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Identities in law between quadratic functionals of bivariate

Gaussian processes, through Fubini theorems and symmetric

projections

Giovanni PECCATI∗, and Marc YOR†

January 27, 2005

Abstract

We present three new identities in law for quadratic functionals of conditioned bivariate Gaussian
processes. In particular, our results provide a two-parameter generalization of a celebrated identity
in law, involving the path variance of a Brownian bridge, due to Watson (1961). The proof is based
on ideas from a recent note by J. R. Pycke (2005) and on the stochastic Fubini theorem for general
Gaussian measures proved in Deheuvels et al. (2004).
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1 Introduction

Let b (s), s ∈ [0, 1], be a standard Brownian bridge on [0, 1], from 0 to 0, and let b1 and b2 be two
independent copies of b. The aim of this note is to prove several bivariate generalizations of the following
identity in law for the path variance of b,

∫ 1

0

(

b (s) −
∫ 1

0

b (u) du

)2

ds
law
=

1

4

∫ 1

0

[

b1 (s)
2
+ b2 (s)

2
]

ds, (1)

known as Watson’s (duplication) identity (see [11]; the reader is also referred to [8] for a detailed prob-
abilistic discussion of (1)). More specifically, our aim is to establish a result analogous to (1) for the

path variance of a bivariate tied-down Brownian bridge B0 on [0, 1]2, i.e. a process having the law of a

standard Brownian sheet W conditioned to vanish on the edges of the square [0, 1]
2
. As discussed below,

our bivariate generalizations of (1) involve four different types of “bridges” naturally attached to a given
Brownian sheet W. These four processes, along with the laws of their quadratic functionals, have been
recently studied in [1].

The relatively simple proof of our main result uses extensively the general stochastic Fubini theorem,
for quadratic functionals of Gaussian processes, proved in [1] (but see also [3]), and has been inspired by
the recent proof of Watson’s identity given in [6]. Such a proof is mainly based on a decomposition of
the path of the random function t 7→ b (t) into the orthogonal sum of its symmetric and antisymmetric
parts, around the pole t = 1/2. We will see how this kind of decomposition can be naturally extended to
the framework of bivariate functions.

The present note is organized as follows. In Section 2 we introduce some notation. In Section 3,
we state a version of the stochastic Fubini Theorem which is well adapted to the framework of this
paper and we provide an alternative proof of such a result, based on the calculation of cumulants for
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double Wiener integrals. In Section 4 the main Theorem is stated and proved. Eventually, in Section
5 we apply our results to calculate: (a) the explicit Laplace transform of some quadratic functionals of
bivariate Gaussian processes, and (b) the explicit Fourier transform of some double stochastic integrals
with respect to conditioned bivariate processes. This completes part of the results obtained in [1] and [4].

2 General notation

For the rest of the paper, we will study Gaussian processes that can be expressed as suitable transforma-
tions of a standard Brownian motion or of a standard Brownian sheet. In particular, we will adopt the
following notation:

– W = {W (t) : t ∈ [0, 1]} is a standard Brownian motion on [0, 1], initialized at 0;

– b = {b (t) : t ∈ [0, 1]} is a standard Brownian bridge on [0, 1], from 0 to 0;

– W =
{

W (t1, t2) : (t1, t2) ∈ [0, 1]
2
}

is a standard Brownian sheet on [0, 1]
2

vanishing on the axes,

that is, W is a centered Gaussian process such that, for every (t1, t2), (s1, s2) ∈ [0, 1]2

E [W (t1, t2)W (s1, s2)] = (t1 ∧ s1) × (t2 ∧ s2) ;

– B(W) =
{

B(W) (t1, t2) : (t1, t2) ∈ [0, 1]
2
}

is the canonical bivariate Brownian bridge associated to

W, i.e.
B(W) (t1, t2) = W (t1, t2) − t1t2W (1, 1) ;

– B
(W)
0 =

{

B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1]

2
}

is the canonical bivariate tied down Brownian bridge asso-

ciated to W, i.e.

B
(W)
0 (t1, t2) = W (t1, t2) − t1W (1, t2) − t2W (t1, 1) + t1t2W (1, 1) ;

– K(W,i) =
{

K(W,i) (t1, t2) : (t1, t2) ∈ [0, 1]2
}

, i = 1, 2, are the two canonical Kiefer fields (or asym-

metric bivariate bridges) associated to W, i.e.

K(W,1) (t1, t2) = W (t1, t2) − t1W (1, t2)

K(W,2) (t1, t2) = W (t1, t2) − t2W (t1, 1) .

We assume that all the previous objects are defined on the same probability space (Ω,F , P).

Remarks – (i) Conditionally on the event {W (1, 1) = 0}, W is distributed as the unconditioned

process B(W). Moreover, for every (t1, t2), (s1, s2) ∈ [0, 1]
2
,

E

[

B(W) (t1, t2)B
(W) (s1, s2)

]

= (t1 ∧ s1) × (t2 ∧ s2) − t1s1t2s2. (2)

(ii) Conditionally on the event {W (1, t) = W (t, 1) = 0, ∀t ∈ [0, 1]}, W is distributed as the uncon-

ditioned process B
(W)
0 . In particular, for (t1, t2), (s1, s2) ∈ [0, 1]

2
,

E

[

B
(W)
0 (t1, t2)B

(W)
0 (s1, s2)

]

= E [b (t1) b (s1)] × E [b (t2) b (s2)] (3)

= (t1 ∧ s1 − t1s1) × (t2 ∧ s2 − t2s2) .

