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Abstract

We aim to establish the existence and uniqueness of weak solutions to a suitable class of

non-degenerate deterministic FBSDEs with a one-dimensional backward component. The classi-

cal Lipschitz framework is partially weakened: the diffusion matrix and the final condition are

assumed to be space Hölder continuous whereas the drift and the backward driver may be discon-

tinuous in x. The growth of the backward driver is allowed to be at most quadratic with respect

to the gradient term.

The strategy holds in three different steps. We first build a well controlled solution to the asso-

ciated PDE and as a bypass product a weak solution to the forward-backward system. We then

adapt the “decoupling strategy” introduced in the four step scheme of Ma, Protter and Yong [30]

to prove uniqueness.

AMS 2000 Subject Classification. Primary: 65C30. Secondary: 35K55, 60H10, 60H30.

Keywords. FBSDEs, Gradient Estimates, Quasi-linear PDEs, Calderón and Zygmund Estimates,
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1 Introduction

General Setting. Forward Backward SDEs were introduced in 1993 by Antonelli [1] as an exten-

sion of the earlier theory of Backward SDEs due to Pardoux and Peng [32] and [33]. Such equations

strongly couple a stochastic differential equation to a backward one: the coefficients of each compo-

nent explicitly depend on the solution of the other one. In a rough way, the resulting system writes

as a kind of stochastic two-point boundary value problem:

(E)



























∀t ∈ [0, T ],

Xt = x+

∫ t

0
b
(

s,Xs, Ys, Zs)ds+

∫ t

0
σ(s,Xs, Ys)dBs,

Yt = G(XT ) +

∫ T

t
f(s,Xs, Ys, Zs)ds −

∫ T

t
Z∗

sσ(s,Xs, Ys)dBs.
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The whole paper then focuses on the solvability of (E). For this reason, we do not discuss in detail

the application fields of the FBSDE theory and just refer to the monograph of Ma and Yong [29] for

typical examples arising in mathematical finance or in control problems.

Existing Literature. Due to the strong coupling between both components of (E), it is well

understood that solving a forward-backward problem requires much effort than solving a SDE of

Itô or backward type. In particular, the strategy based on Picard’s fixed point theorem is not so

successfull as in the so-called decoupled setting considered by Pardoux and Peng [33] (i.e. b = b(t, x)

and σ = σ(t, x)). Applying this method, Antonelli [1] establishes the unique solvability of Lipschitz

continuous FBSDEs defined on intervals of small length: relevant counter examples in [1] show that

both existence and uniqueness may fail in this frame for arbitrarily prescribed time duration T .

During the last ten years, many papers have exhibited sufficient conditions to ensure the unique

solvability on an interval of arbitrary length. Generally speaking, two families of methods have been

considered.

The first one applies under monotonicity assumptions to deterministic and stochastic coefficients.

Different types of conditions have been investigated in this framework and we refer to Hu and Peng

[17], Peng and Wu [35], and Yong [41] on the one hand and to Pardoux and Tang [34] on the other

hand for a precise review of the most common hypotheses in this setting.

The second approach relies on the connection between SDEs with deterministic coefficients and non-

linear PDEs. It is now well-known that a deterministic FBSDE of type (E) provides a probabilistic

representation of the solutions of a system of quasi-linear PDEs: this explains why FBSDEs are

usually described as extensions of the Feynman-Kac formula. In the current paper, the backward

component of (E) is assumed to be one-dimensional and the underlying system of PDEs reduces to

a PDE of the following form (with a(t, x) = (σσ∗)(t, x)):

(E)



































∂tu(t, x) +
1

2

d
∑

i,j=1

ai,j

(

t, x, u(t, x)
)

∂2
xi,xj

u(t, x)

+

d
∑

i=1

bi
(

t, x, u(t, x),∇xu(t, x)
)

∂xi
u(t, x) + f

(

t, x, u(t, x),∇xu(t, x)
)

= 0, (t, x) ∈ [0, T [×R
d,

u(T, x) = G(x), x ∈ R
d.

This deep connection permits to apply the huge literature devoted to non-linear PDEs to investigate

the theory of forward-backward equations. For instance, referring to the famous monograph of

Ladyzhenskaya et al. [26], Ma, Protter and Yong [30] establish, for smooth coefficients b, f, σ and G,

the strong solvability of non-degenerate deterministic FBSDEs: the diffusion matrix a is assumed to

be uniformly elliptic to overcome the inherent strong coupling. This approach, known as the four

step scheme, is probably the most popular existing one on the topic. In Delarue [7], the first author

relaxes the regularity assumption required in Ma et al. [30] by combining the short time theory of

Antonelli [1] to a priori estimates of the gradient of the solutions of (E). These gradient estimates

are given in Ladyzhenskaya et al. [26], Chapter VII, Section 6, and proved with stochastic arguments

in Delarue [8].

Objective of the Paper. In the whole paper, following Ma et al. [30] and Delarue [7], the coefficients

of (E) are assumed to be deterministic and the diffusion matrix to be non-degenerate. As already

said, the backward component is also chosen to be one-dimensional. Here is the novelty compared to

the previous references: the matrix a is space Hölder continuous, uniformly in t (a is smooth in [30]

and Lipschitz continuous in x in [7]), the coefficients b and f may be discontinuous in time and space

(b and f are smooth in [30] and b is monotonous and continuous in x and f is Lipschitz in x in [7]),

2



the final condition G is Hölder continuous (it belongs to C2+α(R) in [30] and is Lipschitz in [7]), and

finally, thanks to the one-dimensional assumption, the growth of f is at most quadratic in Z (it is at

most linear in [30] and [7]). In this setting, we establish the existence and uniqueness of a so-called

“weak solution” to the stochastic system (E), and as a bypass product the unique solvability of the

PDE (E) (cf Theorem 2.2). Since a is just Hölder continuous in x, the strong solvability of (E) may

fail.

The notions of weak existence and uniqueness for forward-backward equations are very similar to the

ones considered for classical SDEs. Referring to the basic definitions given in Rogers and Williams

[36], Chapter V, Section 3, the reader can guess without much effort that the word “weak” indicates

that existence does not hold on an arbitrarily prescribed Brownian set-up and that uniqueness just

holds in law. For a complete overview on weak solutions to FBSDEs, we refer to the paper of

Antonelli and Ma [2]. The reader can also find another example of weak existence in Lejay [27].

However, this latter result applies to specific coefficients deriving from a divergence form operator

and no uniqueness property is established in this case.

We then feel that our paper is somehow the first to draw up a clear frame for which both existence

and uniqueness hold in the weak sense.

Strategy. Our strategy aims to adapt the skeleton of the four step scheme of Ma et al. [30] to

the weak point of view. Build first a solution u to the PDE (E) from a regularization procedure

and deduce the weak solvability of (E) from the theory of Stroock and Varadhan [37]. Apply then

Itô’s formula to u to break the strong relationship between the forward and backward components

and derive the uniqueness of the distribution of the solution. This approach thus turns out to be

a “decoupling strategy”. To handle in this frame the quadratic growth of the coefficient f , we

successfully apply the ideas developed by Kobylanski [20] in the quadratic decoupled backward case.

The whole difficulty consists in fact in controlling the derivatives of u: to apply efficiently the Itô

formula to u, the partial derivatives of u of order one in t and of order one and two in x must be

estimated in a relevant way. This procedure is far from being simple in our poor setting, and at the

opposite of the existing literature, the partial derivatives of u of order one in t and of order two in x

are just controlled in our frame in suitable Lp spaces. The main argument to establish these bounds

follows from the Calderón and Zygmund theory.

Mention finally that we have tried to detail the proofs of most of the controls used in the paper and

to avoid as much as possible to refer the reader to too many different existing estimates.

Organization of the Paper. We first detail in Section 2 general assumption and notation and

remind the reader of the notion of weak uniqueness. We also precise the statement of the main result.

In Section 3, we give crucial a priori estimates of the solution and of its derivatives in the smooth

framework. These estimates permit to establish in Section 4 the existence of a “well controlled

solution” to (E): we then derive the weak unique solvability of the forward-backward equation. In

Sections 5, 6 and 7, we prove the previous a priori estimates: Section 5 gives a general overview of

the strategy. As a conclusion, we discuss in Section 8 the strong solvability of (E) and give further

interests of our results.

2 Assumption and Notation

In this section, we first detail the assumptions on the coefficients b, f, σ and G. We also recall the

classical definition of strong solutions to forward-backward equations and detail, in this framework,
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the connection with quasi-linear PDEs. We then investigate the notion of weak solutions and state

the main result of the paper. We finally discuss the strategy of the proof.

In the whole paper, the Euclidean norm on R
n, n ≥ 1, is denoted by | · |, and the associated scalar

product by 〈·, ·〉. The n-uple (e1, . . . , en) then denotes the canonical basis of R
n, and B(x0, ρ) (resp.

B̄(x0, ρ)), x0 ∈ R
n, ρ > 0, the open (resp. closed) Euclidean ball of center x0 and of radius ρ.

2.1 Coefficients of the Equation

For given d ∈ N
∗ and T ∈ R

∗
+, we consider the following Borel-measurable coefficients:

b : [0, T ]×R
d ×R×R

d → R
d, f : [0, T ]×R

d ×R×R
d → R, σ : [0, T ]×R

d ×R → R
d×d, G : R

d → R.

Assumption (A) We say that the former functions b, f , σ and G satisfy Assumption (A) if there

exist five constants α0 > 0, H, K, λ > 0 and Λ, such that:

(A.1) ∀t ∈ [0, T ], ∀(x, y, z) ∈ R
d × R × R

d,

|(b, σ,G)(t, x, y, z)| ≤ Λ
(

1 + |y| + |z|
)

,

|f(t, x, y, z)| ≤ Λ
(

1 + |y| + |z|2
)

.

(A.2) ∀(t, x, y) ∈ [0, T ] × R
d × R, ∀ζ ∈ R

d, 〈ζ, a(t, x, y)ζ〉 ≥ λ|ζ|2, where a(t, x, y) = σσ∗(t, x, y).

(A.3) ∀t ∈ [0, T ], ∀(x, y, z) ∈ R
d × R × R

d, ∀(y′, z′) ∈ R × R
d:

|a(t, x, y) − a(t, x, y′)| ≤ K |y − y′|,

|b(t, x, y, z) − b(t, x, y′, z′)| ≤ K
(

|y − y′| + |z − z′|
)

,

|f(t, x, y, z) − f(t, x, y′, z′)| ≤ K
(

1 + |z| + |z′|
)(

|y − y′| + |z − z′|
)

.

(A.4) ∀t ∈ [0, T ], ∀(x, x′, y) ∈ R
d × R

d × R :

|a(t, x′, y) − a(t, x, y)| + |G(x′) −G(x)| ≤ H |x′ − x|α0 .

Combination of assumptions (A.1) and (A.3) provides a more tractable estimate of the regularity

of f :

Lemma 2.1 There exists a constant C2.1, depending only on K and Λ, such that ∀t ∈ [0, T ], ∀x ∈

R
d, ∀(y, z), (y′, z′) ∈ R × R

d:

(A.5)
∣

∣f(t, x, y, z) − f(t, x, y′, z′)
∣

∣ ≤ C2.1

[(

1+|y|+|z|
)(

|y−y′|+|z−z′|
)

+|z−z′|
(

|y−y′|+|z−z′|
)]

.

Proof. Note first for |z′| > |z|:

∣

∣

∣

∣

f(t, x, y, z)

1 + |z|
−
f(t, x, y′, z′)

1 + |z′|

∣

∣

∣

∣

≤

∣

∣

∣

∣

f(t, x, y, z)

1 + |z|
−
f(t, x, y, z)

1 + |z′|

∣

∣

∣

∣

+
|f(t, x, y, z) − f(t, x, y′, z′)|

1 + |z′|

≤ Λ
||z| − |z′||

(1 + |z|)(1 + |z′|)
(1 + |y| + |z|2) +K

1 + |z| + |z′|

1 + |z′|
(|y − y′| + |z − z′|)

≤ Λ
|z − z′|

(1 + |z|)2
(1 + |y| + |z|2) + 2K(|y − y′| + |z − z′|).
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Still for |z′| > |z|, we then deduce:

∣

∣f(t, x, y, z) − f(t, x, y′, z′)
∣

∣ =

∣

∣

∣

∣

(1 + |z|)
f(t, x, y, z)

1 + |z|
− (1 + |z′|)

f(t, x, y′, z′)

1 + |z′|

∣

∣

∣

∣

≤ (1 + |z|)

∣

∣

∣

∣

f(t, x, y, z)

1 + |z|
−
f(t, x, y′, z′)

1 + |z′|

∣

∣

∣

∣

+
||z| − |z′||

1 + |z′|
|f(t, x, y′, z′) − f(t, x, y, z)|

+
||z| − |z′||

1 + |z′|
|f(t, x, y, z)|

≤ Λ
|z − z′|

1 + |z|

(

1 + |y| + |z|2
)

+ 2K
(

1 + |z|
)(

|y − y′| + |z − z′|
)

+ 2K|z − z′|
(

|y − y′| + |z − z′|
)

+ Λ
(

1 + |y| + |z|
)

|z − z′|

≤ 2(K + Λ)
(

1 + |y| + |z|
)(

|y − y′| + |z − z′|
)

+ 2K|z − z′|
(

|y − y′| + |z − z′|
)

.

(2.1)

Note finally for |z′| ≤ |z|:

∣

∣f(t, x, y, z) − f(t, x, y′, z′)
∣

∣ ≤ K
(

1 + 2|z|
)(

|y − y′| + |z − z′|
)

. (2.2)

From (2.1) and (2.2), we complete the proof of Lemma 2.1. �

2.2 Strong Solutions to Forward-Backward Equations

Recall now several properties of strong solutions to forward-backward systems. Consider to this end

a filtered probability space (Ω, {Fs}0≤s≤T ,P) satisfying the usual conditions and endowed with an

{Fs}0≤s≤T -Brownian motion (Bs)0≤s≤T with values in R
d. To the coefficients (b, f, σ,G) and to a

given initial condition (t, x) ∈ [0, T ] × R
d, we associate the following couple of stochastic differential

equations:

(E)























∀s ∈ [t, T ],

Xs = x+

∫ s

t
b
(

r,Xr, Yr, Zr)dr +

∫ s

t
σ(r,Xr , Yr)dBr,

Ys = G(XT ) +

∫ T

s
f(r,Xr, Yr, Zr)dr −

∫ T

s
〈Zr, σ(r,Xr , Yr)dBr〉.

Precise now the sense given to the solution (X,Y,Z). Introduce to this end, for t ∈ [0, T ] and q ≥ 1,

the following spaces:



























H2
t,T (Ω, {F},P,Rq) : space of {Fs}t≤s≤T − progressively measurable processes

v : Ω × [t, T ] → R
q | ‖v‖2

2 ≡ E[
∫ T
t |vs|

2 ds] < +∞,

S2
t,T (Ω, {F},P,Rq) : space of continuous {Fs}t≤s≤T−adapted processes

v : Ω × [t, T ] → R
q | ‖v‖2

∗ ≡ E[sups∈[t,T ] |vs|
2] < +∞.

