specific features.

Remark 3.1
In most outranking methods, the concordance relation is modified by the
application of the so-called discordance condition (Roy, 1991). Discordance
amounts to refuse to accept the assertion x % y when y is judged “far better”
than x on some attribute. This leads to defining a binary relation Vi ⊆ Pi on
each Xi and to accept the assertion x % y only when (2) holds and it is not
true that yj Vj xj, for some j ∈ N . Our analysis does not take discordance
into account. •

3.2 Examples

The following examples show that CR arise with a large variety of ordinal
aggregation models that have been studied in the literature.

Example 1 (Simple Majority preferences (Sen, 1986))
The binary relation % is a simple majority preference relation if there is a
weak order Si on each Xi such that:

x % y ⇔ |{i ∈ N : xi Si yi}| ≥ |{i ∈ N : yi Si xi}| .

A simple majority preference relation is easily seen to be a CR defining ¥

letting, for all A,B ⊆ N such that A ∪ B = N ,

A ¥ B ⇔ |A| ≥ |B| .

It is easy to see that % is complete but that, in general, neither % nor Â are
transitive. This CR is responsive. For all A,B ⊆ N such that A ∪ B = N ,
we have either A ¥ B or B ¥ A. 3

Example 2 (ELECTRE I (Roy, 1968, 1991))
The binary relation % is an ELECTRE I preference relation if there are a
real number s ∈ [1/2; 1] and, for all i ∈ N ,
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• a semiorder Si on Xi,

• a positive real number wi > 0,

such that, for all x, y ∈ X,

x % y ⇔

∑

i∈S(x,y) wi
∑

j∈N wj

≥ s.

An ELECTRE I preference relation is easily seen to be a CR defining ¥

letting, for all A,B ⊆ N such that A ∪ B = N ,

A ¥ B ⇔

∑

i∈A wi
∑

j∈N wj

≥ s.

Such a CR may not be responsive. It may well happen that, for some A,B ⊆
N such that A ∪ B = N , neither A ¥ B nor B ¥ A, i.e. A ./ B. The
importance relation ¥ is such that, for all A,B ⊆ N , A ¥ B ⇒ A ¥ N .
Simple examples show that, in general, % is neither complete nor transitive.
It may happen that Â is not transitive and has circuits. 3

Example 3 (Semiordered weighted majority (Vansnick, 1986))
The binary relation % is a semiordered weighted majority preference relation
if there are a real number ε ≥ 0 and, for all i ∈ N ,

• a semiorder Si on Xi,

• a real number wi > 0,

such that:
x % y ⇔

∑

i∈S(x,y)

wi ≥
∑

j∈S(y,x)

wj − ε.

An additive weighted majority preference relation is easily seen to be a CR
defining ¥ letting, for all A,B ⊆ N such that A ∪ B = N :

A ¥ B ⇔
∑

i∈A

wi ≥
∑

j∈B

wj − ε.

The relation % may not be transitive (the same is true for Â). It is always
complete. Unless in special cases, this CR is not responsive. Clearly, for all
A,B ⊆ N such that A ∪ B = N , we have either A ¥ B or B ¥ A. 3
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4 A characterization of concordance relations

4.1 Concordance relations without attribute transitiv-
ity

Our general framework for conjoint measurement tolerating intransitive and
incomplete relations is detailed in Bouyssou and Pirlot (2002a). We briefly
recall here its main ingredients and its underlying logic. It mainly rests on
the analysis of induced relations comparing preference differences on each
attribute.

Definition 2 (Relations comparing preference differences)
Let % be a binary relation on a set X =

∏n
i=1 Xi. We define the binary

relations %∗
i and %∗∗

i on X2
i letting, for all xi, yi, zi, wi ∈ Xi,

(xi, yi) %∗
i (zi, wi) ⇔

[for all a−i, b−i ∈ X−i, (zi, a−i) % (wi, b−i) ⇒ (xi, a−i) % (yi, b−i)]

(xi, yi) %∗∗
i (zi, wi) ⇔ [(xi, yi) %∗

i (zi, wi) and (wi, zi) %∗
i (yi, xi)].

The asymmetric and symmetric parts of %∗
i are respectively denoted by Â∗

i

and ∼∗
i , a similar convention holding for %∗∗

i . By construction, %∗
i and %∗∗

i

are reflexive and transitive. Therefore, ∼∗
i and ∼∗∗

i are equivalence relations
(the hypothesis that attribute i ∈ N is influent meaning that ∼∗

i has at
least two distinct equivalence classes). Note that, by construction, %∗∗

i is
reversible, i.e. (xi, yi) %∗∗

i (zi, wi) ⇔ (wi, zi) %∗∗
i (yi, xi).

We note below a few useful connections between %∗
i , %∗∗

i and %.

Lemma 2
1. % is independent if and only if (xi, xi) ∼

∗
i (yi, yi), for all i ∈ N and all

xi, yi ∈ Xi.

2. For all x, y ∈ X and all zi, wi ∈ Xi,

[x % y and (zi, wi) %∗
i (xi, yi)] ⇒ (zi, x−i) % (wi, y−i), (3a)

[(zi, wi) ∼
∗
i (xi, yi), for all i ∈ N ] ⇒ [x % y ⇔ z % w]. (3b)

Proof

See Bouyssou and Pirlot (2002a, lemma 3).

We now introduce two conditions, taken from Bouyssou and Pirlot (2002a),
that will form the basis of our framework for conjoint measurement.
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Definition 3 (Conditions RC1 and RC2)
Let % be a binary relation on a set X =

∏n
i=1 Xi. This relation is said to

satisfy:
RC1i if

(xi, a−i) % (yi, b−i)
and

(zi, c−i) % (wi, d−i)







⇒







(xi, c−i) % (yi, d−i)
or

(zi, a−i) % (wi, b−i),

RC2i if
(xi, a−i) % (yi, b−i)

and
(yi, c−i) % (xi, d−i)







⇒







(zi, a−i) % (wi, b−i)
or

(wi, c−i) % (zi, d−i),

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i. We say that %
satisfies RC1 (resp. RC2) if it satisfies RC1i (resp. RC2i) for all i ∈ N .