2



(iii) Conditionally on {W (1, t) = 0, ∀t ∈ [0, 1]}, W is distributed as the unconditioned process K(W,1),

and moreover, for (t1, t2), (s1, s2) ∈ [0, 1]
2
,

E

[

K(W,1) (t1, t2)K
(W,1) (s1, s2)

]

= E [b (t1) b (s1)] × E [W (t2)W (s2)] (4)

= (t1 ∧ s1 − t1s1) × (t2 ∧ s2) .

(iv) Conditionally on {W (t, 1) = 0, ∀t ∈ [0, 1]}, W is distributed as the unconditioned process K(W,2),

and moreover, for (t1, t2), (s1, s2) ∈ [0, 1]2,

E

[

K(W,2) (t1, t2)K
(W,2) (s1, s2)

]

= E [W (t1)W (s1)] × E [b (t2) b (s2)] (5)

= (t1 ∧ s1) × (t2 ∧ s2 − t2s2) .

3 Stochastic Fubini Theorems

The following stochastic Fubini theorem will be useful for the proof of our main results. As shown in [3]
and [1], stochastic Fubini theorems for general Gaussian measures can be easily proved by means of a
Laplace transform argument. Here, we shall present an alternative proof, which is based on the so called
diagram formulae (see e.g. [10]) for the cumulants of double Wiener integrals. Note that, in what follows,
we will write dλm, m ≥ 1, to indicate Lebesgue measure on ℜm.

Theorem 1 (Stochastic Fubini Theorem) Under the above assumptions and notation, for every φ ∈
L2
(

[0, 1]
4
, dλ4

)

there exist two measurable random functions

{

∫

[0,1]2
φ (t1, t2, x1, x2)W (dx1, dx2) : (t1, t2) ∈ [0, 1]

2

}

(6)

and
{

∫

[0,1]2
φ (x1, x2, t1, t2)W (dx1, dx2) : (t1, t2) ∈ [0, 1]2

}

. (7)

Moreover, the following distributional identity holds

∫

[0,1]2

[

∫

[0,1]2
φ (t1, t2, x1, x2)W (dx1, dx2)

]2

dt1dt2 (8)

law
=

∫

[0,1]2

[

∫

[0,1]2
φ (x1, x2, t1, t2)W (dx1, dx2)

]2

dt1dt2.

Proof. The existence of the two measurable random functions (6) and (7) follows from standard

arguments. To obtain (8), start by defining the two kernels (contractions) on [0, 1]4

Φ1 (t1, t2; s1, s2) =

∫

[0,1]2
dx1dx2φ (x1, x2, t1, t2)φ (x1, x2, s1, s2)

Φ2 (t1, t2; s1, s2) =

∫

[0,1]2
dx1dx2φ (t1, t2, x1, x2)φ (s1, s2, x1, x2) .

Then, a simple application of the multiplication formula for Wiener integrals (see for instance [2, p. 211])
shows that

∫

[0,1]2

[

∫

[0,1]2
φ (t1, t2, x1, x2)W (dx1, dx2)

]2

dt1dt2 = ‖φ‖2 + IW

2 (Φ1) (9)

∫

[0,1]2

[

∫

[0,1]2
φ (x1, x2, t1, t2)W (dx1, dx2)

]2

dt1dt2 = ‖φ‖2
+ IW

2 (Φ2) ,

3



where IW

2 (·) stands for a standard double Wiener integral with respect to W (see again [2]). Now
define χm (Y ), m ≥ 1, to be the m-th cumulant of a given real valued random variable Y (see e.g.
[10]). We recall that the law of a double Wiener integral is determined by its cumulants (see e.g. [9]).
Moreover, we can apply the well known diagram formulae for cumulants of multiple stochastic integrals
(as presented, for instance, in [7, Proposition 9 and Corollary 1]) to obtain that for every m ≥ 2 there
exists a combinatorial coefficient cm > 0 (independent of φ) such that

χm

(

IW

2 (Φ1)
)

= cm

∫

[0,1]2m

(

dλ2
)⊗m

Φ1

(

x
(1)
1 , x

(1)
2 ; x

(2)
1 , x

(2)
2

)

(10)

×Φ1

(

x
(2)
1 , x

(2)
2 ; x

(3)
1 , x

(3)
2

)

× · · · × Φ1

(

x
(m)
1 , x

(m)
2 ; x

(1)
1 , x

(1)
2

)

= cm

∫

[0,1]2m

(

dλ2
)⊗m

Φ2

(

x
(1)
1 , x

(1)
2 ; x

(2)
1 , x

(2)
2

)

×Φ2

(

x
(2)
1 , x

(2)
2 ; x

(3)
1 , x

(3)
2

)

× · · · × Φ2

(

x
(m)
1 , x

(m)
2 ; x

(1)
1 , x

(1)
2

)

= χm

(

IW

2 (Φ2)
)

,

where the second equality can be proved by using a standard (deterministic) Fubini theorem, as well as

the definition of Φ1 and Φ2. Since (10) holds for every m, we obtain that IW
2 (Φ1)

law
= IW

2 (Φ2), and the
proof of (8) is therefore concluded, due to (9).