A triple (X,Y,Z) is then said to be a strong solution to the FBSDE (E) with initial condition (t, x)

if:

1. X ∈ S2
t,T (Ω, {F},P,Rd), Y ∈ S2

t,T (Ω, {F},P,R), Z ∈ H2
t,T (Ω, {F},P,Rd),

2. P almost-surely, (X,Y,Z) satifies (E).

Recall from Delarue [7] that there exists a unique strong solution to (E) if the coefficients (b, f, σ,G)

are bounded in (t, x) and at most linear in (y, z), Lipschitz continuous in (x, y, z) uniformly in t, and

if σ is continuous and satisfies the ellipticity condition (A.2). The solution is usually denoted by
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(Xt,x, Y t,x, Zt,x): the superscript (t, x) denotes the initial condition of the diffusion X.

Moreover, according to Ladyzhenskaya et al. [26], Chapter VII, Theorem 7.1, and to Ma, Protter,

Yong [30], if the coefficients (b, f, σ,G) are smooth, i.e. infinitely differentiable with respect to

the variables t, x, y and z, and bounded, with bounded derivatives of any order, then the following

quasi-linear PDE:

(E)



































∂tu(t, x) +
1

2

d
∑

i,j=1

ai,j

(

t, x, u(t, x)
)

∂2
xi,xj

u(t, x)

+
d

∑

i=1

bi
(

t, x, u(t, x),∇xu(t, x)
)

∂xi
u(t, x) + f

(

t, x, u(t, x),∇xu(t, x)
)

= 0, (t, x) ∈ [0, T [×R
d,

u(T, x) = G(x), x ∈ R
d,

admits a unique bounded solution with a bounded gradient in the space C1,2([0, T ]×R
d,R). Moreover,

the gradient is Hölder continuous on [0, T ]×R
d and the derivatives of order one in t and of order two

in x are also bounded and Hölder continuous on [0, T ]×R
d. In such a case, the following connection

holds between u and (Xt,x, Y t,x, Zt,x):

∀s ∈ [t, T ], Y t,x
s = u(s,Xt,x

s ), Zt,x
s = ∇xu(s,X

t,x
s ). (2.3)

Conversely, the solution u writes:

∀(t, x) ∈ [0, T ] × R
d, u(t, x) = Y t,x

t . (2.4)

Note that several papers have extended the connection between forward-backward equations and

quasi-linear PDEs to other kinds of solutions: Pardoux and Tang [34] consider viscosity solutions

and Delarue [9] focuses on the Sobolev sense.

2.3 Weak Solutions and Main Result

Earlier results of existence and uniqueness, e.g. Ma, Protter, Yong [30], Pardoux and Tang [34] or

Delarue [7], do not apply under Assumption (A). First, the growth of the driver f is quadratic in z,

and second, the coefficients b, f , σ and G are not Lipschitz in x (the coefficients b and f may even

be discontinuous with respect to the space variable).

Review now the consequences of each of these points on the solvability of (E).

Focus on the growth of f , and recall that the paper of Kobylanski [20] investigates the existence

and uniqueness of solutions to backward SDEs with quadratic drivers. Generally speaking, there is

a double price to pay to allow the coefficient f to be quadratic. First, the process Y has to live in

the one-dimensional real space: this is the case in our setting. Second, uniqueness of solutions to

quadratic backward equations just holds for processes Y with uniformly bounded trajectories.

Moreover, the rather “weak” regularity properties of b, f , σ and G make the classical framework

of FBSDEs unsuitable. This is well understood since the strong solvability of SDEs with Hölder

continuous and non-degenerate diffusion coefficients may fail: see Barlow [3] for a one-dimensional

counter-example. At the opposite, the so-called “weak theory” seems particulary relevant in our

setting: the point of view of Stroock and Varadhan [37] may apply since the diffusion matrix a is

uniformly elliptic. We then seek in the sequel for a weak solution to the forward-backward system

(E).

Note again that Antonelli and Ma [2] as well as Lejay [27] already introduced this concept. For the
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sake of completeness, we remind the reader of the basic notions and first define the framework of any

weak theory for SDEs:

Definition 2.1 A four-uple (Ω, {F},P, B) is said to be a standard set-up if:

1. (Ω, {Fs}0≤s≤T ,P) is a filtered probability space satisfying the usual conditions,

2. (Bs)0≤s≤T is an R
d-valued Brownian motion on the above space.

According to our previous discussion on the boundedness of the solutions to quadratic BSDEs, we

introduce, for a standard set-up (Ω, {F},P, B), a real t ∈ [0, T ] and an integer q ≥ 1, the following

class of processes:

{

S∞
t,T (Ω, {F},P,Rq) : space of continuous {Fs}t≤s≤T− adapted processes

v : Ω × [t, T ] → R
q | ‖v‖∞ ≡ essupω∈Ω sups∈[t,T ] |vs| < +∞.

We are now in position to give the definition of a weak solution to the forward-backward system (E):

Definition 2.2 For (t, x) ∈ [0, T ] × R
d, a triple of processes (X,Y,Z) is said to be a weak solution

of (E) with initial condition (t, x) if there exists a standard set-up (Ω, {F},P, B) such that:

1. X ∈ S2
t,T (Ω, {F},P,Rd), Y ∈ S∞

t,T (Ω, {F},P,R), Z ∈ H2
t,T (Ω, {F},P,Rd),

2. P almost-surely, (X,Y,Z) satisfies (E).

Of course, any strong solution gives rise to a weak solution. In short, strong existence implies weak

existence. Note also that the same holds for uniqueness: strong uniqueness implies weak uniqueness,

see e.g Antonelli and Ma [2] or Delarue [7], Remark 1.6.

Here is the result that we establish in this article:

Theorem 2.2 Let (t, x) ∈ [0, T ] × R
d. Then, under Assumption (A), the Forward-Backward SDE

(E) admits a weak solution ((Ω, {F},P, B), (X,Y,Z)) with initial condition (t, x).

Moreover, if ((Ω̃, {F̃}, P̃, B̃), (X̃, Ỹ , Z̃)) denotes another weak solution with initial condition (t, x),

then the distributions (B̃, X̃, Ỹ , Z̃)(P̃) and (B,X, Y,Z)(P) on the space C([t, T ],Rd) × C([t, T ],Rd) ×

C([t, T ],R) × L2([t, T ],Rd) are equal.

From an analytical point of view, there exists a unique solution to the PDE (E) in the space :

V ≡
{

u ∈ C0([0, T ] × R
d,R) ∩ C0,1([0, T [×R

d,R) ∩W 1,2,d+1
loc ([0, T [×R

d,R),

∃ γ > 0, sup
(t,x)∈[0,T [×Rd

(

|u(t, x)| + (T − t)1/2−γ |∇xu(t, x)|
)

< +∞
}

,

with W 1,2,d+1
loc ([0, T [×R

d,R)

≡
{

u : [0, T [×R
d → R, |u|, |∇xu|, |∇2

x,xu|, |∂tu| ∈ Ld+1
loc ([0, T [×R

d,R)
}

.

The process (Y,Z) can then be chosen to satisfy:

∀s ∈ [t, T ], Ys = u(s,Xs), ∀s ∈ [t, T [, Zs = ∇xu(s,Xs).
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2.4 Strategy of the Proof

Say now a word about the strategy used to establish Theorem 2.2.

Existence. Start first with existence of a weak solution. Generally speaking, the method is rather

simple. Build first a solution u ∈ V to the PDE (E) and solve in a weak sense the following SDE:

∀s ∈ [t, T ], dXs = b(s,Xs, u(s,Xs),∇xu(s,Xs))ds + σ(s,Xs, u(s,Xs))dBs. (2.5)

Thanks to the Itô formula (or Itô-Krylov in our frame since u admits generalized derivatives of order

one in t and order two in x), deduce then that the couple (Ys, Zs)t≤s≤T ≡ (u(s,Xs),∇xu(s,Xs))t≤s≤T

satisfies the required backward equation on the standard set-up given by the forward component X.

The whole difficulty is then hidden in the construction of the solution u. A classical strategy to

investigate the solvability of the PDE (E) consists in deriving the existence of a solution through

compactness arguments. For example, for mollifiers (bn, fn, σn, Gn)n≥1, find uniform a priori Hölder

controls of the associated solutions (un)n≥1 (that exist in the regularized framework) and of their

partial derivatives (∇xun)n≥1, (∇2
x,xun)n≥1 and (∂tun)n≥1 in terms of known parameters and extract

a converging subsequence from the Arzelà-Ascoli theorem. Such a method holds essentially for Hölder

continuous coefficients (b, f, σ,G) for which the Schauder theory applies. In our frame, since b and

f may be discontinuous in t and x, we are just able to establish similar Hölder controls for (un)n≥1

and (∇xun)n≥1 and to prove in addition from the Calderón-Zygmund point of view that (∇2
x,xun)n≥1

and (∂tun)n≥1 are bounded in suitable Lp spaces. This permits to extract a subsequence for which

the second derivatives in x and the first derivative in t converge weakly in Lp.

Note nevertheless that this strategy is not the only one. For example, in Guatteri and Lunardi

[16], the authors derive directly the smoothing property of the solution u to (E) from a fixed point

argument performed in a suitable topological space. The key tool to achieve the strategy is the

regularizing property of the evolution operator associated to a linearized version of the PDE (E)

(see Lunardi [28]). However, the fixed point procedure requires stronger regularity properties on the

coefficients: (b, f, σ) are uniformly Lipschitz continuous in the first variable and twice differentiable

in the other variables with uniformly bounded second order derivatives in x, and as in (A), f is

quadratic in z, and the final condition G is in Cβ(Rd), β > 0.

Uniqueness. The proof of weak uniqueness relies on a non-trivial variation of the uniqueness

property given in the four-step scheme of Ma, Protter and Yong [30]. To illustrate this approach, focus

first on the strong uniqueness framework and assume that X, given by (2.5), is a strong solution. As

explained above, the triple (X,Y = u(·,X), Z = ∇xu(·,X)) satisfies the forward-backward equation.

Denote now by (U, V,W ) another solution to the FBSDE (E) with the same initial condition. Instead

of studying the difference X −U and (Y −V,Z −W ) as done in Delarue [7], the strategy introduced

by Ma, Protter and Yong [30] consists in developing u(·, U) with the Itô formula and in writing it as

the solution of a backward SDE. This permits to apply Gronwall arguments to prove that V matches

u(·, U). This “decoupling strategy” seems to be relevant for equations of type (E) that admit a strong

solution. It has been applied to different frameworks: homogenization, see e.g. Buckdahn and Hu

[6], and numerical approximation, see Delarue and Menozzi [10].

In the weak solvability framework, this so-called “decoupling method” still applies: most of the

difficulty introduced by weakening the notion of solution consists in proving that uniqueness in law

holds for (2.5). Thanks to the large literature devoted to the weak solvability of SDEs, this task is

easily performed. Note at the opposite that the strategy proposed in Delarue [7], which consists in

estimating the differences X−U and (Y −V,Z−W ), completely fails for weak solutions: processes X
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and U are now defined on different probability spaces and there is no way to investigate the distance

between them.

A priori Estimates. To be precise, note that the most difficult point in our setting consists in

applying Gronwall’s lemma to complete the “decoupling strategy”. In short, this is possible if the

partial derivatives of order one and two of the previous solution u are efficiently controlled. In Ma,

Protter and Yong [30], in Buckdahn and Hu [6], or in Delarue and Menozzi [10], these derivarives are

uniformly bounded on the whole space. In Guatteri and Lunardi [16], |∇2
x,xu(t, ·)| is locally bounded

by C(T − t)−(1−γ), γ > 0. In our case, the story is rather different: the solution u does not belong

to C1,2([0, T [×R
d,R) but to W 1,2,p

loc ([0, T [×R
d,R) and there is no hope to obtain a pointwise control

of the second order derivatives of u. The strategy then consists in a tricky application of the Krylov

inequalities (see Krylov [21], Chapter II, Sections 2 and 3).

3 A priori Estimates in the Smooth Case

In this section, we assume that the coefficients are smooth, i.e. that they are infinitely differentiable

with respect to the variables t, x, y and z, and bounded, with bounded derivatives of any order. As

already explained in Subsection 2.2, it is then well-known that the quasi-linear PDE (E) admits

a unique solution u ∈ C1,2([0, T ] × R
d,R). Moreover, for an arbitrarily chosen standard set-up

(Ω, {F},P, B) (e.g. the canonical Wiener space), the FBSDE (E) admits a unique strong solution.

For every initial condition (t, x) ∈ [0, T ]×R
d, we denote this solution by (Xt,x, Y t,x, Zt,x). The triple

(Xt,x, Y t,x, Zt,x) and the solution u are then connected by relationships (2.3) and (2.4).

We then present several a priori bounds of the solution u and of its derivatives in terms of known

parameters appearing in Assumption (A). These controls permit both to introduce a regularization

procedure to prove the existence of a solution to (E) under Assumption (A) and to apply the

“decoupling strategy” to prove the weak unique solvability of (E).

3.1 Supremum Norm of u

We first give a probabilistic proof of the following estimate of the supremum norm of u:

Theorem 3.1 There exists a constant Γ3.1, depending only on d, Λ, and T , such that:

∀(t, x) ∈ [0, T ] × R
d, |u(t, x)| ≤ Γ3.1.

Proof. The strategy is clear. We aim to show that there exists a constant Γ3.1, depending only on

Λ and T , such that for any initial condition (t, x) ∈ [0, T ] × R
d:

P−a.s., ‖Y t,x‖∞ ≤ Γ3.1 and E

∫ T

0
|Zt,x

s |2ds ≤ Γ3.1. (3.1)

Connection (2.4) and inequality (3.1) then permit to complete the proof.

Estimate (3.1) follows from Proposition 2.1 and Corollary 2.2, given in Kobylanski [20], with:

a0(t, v, z) =
f(t, x, v, z)

1 + |v| + |z|2
sgn(v),

F0(t, v, z) =
f(t, x, v, z)

1 + |v| + |z|2
(1 + |z|2),

a(t) = Λ, b(t) = Λ, C = Λ.

This completes the proof. �
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3.2 Hölder Estimate of u

According to Theorem 1.3 given in Delarue [8], we claim:

Theorem 3.2 There exist a constant α1 > 0, depending only on d, λ and Λ, and a constant Γ3.2,

depending only on α0, d, H, λ, Λ and T , such that :

∀(t, x), ∀(s, y) ∈ [0, T ] × R
d, |u(t, x) − u(s, y)| ≤ Γ3.2

(

|x− y|α2 + |t− s|α2/2
)

, α2 = α0 ∧ α1.

Say a word about the proof of Theorem 3.2. Recall in particular that the main argument derives

from the Krylov and Safonov theory (see Krylov and Safonov [22] and [23] or Bass [4]). In short, this

approach permits to establish the a priori Hölder continuity of the solutions to a linear parabolic

PDE with a non-degenerate, but discontinuous, diffusion matrix.