Condition RC1i (Asymmetric inteR-attribute Cancellation) strongly sug-
gests that either the difference (xi, yi) is at least as large as the difference
(zi, wi) of vice versa. Condition RC2i suggests that the preference differ-
ence (xi, yi) is linked to the “opposite” preference difference (yi, xi). Taking
xi = yi, zi = wi, a−i = c−i and b−i = d−i shows that RC2i implies that %
is independent for N \ {i} and, hence, independent. The following lemma
summarizes the main consequences of RC1 and RC2 on %∗

i and %∗∗
i .

Lemma 3
1. RC1i ⇔ [%∗

i is complete],

2. RC2i ⇔
[for all xi, yi, zi, wi ∈ Xi,Not [ (xi, yi) %∗

i (zi, wi) ] ⇒ (yi, xi) %∗
i (wi, zi)],

3. [RC1i and RC2i] ⇔ [%∗∗
i is complete].

4. In the class of reflexive relations, RC1 and RC2 are independent con-
ditions.

Proof

See Bouyssou and Pirlot (2002a, lemmas 1 and 2).

We envisage here binary relations % on X that can be represented as:

x % y ⇔ F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0, (M)

where pi are real-valued functions on X2
i that are skew symmetric (i.e. such

that pi(xi, yi) = −pi(yi, xi), for all xi, yi ∈ Xi) and F is a real-valued function
on

∏n
i=1 pi(X

2
i ) being nondecreasing in all its arguments and such that, abus-

ing notation, F (0) ≥ 0. The following lemma takes note of a few properties
of binary relations satisfying model (M).
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Lemma 4
Let % be a binary relation on X =

∏n
i=1 Xi that has a representation in

model (M). Then:

1. % is reflexive, independent and marginally complete,

2. [xi Âi yi, for all i ∈ J ⊆ N ] ⇒ [xJ ÂJ yJ ],

3. % satisfies RC1 and RC2.

Proof

See Bouyssou and Pirlot (2002a, proposition 1 and lemma 2).

The conditions envisaged above allow us to completely characterize model
(M) when, for all i ∈ N , X2

i /∼∗∗
i is finite or countably infinite.

Theorem 1
Let % be a binary relation on X =

∏n
i=1 Xi. If, for all i ∈ N , X2

i / ∼∗∗
i is

finite or countably infinite, then % has a representation (M) if and only if it
is reflexive and satisfies RC1 and RC2.

Proof

See Bouyssou and Pirlot (2002a, theorem 1).

Remark 4.1
It should be noticed that the framework offered by model (M) is quite flexible.
It is not difficult to see that preference relations that have a representation
in the additive value model (see Fishburn, 1970; Krantz et al., 1971; Wakker,
1989):

x % y ⇔

n
∑

i=1

ui(xi) ≥
n

∑

i=1

ui(yi), (U)

(where ui is a real-valued function on Xi), or the additive difference model
(see Fishburn, 1992; Tversky, 1969):

x % y ⇔
n

∑

i=1

Φi(ui(xi) − ui(yi)) ≥ 0, (ADM)

(where Φi is increasing and odd), are all included in model (M). We show
below that model (M) also contain all CR. •

Remark 4.2
Following Bouyssou and Pirlot (2002a), it is not difficult to extend theorem 1
to sets of arbitrary cardinality adding a, necessary, condition implying that
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the weak orders %∗∗
i have a numerical representation. This will not be useful

here. We also refer the reader to Bouyssou and Pirlot (2002a) for an analysis
of the, obviously very weak, uniqueness properties of the numerical represen-
tation in theorem 1. Let us simply observe here that the proof of theorem 1
shows that if % has a representation in model (M), it always has a regular
representation, i.e. a representation such that:

(xi, yi) %∗∗
i (zi, wi) ⇔ pi(xi, yi) ≥ pi(zi, wi). (4)

Although (4) may be violated in some representations, it is easy to see that
we always have:

(xi, yi) Â
∗∗
i (zi, wi) ⇒ pi(xi, yi) > pi(zi, wi). (5)

When an attribute is influent, we know that there are at least two distinct
equivalence classes of ∼∗

i . When RC1i and RC2i holds, this implies that
%∗∗

i must have at least three distinct equivalence classes. Therefore, when
all attributes are influent, the functions pi in any representation of % in
model (M) must take at least three distinct values. •

Consider a binary relation % that has a representation in model (M) in which
all functions pi take at most three distinct values. Intuition suggests that
such a relation % is quite close from a concordance relation. We formalize
this intuition below.

The following two conditions aim at capturing the ordinal character of
the aggregation underlying CR and, hence, at characterizing CR within the
framework of model (M).

Definition 4 (Conditions UC and LC)
Let % be a binary relation on a set X =

∏n
i=1 Xi. This relation is said to

satisfy:
UCi if

(xi, a−i) % (yi, b−i)
and

(zi, c−i) % (wi, d−i)







⇒







(yi, a−i) % (xi, b−i)
or

(xi, c−i) % (yi, d−i),

LCi if
(xi, a−i) % (yi, b−i)

and
(yi, c−i) % (xi, d−i)







⇒







(yi, a−i) % (xi, b−i)
or

(zi, c−i) % (wi, d−i),

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i. We say that %
satisfies UC (resp. LC) if it satisfies UCi (resp. LCi) for all i ∈ N .
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The interpretation of these two conditions is easier considering their conse-
quences on the relations %∗

i and %∗∗
i .

Lemma 5
1. UCi ⇔ [Not [ (yi, xi) %∗

i (xi, yi) ] ⇒ (xi, yi) %∗
i (zi, wi), for all xi, yi, zi, wi ∈

Xi].

2. LCi ⇔ [Not [ (yi, xi) %∗
i (xi, yi) ] ⇒ (zi, wi) %∗

i (yi, xi), for all xi, yi, zi, wi ∈
Xi].

3. [RC2i, UCi and LCi] ⇒ RC1i.

4. [RC2i, UCi and LCi] ⇒ [∼∗∗
i has at most three equivalence classes].