As shown in [1], by specializing (8) to the kernels

φ(1) (t1, t2; x1, x2) = 1[0,t1] (x1)1[0,t2] (x2) − t1t2

φ(2) (t1, t2; x1, x2) = 1[0,t1] (x1)1[0,t2] (x2) − t11[0,t2] (x2) − t21[0,t1] (x1) + t1t2

φ(3) (t1, t2; x1, x2) = 1[0,t1] (x1)1[0,t2] (x2) − t11[0,t2] (x2)

φ(4) (t1, t2; x1, x2) = 1[0,t1] (x1)1[0,t2] (x2) − t21[0,t1] (x1) ,

we obtain the following

Corollary 2 Let the above notation and assumptions prevail. Then,

∫

[0,1]2
B(W) (t1, t2)

2
dt1dt2

law
=

∫

[0,1]2

[

W (t1, t2) −
∫

[0,1]2
W (u1, u2) du1du2

]2

dt1dt2 (11)

∫

[0,1]2
B

(W)
0 (t1, t2)

2
dt1dt2

law
=

∫

[0,1]2

[

W (t1, t2) −
∫

[0,1]

W (t1, u2) du2 (12)

−
∫

[0,1]

W (u1, t2) du1 +

∫

[0,1]2
W (u1, u2) du1du2

]2

dt1dt2

∫

[0,1]2
K(W,1) (t1, t2)

2
dt1dt2

law
=

∫

[0,1]2

[

W (t1, t2) −
∫

[0,1]

W (u1, t2) du1

]2

dt1dt2 (13)

∫

[0,1]2
K(W,2) (t1, t2)

2
dt1dt2

law
=

∫

[0,1]2

[

W (t1, t2) −
∫

[0,1]

W (t1, u2) du2

]2

dt1dt2 (14)

4



4 Bivariate Watson’s identities

4.1 Main results

The next Theorem, which contains the announced bivariate versions of Watson’s duplication identity (1),
is the main result of the section. Note that each of the three parts of the statement involves a different

notion of path variance for the process B
(W)
0 .

Theorem 3 Let W be a standard Brownian sheet on [0, 1]
2
, and let Wi, i = 1, 2, 3, 4, be four independent

copies of W. Then,

1.

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫

[0,1]2
B

(W)
0 (u1, u2) du1du2

]2

dt1dt2

law
=

1

16

∫

[0,1]2

[

B(W1) (t1, t2)
2

+ K(W2,1) (t1, t2)
2

+ K(W3,2) (t1, t2)
2

+ B
(W4)
0 (t1, t2)

2
]

dt1dt2

2.

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫ 1

0

B
(W)
0 (t1, u2) du2

]2

dt1dt2

law
=

1

4

∫

[0,1]2

[

B
(W1)
0 (t1, t2)

2
+ B

(W2)
0 (t1, t2)

2
]

dt1dt2

3.

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫ 1

0

B
(W)
0 (t1, u2) du2

−
∫ 1

0

B
(W)
0 (u1, t2) du1 +

∫

[0,1]2
B

(W)
0 (u1, u2) du1du2

]2

dt1dt2

law
=

1

16

∫

[0,1]2

4
∑

i=1

B
(Wi)
0 (t1, t2)

2
dt1dt2

As anticipated, our proof of the above results is inspired by a proof of (1) recently given by J.-R.
Pycke in [6], where the author uses a decomposition of the elements of L2 ([0, 1] , dx) = L2 ([0, 1]) into the
orthogonal sum of a symmetric and an antisymmetric function, around the pole x = 1/2. Before proving
Theorem 3, we shall discuss in some detail the content of [6].

To this end, define for any f ∈ L2 ([0, 1]) the two operators

Sf (x) =
1

2
(f (x) + f (1 − x)) and Af (x) =

1

2
(f (x) − f (1 − x)) , x ∈ [0, 1] ,

and observe that f (x) = (A + S) f (x), Sf (x) = Sf (1 − x) and Af (x) = −Af (1 − x) . Moreover, for
any f, g ∈ L2 ([0, 1]),

∫ 1

0

Af (x) Sg (x) dx = 0. (15)

Note also that if f is constant, then Sf = f and Af = 0.

5



Remark – Let Hs be the closed subspace of L2 ([0, 1]) generated by functions f verifying f (x) =
f (1 − x) for almost every x, and let Ha be the subspace generated by functions g such that g (x) =
−g (1 − x) for almost every x. Then, (15) implies that Hs ⊥ Ha, where ⊥ indicates orthogonality
in L2 ([0, 1]), and also L2 ([0, 1]) = Hs ⊕ Ha. Moreover for every f ∈ L2 ([0, 1]), Sf and Af equal,
respectively, the orthogonal projection of f on Hs, and the orthogonal projection of f on Ha.