The reader may object that Theorem 1.3 in [8] just holds for a coefficient f with linear growth in z.

This is right: in [8], the backward process Y is multi-dimensional and, for this reason, the backward

driver f cannot be quadratic in z. Nevertheless, the crucial starting point in the proof of Theorem

1.3 in [8] is the inequality (1.10) which permits to compare the backward process Y , or at least a

variant of it, to the solution of the one-dimensional BSDE given in (1.12) in [8]. This is the reason

why the first author focuses in [8] on µ(Ys)i + |Ys|
2 and not on (Ys)i itself. In our current setting,

this procedure is useless since the process Y can be directly compared to the solution of a quadratic

BSDE of the same form as (1.12) in [8]. The issue of this comparison method clearly appears in

(1.23) in [8]. In the end, the strategy used to prove Theorem 1.3 in [8] also applies under Assumption

(A).

3.3 Supremum Norm of the Gradient

The following estimate permits to bound the coefficients b and f in (E) and (E):

Theorem 3.3 There exist two constants α3 > 0 and Γ3.3, depending only on α0, d,H, λ,Λ and T ,

such that:

∀(t, x) ∈ [0, T [×R
d, |∇xu(t, x)| ≤ Γ3.3(T − t)−(1−α3)/2.

The proof is given in Subsection 7.1.

3.4 Hölder Estimate of the Gradient

The following Hölder estimate of the gradient of u is proved in Subsection 7.2:

Theorem 3.4 There exist two constant α4 > 0 and Γ3.4, depending only on α0, d,H, λ,Λ and T ,

such that :

∀(t, x), (s, y) ∈[0, T [×R
d, 0 ≤ t ≤ s < T,

∣

∣∇xu(t, x) −∇xu(s, y)| ≤ Γ3.4(T − s)−(1−α4)/2
(

|x− y|α4 + |t− s|α4/2
)

.

3.5 Calderón-Zygmund Estimates

Thanks to the Calderón-Zygmund inequalities, we prove in Section 6 the following Lp
loc-controls of

∂tu and ∇2
x,xu:
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Theorem 3.5 There exists a constant α5 ∈]0, 1], depending only on α0, d,H, λ,Λ and T , such that:

∀p ≥ 1, R ≥ 1, δ ∈]0, T ], z ∈ R
d,

∫ T

T−δ

∫

B(z,R)

[

(T − s)1−α5
(

|∂tu(s, y)| + |∇2
x,xu(s, y)|

)]p
ds dy ≤ C3.5(p)δR

d,

where C3.5(p) depends only on α0, d,H, λ,Λ, p and T .

4 Solvability of (E) and (E)

We now turn to the proof of Theorem 2.2.

4.1 Solvability of (E)

Thanks to Assumption (A), we can consider a sequence (bn, fn, σn, Gn)n≥1 of smooth coefficients,

satisfying Assumption (A) with respect to α0,H,CK, λ and CΛ, for a suitable universal constant

C > 0, and converging towards (b, f, σ,G) in the following sense (as n→ +∞):

{

For a.e. (t, x) ∈ [0, T ] × R
d, ∀(y, z) ∈ R × R

d, (an ≡ σnσ
∗
n, bn, fn)(t, x, y, z) → (a, b, f)(t, x, y, z),

Gn → G uniformly on compact subsets of R
d.

The reader can find a possible construction of these functions, up to the discontinuity of a in t, in

Delarue [7] (the problem is in fact easier in our case since we just regularize a and not σ). Hence,

for every n ≥ 1, we can associate to the coefficients (bn, fn, σn, Gn) a smooth solution un. Thanks

to Theorems 3.1, 3.2, 3.3, 3.4 and 3.5, we can extract a subsequence, still indexed by n, such

that un (resp. ∇xun) converges in supremum norm on every compact subset of [0, T ] × R
d (resp.

[0, T [×R
d) and ∇2

x,xun and ∂tun converge weakly, for every δ ∈]0, 1[ and p > 1, in Lp([0, T (1 − δ)] ×

B(0, 1/δ),Rd×d) and Lp([0, T (1 − δ)] × B(0, 1/δ),R). We denote by u the limit function. It is then

clear that u satisfies almost everywhere the PDE (E). Moreover, inequalities given in Theorems 3.1,

3.2, 3.3, 3.4 and 3.5 still hold. In particular, u is bounded and continuous on [0, T ] × R
d.

4.2 Existence of a Weak Solution to (E)

This subsection is devoted to the weak solvability of (E): the initial condition is chosen to be of the

form (0, x), x ∈ R
d (of course, the proof applies to an initial condition of the form (t, x)). We adapt

to this end the famous theory of Stroock and Varadhan [37].

Consider first on [0, T ] the martingale problem associated to (0, a(·, ·, u(·, ·))). The diffusion coefficient

a(·, ·, u(·, ·)) is, thanks to Assumptions (A.1) and (A.2), and to Theorems 3.1 and 3.2, bounded,

non-degenerate and continuous in x, uniformly in t. Referring to Theorem 7.2.1, Chapter VII in

Stroock and Varadhan [37], this martingale problem is well-posed.

Focus now on the martingale problem associated to (b(·, ·, u(·, ·),∇xu(·, ·)), a(·, ·, u(·, ·))) on [0, T ].

The drift b is not bounded and thus does not fulfill the assumptions of Theorem 7.2.1, Chapter VII

in Stroock and Varadhan [37]. However, according to Assumption (A.1) and to Theorems 3.1 and 3.3

(boundedness of u and local boundedness of ∇xu), the function b(t, ·, u(t, ·),∇xu(t, ·)), for t ∈ [0, T [,

is bounded by Λ(1 + Γ3.1 + Γ3.3(T − t)−(1−α3)/2). This permits to apply the Girsanov transform to

deduce the well-posedness of the current martingale problem from the well-posedness of the problem

associated to (0, a(·, ·, u(·, ·))) as done in Theorem 6.4.3, Chapter VI in Stroock and Varadhan [37]

(see also Theorem 27.1, Chapter V in Rogers and Williams [36]). In our current setting, the Girsanov
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transform derives from the Novikov property (cf. Paragraph D, Section 3, Chapter III in Karatzas

and Shreve [19], see also Subsection 37, Chapter IV in Rogers and Williams [36]). In particular, the

SDE associated on [0, T ] to (b(·, ·, u(·, ·),∇xu(·, ·)), σ(·, ·, u(·, ·))) and to the initial condition (0, x)

is uniquely solvable in the weak sense. Thus, there exists a standard set-up (Ω, {F},P, B) and a

continuous and {Ft}0≤t≤T -adapted process X with values in R
d such that:

∀t ∈ [0, T ], Xt = x+

∫ t

0
b
(

s,Xs, u(s,Xs),∇xu(s,Xs)
)

ds+

∫ t

0
σ
(

s,Xs, u(s,Xs)
)

dBs. (4.1)

Thanks to (A.1) (growth of the coefficients), Theorems 3.1 (boundedness of u) and 3.3 (local bound-

edness of ∇xu), we claim:

E
[

sup
t∈[0,T ]

|Xt|
2
]

< +∞. (4.2)

Turn now to the backward equation and apply to this end the so-called Itô-Krylov formula (see

Krylov [21], Chapter II, Section 10, Theorem 1) to the process (Y,Z) defined by:

∀t ∈ [0, T ], Yt ≡ u(t,Xt), ∀t ∈ [0, T [, Zt ≡ ∇xu(t,Xt).

For every R > 0, set ρ(R) ≡ inf{t ≥ 0, |Xt| ≥ R} ∧ T (1− 1/R). The drift b in (4.1) is then bounded

up to time ρ(R) (see Theorem 3.3). The Itô-Krylov formula yields:

∀0 ≤ t ≤ ρ(R), Yt = Yρ(R) +

∫ ρ(R)

t
f(s,Xs, Ys, Zs)ds−

∫ ρ(R)

t
〈Zs, σ(s,Xs, Ys)dBs〉.

Let R tend to +∞: thanks to (4.2), ρ(R) → T . Thanks to the continuity of the function u and of the

process X in T , Yρ(R) converges P-a.s. towards G(XT ). Due to the boundedness of u (Theorem 3.1)

and to the control of ∇xu (see Theorem 3.3), the driver of the backward equation is, P-a.s., integrable

over [0, T ]. Finally, according again to Theorem 3.3, the martingale part is square-integrable under

P. We deduce that :

∀0 ≤ t ≤ T, Yt = G(XT ) +

∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
〈Zs, σ(s,Xs, Ys)dBs〉,

with,

E

∫ T

0
|Zs|

2ds < +∞.

Moreover, thanks again to Theorem 3.1, there exists a constant C ≥ 0 such that P−a.s.:

sup
t∈[0,T ]

|Yt| ≤ C.

Hence the triple of {Ft}0≤t≤T progressively-measurable processes (X,Y,Z) together with the set-up

(Ω, {F},P, B) is a weak solution of (E) with initial condition (0, x). This proves the weak solvability

of (E). �

4.3 Uniqueness in law

We now focus on the uniqueness in law of the solution (the initial condition (0, x), x ∈ R
d, being

fixed).
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4.3.1 Strategy

Recall that (X,Y,Z) denotes the solution built in Subsection 4.2 (with initial condition (0, x), x ∈ R
d)

and consider another solution to the FBSDE (E) with the same initial condition: (U, V,W ) with

standard set-up (Ω̃, {F̃}, P̃, B̃). Set also:

∀t ∈ [0, T ], V̄t ≡ u(t, Ut), ∀t ∈ [0, T [, W̄t ≡ ∇xu(t, Ut).

The strategy aims to identify (V̄ , W̄ ) with (V,W ): this permits to identify the forward component

of (E) with the SDE satisfied by X (see (4.1)), and thus to derive Theorem 2.2 from the weak

uniqueness property of (4.1).

The proof is divided in several steps. We first apply the Itô-Krylov formula to the process V̄ to write

it as the solution of a backward equation. Using a suitable quadratic functional, we then investigate

the difference between (V,W ) and (V̄ , W̄ ). Thanks to the Krylov estimates and to Theorem 3.5,

we prove that the difference V − V̄ satisfies a non-standard discrete Gronwall inequality. We finally

derive that (V,W ) matches (V̄ , W̄ ).

4.3.2 Girsanov Change of Measure and Itô-Krylov Formula

We first aim to apply the Itô formula to the quantity u(·, U). Unfortunately, the function u does not

belong to C1,2([0, T [×R
d,R) since the partial derivatives of u of order one in t and of order two in x

are just defined in the Sobolev sense (cf. Subsection 4.1). Hence, the classical Itô formula does not

apply. To overcome the lack of regularity of u, we refer again to the Itô-Krylov formula (cf. Krylov

[21], Chapter II, Section 10, Theorem 1). Roughly speaking, if the drift b of the Itô process U is

bounded, the process V̄ still develops as a semi-martingale.

The point is that the supremum norm of b is not finite in our frame since the process W is not

bounded. We thus change the underlying probability measure to get rid of the drift b in the writing

of U .

Fix to this end a real A > 0 and define ζ(A) ≡ inf

{

t ≥ 0,

∫ t

0
|Ws|

2ds > A

}

∧ T .

According to the well-known Novikov condition (cf. Paragraph D, Section 3, Chapter III in Karatzas

and Shreve [19]), the process B̄ given by:

∀t ∈ [0, T ], B̄t ≡ B̃t +

∫ t∧ζ(A)

0
σ−1(s, Us, Vs)b(s, Us, Vs,Ws)ds, (4.3)

is an {F̃t}0≤t≤T -Brownian motion under the probability P̄ given by:

dP̄

dP̃
≡ exp

(

−

∫ ζ(A)

0
〈σ−1(s, Us, Vs)b(s, Us, Vs,Ws), dB̃s〉

)

× exp

(

−
1

2

∫ ζ(A)

0

∣

∣σ−1(s, Us, Vs)b(s, Us, Vs,Ws)
∣

∣

2
ds

)

.

Mention carefully that the measures P̃ and P̄ are equivalent. Due to Theorem 3.1 (boundedness of u)

and to Definition 2.2 (V ∈ S∞
0,T (Ω̃, {F̃}, P̃,R)), processes V and V̄ are almost-surely bounded under

the new probability P̄.

Define then the following process:

∀t ∈ [0, T ], Ūt ≡ x+

∫ t

0
σ(s, Us, Vs)dB̄s. (4.4)
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According to (4.3) and (4.4), note that Ū and U match on [0, ζ(A)]:

∀t ∈ [0, ζ(A)], Ūt = Ut. (4.5)

As done in the former subsection, consider also, for a given real R > 0, the stopping time ρ̄(R) ≡

inf{t ≥ 0, |Ūt| ≥ R}∧T (1− 1/R). In short, ρ̄(R) permits to localize the values of the process Ū and

thus to apply the Itô-Krylov formula to the process u(·, Ū ).

Recall now from Subsection 4.1 that u belongs to W 1,2,d+1
loc ([0, T [×R

d,R). Hence, for a given stopping

time τ ≤ ζ(A) ∧ ρ̄(R), we claim from Krylov [21], Chapter II, Section 10, Theorem 1:

P̄−a.s., ∀t ∈ [0, τ ], du(t, Ūt)

= ∂tu(t, Ūt)dt+
1

2

d
∑

i,j=1

ai,j(t, Ut, Vt)∂
2
xi,xj

u(t, Ūt)dt+ 〈∇xu(t, Ūt), σ(t, Ut, Vt)dB̄t〉.

Due to (4.5), note that we can replace Ū by U in the above equality. Hence, using that u is a solution

of the equation (E), we deduce for every t ∈ [0, τ ] :

du(t, Ut) =
1

2

d
∑

i,j=1

[

ai,j(t, Ut, Vt) − ai,j(t, Ut, V̄t)
]

∂2
xi,xj

u(t, Ut)dt

−
[

〈b(t, Ut, V̄t, W̄t), W̄t〉 + f(t, Ut, V̄t, W̄t)
]

dt

+ 〈W̄t, σ(t, Ut, Vt)dB̄t〉.

(4.6)

Focus a while on the bounded variation terms in (4.6). The PDE (E) and the Krylov inequalities

(cf. Sections 2 and 3, Chapter II in Krylov [21]) ensure that the following terms make sense and are

equal:

∫ τ

0
∂tu(t, Ut)dt = −

1

2

∫ τ

0

[

1

2

d
∑

i,j=1

[

ai,j(t, Ut, V̄t)∂
2
xi,xj

u(t, Ut)
]

+
[

〈b(t, Ut, V̄t, W̄t), W̄t〉 + f(t, Ut, V̄t, W̄t)
]

]

dt.

In fact, due to Assumption (A.1) (growth of the coefficients), to Theorems 3.1 and 3.3 (boundedness

of u and local boundedness of ∇xu), to the definition of τ and again to the Krylov inequalities, each

dt-term in (4.6) is correctly defined.