5. In the class of reflexive relations, RC2, UC and LC are independent
conditions.

6. [RC2i, UCi, LCi] ⇒ all xi, yi ∈ Xi such that (xi, yi) Â
∗∗
i (yi, yi) satisfy

one and the same of the following:

I. (xi, yi) Â
∗
i (yi, yi) Â

∗
i (yi, xi),

II. (xi, yi) Â
∗
i (yi, yi) and (yi, yi) ∼

∗
i (yi, xi),

III. (xi, yi) ∼
∗
i (yi, yi) and (yi, yi) Â

∗
i (yi, xi).

Proof

See appendix.

Hence, condition UC amounts to saying that if a preference difference is
strictly larger than its opposite, it is the largest possible preference difference.
Condition LC has a dual interpretation. This seems to adequately capture
the ordinal character of the aggregation at work in a CR. Together with
RC2i, conditions UCi and LCi imply that %∗∗

i has at most three equivalence
classes, that RC1i holds and that each attribute has type I, II or III.

The following lemma shows that all CR satisfy UC and LC while having
a representation in model (M).

Lemma 6
Let % be a binary relation on a set X =

∏n
i=1 Xi. If % is a CR then,

1. % satisfies RC1 and RC2,

2. % satisfies UC and LC.

Proof

See appendix.
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We are now in position to give our characterization of CR.

Theorem 2
Let % be a binary relation on X =

∏n
i=1 Xi. Then % is a CR iff it is reflexive

and satisfies RC2, UC and LC.

Proof

See appendix.

Remark 4.3
An easy corollary of the above result is that a binary relation is a CR if and
only if it has a representation in model (M) in which all functions pi take at
most three distinct values. •

4.2 Concordance relations with attribute transitivity

Our definition of CR relations in section 3 does not require the relations Si

to possess any remarkable property besides completeness. This is at variance
with what is done in most ordinal aggregation methods (see the examples in
section 3.2). We show here how to characterize CR with all relations Si being
semiorders. Our results are easily extended, using conditions introduced in
Bouyssou and Pirlot (2003c, 2003b), to cover the case in which all relations
Si are weak orders.

We first show, following Bouyssou and Pirlot (2003c), how to introduce a
linear arrangement of the elements of each Xi within the framework of model
(M).

Definition 5 (Conditions AC1, AC2 and AC3)
We say that % satisfies:
AC1i if

x % y
and

z % w







⇒







(zi, x−i) % y
or

(xi, z−i) % w,

AC2i if
x % y
and

z % w







⇒







x % (wi, y−i)
or

z % (yi, w−i),

AC3i if
z % (xi, a−i)

and
(xi, b−i) % y







⇒







z % (wi, a−i)
or

(wi, b−i) % y,

12



for all x, y, z, w ∈ X, all a−i, b−i ∈ X−i and all xi, wi ∈ Xi. We say that %
satisfies AC1 (resp. AC2, AC3) if it satisfies AC1i (resp. AC2i, AC3i) for
all i ∈ N .

These three conditions are transparent variations on the theme of the Fer-
rers (AC1 and AC2) and semi-transitivity (AC3) conditions that are made
possible by the product structure of X. The rationale for the name “AC” is
that these conditions are “intrA-attribute Cancellation” conditions. Condi-
tion AC1i suggests that the elements of Xi (instead of the elements of X had
the original Ferrers condition been invoked) can be linearly ordered consid-
ering “upward dominance”: if xi “upward dominates” zi then (zi, c−i) % w
entails (xi, c−i) % w. Condition AC2i has a similar interpretation consid-
ering now “downward dominance”. Condition AC3i ensures that the linear
arrangements of the elements of Xi obtained considering upward and down-
ward dominance are not incompatible. The study of the impact of these new
conditions on model (M) will require an additional definition.

Definition 6 (Linearity (Doignon et al., 1988))
Let R be a binary relation on a set A2. We say that:

• R is right-linear iff [Not [ (b, c) R (a, c) ] ⇒ (a, d) R (b, d)],

• R is left-linear iff [Not [ (c, a) R (c, b) ] ⇒ (d, b) R (d, a)],

• R is strongly linear iff [Not [ (b, c) R (a, c) ] or Not [ (c, a) R (c, b) ]] ⇒
[(a, d) R (b, d) and (d, b) R (d, a)],

for all a, b, c, d ∈ A.

We have the following:

Lemma 7
1. AC1i ⇔ %∗

i is right-linear.

2. AC2i ⇔ %∗
i is left-linear.

3. AC3i ⇔ [Not [ (xi, zi) %∗
i (yi, zi) ] for some zi ∈ Xi ⇒

(wi, xi) %∗
i (wi, yi), for all wi ∈ Xi].

4. [AC1i, AC2i and AC3i] ⇔ %∗
i is strongly linear ⇔ %∗∗

i is strongly
linear.

5. In the class of reflexive relations satisfying RC1 and RC2, AC1, AC2
and AC3 are independent conditions.

13



Proof

See Bouyssou and Pirlot (2003c, lemma 4) or Bouyssou and Pirlot (2003a,
lemma 6.4).

We envisage binary relations % on X that can be represented as:

x % y ⇔ F (ϕ1(u1(x1), u1(y1)), . . . , ϕn(un(xn), un(yn))) ≥ 0, (M*)

where ui are real-valued functions on Xi, ϕi are real-valued functions on
ui(Xi)

2 that are skew symmetric, nondecreasing in their first argument (and,
therefore, nonincreasing in their second argument) and F is a real-valued
function on

∏n
i=1 ϕi(ui(Xi)

2) being nondecreasing in all its arguments and
such that F (0) ≥ 0. We summarize some useful consequences of model (M*)
in the following:

Lemma 8
Let % be a binary relation on X =

∏n
i=1 Xi. If % has a representation in

(M*), then:

1. it satisfies AC1, AC2 and AC3,

2. for all i ∈ N , the binary relation Ti on Xi defined by xi Ti yi ⇔
(xi, yi) %∗∗

i (xi, xi) is a semiorder.

Proof

See Bouyssou and Pirlot (2003c, lemma 4) or Bouyssou and Pirlot (2003a,
lemma 6.2).