The next Lemma is proved in [6], and is based on a simple computation of covariances.

Lemma 4 Let b be a standard Brownian bridge on [0, 1], from 0 to 0. Then, the two processes

Ab =

{

Ab (t) : t ∈
[

0,
1

2

]}

and Sb =

{

Sb (t) : t ∈
[

0,
1

2

]}

are stochastically independent, and moreover

Ab
law
=

{

b (2t)

2
: t ∈

[

0,
1

2

]}

and Sb
law
=

{

W (2t)

2
: t ∈

[

0,
1

2

]}

. (16)

Lemma 4 yields an immediate proof of Watson’s duplication identity (1). As a matter of fact, one
can write, due to (15) and symmetry,

∫ 1

0

(

b (s) −
∫ 1

0

b (u) du

)2

= 2

∫ 1

2

0





(

Sb (t) − 2

∫ 1

2

0

Sb (u) du

)2

+ (Ab (t))2



 dt,

and then use the relations

2

∫ 1

2

0

(Ab (t))
2
dt

law
=

1

2

∫ 1

2

0

b (2t)
2
dt =

1

4

∫ 1

0

b (v)
2
dv

where the identity in law stems from the first part of (16), and

2

∫ 1

2

0

(

Sb (t) − 2

∫ 1

2

0

Sb (u)du

)2

dt
law
=

1

2

∫ 1

2

0

(

W (2t) − 2

∫ 1

2

0

W (2u)du

)2

dt

=
1

4

∫ 1

0

(

W (v) −
∫ 1

0

W (z)dz

)2

dv
law
=

1

4

∫ 1

0

b (v)
2
dv

where the first identity in law derives again from (16), and the second follows from a stochastic Fubini
theorem such as the one proved e.g. in [3].

In the next paragraph we show that the content of Lemma 4 provides some key elements to achieve
the proof of Theorem 3.

4.2 Proof of Theorem 3

To prove Theorem 3 we start by defining, for every function F on [0, 1]
2
, the four operators

S1F (x1, x2) =
1

2
[F (x1, x2) + F (1 − x1, x2)] (17)

S2F (x1, x2) =
1

2
[F (x1, x2) + F (x1, 1 − x2)]

A1F (x1, x2) =
1

2
[F (x1, x2) − F (1 − x1, x2)]

A2F (x1, x2) =
1

2
[F (x1, x2) − F (x1, 1 − x2)] ,

6



where (x1, x2) ∈ [0, 1]
2
, as well as

T (1)F (x1, x2) = S1S2F (x1, x2) = S2S1F (x1, x2) (18)

T (2)F (x1, x2) = S1A2F (x1, x2) = A2S1F (x1, x2)

T (3)F (x1, x2) = A1S2F (x1, x2) = S2A1F (x1, x2)

T (4)F (x1, x2) = A1A2F (x1, x2) = A2A1F (x1, x2) .

Note that F =
∑

i=1,...,4 T (i)F , and also note the following symmetric and antisymmetric properties:

for every (x1, x2) ∈ [0, 1]2,

T (1)F (x1, x2) = T (1)F (1 − x1, x2) = T (1)F (x1, 1 − x2)

T (2)F (x1, x2) = T (2)F (1 − x1, x2) = −T (2)F (x1, 1 − x2)

T (3)F (x1, x2) = −T (3)F (1 − x1, x2) = T (3)F (x1, 1 − x2)

T (4)F (x1, x2) = −T (4)F (1 − x1, x2) = −T (4)F (x1, 1 − x2) .

This implies that, if F is constant, then T (1)F = F , and T (i)F = 0 for each i = 2, 3, 4. By using (15)

we have moreover that, for i 6= j and F, G ∈ L2
(

[0, 1]
2
, dx1dx2

)

= L2
(

[0, 1]
2
)

,

∫

[0,1]2
T (i)F (x1, x2)T (j)G (x1, x2) dx1dx2 = 0,

so that
∫

[0,1]2
F (x1, x2)

2
dx1dx2 = 4

4
∑

i=1

∫

[0, 1
2 ]

2

T (i)F (x1, x2)
2
dx1dx2. (19)

Remark – Let us introduce four closed subspaces of L2
(

[0, 1]
2
)

: (i) H(1) is the space generated by

functions that are symmetric around the two axes x1 = 1/2 and x2 = 1/2; (ii) H(2) is the space generated
by functions that are symmetric around the axis x1 = 1/2 and antisymmetric around x2 = 1/2; (iii) H(3)

is the space generated by functions F that are antisymmetric around x1 = 1/2 and symmetric around
x2 = 1/2; (iv) H(4) is the space generated by functions F that are antisymmetric around the two axes
x1 = 1/2 and x2 = 1/2. Then, the above relations imply that such spaces are mutually orthogonal in

L2
(

[0, 1]
2
)

, and L2
(

[0, 1]
2
)

= ⊕iH
(i). Moreover, for i = 1, ..., 4, T (i), as defined in (18), coincides with

the orthogonal projection operator on H(i). To conclude, observe that, by using standard tensor product
notation

H(1) = Hs ⊗ Hs ; H(2) = Hs ⊗ Ha

H(3) = Ha ⊗ Hs ; H(4) = Ha ⊗ Ha,

so that L2
(

[0, 1]2
)

= (Hs ⊕ Ha) ⊗ (Hs ⊕ Ha), where the spaces Hs, Ha ⊂ L2 ([0, 1]) have been defined

in the previous paragraph.