Note now from (E) that dV writes:

P̄−a.s., ∀t ∈ [0, τ ], dVt = −
[

〈b(t, Ut, Vt,Wt),Wt〉 + f(t, Ut, Vt,Wt)
]

dt + 〈Wt, σ(t, Ut, Vt)dB̄t〉. (4.7)

Therefore, from (4.6) and (4.7), we obtain for every t ∈ [0, τ ]:

d(V − V̄ )t = −
1

2

d
∑

i,j=1

[

ai,j(t, Ut, Vt) − ai,j(t, Ut, V̄t)
]

∂2
xi,xj

u(t, Ut)dt

−
[

〈b(t, Ut, Vt,Wt),Wt〉 − 〈b(t, Ut, V̄t, W̄t), W̄t〉
]

dt

−
[

f(t, Ut, Vt,Wt) − f(t, Ut, V̄t, W̄t)
]

dt.

+ 〈Wt − W̄t, σ(t, Ut, Vt)dB̄t〉

(4.8)
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Define for the sake of simplicity ∀(t, x, y, z) ∈ [0, T ] × R
d × R × R

d, F (t, x, y, z) ≡ 〈b(t, x, y, z), z〉 +

f(t, x, y, z). Note that F satisfies a similar bound to (A.5):

∣

∣F (t, x, y, z) − F (t, x, y′, z′)
∣

∣

≤ C4.0

[(

1 + |y| + |z|
)(

|y − y′| + |z − z′|
)

+ |z − z′|
(

|y − y′| + |z − z′|
)]

,
(4.9)

with C4.0 ≡ C2.1 +K + Λ.

4.3.3 Quadratic Functional of V − V̄

We now apply a variant of the method used in the proof of Proposition 2.1, in Kobylanski [20]. Set

to this end L = 2(‖V ‖2
∞ + ‖V̄ ‖2

∞) (recall that V is P̃ and P̄ almost-surely bounded and that u is

bounded, cf. Theorem 3.1) and define the following function:

Φ(z) = exp(cz) − 1, z ∈ [0, L], (4.10)

where c denotes a free nonnegative parameter whose value is chosen in the sequel. It is easy to show

that Φ ∈ C2([0, L],R) and that for all z ∈ [0, L]:



















(a) Φ(z) ≥ 0 and Φ(z) = 0 iff z = 0,

(b) c exp(cL) ≥ Φ′(z) ≥ c,

(c) cz ≤ zΦ′(z) ≤ (cL+ 1)Φ(z),

(d) cΦ′(z) − Φ′′(z) = 0.

(4.11)

Apply Itô’s formula to Φ(|V· − V̄·|
2). Due to (4.8), for 0 ≤ t ≤ τ :

Φ(|Vt − V̄t|
2) = Φ(|Vτ − V̄τ |

2)

+

∫ τ

t

[

Φ′(|Vs − V̄s|
2)[Vs − V̄s]

( d
∑

i,j=1

[

ai,j(s, Us, Vs) − ai,j(s, Us, V̄s)
]

∂2
xi,xj

u(s, Us)

)]

ds

+ 2

∫ τ

t

[

Φ′(|Vs − V̄s|
2)[Vs − V̄s]

[

F (s, Us, Vs,Ws) − F (s, Us, V̄s, W̄s)
]

]

ds

− 2

∫ τ

t

[

Φ′(|Vs − V̄s|
2)[Vs − V̄s]〈Ws − W̄s, σ(s, Us, Vs)dB̄s〉

]

−

∫ τ

t

[

Φ′(|Vs − V̄s|
2)〈Ws − W̄s, a(s, Us, Vs)(Ws − W̄s)〉

]

ds

− 2

∫ τ

t

[

Φ′′(|Vs − V̄s|
2)[Vs − V̄s]

2〈Ws − W̄s, a(s, Us, Vs)(Ws − W̄s)〉

]

ds.

Taking into account Assumptions (A.2) and (A.3), (4.9) (regularity of F ), Theorems 3.1 (bound-

edness of u) and 3.3 (local boundedness of ∇xu), (4.11)-(b) (Φ′ ≥ 0) and (4.11)-(d) (cΦ′ − Φ′′ = 0),

there exists a constant C > 0, which may change from line to line but depends only on L and on
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known parameters appearing in (A), such that for 0 ≤ t ≤ τ :

Φ(|Vt − V̄t|
2) + λ

∫ τ

t

[

Φ′(|Vs − V̄s|
2)

(

1 + 2c|Vs − V̄s|
2
)

|Ws − W̄s|
2
]

ds

≤ Φ(|Vτ − V̄τ |
2)

+ C

∫ τ

t

[(

1 + (T − s)−1/2+α3/2 + |∇2
x,xu(s, Us)|

)

Φ′(|Vs − V̄s|
2)|Vs − V̄s|

2
]

ds

+ C

∫ τ

t

[(

1 + (T − s)−1/2+α3/2
)

Φ′(|Vs − V̄s|
2)|Vs − V̄s||Ws − W̄s|

]

ds

+ 2C4.0

∫ τ

t

[

Φ′(|Vs − V̄s|
2)|Vs − V̄s||Ws − W̄s|

(

|Vs − V̄s| + |Ws − W̄s|
)]

ds

−

∫ τ

t
dMs,

with:

∀s ∈ [0, T ], dMs ≡ 21{s≤τ}Φ
′(|Vs − V̄s|

2)[Vs − V̄s]〈Ws − W̄s, σ(s, Us, Vs)dB̄s〉. (4.12)

From the classical Young inequality (2ab ≤ ka2 + k−1b2, k > 0):

Φ(|Vt − V̄t|
2) + λ

∫ τ

t

[

Φ′(|Vs − V̄s|
2)

(

3/4 + 2c|Vs − V̄s|
2
)

|Ws − W̄s|
2
]

ds

≤ Φ(|Vτ − V̄τ |
2)

+ C

∫ τ

t

[(

1 + (T − s)−1+α3 + |∇2
x,xu(s, Us)|

)

Φ′(|Vs − V̄s|
2)|Vs − V̄s|

2
]

ds

+ 2C4.0

∫ τ

t

[

Φ′(|Vs − V̄s|
2)|Vs − V̄s||Ws − W̄s|

(

|Vs − V̄s| + |Ws − W̄s|
)]

ds

−

∫ τ

t
dMs.

Focus on the third term in the r.h.s of the above inequality. Use first the boundedness of V and V̄

and then Young’s inequality to deduce:

Φ(|Vt − V̄t|
2) + λ

∫ τ

t

[

Φ′(|Vs − V̄s|
2)

(

1/2 + 2c|Vs − V̄s|
2
)

|Ws − W̄s|
2
]

ds

≤ Φ(|Vτ − V̄τ |
2)

+ C

∫ τ

t

[(

1 + (T − s)−1+α3 + |∇2
x,xu(s, Us)|

)

Φ′(|Vs − V̄s|
2)|Vs − V̄s|

2
]

ds

+ 2C4.0

∫ τ

t

[

Φ′(|Vs − V̄s|
2)|Vs − V̄s||Ws − W̄s|

2
]

ds

−

∫ τ

t
dMs.

Apply again the classical Young inequality to the third term and deduce that:

Φ(|Vt − V̄t|
2) + λ

∫ τ

t

[

Φ′(|Vs − V̄s|
2)

(

1/4 + 2c|Vs − V̄s|
2
)

|Ws − W̄s|
2
]

ds

≤ Φ(|Vτ − V̄τ |
2)

+ C

∫ τ

t

[(

1 + (T − s)−1+α3 + |∇2
x,xu(s, Us)|

)

Φ′(|Vs − V̄s|
2)|Vs − V̄s|

2
]

ds

+ 4λ−1C2
4.0

∫ τ

t

[

Φ′(|Vs − V̄s|
2)|Vs − V̄s|

2|Ws − W̄s|
2
]

ds

−

∫ τ

t
dMs.
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Choose now c = 2λ−2C2
4.0 and deduce from (4.11)-(c) (zΦ′(z) ≤ (cL+ 1)Φ(z)) and from the bound-

edness of V and V̄ :

Φ(|Vt − V̄t|
2) + (λ/4)

∫ τ

t

[

Φ′(|Vs − V̄s|
2)|Ws − W̄s|

2
]

ds

≤ Φ(|Vτ − V̄τ |
2)

+ C

∫ τ

t

[(

1 + (T − s)−1+α3 + |∇2
x,xu(s, Us)|

)

Φ(|Vs − V̄s|
2)

]

ds

−

∫ τ

t
dMs.

(4.13)

4.3.4 Krylov and Bernstein Inequalities

Focus on (4.13). The usual approach to identify (V,W ) with (V̄ , W̄ ) (as developed in Pardoux and

Peng [33] and in Ma, Protter and Yong [30]) consists in taking the expectation in (4.13) to apply

a classical Gronwall argument. In short, this method holds when the second order derivatives of u

are uniformly controlled on the whole set [0, T ]× R
d or, at least, locally bounded with an integrable

singularity in the neighbourhood of the boundary T . As explained above, this point of view fails in

our framework since Theorem 3.5 just provides an Lp estimate of ∇2
x,xu (cf. Subsection 2.4)

To our own point of view, the most relevant argument to handle the r.h.s. in (4.13) derives again

from the Krylov inequalities (see Sections 2 and 3, Chapter II in Krylov [21]). Roughly speaking, for

every function ℓ ∈ Ld+1([0, T ] × R
d):

Ē

[
∫ T

0
|ℓ(s, Ūs)|ds

]

≤ C

[
∫ T

0

∫

Rd

|ℓ|d+1(s, x)dsdx

]1/d+1

. (4.14)

Fix now t ∈ [0, T [, multiply both sides in (4.13) by 1{t≤τ} and take the conditional expectation under

P̄ with respect to F̃t. Due to the boundedness of V and V̄ , to Assumption (A.1) (growth of the

coefficients), Theorem 3.3 (local boundedness of the gradient), to (4.11)-(b) (Φ′(z) ≤ c exp(cL)) and

to the definition of ζ(A), the martingale part M (cf. (4.12)) is square-integrable, and, in particular,

its conditional expectation vanishes:

1{t≤τ}Φ(|Vt − V̄t|
2) + 1{t≤τ}(λ/4)Ē

[
∫ τ

t

[

Φ′(|Vs − V̄s|
2)|Ws − W̄s|

2
]

ds
∣

∣F̃t

]

≤ 1{t≤τ}Ē

[

Φ(|Vτ − V̄τ |
2)

∣

∣F̃t

]

+ C1{t≤τ}Ē

[
∫ τ

t

[(

1 + (T − s)−1+α3 + |∇2
x,xu(s, Ūs)|

)

Φ(|Vs − V̄s|
2)

]

ds
∣

∣F̃t

]

.

(4.15)

Choose τ = τ(t, r) ∧ ρ̄(R) ∧ ζ(A), with r ≥ 1 and τ(t, r) ≡ inf{s ≥ t, |Ūs − Ūt| ≥ r}, and admit for

the moment the following Lemma:

Lemma 4.1 There exists a constant γ ∈]0, 1], depending only on known parameters appearing in

Assumption (A), such that for all p ≥ 1 and r ≥ 1:

P̄ − a.s., Ē

[
∫ τ(t,r)

t

[

(T − s)(1−γ)p|∇2
x,xu(s, Ūs)|

p
]

ds
∣

∣F̃t

]

≤ C4.1(p)(T − t)1/(d+1)rd/d+1,

where C4.1(p) depends only on p and on known parameters in (A).
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Note that we can assume without loss of generality that γ ≤ α3 (cf. α3 in (4.15)). Write now

|∇2
x,xu(s, Ūs)| = (T−s)−(1−γ)(T−s)1−γ |∇2

x,xu(s, Ūs)| in (4.15) and apply the general Young inequality

(ab ≤ aq/q + bp/p, 1/q + 1/p = 1) with q = (1 − γ/2)/(1 − γ) and p = 2(1 − γ/2)/γ:

1{t≤τ}Φ(|Vt − V̄t|
2) + 1{t≤τ}(λ/4)Ē

[
∫ τ

t

[

Φ′(|Vs − V̄s|
2)|Ws − W̄s|

2
]

ds
∣

∣F̃t

]

≤ 1{t≤τ}Ē

[

Φ(|Vτ − V̄τ |
2)|F̃t

]

+ C1{t≤τ}Ē

[
∫ τ

t

[(

1 + (T − s)−(1−γ) + (T − s)−(1−γ)(1−γ/2)/(1−γ)

+ (T − s)2(1−γ)(1−γ/2)/γ |∇2
x,xu(s, Ūs)|

2(1−γ/2)/γ
)

Φ(|Vs − V̄s|
2)

]

ds
∣

∣F̃t

]

.

≤ 1{t≤τ}Ē

[

Φ(|Vτ − V̄τ |
2)

∣

∣F̃t

]

+ C1{t≤τ}Ē

[
∫ τ(t,r)

t

[(

1 + (T − s)−(1−γ/2)

+ (T − s)2(1−γ)(1−γ/2)/γ |∇2
x,xu(s, Ūs)|

2(1−γ/2)/γ
)

Φ(|Vs − V̄s|
2)

]

ds
∣

∣F̃t

]

.

Apply Lemma 4.1 with p = 2(1 − γ/2)/γ:

1{t≤τ}Φ(|Vt − V̄t|
2) + 1{t≤τ}(λ/4)Ē

[
∫ τ

t

[

Φ′(|Vs − V̄s|
2)|Ws − W̄s|

2
]

ds
∣

∣F̃t

]

≤ 1{t≤τ}Ē
[

Φ(|Vτ − V̄τ |
2)

∣

∣F̃t

]

+C
[

(T − t)γ/2 + (T − t)1/(d+1)rd/(d+1)
]

sup
t≤s≤T

essup
ω∈Ω

[

Φ(|Vs − V̄s|
2)

]

.

(4.16)

Recall that the values of the above essential suprema are the same under P̃ and under P̄ since these

measures are equivalent.

The strategy now consists in letting R→ +∞ in (4.16). This is rather easy since P̄ does not depend

on R. Note indeed that sup0≤s≤T |Ūs| belongs to L2(Ω, P̄) and deduce in particular that, P̄ almost-

surely, ρ̄(R) → T as R → +∞ (cf. Subsection 4.3.2 for the definitions of Ū and ρ̄(R)). Hence,

τ → τ∞ ≡ τ(t, r) ∧ ζ(A) as R→ +∞ (cf. the lines preceding Lemma 4.1 for the definitions of τ and

τ(t, r)).

Since V and V̄ are bounded and continuous and since Φ is smooth, (4.16) yields:

1{t≤τ∞}Φ(|Vt − V̄t|
2) + 1{t≤τ∞}(λ/4)Ē

[
∫ τ∞

t

[

Φ′(|Vs − V̄s|
2)|Ws − W̄s|

2
]

ds
∣

∣F̃t

]

≤ 1{t≤τ∞}Ē
[

Φ(|Vτ∞ − V̄τ∞ |2)
∣

∣F̃t

]

+C
[

(T − t)γ/2 + (T − t)1/(d+1)rd/(d+1)
]

sup
t≤s≤T

essup
ω∈Ω

[

Φ(|Vs − V̄s|
2)

]

.