The conditions introduced so far allow to characterize model (M*) when each
Xi is denumerable.

Theorem 3
Let % be a binary relation on a finite or countably infinite set X =

∏n
i=1 Xi.

Then % has a representation (M*) if and only if it is reflexive and satisfies
RC1, RC2, AC1, AC2 and AC3.

Proof

See Bouyssou and Pirlot (2003c, theorem 2) or Bouyssou and Pirlot (2003a,
theorem 6.3).

Remark 4.4
Note that, contrary to theorem 1, theorem 3 is only stated here for finite
or countably infinite sets X. This is no mistake: we refer to Bouyssou and
Pirlot (2003a, 2003c) for details and for the analysis of the extension of this
result to the general case.

14



Many variants of model (M*) are studied in Bouyssou and Pirlot (2003c)
including the ones in which ϕ is increasing in its first argument (and, thus,
decreasing in its second argument) and F is odd. Clearly, although model
(M*) is a particular case of model (M), it is still flexible enough to contain as
particular cases models (U) and (ADM). We show below that it also contain
all CR in which the relations Si are semiorders. •

The following lemma shows that all CR obtained on the basis of semiorders
satisfy the conditions of model (M*).

Lemma 9
Let % be a binary relation on X =

∏n
i=1 Xi. If % is a CR with a represen-

tation 〈¥, Si〉 in which Si is a semiorder then % satisfies AC1i, AC2i and
AC3i.

Proof

See appendix.

Although lemma 7 shows that, in the class of reflexive binary relations sat-
isfying RC1 and RC2, AC1, AC2 and AC3 are independent conditions, the
situation is more delicate when we bring conditions UC and LC into the
picture since they impose strong requirements on %∗

i and %∗∗
i . We have:

Lemma 10
1. Let % be a reflexive binary relation on a set X =

∏n
i=1 Xi satisfying

RC2, UC and LC. Then % satisfies AC1i iff it satisfies AC2i.

2. In the class of reflexive binary relations satisfying RC2, UC and LC,
conditions AC1 and AC3 are independent.

Proof

See appendix.

This leads to our characterization of CR in which all relations Si are semiorders.

Theorem 4
Let % be a binary relation on X =

∏n
i=1 Xi. Then % is a CR having a

representation 〈¥, Si〉 in which all Si are semiorders iff it is reflexive and
satisfies RC2, UC, LC, AC1 and AC3.

Proof

See appendix.

Remark 4.5
An easy corollary of the above result is that a binary relation on a finite or
countably infinite set X is a CR with a representation 〈¥, Si〉 in which all
relations Si are semiorders if and only if it has a representation in model
(M*) in which all functions ϕi take at most three distinct values. •
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5 Discussion and Comments

A number of recent papers (Dubois, Fargier, & Perny, 2002; Dubois, Fargier,
Perny, & Prade, 2001, 2003; Fargier & Perny, 2001; Greco, Matarazzo, &
SÃlowiński, 2001) have close connexions with the results proposed here. We
briefly analyze them below and give possible directions for future research.

5.1 Relation to Greco et al. (2001)

Greco et al. (2001) have proposed a characterization of concordance relations
in which all attributes are of type III in the sense of lemma 5. Their anal-
ysis is based on a very clever condition limiting the number of equivalence
classes of %∗

i . We say that % is super-coarse on attribute i ∈ N if, for all
xi, yi, zi, wi, ri, si ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i,

(xi, a−i) % (yi, b−i)
and

(zi, c−i) % (wi, d−i)







⇒







(xi, c−i) % (yi, d−i)
or

(ri, a−i) % (si, b−i).

This condition is clear strengthening of RC1i. It is not difficult to see that
a % is super-coarse on attribute i ∈ N if and only if ∼∗

i has at most two
equivalence classes.

Note however that super-coarseness, on its own, does not imply inde-
pendence. Therefore nothing prevents (xi, xi) and (yi, yi) from belonging to
distinct equivalence classes of ∼∗

i . Greco et al. (2001) attain their aim, im-
posing, on top of super-coarseness, a strong condition imposing at the same
time independence and the fact that the null differences (xi, xi) belong to the
first equivalence class of %∗

i on each attribute.
Greco et al. (2001) have shown how to extend their characterization to

cope with discordance effects as in outranking methods. This appears to be
more difficult within our framework (note however that when discordance
is introduced, it is clear that all relations %∗∗

i have at most 5 equivalence
classes, see Bouyssou and Pirlot (2002c)). We have no satisfactory answer at
this time.

5.2 Relation to Fargier and Perny (2001)

Fargier and Perny (2001) (closely related results appear in Dubois et al.
(2001, 2002, 2003)) have proposed a characterization of CR in which all at-
tributes are weakly essential (and, hence, essential). The central condition in
this characterization is a condition, inspired from “neutrality and monotonic-
ity” conditions used in Social Choice Theory (see Sen, 1986) that strengthens
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the “noncompensation” condition proposed in Fishburn (1975, 1976, 1978).
It says that, for all x, y, z, w ∈ X,

% (x, y) ⊆ % (z, w)
% (y, x) ⊇ % (w, z)

}

⇒ [x % y ⇒ z % w] , (6)

where % (x, y) = {i ∈ N : x %i y}. As soon as each attribute is weakly
essential and % is marginally complete, condition (6) allows to characterize
CR. The close relation between CR and noncompensatory preferences in the
sense of Fishburn (1976) was already noted in Bouyssou (1986, 1992) and
Bouyssou and Vansnick (1986).

The characterization in Fargier and Perny (2001) is only valid for CR in
which all attributes are (weakly) essential. This seems restrictive in view of
examples 2 and 3. Furthermore, it does not seem easy to extend this result
to cover the case in which % is a CR in which all relations Si are semiorders.
Finally, contrarily to our approach, the use of condition (6) does not seem to
allow to pinpoint the specific features of CR within a wider framework. For
a more detailed comparison between our approach and the one following the
idea of noncompensation, we refer to Bouyssou and Pirlot (2002c, 2002b).