4.3 Proof of part 1

An easy calculation of covariances, based on the product formula (3) and Lemma 4, implies that the two
bivariate processes

{

A1B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2]× [0, 1]

}

and
{

S1B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2]× [0, 1]

}

7



are stochastically independent, and an analogous conclusion holds for the two processes

{

A2B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1]× [0, 1/2]

}

and
{

S2B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1]× [0, 1/2]

}

.

This entails immediately that the four (jointly) Gaussian processes

{

T (i)B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2]2

}

, i = 1, ..., 4,

are mutually independent. Now, by applying (19) to the random continuous function

(t1, t2) 7→ B
(W)
0 (t1, t2) −

∫

[0,1]2
B

(W)
0 (u1, u2) du1du2

we obtain, thanks to symmetry,

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫

[0,1]2
du1du2B

(W)
0 (u1, u2)

]2

dt1dt2

= 4

∫

[0, 1

2 ]
2

[

T (1)B
(W)
0 (t1, t2) − 4

∫

[0, 1

2 ]
2

T (1)B
(W)
0 (u1, u2) du1du2

]2

dt1dt2

+4

4
∑

i=2

∫

[0, 1
2 ]

2

T (i)B
(W)
0 (t1, t2)

2 dt1dt2.

Since for any Brownian sheet W

K(W,1) (t2, t1)
law
= K(W,2) (t1, t2)

where the identity holds for the two processes as a whole, the proof of Theorem 3 is achieved once the
following three identities in law are shown,

4

∫

[0, 1

2 ]
2

[

T (1)B
(W)
0 (t1, t2) − 4

∫

[0, 1
2 ]

2

T (1)B
(W)
0 (u1, u2) du1du2

]2

dt1dt2 (20)

law
=

1

16

∫

[0,1]2
B(W) (t1, t2)

2
dt1dt2

4

∫

[0, 1

2 ]
2

T (2)B
(W)
0 (t1, t2)

2
dt1dt2

law
=

1

16

∫

[0,1]2
K(W,1) (t1, t2)

2
dt1dt2 (21)

law
= 4

∫

[0, 1

2 ]
2

T (3)B
(W)
0 (t1, t2)

2 dt1dt2

4

∫

[0, 1
2 ]

2

T (4)B
(W)
0 (t1, t2)

2
dt1dt2

law
=

1

16

∫

[0,1]2
B

(W)
0 (t1, t2)

2
dt1dt2 (22)

To prove (20), just observe that Lemma 4 and (5) entail

{

S1B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2]× [0, 1]

}

law
=
{

2−
1

2 K(W,2) (t1, t2) : (t1, t2) ∈ [0, 1/2]× [0, 1]
}

(23)

and therefore
{

T (1)B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2]2

}

law
=
{

2−1W (t1, t2) : (t1, t2) ∈ [0, 1/2]2
}

(24)
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so that

4

∫

[0, 1

2 ]
2

[

T (1)B
(W)
0 (t1, t2) − 4

∫

[0, 1
2 ]

2

T (1)B
(W)
0 (u1, u2) du1du2

]2

dt1dt2

law
=

∫

[0, 1
2 ]

2

[

W (t1, t2) − 4

∫

[0, 1

2 ]
2

W (u1, u2) du1du2

]2

dt1dt2

law
=

1

4

∫

[0, 1

2 ]
2

[

W (2t1, 2t2) − 4

∫

[0, 1
2 ]

2

W (2u1, 2u2) du1du2

]2

dt1dt2

=
1

16

∫

[0,1]2

[

W (s1, s2) −
∫

[0,1]2
W (v1, v2) dv1dv2

]2

ds1ds2

law
=

1

16

∫

[0,1]2
B(W) (s1, s2)

2
ds1ds2

where the last equality is a consequence of a stochastic Fubini theorem, and namely of relation (11) in
the statement of Corollary 2.

To prove (21), we use (23), (5) and Lemma 4 to obtain that

{

T (2)B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2]

2
}

law
=
{

2−
3

2 K(W,2) (t1, 2t2) : (t1, t2) ∈ [0, 1/2]
2
}

and eventually

4

∫

[0, 1

2 ]
2

T (2)B
(W)
0 (t1, t2)

2
dt1dt2

law
=

1

2

∫

[0, 1

2 ]
2

K(W,2) (t1, 2t2)
2
dt1dt2

law
=

1

4

∫

[0, 1
2 ]

2

K(W,2) (2t1, 2t2)
2
dt1dt2 =

1

16

∫

[0,1]2
K(W,2) (u1, u2)

2
du1du2.