(4.17)

Since P̄ does depend on A, the same strategy fails to investigate the asymptotic form of (4.17) as

A→ +∞. We thus need to focus more precisely on (4.17) and in particular on the first term in the

r.h.s:
Ē
[

Φ(|Vτ∞ − V̄τ∞ |2)
∣

∣F̃t

]

≤ CP̄
{

τ∞ < T
∣

∣F̃t

}

+ Ē
[

Φ(|VT − V̄T |
2)

∣

∣F̃t

]

≤ CP̄
{

ζ(A) < T
∣

∣F̃t

}

+ CP̄
{

τ(t, r) < T
∣

∣F̃t

}

+ Ē
[

Φ(|VT − V̄T |
2)

∣

∣F̃t

]

≡ T (1) + T (2) + T (3).

(4.18)
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The reader may object that VT −V̄T reduces to zero. In fact, we aim to keep the form written in (4.18)

to derive later a crucial induction principle. Note now from the definition of ζ(A) (cf. Subsection

4.3.2) and from Theorem 3.3 (estimate of ∇xu) and (4.11)-(b) (Φ′ ≥ c) that:

T (1) ≤ CP̄

{
∫ τ∞

0
|Ws|

2ds ≥ A
∣

∣F̃t

}

≤ CP̄

{

t ≤ τ∞,

∫ τ∞

0
|Ws|

2ds ≥ A
∣

∣F̃t

}

+ C1{τ∞<t}

≤ CP̄

{

t ≤ τ∞,

∫ τ∞

t
|Ws|

2ds ≥ A/2
∣

∣F̃t

}

+ C1{ζ(A/2)≤t} + C1{τ∞<t}

≤ CP̄

{

t ≤ τ∞,

∫ τ∞

t
|Ws − W̄s|

2ds ≥ A/8
∣

∣F̃t

}

+ CP̄

{

t ≤ τ∞,

∫ τ∞

t
|W̄s|

2ds ≥ A/8
∣

∣F̃t

}

+ C1{ζ(A/2)≤t} +C1{τ∞<t}

≤ 1{t≤τ∞}CA
−1

Ē

[
∫ τ∞

t

[

Φ′(|Vs − V̄s|
2)|Ws − W̄s|

2
]

ds
∣

∣F̃t

]

+ C1{A≤C} + C1{ζ(A/2)≤t} + C1{τ∞<t}.

(4.19)

Note now from the definition of τ(t, r) (cf. the lines preceding Lemma 4.1) and from the well-known

Bernstein inequality, see e.g. Theorem IV.37.8 in Rogers and Williams [36] (note that the result

holds true with such a conditional probability):

T (2) ≤ P̄

{

sup
t≤s≤T

∣

∣

∣

∣

∫ s

t
σ(s, Us, Vs)dB̄s

∣

∣

∣

∣

≥ r
∣

∣F̃t

}

≤ C exp(−C−1r2(T − t)−1). (4.20)

Derive from (4.18), (4.19) and (4.20):

Ē
[

Φ(|Vτ∞ − V̄τ∞ |2)
∣

∣F̃t

]

≤ C1{τ∞<t} + C1{A≤C} + C1{ζ(A/2)≤t}

+ 1{t≤τ∞}CA
−1

Ē

[
∫ τ∞

t

[

Φ′(|Vs − V̄s|
2)|Ws − W̄s|

2
]

ds
∣

∣F̃t

]

+ C exp(−C−1r2(T − t)−1) + Ē
[

Φ(|VT − V̄T |
2)

∣

∣F̃t

]

.

(4.21)

Thus, for A greater than a universal constant C ′, derive from (4.17) and (4.21):

1{t≤τ∞}Φ(|Vt − V̄t|
2) ≤ essup

ω∈Ω

[

Φ(|VT − V̄T |
2)

]

+ C exp(−C−1r2(T − t)−1) + C1{ζ(A/2)≤t}

+C
[

(T − t)γ/2 + (T − t)1/(d+1)rd/(d+1)
]

sup
t≤s≤T

essup
ω∈Ω

[

Φ(|Vs − V̄s|
2)

]

.
(4.22)

Mention carefully that (4.22) holds P̄ almost-surely and thus holds also P̃ almost-surely.

4.3.5 Discrete Gronwall’s Lemma

Let A → +∞. Then, P̃ almost-surely, ζ(A), ζ(A/2) → T and τ∞ → τ(t, r) (note that W belongs to

L2(Ω × [0, T ], P̃ ⊗ ds)). Since (4.22) holds P̃ almost-surely, derive that:

Φ(|Vt − V̄t|
2) ≤ essup

ω∈Ω

[

Φ(|VT − V̄T |
2)

]

+ C exp(−C−1r2(T − t)−1)

+ C
[

(T − t)γ/2 + (T − t)1/(d+1)rd/(d+1)
]

sup
t≤s≤T

essup
ω∈Ω

[

Φ(|Vs − V̄s|
2)

]

.

Note that the same inequality holds for every t′ ∈ [t, T ]. Thus:

sup
t≤s≤T

essup
ω∈Ω

[

Φ(|Vs − V̄s|
2)

]

≤ essup
ω∈Ω

[

Φ(|VT − V̄T |
2)

]

+C exp(−C−1r2(T − t)−1)

+ C
[

(T − t)γ/2 + (T − t)1/(d+1)rd/(d+1)
]

sup
t≤s≤T

essup
ω∈Ω

[

Φ(|Vs − V̄s|
2)

]

.
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Choose now r = (T − t)m, m ≥ (T − t)−1 (to ensure r ≥ 1 as required in Lemma 4.1):

sup
t≤s≤T

essup
ω∈Ω

[

Φ(|Vs − V̄s|
2)

]

≤ essup
ω∈Ω

[

Φ(|VT − V̄T |
2)

]

+ C exp(−C−1m2(T − t))

+ C
[

(T − t)γ/2 + (T − t)md/(d+1)
]

sup
t≤s≤T

essup
ω∈Ω

[

Φ(|Vs − V̄s|
2)

]

.

Choose now t such that δ ≡ T − t satisfies:

C
[

δγ/2 + δmd/(d+1)
]

= 1/2. (4.23)

Note, for m large, that δmd/(d+1) ≈ 1/(2C), and deduce in particular that the condition r = δm ≥ 1

still holds in this frame. Derive that:

sup
T−δ≤s≤T

essup
ω∈Ω

[

Φ(|Vs − V̄s|
2)

]

≤ 2essup
ω∈Ω

[

Φ(|VT − V̄T |
2)

]

+ 2C exp(−C−1m2δ). (4.24)

Note now that the same strategy can be achieved on [T − 2δ, T − δ], [T − 3δ, T − 2δ], . . . , [T − (i+

1)iδ, T − iδ], . . . , [0, T −Nδ], N ≡ ⌊Tδ−1⌋, i+1 ≤ N : due to the boundedness of u (see Theorem 3.1)

and to the Hölder continuity of u (see Theorem 3.2), the restrictions of the PDE (E) on the previous

intervals fulfill Assumption (A) (the new final conditions fulfill (A.1) and (A.4) with respect to

Γ3.1, Γ3.2 and α2). In particular, (4.24) holds on each of these sets, and up to a modification, the

constants C and δ can be assumed to be the same for all the intervals [0, T −Nδ], . . . , [T − δ, T ].

Hence, define:

a0 ≡ essup
ω∈Ω

[

Φ(|VT − V̄T |
2)

]

,

ai ≡ sup
s∈[T−iδ,T−(i−1)δ]

essup
ω∈Ω

[

Φ(|Vs − V̄s|
2)

]

, 1 ≤ i ≤ N,

aN+1 ≡ sup
s∈[0,T−Nδ]

essup
ω∈Ω

[

Φ(|Vs − V̄s|
2)

]

.

Derive from (4.24) that:

∀i ∈ {0, . . . , N}, ai+1 ≤ 2ai + 2C exp(−C−1m2δ).

Since a0 reduces to zero, a discrete version of Gronwall’s Lemma yields (we introduce a new constant

C̄ since C is fixed through the value of δ):

∀i ∈ {0, . . . , N + 1}, ai ≤ 2C(2i − 1) exp(−C−1m2δ)

≤ 2C exp(i ln(2) − C−1m2δ)

≤ 2C exp((N + 1) ln(2) − C−1m2δ).

≤ C̄ exp(C̄T δ−1 − C̄−1m2δ).

Note, for m large enough, that δmd/(d+1) ≥ 1/(4C) (cf. (4.23)), and thus, that δ−1 ≤ 4Cmd/d+1. In

particular, up to a modification of C̄, we claim for m large enough:

∀i ∈ {0, . . . , N + 1}, ai ≤ C̄ exp(C̄Tmd/(d+1) − C̄−1m2m−d/(d+1))

= C̄ exp(C̄Tmd/(d+1) − C̄−1m(d+2)/(d+1)).

Take now the supremum over the indices i ∈ {0, . . . ,N + 1} and deduce:

sup
s∈[0,T ]

essup
ω∈Ω

[

Φ(|Vs − V s|
2)

]

≤ C̄ exp(C̄Tmd/(d+1) − C̄−1m(d+2)/(d+1)). (4.25)
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4.3.6 Conclusion

Let m → +∞ in (4.25) and derive that, for every t ∈ [0, T ], essup
ω∈Ω

[Φ(|Vt − V̄t|
2)] = 0. Deduce from

(4.11)-(a), and from the continuity of V and V̄ that:

P̃−a.s., ∀t ∈ [0, T ], Vt = V̄t = u(t, Ut). (4.26)

Thus, from (4.11)-(b) (Φ′ ≥ c), and (4.16), we claim:

P̃−a.s., µ
{

t ∈ [0, T [, Wt = W̄t = ∇xu(t, Ut)
}

= T, (4.27)

where µ denotes the Lebesgue measure on (R,B(R)).

In particular (Ω̃, P̃, {F̃}, B̃, U) is a weak solution to (4.1). According to Subsection 4.2, the martingale

problem associated to (b(·, ·, u(·, ·),∇xu(·, ·)), a(·, ·, u(·, ·))) is well-posed. Referring to Brossard [5],

we deduce that the distribution of (U, B̃) under P̃ on the space C([0, T ],R2d) matches the law of

(X,B) under P (the solution to (4.1) found in Subsection 4.2). Note now from Theorem 3.3 that the

mapping (ξs)s∈[0,T ] ∈ C([0, T ],Rd) 7→ (u(s, ξs),∇xu(s, ξs)1{s<T})s∈[0,T ] ∈ C([0, T ],R) × L2([0, T ],Rd)

is continuous and thus measurable. According to (4.26) and (4.27), it is then well seen that the

distribution of (B̃, U, V,W ) under P̃ on the space C([0, T ],R2d+1) × L2([0, T ],Rd) coincides with the

distribution of (B̃, U, V̄ , W̄ ) under P̃ and thus with the distribution of (B,X, Y,Z) under P. This

completes the proof of the unique weak solvability of (E). �

4.3.7 Proof of Lemma 4.1

It remains to prove Lemma 4.1. We follow the proof of Lemma 1, Section 3, Chapter II in Krylov

[21].

Fix p ≥ 1 and recall from Theorem 3.5 that there exists γ ∈]0, 1] (not depending on p) such that

(T−·)(1−γ)p|∇2
x,xu|

p belongs to Ld+1
loc ([0, T ]×R

d,R). In particular, for a given smooth cutting function

η : R
d → [0, 1], we can find a sequence (fn)n≥1 of continuous nonnegative functions with compact

support such that fn → (T − ·)(1−γ)p|∇2
x,xu|

pη in Ld+1([0, T ] × R
d).

Note that the process Ū is, under the probability P̄, an Itô process with null drift and uniformly

non-degenerate and bounded diffusion matrix. Derive in particular from Krylov’s inequality (cf.

Theorems 3 and 4, Section 3, Chapter II in Krylov [21]) that there exists a constant C, depending

only on d, λ,Λ and T , such that:

∣

∣

∣

∣

Ē

[
∫ τ(t,r)

t

[

(T − s)(1−γ)p|∇2
x,xu(s, Ūs)|

pη(s, Ūs)
]

ds
∣

∣F̃t

]

− Ē

[
∫ τ(t,r)

t
fn(s, Ūs)ds

∣

∣F̃t

]∣

∣

∣

∣

≤ Ē

[(
∫ T

t

∣

∣(T − s)(1−γ)p|∇2
x,xu(s, Ūs)|

pη(s, Ūs) − fn(s, Ūs)
∣

∣ds

)

∣

∣F̃t

]

≤ C

[
∫ T

t

∫

Rd

∣

∣(T − s)(1−γ)p|∇2
x,xu(s, x)|

pη(s, x) − fn(s, x)
∣

∣

d+1
ds dx

]1/(d+1)

→ 0 as n→ +∞.

(4.28)

Define now, for m ∈ N, the function K
(1)
m : x ∈ R 7→ 2−m(k + 1) for x ∈]2−mk, 2−m(k + 1)], and

K
(d)
m : x ∈ R

d 7→ (K
(1)
m (x1), . . . ,K

(1)
m (xd)). It is readily seen that, for every x ∈ R

d, K
(d)
m (x) → x as
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m→ +∞. Thus, for every n ≥ 1:

Ē

[
∫ τ(t,r)

t
fn(s, Ūs)ds

∣

∣F̃t

]

≤ Ē

[
∫ T

t
fn(s, Ūs)1{|Ūs−Ūt|≤r}ds

∣

∣F̃t

]

= Ē

[
∫ T

t
lim

m→+∞
fn

(

s, Ūs − Ūt +K(d)
m (Ūt)

)

1{|Ūs−Ūt|≤r}ds
∣

∣F̃t

]

≤ lim inf
m→+∞

Ē

[
∫ T

t
fn

(

s, Ūs − Ūt +K(d)
m (Ūt)

)

1{|Ūs−Ūt|≤r}ds
∣

∣F̃t

]

= lim inf
m→+∞

∑

x∈2−mZd

1
{K

(d)
m (Ūt)=x}

Ē

[
∫ T

t
fn

(

s, Ūs − Ūt + x
)

1{|Ūs−Ūt|≤r}ds
∣

∣F̃t

]

.

(4.29)

Apply again Theorems 3 and 4, Section 3, Chapter II in Krylov [21], to the diffusion (Ūs − Ūt)t≤s≤T

and deduce from Theorem 3.5 that for every x ∈ R
d:

Ē

[
∫ T

t
fn

(

s, Ūs − Ūt + x
)

1{|Ūs−Ūt|≤r}ds
∣

∣F̃t

]

≤ C

[
∫ T

t

∫

B(0,r)

[

(T − s)(1−γ)p|∇2
x,xu|

p(s, x+ z)η(s, x + z)
]d+1

ds dz

]1/(d+1)

+ C

[
∫ T

t

∫

B(0,r)

∣

∣(T − s)(1−γ)p|∇2
x,xu|

p(s, x+ z)η(s, x + z) − fn(s, x+ z)
∣

∣

d+1
ds dz

]1/(d+1)

≤ C
[

C3.5(p)(T − t)rd
]1/(d+1)

+ C

[
∫ T

t

∫

Rd

∣

∣(T − s)(1−γ)p|∇2
x,xu|

p(s, z)η(s, z) − fn(s, z)
∣

∣

d+1
ds dz

]1/(d+1)

.