5.3 Conclusion

This paper has proposed a characterization of CR within the framework of a
general model for nontransitive conjoint measurement. This characterization
makes it possible to recast CR relations within a general class of relations
and to isolate their specific features. Following the analysis in Bouyssou and
Pirlot (2002b), it is not difficult to extend the proposed results to:

• analyze the case in which ¥ is supposed to have some transitivity prop-
erties,

• analyze the, sweeping, consequences of supposing that % has nice tran-
sitivity properties (see also Bouyssou, 1992; Fargier & Perny, 2001;
Fishburn, 1975).

Further work is clearly needed in order to characterize CR in which all at-
tributes have the same type (in the sense of part 6 of lemma 5) and to include
in our analysis the possibility of discordance.
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Appendices

Proof of lemma 1

Part 1. If Pi is empty, then, since Si is complete, for all xi, yi, zi, wi ∈ Xi and
all a−i, b−i ∈ X−i,

S((xi, a−i), (yi, b−i)) = S((zi, a−i), (wi, b−i)) and

S((yi, b−i), (xi, a−i)) = S((wi, b−i), (zi, a−i)).

This implies, using (2), that attribute i ∈ N is degenerate, contrarily to our
hypothesis.

Part 2. Since all relations Pi are nonempty, for all A,B ⊆ N such that
A ∪ B = N , there are x, y ∈ X such that S(x, y) = A and S(y, x) = B. We
have, by construction, exactly one of x Â y, y Â x, x ∼ y and [Not [ x %
y ] and Not [ y % x ]]. Hence, using (2), we have exactly one of A ¤ B, B ¤ A,
A , B and A ./ B. Since the relations Si are complete, we have S(x, x) = N .
Using the reflexivity of %, we know that x ∼ x, so that (2) implies N , N .

Parts 3 and 4. Let A ⊆ N . Because N , N , the monotonicity of ¥

implies N ¥ A. We thus have N ¥ ∅. Suppose now that ∅ ¥ N . Then
the monotonicity of ¥ would imply that A ¥ B, for all A,B ⊆ N such that
A ∪ B = N . This would contradict the fact that each attribute is influent.
Hence, we have N ¤ ∅.

Part 5. Using the completeness of all Si, we have, for all xi, yi ∈ Xi and
all a−i, b−i ∈ X−i,

S((xi, a−i), (xi, b−i)) = S((yi, a−i), (yi, b−i)) and

S((xi, b−i), (xi, a−i)) = S((yi, b−i), (yi, a−i)).

Using (2), this implies that, for all i ∈ N , all xi, yi ∈ Xi and all a−i, b−i ∈ X−i

(xi, a−i) % (xi, b−i) ⇔ (yi, a−i) % (yi, b−i). Therefore, % is independent for
N \ {i} and, hence, independent.

Part 6 follows from the fact that Si is complete, N , N and N ¥ N \{i},
for all i ∈ N .

Part 7. Let i ∈ N . We know that N ¥ N \ {i}. If N , N \ {i}, then
(2) implies xi %i yi for all xi, yi ∈ Xi. Otherwise we have N ¤ N \ {i} and
N , N . It follows that xi Si yi ⇒ xi %i yi and xi Pi yi ⇒ xi Âi yi. Since Si

and %i are complete, it follows that Si = %i.
Part 8. Suppose that % is a CR with a representation 〈¥, Si〉. Because

i ∈ N is influent, there are xi, yi, zi, wi ∈ Xi and a−i, b−i ∈ X−i such that
(xi, a−i) % (yi, b−i) and Not [ (zi, a−i) % (wi, b−i) ]. Since % is a CR, we must
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have either:

[xi Pi yi and wi Pi zi] or [xi Pi yi and wi Ii zi] or [xi Ii yi and wi Pi zi].

This respectively implies the existence of two subsets of attributes A and B
such that A ∪ B ∪ {i} = N , i /∈ A, i /∈ B and either:

A ∪ {i} ¥ B and Not [ A ¥ B ∪ {i} ] or (7a)

A ∪ {i} ¥ B and Not [ A ∪ {i} ¥ B ∪ {i} ] or (7b)

A ∪ {i} ¥ B ∪ {i} and Not [ A ¥ B ∪ {i} ]. (7c)

Since Pi is non empty, consider any ai, bi ∈ Xi such that ai Pi bi. Respectively
using (7a), (7b) and (7c), we have either:

(ai, a−i) % (bi, b−i) and Not [ (bi, a−i) % (ai, b−i) ] or (8a)

(ai, a−i) % (bi, b−i) and Not [ (bi, a−i) % (bi, b−i) ] or (8b)

(ai, a−i) % (ai, b−i) and Not [ (bi, a−i) % (ai, b−i) ]. (8c)

for some a−i, b−i ∈ X−i.
Suppose now that % has a representation 〈¥′, Si

′〉. Suppose that ai I ′
i bi.

Any of (8a), (8b) and (8c), implies the existence of two subsets of attributes
C and D such that C ∪ D ∪ {i} = N , i /∈ C, i /∈ D and C ∪ {i} ¥′ D ∪ {i}
and Not [ C ∪{i} ¥′ D∪{i} ], which is contradictory. Suppose therefore that
bi P ′

i ai. Respectively using (8a), (8b), (8c) together with the fact that % is
a CR, implies the existence of two subsets of attributes C and D such that
C ∪ D ∪ {i} = N , i /∈ C, i /∈ D and either:

C ¥
′ D ∪ {i} and Not [ C ∪ {i} ¥

′ D ] or (9a)

C ¥
′ D ∪ {i} and Not [ C ∪ {i} ¥

′ D ∪ {i} ] or (9b)

C ∪ {i} ¥
′ D ∪ {i} and Not [ C ∪ {i} ¥

′ D ]. (9c)

In any of these three cases, the monotonicity of ¥′ is violated. Hence we have
shown that, for all ai, bi ∈ Xi, ai Pi bi ⇒ ai Pi

′ bi. A similar reasoning shows
that the converse implication is true. Hence, we must have Si=S ′

i. Using
(2), it follows that ¥=¥′.