The case of T (3) can be treated analogously by using (4). To conclude, we note that

{

A1B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2]× [0, 1]

}

law
=
{

2−1B
(W)
0 (2t1, t2) : (t1, t2) ∈ [0, 1/2]× [0, 1]

}

and therefore
{

T (4)B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1/2]

2
}

law
=
{

2−2B
(W)
0 (2t1, 2t2) : (t1, t2) ∈ [0, 1/2]

2
}

,

so that

4

∫

[0, 1
2 ]

2

T (4)B
(W)
0 (t1, t2)

2
dt1dt2

law
=

1

4

∫

[0, 1

2 ]
2

B
(W)
0 (2t1, 2t2)

2
dt1dt2 =

1

16

∫

[0,1]2
B

(W)
0 (u1, u2)

2
du1du2

4.4 Proof of part 2

We write

B
(W)
0 (t1, t2) −

∫ 1

0

B
(W)
0 (t1, u2) du2 = S2B

(W)
0 (t1, t2) −

∫ 1

0

S2B
(W)
0 (t1, u2) du2 + A2B

(W)
0 (t1, t2) ,

9



where the operators S2 and A2 are defined in (17). Since S2 = T (1) + T (3) and A2 = T (2) + T (4), we can
use orthogonality and symmetry to obtain

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫ 1

0

B
(W)
0 (t1, u2) du2

]2

dt1dt2

=

∫

[0,1]2

[

S2B
(W)
0 (t1, t2) −

∫ 1

0

S2B
(W)
0 (t1, u2) du2

]2

dt1dt2

+

∫

[0,1]2
A2B

(W)
0 (t1, t2)

2
dt1dt2

= 2

∫

[0,1]×[0,1/2]

[

S2B
(W)
0 (t1, t2) − 2

∫ 1

2

0

S2B
(W)
0 (t1, u2) du2

]2

dt1dt2

+2

∫

[0,1]×[0,1/2]

A2B
(W)
0 (t1, t2)

2
dt1dt2.

We already know that the restrictions to [0, 1] × [0, 1/2] of the two processes S2B
(W)
0 and A2B

(W)
0

are stochastically independent. Moreover Lemma 4 and (4) imply the two relations

{

S2B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1] × [0, 1/2]

}

(25)

law
=
{

2−
1

2 K(W,1) (t1, t2) : (t1, t2) ∈ [0, 1] × [0, 1/2]
}

{

A2B
(W)
0 (t1, t2) : (t1, t2) ∈ [0, 1]× [0, 1/2]

}

law
=
{

2−1B
(W)
0 (t1, 2t2) : (t1, t2) ∈ [0, 1] × [0, 1/2]

}

.

As a consequence, we obtain

2

∫

[0,1]×[0,1/2]

A2B
(W)
0 (t1, t2)

2
dt1dt2

law
=

1

2

∫

[0,1]×[0,1/2]

B
(W)
0 (t1, 2t2)

2
dt1dt2

=
1

4

∫

[0,1]2
B

(W)
0 (t1, t2)

2
dt1dt2.

To conclude the proof, use the first part of (25) and scaling to obtain

2

∫

[0,1]×[0,1/2]

[

S2B
(W)
0 (t1, t2) − 2

∫ 1

2

0

S2B
(W)
0 (t1, u2) du2

]2

dt1dt2

law
=

1

2

∫

[0,1]×[0,1/2]

[

K(W,1) (t1, 2t2) − 2

∫ 1

2

0

K(W,1) (t1, 2u2) du2

]2

dt1dt2

=
1

4

∫

[0,1]2

[

K(W,1) (t1, t2) −
∫ 1

0

K(W,1) (t1, u2) du2

]2

dt1dt2.

Now define {λi, fi : i ≥ 1} and {γi, gi : i ≥ 1} to be the sequences of eigenvalues and eigenfunctions
of the Hilbert-Schmidt operators associated to the covariance function, respectively of t 7→ b (t), and of

t 7→ Z (t) := W (t) −
∫ 1

0

W (z) dz.

It is well known (see e.g. [5]) that there exist two sequences {ξi : i ≥ 1} and {ζi : i ≥ 1} of i.i.d.
standard Gaussian random variables such that the Karhunen-Loève expansions of b and Z are respectively
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given by

b (t) =
∑

i≥1

ξi

√

λifi (t) and Z (t) =
∑

i≥1

ζi
√

γigi (t) ,

and moreover (see [3]) γi = λi for every i ≥ 1. Since (4) implies that, for every (t1, t2) , (s1, s2) ∈ [0, 1]
2
,

E

[(

K(W,1) (t1, t2) −
∫ 1

0

K(W,1) (t1, u2) du2

)(

K(W,1) (s1, s2) −
∫ 1

0

K(W,1) (s1, u2) du2

)]

= E [b (t1) b (s1)] × E

[(

W (t2) −
∫ 1

0

W (z)dz

)(

W (s2) −
∫ 1

0

W (z)dz

)]

we conclude immediately (by using, for instance, [1, Lemma 4.1]) that the Karhunen-Loève expansion of
the bivariate Gaussian process

Z (s, t) = K(W,1) (s, t) −
∫ 1

0

K(W,1) (s, u)du

is given by

Z (s, t) =
∑

i,j≥1

√

λiλjθijfi (s) gi (t) ,

where {θij : i, j ≥ 1} is an array of i.i.d. standard Gaussian random variables. This last relation entails
that

1

4

∫

[0,1]2

[

K(W,1) (t1, t2) −
∫ 1

0

K(W,1) (t1, u2) du2

]2

dt1dt2 (26)

=
1

4

∑

i≥1

λi

∑

j≥1

λjθ
2
ij

law
=

1

4

∫

[0,1]2
B

(W)
0 (t1, t2)

2 dt1dt2.