(4.30)

Thus, from (4.29) and (4.30):

Ē

[
∫ τ(t,r)

t
fn(s, Ūs)ds

∣

∣F̃t

]

≤ C
[

C3.5(p)(T − t)rd
]1/(d+1)

+ C

[
∫ T

t

∫

Rd

∣

∣(T − s)(1−γ)p|∇2
x,xu|

p(s, z)η(s, z) − fn(s, z)
∣

∣

d+1
ds dz

]1/(d+1)

.

(4.31)

Let n→ +∞ and derive from (4.28) and (4.31):

∣

∣

∣

∣

Ē

[
∫ τ(t,r)

t

[

(T − s)(1−γ)p|∇2
x,xu(s, Ūs)|

pη(s, Ūs)
]

ds
∣

∣F̃t

]
∣

∣

∣

∣

≤ C
[

C3.5(p)(T − t)rd
]1/(d+1)

. (4.32)

Let η → 1 and complete the proof from the Beppo-Levi Theorem. �

4.4 Unique Solvability of (E)

In order to complete the proof of Theorem 2.2, we have to establish the unique solvability of the

quasi-linear PDE (E) in the space V. To this end, note that to every ũ ∈ V and to every ini-

tial condition (t, x) ∈ [0, T ] × R
d, we can associate, as done in Subsection 4.2, a weak solution

((Ω̃, {F̃}, P̃, B̃), (X̃, Ỹ , Z̃)) to the FBSDE (E) and to the initial condition (t, x). Then Y and Ỹ have

the same law, and thus u(t, x) = E(Yt) = Ẽ(Ỹt) = ũ(t, x). �
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5 Strategy to Estimate u

The whole sequel of the paper is devoted to the proofs of Theorems 3.3, 3.4 and 3.5. From now on,

the coefficients b, f , σ and G are assumed to be smooth, i.e. bounded and infinitely differentiable

with bounded derivatives of any order. In particular, there exists a unique bounded solution u ∈

C1,2([0, T ] × R
d,R) with a bounded gradient to the quasi-linear PDE (E). The gradient is Hölder

continuous on [0, T ] × R
d and the partial derivatives of order two in x are also bounded and Hölder

continuous, cf. Subsection 2.2.

Note that the generic notations “C”, “C ′” and “γ” denote in the sequel constants appearing in the

proofs of Theorems 3.3, 3.4 and 3.5: γ always belongs to ]0, 1]. If nothing mentioned, these constants

just depend on the parameters quoted in the statement of the theorem, proposition or lemma to

which they refer. Of course, the values of these constants may change from line to line.

5.1 Main Tools

Our approach to estimate the derivatives of u differs from the earlier work of Delarue [8] in which the

first author investigates the supremum norm of the gradient of u in the Lipschitz framework. The

basic strategy in [8] consists in applying a variant of the Malliavin-Bismut integration by parts formula

due to Thamäıer [38] (see also Fuhrman and Tessitore [14] and Thalmäıer and Wang [39]). Roughly

speaking, such an integration by parts formula provides a tractable expression of the gradient of a

harmonic function v associated to a given operator in terms of the values of v on a suitable boundary.

This non-trivial mechanism deeply relies on the trajectories of the diffusion process χ associated to

the underlying operator and in particular to the gradient of its flow. To be crude, a priori controls

of the derivatives of χ are crucial to derive from the Malliavin-Bismut formula relevant estimates of

the derivatives of the harmonic function v.

Typically, this method applies in the following way: assume that b and f vanish, choose for v the

solution u and for χ the diffusion X given in (4.1), i.e. the solution of the SDE associated to

σ(·, ·, u(·, ·)), and estimate the derivative of the flow of X in terms of the Lipschitz constant of σ.

In our setting, even if σ is supposed to be differentiable with respect to x and y (cf. the beginning

of Section 5), there is no hope to control efficiently the gradient of the flow of X in terms of known

parameters appearing in (A): under (A), we just control the x-Hölder continuity of σ.

The strategy to overcome the lack of differentiability of σ under Assumption (A) then relies on the

famous inequalities due to Calderón and Zygmund. These estimates provide a relevant Lp-control of

the second order derivatives of the solution of a linear parabolic equation on [0, T ] × R
d with a non-

degenerate and space-independent diffusion matrix, a null boundary condition and an Lp-integrable

second member. From classical pertubation arguments of the diffusion matrix, similar results can

be derived for operators with x-continuous second-order coefficients. For example, the Calderón and

Zygmund theory plays a crucial role in the proof of the well-posedness of the martingale problem of

Stroock and Varadhan (see Stroock and Varadhan [37], Chapter VII and Appendix A).

In our setting, the ellipticity of the matrix a directly follows from Assumption (A.2) and its continuity

in x from the a priori Hölder property of the solution u, see Theorem 3.2.

Our plan is then rather anachronistic: estimate first the partial derivatives of order two in x of u and

then the partial derivatives of order one. To derive Theorems 3.3 and 3.4 (controls of the supremum

and Hölder norms of ∇xu) from Theorem 3.5 (Lp-estimates of ∇2
x,xu), we apply again a pertubation

argument by freezing the spatial parameter in the diffusion matrix σ(·, ·, u(·, ·)). This permits to

consider u as the solution of a PDE with space-independent second-order coefficients, for which the

23



transition densities can be explicitly written.

5.2 Pertubated Operator

Explain now in a more detailed way how to freeze the spatial parameter in the diffusion coefficient

σ(·, ·, u(·, ·)). In short, we often write u as the solution of the following PDE:











































































∂u

∂t
(t, x) +

1

2

d
∑

i,j=1

ai,j

(

t, 0, u(t, 0)
) ∂2u

∂xi∂xj
(t, x)

+
1

2

d
∑

i,j=1

[

ai,j

(

t, x, u(t, x)
)

− ai,j

(

t, 0, u(t, 0)
)] ∂2u

∂xi∂xj
(t, x)

+

d
∑

i=1

bi
(

t, x, u(t, x),∇xu(t, x)
) ∂u

∂xi
(t, x)

+f
(

t, x, u(t, x),∇xu(t, x)
)

= 0, (t, x) ∈ [0, T [×R
d,

u(T, x) = G(x), x ∈ R
d.

(5.1)

Equation (5.1) expresses u as the solution of a PDE with a(·, 0, u(·, 0)) as diffusion matrix. Recall in

this frame that the transition densities associated to the family of operators:

∀t ∈ [0, T ], L0
t =

1

2

d
∑

i,j=1

ai,j

(

t, 0, u(t, 0)
) ∂2

∂xi∂xj
, (5.2)

are given by the following theorem (see e.g. Section 0, Chapter VII in Stroock and Varadhan [37]

for the basic result, and Corollary 4.2 and Theorem 4.6, Section 4, Chapter VI in Friedman [13] for

further solvability properties of linear PDEs of parabolic type, see also Theorem 9.2.2, Section 2,

Chapter IX in Krylov [25] for the Hölder regularity of the solution and of its derivatives):

Theorem 5.1 Let c : [0, T ] → Sd(R) be a Hölder continuous function for which there exist 0 < λ0 <

Λ0 < +∞ such that ∀t ∈ [0, T ], ∀θ ∈ R
d, λ0|θ|

2 ≤ 〈θ, c(t)θ〉 ≤ Λ0|θ|
2.

Define, ∀0 ≤ t < s ≤ T, Γ(t, s) =

∫ s

t
c(u)du, and set:

∀x, y ∈ R
d, ψ(c)(t, x; s, y) ≡ (2π)−d/2

(

det[Γ(t, s)]
)−1/2

exp

[

−
1

2
〈x− y,Γ−1(t, s)(x− y)〉

]

.

Then, for all bounded and uniformly Hölder continuous function ϕ ∈ Cβ/2,β([0, T ] × R
d,R), β > 0,

and for all bounded smooth function h ∈ C2+β(Rd,R) with bounded and uniformly Hölder continuous

derivatives of order one and two, the function v given by:

∀(t, x) ∈ [0, T ] × R
d, v(t, x) =

∫

Rd

h(y)ψ(c)(t, x;T, y)dy +

∫ T

t

∫

Rd

ϕ(s, y)ψ(c)(t, x; s, y)dy ds, (5.3)

is the unique bounded solution in C1,2([0, T ] × R
d,R) to the PDE:















∂v

∂t
(t, x) +

1

2

d
∑

i,j=1

ci,j(t)
∂2v

∂xi∂xj
(t, x) + ϕ(t, x) = 0, (t, x) ∈ [0, T [×R

d,

v(T, x) = h(x), x ∈ R
d.

Moreover, the partial derivatives of v of order one in t and of order one and two in x are bounded

and uniformly Hölder continuous on [0, T ] × R
d.
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The proofs of Theorems 3.3, 3.4 and 3.5 then rely on the following classical estimates of the derivatives

of the kernel ψ(c) whose proof is left to the reader (see also Friedman [11], Chapter I, Section 4):

Proposition 5.2 Under assumption and notation of Theorem 5.1, there exists a constant C5.2, de-

pending only on d, λ0 and Λ0, such that:

∀(t, x) ∈ [0, T [×R
d, ∀(s, y) ∈ [0, T ] × R

d, t < s,

|∇xψ
(c)(t, x; s, y)| ≤ C5.2(s− t)−1|x− y|ψ(c)(t, x; s, y),

|∇2
x,xψ

(c)(t, x; s, y)| ≤ C5.2(s− t)−1
[

1 + (s− t)−1|x− y|2
]

ψ(c)(t, x; s, y).

The following corollary is crucial in our current problem:

Corollary 5.3 Under assumption and notation of Theorem 5.1, the first derivatives of v with respect

to the variable x writes:

∀i ∈ {1, . . . , d}, ∀(t, x) ∈ [0, T [×R
d,

∂v

∂xi
(t, x) =

∫

Rd

h(z)
∂ψ(c)

∂xi
(t, x;T, z)dz +

∫ T

t

∫

Rd

ϕ(s, z)
∂ψ(c)

∂xi
(t, x; s, z)dz ds.

In particular, the following estimate holds:

∀(t, x) ∈ [0, T [×R
d,

|∇xv(t, x)| ≤ C5.3

[

(T − t)−1/2

∫

Rd

[

∣

∣h
(

x+ Γ1/2(t, T )z
)

− h(x)
∣

∣|z| exp
(

−
|z|2

2

)

]

dz

+

∫ T

t
(s− t)−1/2

[
∫

Rd

∣

∣ϕ
(

s, x+ Γ1/2(t, s)z
)
∣

∣|z| exp
(

−
|z|2

2

)

dz

]

ds

]

,

(5.4)

where C5.3 is a constant that refers only to d, λ0 and Λ0. If ϕ(t, 0) vanishes for every t ∈ [0, T ], then

the second order derivatives of v along the set [0, T ] × {0} write:

∀i, j ∈ {1, . . . , d}, ∀t ∈ [0, T [,
∂2v

∂xi∂xj
(t, 0) =

∫

Rd

h(z)
∂2ψ(c)

∂xi∂xj
(t, 0;T, z)dz

+

∫ T

t

∫

Rd

ϕ(s, z)
∂2ψ(c)

∂xi∂xj
(t, 0; s, z)dz ds,

and the following estimate holds:

∀t ∈ [0, T [,

|∇2
x,xv(t, 0)| ≤ C5.3

[

(T − t)−1

∫

Rd

[

∣

∣h
(

Γ1/2(t, T )z
)

− h(0)
∣

∣

(

1 + |z|2
)

exp
(

−
|z|2

2

)

]

dz.

+

∫ T

t

∫

Rd

[

(s− t)−1
∣

∣ϕ
(

s,Γ1/2(t, s)z
)∣

∣

(

1 + |z|2
)

exp
(

−
|z|2

2

)

]

dz ds

]

.

(5.5)

Proof. Note first from Proposition 5.2 and from the Lebesgue differentiation theorem that for every

s ∈]t, T ] and every bounded and measurable function ℓ : [0, T ] × R
d → R, the mapping:

L(s, .) : x ∈ [t, T ] × R
d 7→

∫

Rd

ℓ(s, y)ψ(c)(t, x; s, y)dy,

is differentiable with respect to x, and that, for every i ∈ {1, . . . , d}, the partial derivative with

respect to xi writes:

∀x ∈ R
d,

∂L

∂xi
(s, x) =

∫

Rd

ℓ(s, y)
∂ψ(c)

∂xi
(t, x; s, y)dy. (5.6)

25



Recall now the following classical change of variables:

∀(s, x) ∈]t, T ] × R
d, t < s,

∫

Rd

η(y)ψ(c)(t, x; s, y)dy

= (2π)−d/2

∫

Rd

η
(

x+ Γ1/2(t, s)z
)

exp
(

−
|z|2

2

)

dz,

(5.7)

for every bounded and measurable function η from R
d into R. Refer again to Proposition 5.2 and

derive from (5.6) and (5.7) that:

∀(s, x) ∈]t, T ] × R
d, |∇xL(s, x)| ≤ C(s− t)−1/2

∫

Rd

∣

∣ℓ
(

x+ Γ1/2(t, s)z
)∣

∣|z| exp
(

−
|z|2

2

)

dz.

Apply again the Lebesgue differentation theorem and conclude that the mapping:

L′ : (t, x) ∈ [0, T ] × R
d 7→

∫ T

t

∫

Rd

ℓ(s, y)ψ(c)(t, x; s, y)dy,

is differentiable with respect to x. Derive also the corresponding representation formula for ∇xL
′.

Apply now this procedure to h and ϕ and deduce from (5.3) the representation formula for the

derivatives of v. Apply the same strategy to establish (5.4), but replace in addition v by v− h(x), x

being fixed.

The representation formula for the second order derivatives of v is proved in a similar way in the

case ϕ(·, 0) = 0. Indeed, the Hölder continuity of ϕ ensures:

∣

∣ϕ
(

s,Γ1/2(t, s)z
)
∣

∣ =
∣

∣ϕ
(

s,Γ1/2(t, s)z
)

− ϕ(s, 0)
∣

∣ ≤ C ′(s− t)β/2|z|β ,

and the Lebesgue differentiation theorem still applies. �

Focus for the moment on the statement of Corollary 5.3. If the supremum norm of h and ϕ are

explicitly controlled in terms of known parameters, (5.4) directly applies. However, if h or ϕ are just

controlled in Lp, for a given p ≥ 1, the story is rather different. Specify in this frame the meaning of

h and ϕ in the sequel: the role of h is often played by the boundary condition G (and more generally

by the solution u), which is bounded, but, ϕ always refers to the derivatives ∇2
x,xu, for which no

pointwise estimate is available (cf. Theorem 3.5). The following lemma then gives a relevant bound

of the quantities appearing in (5.4) for such a ϕ:

Lemma 5.4 Keep assumption and notation of Theorem 5.1. For every p ≥ 1, there exists a constant

C5.4(p), depending only on d, λ0,Λ0 and p, such that for every η ∈ Lp(Rd):

∀(t, s, x) ∈ [0, T [×[0, T ] × R
d, t < s,

∣

∣

∣

∣

∫

Rd

η
(

x+ Γ1/2(t, s)z
)

|z| exp
(

−
|z|2

2

)

dz

∣

∣

∣

∣

≤ C5.4(p)(s − t)−d/(2p)

[
∫

Rd

|η|p(z)dz

]1/p

.