Proof of lemma 5

Part 1. By definition, we have Not [ UCi ] ⇔ [Not [ (yi, xi) %∗
i (xi, yi) ] and

Not [ (xi, yi) %∗
i (zi, wi) ]]. The proof of part 2 is similar.

Part 3. Suppose that RC1i is violated so that Not [ (xi, yi) %∗
i (zi, wi) ]

and Not [ (zi, wi) %∗
i (xi, yi) ], for some xi, yi, wi, zi ∈ Xi. Using RC2i, we have
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(yi, xi) %∗
i (wi, zi) and (wi, zi) %∗

i (yi, xi), so that (yi, xi) ∼
∗
i (wi, zi). Suppose

that Not [ (yi, xi) %∗
i (xi, yi) ]; then UCi implies (xi, yi) %∗

i (zi, wi), a contra-
diction. Similarly, if Not [ (xi, yi) %∗

i (yi, xi) ], then LCi implies (zi, wi) %∗
i

(xi, yi), a contradiction. Hence, we have (xi, yi) ∼
∗
i (yi, xi). In a similar way,

using UCi and LCi, it is easy to show that we must have (zi, wi) ∼
∗
i (wi, zi).

Now, using the transitivity of ∼∗
i , we have (xi, yi) ∼

∗
i (zi, wi), a contradiction.

Part 4. Using part 3, we know that %∗∗
i is complete. Since %∗∗

i is re-
versible, the conclusion will be false if and only if there are xi, yi, zi, wi ∈ Xi

such that (xi, yi) Â
∗∗
i (zi, wi) Â

∗∗
i (xi, xi). There are four cases to examine.

1. Suppose that (xi, yi) Â∗
i (zi, wi) and (zi, wi) Â∗

i (xi, xi). Using RC2i,
we know that (xi, xi) %∗

i (wi, zi). Using the fact that %∗
i is a weak order,

we have (zi, wi) Â
∗
i (wi, zi). This violates UCi since (xi, yi) Â

∗
i (zi, wi).

2. Suppose that (xi, yi) Â∗
i (zi, wi) and (xi, xi) Â∗

i (wi, zi). Using RC2i,
we know that (zi, wi) %∗

i (xi, xi). This implies (zi, wi) Â
∗
i (wi, zi). This

violates UCi since (xi, yi) Â
∗
i (zi, wi).

3. Suppose that (wi, zi) Â
∗
i (yi, xi) and (zi, wi) Â

∗
i (xi, xi). Using RC2i, we

know that (xi, xi) %∗
i (wi, zi) so that (zi, wi) Â

∗
i (wi, zi). This violates

LCi since (wi, zi) Â
∗
i (yi, xi).

4. Suppose that (wi, zi) Â
∗
i (yi, xi) and (xi, xi) Â

∗
i (wi, zi). Using RC2i we

have (zi, wi) %∗
i (xi, xi) so that (zi, wi) Â∗

i (wi, zi). This violates LCi

since (wi, zi) Â
∗
i (yi, xi).

Part 5. We provide below the required three examples.

Example 4 (UC, LC, Not [ RC2 ])
Let X = {a, b} × {x, y}. Consider % on X linking any two elements of X
except that (a, x) Â (b, y) and (a, y) Â (b, x). We have, abusing notation,

• [(a, b), (a, a), (b, b)] Â∗
1 (b, a) and

• [(x, x), (y, y)] Â∗
2 [(x, y), (y, x)].

It is easy to check that RC21, UC and LC hold. RC22 is violated since
(x, x) Â∗

2 (x, y) and (x, x) Â∗
2 (y, x). 3

Example 5 (RC2, LC, Not [ UC ])
Let X = {a, b}×{x, y, z} and % on X be identical to the linear order (abusing
notation in an obvious way):

(a, x) Â (a, y) Â (a, z) Â (b, x) Â (b, y) Â (b, z),

except that (a, z) ∼ (b, x). We have, abusing notation,
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• (a, b) Â∗
1 [(a, a), (b, b)] Â∗

1 (b, a) and

• (x, z) Â∗
2 [(x, x), (y, y), (z, z), (x, y), (y, z)] Â∗

2 [(y, x), (z, x), (z, y)].

Using lemma 3, it is easy to check that % satisfies RC2. It is clear that
UC1, LC1 and LC2 hold. UC2 is violated since we have (x, y) Â∗

2 (y, x) and
Not [ (x, y) %∗

2 (x, z) ]. 3

Example 6 (RC2, UC, Not [ LC ])
Let X = {a, b}×{x, y, z} and % on X be identical to the linear order (abusing
notation in an obvious way):

(a, x) Â (b, x) Â (a, y) Â (b, y) Â (a, z) Â (b, z),

except that (b, x) ∼ (a, y). We have, abusing notation:

• (a, b) Â∗
1 [(a, a), (b, b)] Â∗

1 (b, a) and

• [(x, y), (x, z), (y, z)] Â∗
2 [(x, x), (y, y), (z, z)] Â∗

2 (y, x) Â∗
2 [(z, x), (z, y)].

Using lemma 3, it is easy to check that % satisfies RC2. It is clear that
UC1, LC1 and UC2 hold. LC2 is violated since we have (x, y) Â∗

2 (y, x) and
Not [ (z, x) %∗

2 (y, x) ]. 3

Part 6. Let xi, yi, zi, wi ∈ Xi be such that (xi, yi) Â
∗∗
i (yi, yi) and (zi, wi) Â

∗∗
i

(wi, wi). By construction, we have either (xi, yi) Â∗
i (yi, yi) or (yi, yi) Â∗

i

(yi, xi).

1. Suppose first that (xi, yi) Â∗
i (yi, yi) and (yi, yi) Â∗

i (yi, xi). Consider
zi, wi ∈ Xi such that (zi, wi) Â

∗∗
i (wi, wi). If either (zi, wi) ∼

∗
i (wi, wi)

or (wi, zi) ∼∗
i (wi, wi), it is easy to see, using the independence of %

and the definition of %∗∗
i , that we must have:

(xi, yi) Â
∗∗
i (zi, wi) Â

∗∗
i (yi, yi) Â

∗∗
i (wi, zi) Â

∗∗
i (yi, xi),

violating the fact that ∼∗∗
i has at most three distinct equivalence classes.