To justify the last equality in law, just observe that, thanks again to [1, Lemma 4.1] and formula (3),
the Karhunen-Loève expansion of B0 is given by

∑

i,j≥1

√

λiλjηijgi (s) gi (t)

where {ηij : i, j ≥ 1} is an array of i.i.d. standard Gaussian random variables (the reader is referred to
[1] for a detailed discussion of Karhunen-Loève expansions for bivariate Gaussian processes).

4.5 Proof of part 3

We first observe that

0 = T (2)

∫ 1

0

B
(W)
0 (t1, u2) du2 = T (4)

∫ 1

0

B
(W)
0 (t1, u2) du2

= T (3)

∫ 1

0

B
(W)
0 (u1, t2) du1 = T (4)

∫ 1

0

B
(W)
0 (u1, t2) du1

= T (i)

∫ 1

0

B
(W)
0 (u1, u2) du1du2, i = 2, 3, 4,

and

T (i)

∫ 1

0

B
(W)
0 (u1, t2) du1 =

∫ 1

0

T (i)B
(W)
0 (u1, t2) du1, i = 1, 2

T (j)

∫ 1

0

B
(W)
0 (t1, u2) du2 =

∫ 1

0

T (j)B
(W)
0 (t1, u2) du2, j = 1, 3.
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As a consequence, by orthogonality and symmetry,

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫ 1

0

B
(W)
0 (t1, u2) du2

−
∫ 1

0

B
(W)
0 (u1, t2) du1 +

∫

[0, 1

2 ]
2

B
(W)
0 (u1, u2) du1du2

]2

dt1dt2

= 4

∫

[0, 1

2 ]
2

[

T (1)B
(W)
0 (t1, t2) − 2

∫ 1

2

0

T (1)B
(W)
0 (t1, u2) du2

−2

∫ 1

2

0

T (1)B
(W)
0 (u1, t2) du1 + 4

∫

[0, 1

2 ]
2

T (1)B
(W)
0 (u1, u2) du1du2

]2

dt1dt2

+ 4

∫

[0, 1

2 ]
2

[

T (2)B
(W)
0 (t1, t2) − 2

∫ 1

2

0

T (2)B
(W)
0 (u1, t2) du1

]2

dt1dt2

+ 4

∫

[0, 1

2 ]
2

[

T (3)B
(W)
0 (t1, t2) − 2

∫ 1

2

0

T (3)B
(W)
0 (t1, u2) du2

]2

dt1dt2

+ 4

∫

[0, 1

2 ]
2

[

T (4)B
(W)
0 (t1, t2)

]2

dt1dt2

def
= Q1 + Q2 + Q3 + Q4.

Since we know, thanks to the previous discussion, that the Qi’s are mutually independent, it is now
sufficient to show that, for i = 1, ..., 4,

Qi
law
=

1

16

∫

[0,1]2
B

(Wi)
0 (t1, t2)

2
dt1dt2. (27)

We start with Q2 (by symmetry, the case of Q3 is handled analogously), and recall that we have
already proved that

Qi
law
=

1

4

∫

[0, 1

2 ]
2

[

K(W,2) (2t1, 2t2) − 2

∫ 1

2

0

K(W,2) (2u1, 2t2) du1

]2

dt1dt2

=
1

16

∫

[0,1]2

[

K(W,2) (v1, v2) −
∫ 1

0

K(W,2) (z, v2) dz

]2

dv1dv2

so that (27) in the case i = 2, 3 derives immediately from (26). Since we have proved (27) for i = 4 (to
obtain part 1 of Theorem 3) we are now left with the case i = 1.

To see that (27) holds also in this case, use (24) to write, after a standard change of variables,

Q1
law
=

1

16

∫

[0,1]2

[

W (t1, t2) −
∫ 1

0

W (t1, u2) du2

−
∫ 1

0

W (u1, t2) du1 +

∫

[0,1]2
W (u1, u2) du1du2

]2

dt1dt2

and then apply relation (12) in Corollary 2.

Remark – Note that the techniques used for the proof of Therorem 3 could be also applied to the
case of general n-variate Gaussian processes, for n > 2.