Proof. Under the assumption of the statement, derive from the Hölder inequality and from the

change of variables y = x+ Γ1/2(t, s)z:
∫

Rd

η
(

x+ Γ1/2(t, s)z
)

|z| exp
(

−
|z|2

2

)

dz

≤ C(p)

[
∫

Rd

|η|p
(

x+ Γ1/2(t, s)z
)

dz

]1/p

≤ C(p)(s− t)−d/(2p)

[
∫

Rd

|η|p(y)dy

]1/p

.

(5.8)
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5.3 First Example: Schauder’s Theory for the Partial Derivatives of Order Two

Here is the first example of the pertubation strategy:

Theorem 5.5 The linear PDE:














∂w1

∂t
(t, x) +

1

2

d
∑

i,j=1

ai,j

(

t, x, u(t, x)
) ∂2w1

∂xi∂xj
(t, x) = 0, (t, x) ∈ [0, T [×R

d,

w1(T, x) = G(x), x ∈ R
d,

(5.9)

admits a unique bounded strong solution w1 ∈ C1,2([0, T ]×R
d,R), with bounded and uniformly Hölder

continuous derivatives of order one in t and of order one and two in x. Moreover, there exist two

constants β5.5 > 0 and C5.5, depending only on known parameters α0, d,H, λ,Λ and T , such that:

∀ (t, x) ∈ [0, T [×R
d, |∇2

x,xw1(t, x)| ≤ C5.5(T − t)−1+β5.5 . (5.10)

Remark 5.6 This result is a specific consequence of the Schauder theory devoted to partial dif-

ferential equations with Hölder continuous coefficients. We refer to Friedman [11], Chapter III,

Section 2 and Chapter IV, for a complete overview of this subject, and choose to give, for the sake

of completeness, the detailed proof of Theorem 5.5.

Proof (Theorem 5.5) Existence and uniqueness of a bounded strong solution to the PDE (5.9)

is a direct consequence of Corollary 4.2 and Theorem 4.6, Section 4, Chapter VI in Friedman [13]

(see also Theorem 9.2.2, Section 2, Chapter IX in Krylov [25] to establish the boundedness and the

Hölder continuity of the derivatives up to the boundary). Turn now to (5.10) and assume w.l.o.g that

x reduces to 0. Note, as done in (5.1), that the solution w1 to (5.9) can be written as the solution of

the following PDE:







































∂w1

∂t
(t, x) +

1

2

d
∑

i,j=1

ai,j

(

t, 0, u(t, 0)
) ∂2w1

∂xi∂xj
(t, x)

+
1

2

d
∑

i,j=1

[

ai,j

(

t, x, u(t, x)
)

− ai,j

(

t, 0, u(t, 0)
)] ∂2w1

∂xi∂xj
(t, x) = 0, (t, x) ∈ [0, T [×R

d,

w1(T, x) = G(x), x ∈ R
d.

Deduce from Corollary 5.3 with c(·) = a(·, 0, u(·, 0)) (recall that a is assumed to be smooth and is

thus Hölder continuous, see the beginning of Section 5):

|∇2
x,xw1(t, 0)|

≤ C(T − t)−1

∫

Rd

[

∣

∣G
(

Γ1/2(t, T )y
)

−G(0)
∣

∣

[

1 + |y|2
]

exp
(

−
|y|2

2

)

]

dy

+ C

∫ T

t

[
∫

Rd

[

∣

∣a
(

s,Γ1/2(t, s)y, u(s,Γ1/2(t, s)y)
)

− a
(

s, 0, u(s, 0)
)
∣

∣

∣

∣∇2
x,xw1

(

s,Γ1/2(t, s)y
)
∣

∣

× (s− t)−1
[

1 + |y|2
]

exp
(

−
|y|2

2

)

]

dy

]

ds.

Recall now that G and a(·, ·, u(·, ·)) are Hölder continuous in x with respect to known Hölder param-

eters (see Assumptions (A.3) and (A.4) and Theorem 3.2). Thus, for a suitable constant γ > 0,
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depending on known parameters quoted in the statement of Theorem 5.5:

|∇2
x,xw1(t, 0)|

≤ C(T − t)−1

∫

Rd

[

(T − t)γ/2|y|γ
[

1 + |y|2
]

exp
(

−
|y|2

2

)

]

dy

+ C

∫ T

t

[
∫

Rd

[

(s− t)γ/2|y|γ
∣

∣∇2
x,xw1

(

s,Γ1/2(t, s)y
)
∣

∣(s− t)−1
[

1 + |y|2
]

exp
(

−
|y|2

2

)

ds

]

dy

≤ C(T − t)−1+γ/2 + C

∫ T

t
(s− t)−1+γ/2 sup

y∈Rd

[

|∇2
x,xw1(s, y)|

]

ds.

(5.11)

Note first that the last term of the above inequality is finite: thanks to the regularity of a, ∇2
x,xw1

is bounded on the whole set [0, T ] × R
d. Note also that (5.11) holds in fact for every starting point

(t, x) ∈ [0, T [×R
d and deduce that:

sup
x∈Rd

|∇2
x,xw1(t, x)| ≤ C(T − t)−1+γ/2 + C

∫ T

t
(s− t)−1+γ/2 sup

y∈Rd

[

|∇2
x,xw1(s, y)|

]

ds. (5.12)

Multiply both sides by (T − t)1−γ/2 and derive that:

sup
x∈Rd

[

(T − t)1−γ/2|∇2
x,xw1(t, x)|

]

≤ C + C sup
s∈[t,T [

sup
y∈Rd

[

(T − s)1−γ/2|∇2
x,xw1(s, y)|

]

× (T − t)1−γ/2

∫ T

t
(s− t)−1+γ/2(T − s)−1+γ/2ds.

(5.13)

Recall now that:

∀β1, β2 ∈]0, 1[,

∫ T

t
(s− t)−1+β1(T − s)−1+β2ds = (T − t)−1+(β1+β2)Γ(β1)Γ(β2)/Γ(β1 + β2). (5.14)

Thus, from (5.13) and (5.14):

sup
x∈Rd

[

(T − t)1−γ/2|∇2
x,xw1(t, x)|

]

≤ C + C(T − t)γ/2 sup
s∈[t,T [

sup
y∈Rd

[

(T − s)1−γ/2|∇2
x,xw1(s, y)|

]

.

Deduce for T − t small enough that:

sup
x∈Rd

[

(T − t)1−γ/2|∇2
x,xw1(t, x)|

]

≤ C.

Finally, following Theorems 3.1 and 3.2, we can prove that the supremum norm of w1 is bounded by

Λ (maximum principle for parabolic equations) and we can estimate the Hölder continuity of w1 in

terms of known parameters (Krylov and Safonov theory). In particular, for every t ∈ [0, T [, w1(t, ·)

satisfies, up to a modification of the underlying parameters H and α0, the same properties as G. As

a consequence, the strategy applied above can be also achieved on every subinterval of [0, T [ of small

length. This is sufficient to complete the proof. �

6 L
p-Estimates of the Second-Order Derivatives

We now investigate the second order derivatives of u in x.
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6.1 Calderón and Zygmund Inequalities

The strategy relies on the Calderón and Zygmund inequalities. These estimates are well-known in

the probabilistic literature since they play a fundamental role in the proof of the solvability of the

martingale problem of Stroock and Varadhan. For a complete overview, we refer to Appendix A in

Stroock and Varadhan [37]. We just remind the reader of the following statement:

Theorem 6.1 Keep assumption and notation of Theorem 5.1, and assume in addition that h van-

ishes and that the support of the function ϕ is bounded. Then, the function v satisfies:

∀p ≥ 1,

∫ T

0

∫

Rd

∣

∣∇2
x,xv(t, x)

∣

∣

p
dt dx ≤ C6.1(p)

∫ T

0

∫

Rd

|ϕ(t, x)|pdt dx,

where C6.1(p) just depends on d, λ0,Λ0 and p.

About the Proof. Note that the version stated in Stroock and Varadhan holds for ϕ ∈ C∞
0 ([0, T ]×

R
d). Using a standard regularization argument, derive from the Schauder theory (see e.g. Friedman

[11], Chapter III, Section 2, and Chapter IV, and Krylov [25], Chapter IX) that Theorem 6.1 is still

valid for ϕ ∈ C
β/2,β
0 ([0, T ] × R

d), β > 0. �

A commom trick consists in localizing the Calderón and Zygmund inequalities (see Gilbarg and

Trudinger [15], Chapter IX, Section 5 for the original argument for elliptic equations):

Corollary 6.2 Keep assumption and notation of Theorem 5.1, and assume in addition that h van-

ishes. For given ρ > 0 and θ ∈]0, 1[, set θ′ ≡ (1 + θ)/2. Then, the function v satisfies for all p ≥ 1

and z ∈ R
d:

(1 − θ)2pρ2p

∫ T

0

∫

B(z,θρ)

∣

∣∇2
x,xv(t, x)

∣

∣

p
dt dx

≤ C6.2(p)

[

(1 − θ′)2pρ2p

∫ T

0

∫

B(z,θ′ρ)
|ϕ(t, x)|pdt dx+

∫ T

0

∫

B(z,θ′ρ)
|v(t, x)|pdt dx

]

+
1

2
(1 − θ′)2pρ2p

∫ T

0

∫

B(z,θ′ρ)
|∇2

x,xv(t, x)|
pdt dx,

where C6.2(p) depends only on d, λ0,Λ0 and p.

Proof. Fix θ ∈]0, 1[ and set θ′ ≡ (1 + θ)/2. Assume without loss of generality that z = 0 and focus

on the product ṽ : (t, x) ∈ [0, T ] × R
d 7→ η(x)v(t, x) for a given cutting function η : R

d → [0, 1] such

that:


















∀x ∈ R
d, |x| ≤ θρ, η(x) = 1,

∀x ∈ R
d, |x| ≥ θ′ρ, η(x) = 0,

∀x ∈ R
d, θρ ≤ |x| ≤ θ′ρ, |∇xη(x)| ≤ k(1 − θ)−1ρ−1,

∀x ∈ R
d, θρ ≤ |x| ≤ θ′ρ, |∇2

x,xη(x)| ≤ k(1 − θ)−2ρ−2,

(6.1)

for a suitable constant k (not depending on θ). Note that ṽ satisfies the PDE:

∂ṽ

∂t
(t, x) +

1

2

d
∑

i,j=1

ci,j(t)
∂2ṽ

∂xi∂xj
(t, x)

= −η(x)ϕ(t, x) +
1

2

d
∑

i,j=1

[

ci,j(t)
∂2η

∂xi∂xj
(x)v(t, x)

]

+ 〈∇xη(x), c(t)∇xv(t, x)〉

≡ −ϕ̃(t, x), (t, x) ∈ [0, T [×R
d.

(6.2)
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Derive in particular from Theorem 6.1:

∫ T

0

∫

B(0,θρ)
|∇x,xv(t, x)|

pdt dx

≤

∫ T

0

∫

B(0,θ′ρ)
|∇x,xṽ(t, x)|

pdt dx

≤ C

∫ T

0

∫

B(0,θ′ρ)
|ϕ̃(t, x)|pdt dx

≤ C

∫ T

0

∫

B(0,θ′ρ)

[

ηp(x)|ϕ(t, x)|p
]

dt dx

+ C

∫ T

0

∫

B(0,θ′ρ)

[

|v(t, x)|p|∇2
x,xη(x)|

p + |∇xv(t, x)|
p|∇xη(x)|

p
]

dt dx.

Thanks to (6.1), derive that:

∫ T

0

∫

B(0,θρ)
|∇x,xv(t, x)|

pdt dx ≤ C

∫ T

0

∫

B(0,θ′ρ)
|ϕ(t, x)|pdt dx

+ C(1 − θ)−2pρ−2p

∫ T

0

∫

B(0,θ′ρ)
|v(t, x)|pdt dx

+ C(1 − θ)−pρ−p

∫ T

0

∫

B(0,θ′ρ)
|∇xv(t, x)|

pdt dx.

(6.3)

Recall now the following Gagliardo-Nirenberg inequality (see e.g. Theorem 10.1, page 27, in Friedman

[12], see also page 125 in Nirenberg [31], and Theorem 7.28, Chapter VII, in Gilbarg and Trudinger

[15]):

Lemma 6.3 Let q1, q2 ∈ [1,+∞]. Assume that p−1 writes p−1 = (2q1)
−1 + (2q2)

−1. Then, there

exists a constant C6.3(p, q1, q2), depending only on p, q1 and q2, such that for every smooth function

ℓ from B(0, 1) into R:

∫

B(0,1)
|∇xℓ(x)|

pdx ≤ C6.3(p, q1, q2)

[
∫

B(0,1)

[

|∇2
x,xℓ(x)|

q1 + |∇xℓ(x)|
q1 + |ℓ(x)|q1

]

dx

]p/(2q1)

×

[
∫

B(0,1)
|ℓ(x)|q2dx

]p/(2q2)

.

(6.4)

Apply Lemma 6.3 with q1 = q2 = p. Note then from the Young inequality and from a scaling

argument that for every r > 0 and for every smooth function ℓ : B(0, r) → R:

∀ε > 0,

∫

B(0,r)
|∇xℓ(x)|

pdx ≤ εrp

∫

B(0,r)
|∇2

x,xℓ(x)|
pdx+C(p)(1 + ε−1)r−p

∫

B(0,r)
|ℓ(x)|pdx, (6.5)

where C(p) refers only to p.

Multiply (6.3) by (1 − θ)2pρ2p and apply (6.5) with ℓ = v(t, ·), ε = (22p+1C)−1(1 − θ)p and r = θ′ρ
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(note that r−p ≤ 2pρ−p since θ′ ≥ 1/2):

(1 − θ)2pρ2p

∫ T

0

∫

B(0,θρ)
|∇x,xv(t, x)|

pdt dx

≤ C(1 − θ)2pρ2p

∫ T

0

∫

B(0,θ′ρ)
|ϕ(t, x)|pdt dx

+ C

∫ T

0

∫

B(0,θ′ρ)
|v(t, x)|pdt dx+ C(1 − θ)pρp

∫ T

0

∫

B(0,θ′ρ)
|∇xv(t, x)|

pdt dx

≤ C(1 − θ)2pρ2p

∫ T

0

∫

B(0,θ′ρ)
|ϕ(t, x)|pdt dx

+ C ′

∫ T

0

∫

B(0,θ′ρ)
|v(t, x)|pdt dx+ 2−(2p+1)(1 − θ)2pρ2p

∫ T

0

∫

B(0,θ′ρ)
|∇2

x,xv(t, x)|
pdt dx.