Hence we have, for all zi, wi ∈ Xi such that (zi, wi) Â∗∗
i (wi, wi),

(zi, wi) Â
∗
i (wi, wi) and (wi, wi) Â

∗
i (wi, zi).

2. Suppose that (xi, yi) Â∗
i (yi, yi) and (yi, yi) ∼∗

i (yi, xi) and consider
any zi, wi ∈ Xi such that (zi, wi) Â∗∗

i (wi, wi). If (zi, wi) Â∗
i (wi, wi)

and (wi, wi) Â
∗
i (wi, zi), we have, using the independence of % and the

definition of %∗∗
i :

(zi, wi) Â
∗
i (xi, yi) Â

∗
i (yi, yi) Â

∗
i (yi, xi) Â

∗
i (wi, zi),
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violating the fact that ∼∗∗
i has at most three distinct equivalence classes.

If (zi, wi) ∼∗
i (wi, wi) and (wi, wi) Â∗

i (wi, zi), then RC2i is violated
since we have (xi, yi) Â∗

i (zi, wi) and (yi, xi) Â∗
i (wi, zi). Hence, it

must be true that (zi, wi) Â∗∗
i (wi, wi) implies (zi, wi) Â∗

i (wi, wi) and
(wi, wi) ∼

∗
i (wi, zi).

3. Suppose that (xi, yi) ∼∗
i (yi, yi) and (yi, yi) Â∗

i (yi, xi) and consider
any zi, wi ∈ Xi such that (zi, wi) Â∗∗

i (wi, wi). If (zi, wi) Â∗
i (wi, wi)

and (wi, wi) Â
∗
i (wi, zi), we have, using the independence of % and the

definition of %∗∗
i :

(zi, wi) Â
∗
i (xi, yi) Â

∗
i (yi, yi) Â

∗
i (yi, xi) Â

∗
i (wi, zi),

violating the fact that ∼∗∗
i has at most three distinct equivalence classes.

If (zi, wi) Â∗
i (wi, wi) and (wi, wi) ∼∗

i (wi, zi), then RC2i is violated
since we have (zi, wi) Â∗

i (xi, yi) and (wi, zi) Â∗
i (yi, xi). Hence, it

must be true that (zi, wi) Â∗∗
i (wi, wi) implies (zi, wi) ∼∗

i (wi, wi) and
(wi, wi) Â

∗
i (wi, zi).

Proof of lemma 6

Let 〈¥, Si〉 be a representation of % (this representation is unique by lemma 1).
Part 1. Let us show that RC1i holds, i.e. that (xi, a−i) % (yi, b−i) and

(zi, c−i) % (wi, d−i) imply (zi, a−i) % (wi, b−i) or (xi, c−i) % (yi, d−i). There
are 9 cases to envisage:

zi Pi wi zi Ii wi wi Pi zi

xi Pi yi (i) (ii) (iii)
xi Ii yi (iv) (v) (vi)
yi Pi xi (vii) (viii) (ix )

Cases (i), (v) and (ix ) clearly follow from (2). All other cases easily follow
from (2) and the monotonicity of ¥. The proof for RC2 is similar.

Part 2. Let us show that UCi holds, i.e. that (xi, a−i) % (yi, b−i) and
(zi, c−i) % (wi, d−i) imply (yi, a−i) % (xi, b−i) or (xi, c−i) % (yi, d−i). If xi Pi

yi then, using (2) and the monotonicity of ¥, we have (zi, c−i) % (wi, d−i) ⇒
(xi, c−i) % (yi, d−i). If yi Pi xi then, using (2) and the monotonicity of ¥, we
have (xi, a−i) % (yi, b−i) ⇒ (yi, a−i) % (xi, b−i). If xi Ii yi, then yi Ii xi so
that, using (2), (xi, a−i) % (yi, b−i) ⇒ (yi, a−i) % (xi, b−i). The proof for LCi

is similar.
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Proof of theorem 2

Necessity follows from lemma 6. We show that if % satisfies RC1 and RC2
and is such that, for all i ∈ N , ∼∗∗

i has at most three distinct equivalence
classes then % is a CR. In view of part 4 of lemma 5, this will establish
sufficiency.

For all i ∈ N , define Si letting, for all xi, yi ∈ Xi, xi Si yi ⇔ (xi, yi) %∗∗
i

(yi, yi). By hypothesis, we know that %∗∗
i is complete and % is independent.

It easily follows that Si is complete.
Since attribute i ∈ N has been supposed influent, it is easy to see that

Pi is non empty. Indeed, %∗
i being complete, the influence of i ∈ N implies

that there are zi, wi, xi, yi ∈ Xi such that (xi, yi) Â∗
i (zi, wi). Since %∗∗

i is
complete, this implies (xi, yi) Â

∗∗
i (zi, wi). If (xi, yi) Â

∗∗
i (yi, yi) then xi Pi yi.

If not, then (yi, yi) %∗∗
i (xi, yi) so that (yi, yi) Â∗∗

i (zi, wi) and, using the
reversibility of %∗∗

i and the independence of %, wi Pi zi. Therefore Pi is not
empty. This implies that %∗∗

i has exactly three distinct equivalence classes,
since xi Pi yi ⇔ (xi, yi) Â

∗∗
i (yi, yi) ⇔ (yi, yi) Â

∗∗
i (yi, xi). Therefore, xi Pi yi

if and only if (xi, yi) belongs to the first equivalence class of %∗∗
i and (yi, xi)

to its last equivalence class. Consider any two subsets A,B ⊆ N such that
A ∪ B = N and let:

A ¥ B ⇔

[x % y, for some x, y ∈ X such that S(x, y) = A and S(y, x) = B].

If x % y then, by construction, we have S(x, y) ¥ S(y, x). Suppose now that
S(x, y) ¥ S(y, x). This implies that there are z, w ∈ X such that z % w,
S(z, w) = S(x, y) and S(w, z) = S(y, x). The last two conditions imply
(xi, yi) ∼∗∗

i (zi, wi), for all i ∈ N . Using (3b), we have x % y. Hence (2)
holds. The monotonicity of ¥ easily follows from (3a). This completes the
proof.