12



5 Application: Fourier transforms of double Wiener integrals

with respect to conditioned Gaussian processes

Let the above notation prevail, and let W1 and W2 be two independent Brownian sheets. In this section,
we are interested in finding the explicit Fourier transform of the three double Wiener integrals

I =

∫

[0,1]2
B

(W1)
0 (t1, t2)B

(W2) (dt1, dt2)

=

∫

[0,1]2

[

B
(W1)
0 (t1, t2) −

∫

[0,1]2
B

(W1)
0 (u1, u2) du1du2

]

B(W2) (dt1, dt2) ;

J =

∫

[0,1]2
B

(W1)
0 (t1, t2)K

(W2,2) (dt1, dt2)

=

∫

[0,1]2

[

B
(W1)
0 (t1, t2) −

∫

[0,1]2
B

(W1)
0 (t1, u2) du2

]

K(W2,2) (dt1, dt2) ;

Y =

∫

[0,1]2
B

(W1)
0 (t1, t2)B

(W2)
0 (dt1, dt2)

=

∫

[0,1]2

[

B
(W1)
0 (t1, t2) −

∫ 1

0

B
(W1)
0 (t1, u2) du2

−
∫ 1

0

B
(W1)
0 (u1, t2) du1 +

∫

[0,1]2
B

(W1)
0 (u1, u2) du1du2

]

B
(W2)
0 (dt1, dt2)

We shall show that such computations can be achieved by means of Theorem 3. To this end, we
introduce some notation borrowed from [1]: for every a ∈ C,

1. C (a) =
∏∞

j=1 cosh
(

a
jπ

)

;

2. Codd (a) =
∏∞

j=0 cosh
[

a
(2j+1)π

]

;

3. Ceven (a) =
∏∞

j=1 cosh
[

a
2jπ

]

= C
(

a
2

)

;

4. S (a) =
∏∞

j=1

[

πj sinh
(

a
πj

)

/a
]

;

5. Seven (a) =
∏∞

j=1

[

π2j sinh
(

a
π2j

)

/a
]

= S (a/2) ;

6. Sodd (a) =
∏∞

j=1

[

π (2j − 1) sinh
(

a
π(2j−1)

)

/a
]

= C (a/2);

7. T (a) =
∑∞

j=0

{

tanh
(

2a
(2j+1)π

)

[(2j + 1)π]
−1
}

.

Moreover, we recall the following result

Proposition 5 (see [1, Proposition 4.1]) For every u ∈ ℜ

1. E

[

exp
(

−u2

2

∫

[0,1]2 B(W) (s, t)
2
dsdt

)]

=
(

Codd (2u) 4T (u)
u

)− 1

2

;

2. (ii) E

[

exp
(

−u2

2

∫

[0,1]2
B

(W)
0 (s, t)

2
dsdt

)]

= {S (u)}− 1

2 ;
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3. (iii) E

[

exp
(

−u2

2

∫

[0,1]2
K(W,1) (s, t)2 dsdt

)]

= {Sodd (2u)}− 1

2 .

Then, we have

Theorem 6 Under the above assumptions and notation, for every u ∈ ℜ

1.

E [exp (iuI)] (28)

= E



exp



−u2

2

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫

[0,1]2
B

(W)
0 (u1, u2) du1du2

]2

dt1dt2









=

{

Codd

(u

2

) 16T (u/4)

u
× S

(u

4

)

}− 1

2

× Sodd

(u

2

)

,

2.

E [exp (iuJ)] (29)

= E



exp



−u2

2

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫

[0,1]2
B

(W)
0 (t1, u2) du2

]2

dt1dt2









=
{

S
(u

2

)}−1

3.

E [exp (iuY)] (30)

= E

{

exp

(

∫

[0,1]2

[

B
(W1)
0 (t1, t2) −

∫ 1

0

B
(W1)
0 (t1, u2) du2

−
∫ 1

0

B
(W1)
0 (u1, t2) du1 +

∫

[0,1]2
B

(W1)
0 (u1, u2) du1du2

]2

dt1dt2











=
{

S
(u

4

)}−2

Proof. The first equality in (28) follows from conditioning and independence. To obtain the second
just recall that Theorem 3 implies that

E



exp



−u2

2

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫

[0,1]2
B

(W)
0 (u1, u2) du1du2

]2

dt1dt2









= E

[

exp

(

− (u/4)
2

2

∫

[0,1]2
B

(W)
0 (t1, t2)

2
dt1dt2

)]

× E

[

exp

(

− (u/4)
2

2

∫

[0,1]2
B(W) (t1, t2)

2
dt1dt2

)]

×E

[

exp

(

− (u/4)2

2

∫

[0,1]2
K(W,1) (t1, t2)

2 dt1dt2

)]2

,
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and the conclusion follows from Proposition 5. Likewise,

E



exp



−u2

2

∫

[0,1]2

[

B
(W)
0 (t1, t2) −

∫

[0,1]2
B

(W)
0 (t1, u2) du2

]2

dt1dt2









= E

[

exp

(

− (u/2)2

2

∫

[0,1]2
B

(W)
0 (t1, t2)

2 dt1dt2

)]2

,

so that the proof is achieved with another application of Proposition 5. Formula (30) is proved in exactly
the same way.

As pointed out in the Introduction, Theorem 6 extends part of the results contained in [1, Section 4]
and [4].

Acknowledgements – The authors thank J.R. Pycke for showing them the paper [6] prior to pub-
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