Proof of lemma 9

[AC1i]. Suppose that (xi, x−i) % (yi, y−i) and (zi, z−i) % (wi, w−i). We want
to show that either (zi, x−i) % (yi, y−i) or (xi, z−i) % (wi, w−i).

If yi Pi xi or wi Pi zi, the conclusion follows from the monotonicity of ¥.
If xi Pi yi and zi Pi wi, we have, using the fact that Pi is Ferrers, zi Pi yi

or xi Pi wi. In either case the desired conclusion follows using the fact that
% is a CR.

This leaves three exclusive cases: [xi Ii yi and zi Pi wi] or [xi Pi yi and
zi Ii wi], or [xi Ii yi and zi Ii wi]. Using Ferrers, either case implies xi Si wi
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or zi Si yi. If either xi Pi wi or zi Pi yi, the desired conclusion follows from
monotonicity. Suppose therefore that xi Ii wi and zi Ii yi. Since we have
either xi Ii yi or zi Ii wi, the conclusion follows using the fact that % is a
MPR.

Hence AC1i holds. The proof for AC2i is similar, using Ferrers.

[AC3i]. Suppose that (zi, z−i) % (xi, a−i) and (xi, b−i) % (yi, y−i). We
want to show that either (zi, z−i) % (wi, a−i) or (wi, b−i) % (yi, y−i).

If either yi Pi xi or xi Pi zi, the conclusion follows from monotonicity.
If xi Pi yi and zi Pi xi, then semi-transitivity implies wi Pi yi or zi Pi wi.

In either case, the conclusion follows from monotonicity.
This leaves three exclusive cases: [xi Ii yi and zi Pi xi] or [xi Pi yi and zi Ii

xi] or [xi Ii yi and zi Ii xi]. In either case, semi-transitivity implies wi Si yi

or zi Si wi. If either wi Pi yi or zi Pi wi, the desired conclusion follows from
monotonicity. Suppose therefore that wi Ii yi and zi Ii wi. Since in each of
the remaining cases we have either wi Ii yi or zi Ii wi, the conclusion follows
because % is a CR.

Proof of lemma 10

Part 1. We prove that AC1i ⇒ AC2i, the proof of the reverse implication
being similar. Suppose AC2i is violated so that there are xi, yi, zi, wi ∈ Xi

such that (xi, yi) Â
∗
i (xi, wi) and (zi, wi) Â

∗
i (zi, yi). Using lemma 5, we know

that attribute i has a type. We analyze each type separately. If i ∈ N
has type II or III, then ∼∗

i has only two distinct equivalence classes. We
therefore have: [(xi, yi) ∼∗

i (zi, wi)] Â∗
i [(xi, wi) ∼∗

i (zi, yi)]. This implies
(xi, yi) Â

∗
i (zi, yi). Using AC1i, we have (xi, wi) %∗

i (zi, wi), a contradiction.
If i ∈ N has type I then ∼∗

i has only three distinct equivalence classes.
We distinguish several cases.

1. Suppose that both (xi, yi) and (zi, wi) belong to the middle equivalence
class of %∗

i . This implies [(xi, yi) ∼∗
i (zi, wi)] Â

∗
i [(xi, wi) ∼∗

i (zi, yi)],
so that (xi, yi) Â∗

i (zi, yi). Using AC1i, we have (xi, wi) %∗
i (zi, wi), a

contradiction.

2. Suppose that both (xi, yi) and (zi, wi) belong to the first equivalence
class of %∗

i . We therefor have (xi, yi) ∼∗
i (zi, wi), (xi, yi) Â∗

i (xi, wi)
and (zi, wi) Â

∗
i (zi, yi). This implies (xi, yi) Â

∗
i (zi, yi). Using AC1i, we

have (xi, wi) %∗
i (zi, wi), a contradiction.

3. Suppose that (xi, yi) belongs to the first equivalence class of %∗
i and

(zi, wi) belong to the central class of %∗
i . This implies, using the
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reversibility of %∗∗
i , [(xi, yi) ∼∗

i (yi, zi)] Â∗
i [(zi, wi) ∼∗

i (wi, zi)] Â∗
i

[(zi, yi) ∼
∗
i (yi, xi)]. Hence, we have (yi, zi) Â

∗
i (wi, zi) and using AC1i,

we have (yi, xi) %∗
i (wi, xi), a contradiction.

Part 2. We provide below examples showing that, in the class of reflex-
ive relations satisfying RC2, UC and LC, AC1 and AC3 are independent
conditions.

Example 7 (RC2, UC, LC, AC1 Not [ AC3 ])
Let X = {a, b, c, d} × {x, y}. We build the CR in which:

• a P1 b, a I1 c, a P1 d, b I1 c, b P1 d, c I1 d,

• x P2 y,

• {1, 2} ¤ ∅, {1, 2} , {2}, {1, 2} , {1}, {2} , {1}.

Therefore, % links any two elements of X except that we have: (a, x) Â (b, y),
(b, x) Â (d, y) and (a, x) Â (d, y). It is easy to see that AC1 and AC32 hold.
AC31 is violated since (c, y) % (a, x), (d, y) % (c, x) but neither (b, y) % (a, x)
nor (d, y) % (b, x). 3

Example 8 (RC2, UC, LC, AC3 Not [ AC1 ])
Let X = {a, b, c, d} × {x, y}. We build the CR in which:

• a I1 b, a P1 c, a I1 d, b I1 c, b P1 d, c I1 d,

• x P2 y,

• {1, 2} ¤ ∅, {1, 2} , {2}, {1, 2} , {1}, {2} , {1}.

Therefore, % links any two elements of X except that we have: (a, x) Â (c, y)
and (b, x) Â (d, y). It is easy to see that AC3 and AC12 holds. AC11 is
violated since (d, y) % (a, x) and (c, y) % (b, x) but neither (c, y) % (a, x) nor
(d, y) % (b, x). 3

Proof of theorem 4

The proof of theorem 4 follows from combining lemmas 8, 9 and 10 with the
results in section 4.
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