Note that 1 − θ′ = (1 − θ)/2. Thus:

(1 − θ)2pρ2p

∫ T

0

∫

B(0,θρ)
|∇x,xv(t, x)|

pdt dx

≤ C ′(1 − θ′)2pρ2p

∫ T

0

∫

B(0,θ′ρ)
|ϕ(t, x)|pdt dx

+ C ′

∫ T

0

∫

B(0,θ′ρ)
|v(t, x)|pdt dx+

1

2
(1 − θ′)2pρ2p

∫ T

0

∫

B(0,θ′ρ)
|∇2

x,xv(t, x)|
pdt dx.

(6.6)

This completes the proof. �

6.2 Proof of Theorem 3.5

We now prove Theorem 3.5. We start with the following property:

Theorem 6.4 There exists a constant β6.4 ∈]0, 1], depending only on α0, d,H, λ,Λ and T , such that:

∀p ≥ 1, R ≥ 1, δ ∈]0, T ], z ∈ R
d,

∫ T

T−δ

∫

B(z,R)

[

(T − s)1−β6.4
(

|∇xu(s, y)|
2 + |∇2

x,xu(s, y)|
)]p

ds dy

≤ C6.4(p)δR
d,

where C6.4(p) depends only on α0, d,H, λ,Λ, p and T .

Proof of Theorem 6.4. Fix p ≥ 1 and assume w.l.o.g that z = 0. Consider first the following

linear parabolic equation:

{

∂tw2(t, x) + Ltw2(t, x) = −g(t, x), (t, x) ∈ [0, T [×R
d,

w2(T, x) = 0, x ∈ R
d,

(6.7)

where Lt denotes the second-order differential operator:

Lt =
1

2

d
∑

i,j=1

ai,j

(

t, x, u(t, x)
) ∂2

∂xi∂xj
, (6.8)

and g the non-linear term:

∀(t, x) ∈ [0, T ]×R
d, g(t, x) = f

(

t, x, u(t, x),∇xu(t, x)
)

+
〈

b
(

t, x, u(t, x),∇xu(t, x)
)

,∇xu(t, x)
〉

. (6.9)
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Recall then that the coefficients a(t, x, u(t, x)) and g(t, x) are Hölder continuous with respect to (t, x)

(see Subsection 2.2). Deduce in particular without any difficulties that (6.7) admits a unique bounded

solution w2 ∈ C1,2([0, T ] × R
d) with bounded and uniformly Hölder continuous partial derivatives of

order one in t and of order one and two in x (see again Friedman [13], Chapter VI, Section 4, Corol-

lary 4.2 and Theorem 4.6, and Krylov [25], Chapter IX, Section 2, Theorem 9.2.2).

Note that the function u − w2 matches the solution w1 to the PDE (5.9) (cf. Theorem 5.5). Re-

call that the supremum and Hölder norms of w1 can be estimated in terms of known parameters.

Thus, referring to Theorem 5.5 (local boundedness of the derivatives of order two of w1), there exist

constants β > 0 and C (depending on parameters quoted in Theorem 3.5), such that:

∀(t, x) ∈ [0, T [×R
d,

{

|w1(t, x)| ≤ C,

|∇2
x,xw1(t, x)| ≤ C(T − t)−(1−β/2),

∀(t, x), (t′, x′) ∈ [0, T [×R
d, |w1(t, x) − w1(t

′, x′)| ≤ C
[

|t− t′|β/2 + |x− x′|β
]

.

(6.10)

Hence, for 0 < γ ≤ β/2:

∀R > 0, ∀δ ∈]0, T ],

∫ T

T−δ

∫

B(0,R)

[

(T − s)1−γ |∇2
x,xw1(s, y)|

]p
ds dy ≤ C(p)δRd. (6.11)

Thus, it remains to focus on the second-order derivatives of w2. Multiply w2(t, x) by (T − t)1−γ and

derive that:

∂

∂t

[

(T − t)1−γw2(t, x)
]

+ Lt

[

(T − t)1−γw2(t, x)
]

= −(T − t)1−γg(t, x) + (1 − γ)(T − t)−γw2(t, x).

Thanks to Theorems 3.1 and 3.2 and to (6.10), w2 is bounded and uniformly Hölder continuous on

[0, T ] × R
d. Thus, for γ ≤ β/2 ∧ α2:

∀(t, x) ∈ [0, T [×R
d, (T − t)−γ |w2(t, x)| = (T − t)−γ |w2(t, x) − w2(T, x)| ≤ C. (6.12)

Recall (cf. (5.2)) that L0
t =

1

2

d
∑

i,j=1

ai,j(t, 0, u(t, 0))
∂2

∂xi∂xj
and write w2 as the solution of:

∂

∂t

[

(T − t)1−γw2(t, x)
]

+ L0
t

[

(T − t)1−γw2(t, x)
]

= −(T − t)1−γg(t, x) +
[

L0
t − Lt

][

(T − t)1−γw2(t, x)
]

+ (1 − γ)(T − t)−γw2(t, x).

The function g and the partial derivatives of order two of w2 are Hölder continuous. Note also that

(T − t)−γw2(t, x) writes

(T − t)−γw2(t, x) = −(T − t)−γ

∫ T

t

∂w2

∂t
(s, x)ds.

Since the coefficients of (6.7) are differentiable with respect to x, with bounded and Hölder continuous

derivatives, it is well seen that ∂w2/∂t is bounded and differentiable with respect to x, with bounded

derivatives. In particular, the function (T − ·)−γw2 is Hölder continuous.

Hence, we can apply Corollary 6.2 on the interval ]T−δ, T [ to v = (T−·)1−γw2 and c = a(·, 0, u(·, 0)).
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Derive for all ρ > 0, θ ∈]0, 1[ and θ′ = (1 + θ)/2:

(1 − θ)2pρ2p

∫ T

T−δ

∫

B(0,θρ)
(T − t)(1−γ)p

∣

∣∇2
x,xw2(t, x)

∣

∣

p
dt dx

≤ C(1 − θ′)2pρ2p

∫ T

T−δ

∫

B(0,θ′ρ)
(T − t)(1−γ)p|g(t, x)|pdt dx

+ C(1 − θ′)2pρ2p
d

∑

i,j=1

∫ T

T−δ

∫

B(0,θ′ρ)

[

(T − t)(1−γ)p

×
∣

∣ai,j(t, x, u(t, x)) − ai,j(t, 0, u(t, 0))
∣

∣

p∣
∣∇2

x,xw2(t, x)
∣

∣

p
]

dt dx

+ C(1 − θ′)2pρ2p

∫ T

T−δ

∫

B(0,θ′ρ)
(T − t)−γp|w2(t, x)|

pdt dx

+ C

∫ T

T−δ

∫

B(0,θ′ρ)
(T − t)(1−γ)p|w2(t, x)|

pdt dx

+
1

2
(1 − θ′)2pρ2p

∫ T

T−δ

∫

B(0,θ′ρ)
(T − t)(1−γ)p|∇2

x,xw2(t, x)|
pdt dx

≡ T (1) + T (2) + T (3) + T (4) + T (5).

(6.13)

Recall first that the mapping a(·, ·, u(·, ·)) is uniformly Hölder continuous in x with exponent α2 (see

Assumptions (A.3) and (A.4) and Theorem 3.2). Thus,

T (2) ≤ C(1 − θ′)2pρ(2+α2)p

∫ T

T−δ

∫

B(0,θ′ρ)
(T − t)(1−γ)p

∣

∣∇2
x,xw2(t, x)

∣

∣

p
dt dx. (6.14)

Deduce from (6.12) that:

T (3) ≤ Cδ(1 − θ′)2pρ2p+d, T (4) ≤ C(p)δρd. (6.15)

Turn finally to T (1) and note to this end from Assumption (A.1) (growth of b and f), from Theorem

3.1 (boundedness of u) and from (6.9) (definition of g) that:

T (1) ≤ C(1 − θ′)2pρ2p

∫ T

T−δ

∫

B(0,θ′ρ)
(T − t)(1−γ)p

(

1 + |∇xu(t, x)|
2p

)

dt dx. (6.16)

Apply now Lemma 6.3 to the triple (2p, p,+∞). Deduce from the Young inequality and from a

scaling argument that for every smooth function ℓ : B(0, r) → R, r > 0:

∫

B(0,r)
|∇xℓ(x)|

2pdx ≤ C(p) sup
x∈B(0,r)

[

|ℓ(x)|p
]

[
∫

B(0,r)
|∇2

x,xℓ(x)|
pdx+ r−2p+d sup

x∈B(0,r)

[

|ℓ(x)|p
]

]

, (6.17)

where C(p) refers only to p. Apply (6.17) to ℓ = u(t, ·)−u(t, 0) and deduce from the Hölder continuity

of u that:
∫

B(0,θ′ρ)
|∇xu(t, x)|

2pdx ≤ Cργp

[
∫

B(0,θ′ρ)
|∇2

x,xu(t, x)|
pdx+ ρ−2p+d

]

. (6.18)

Assume from now on that ρ ≤ 1. Derive then from (6.16) and (6.18) that:

T (1) ≤ C(1 − θ′)2pρ(2+γ)p

[
∫ T

T−δ

∫

B(0,θ′ρ)
(T − t)(1−γ)p|∇2

x,xu(t, x)|
pdt dx+ δρ−2p+d

]

. (6.19)
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Deduce finally from (6.13), (6.14), (6.15) and (6.19):

(1 − θ)2pρ2p

∫ T

T−δ

∫

B(0,θρ)
(T − t)(1−γ)p

∣

∣∇2
x,xw2(t, x)

∣

∣

p
dt dx

≤ (1 − θ′)2pρ2p(Cργp + 1/2)

∫ T

T−δ

∫

B(0,θ′ρ)
(T − t)(1−γ)p|∇2

x,xw2(t, x)|
pdt dx

+ C(1 − θ′)2pρ(2+γ)p

∫ T

T−δ

∫

B(0,θ′ρ)
(T − t)(1−γ)p|∇2

x,xu(t, x)|
pdt dx+ Cδ.

Referring to (6.11), note that the above expression still holds with ∇2
x,xu instead of ∇2

x,xw2:

(1 − θ)2pρ2p

∫ T

T−δ

∫

B(0,θρ)
(T − t)(1−γ)p

∣

∣∇2
x,xu(t, x)

∣

∣

p
dt dx

≤ (1 − θ′)2pρ2p(Cργp + 1/2)

∫ T

T−δ

∫

B(0,θ′ρ)
(T − t)(1−γ)p|∇2

x,xu(t, x)|
pdt dx+ Cδ.

Deduce that:

ρ2p sup
θ∈]0,1[

[

(1 − θ)2p

∫ T

T−δ

∫

B(0,θρ)
(T − t)(1−γ)p

∣

∣∇2
x,xu(t, x)

∣

∣

p
dt dx

]

≤ ρ2p(Cργp + 1/2) sup
θ′∈]0,1[

[

(1 − θ′)2p

∫ T

T−δ

∫

B(0,θ′ρ)
(T − t)(1−γ)p|∇2

x,xu(t, x)|
pdt dx

]

+ Cδ.

Choose ρ = ρ1 ≡ min(ρ0, 1), with Cργp
0 + 1/2 = 3/4, and derive that:

ρ2p
1 sup

θ∈]0,1[

[

(1 − θ)2p

∫ T

T−δ

∫

B(0,θρ1)
(T − t)(1−γ)p

∣

∣∇2
x,xu(t, x)

∣

∣

p
dt dx

]

≤ Cδ.

Thus:
∫ T

T−δ

∫

B(0,ρ1/2)
(T − t)(1−γ)p

∣

∣∇2
x,xu(t, x)

∣

∣

p
dt dx ≤ Cδρ−2p

1 ≡ C ′δ. (6.20)

Note in fact that (6.20) holds for every ball B(z, ρ1/2), z ∈ R
d. Choose then R ≥ 1. Since the ball

B(0, R) can be covered by N ×⌊Rρ−1
1 ⌋d balls of radius ρ1/2 (for a suitable universal integer N ≥ 1),

deduce:
∫ T

T−δ

∫

B(0,R)
(T − t)(1−γ)p

∣

∣∇2
x,xu(t, x)

∣

∣

p
dt dx ≤ C ′δRd.

Apply again (6.17) and complete the proof of Theorem 6.4. �

The complete statement of Theorem 3.5 (estimate of ∂tu) then follows from Theorem 6.4 and from

the growth properties of b, f and σ (cf. Assumption (A.1)).

7 Pointwise Estimates of the Gradient

7.1 Proof of Theorem 3.3

We now turn to the proof of Theorem 3.3. For the sake of simplicity, we assume that x reduces

to 0: we thus aim to control the quantity ∇xu(t, 0), for t ∈ [0, T [. To this end, we follow again

the pertubation argument exposed in Section 5, but, introduce in addition a localization procedure.

Denote indeed by η ∈ C∞(Rd, [0, 1]) a smooth function matching 1 on the ball B(0, 1) and vanishing
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outside the ball B(0, 2). The function ũ ≡ uη satisfies the following PDE (cf. (6.9) for the definition

of g):










































































∂ũ

∂t
(t, x) +

1

2

d
∑

i,j=1

ai,j

(

t, 0, u(t, 0)
) ∂2ũ

∂xi∂xj
(t, x)

+
1

2

d
∑

i,j=1

[

ai,j

(

t, x, u(t, x)
)

− ai,j

(

t, 0, u(t, 0)
)] ∂2ũ

∂xi∂xj
(t, x)

+η(x)g
(

t, x, u(t, x),∇xu(t, x)
)

− 〈∇xη(x), a
(

t, x, u(t, x)
)

∇xu(t, x)〉

−
1

2
u(t, x)

d
∑

i,j=1

ai,j

(

t, x, u(t, x)
) ∂2η

∂xi∂xj
(x) = 0, (t, x) ∈ [0, T [×R

d,

ũ(T, x) = G(x)η(x), x ∈ R
d.

(7.1)

Define for the sake of simplicity:

g̃(t, x) ≡
1

2

d
∑

i,j=1

[

ai,j

(

t, x, u(t, x)
)

− ai,j

(

t, 0, u(t, 0)
)] ∂2ũ

∂xi∂xj
(t, x)

+ η(x)g
(

t, x, u(t, x),∇xu(t, x)
)

− 〈∇xη(x), a
(

t, x, u(t, x)
)

∇xu(t, x)〉

−
1

2
u(t, x)

d
∑

i,j=1

ai,j

(

t, x, u(t, x)
) ∂2η

∂xi∂xj
(x),

G̃(x) ≡ G(x)η(x).

(7.2)

Derive from Assumption (A.1) (growth of the coefficients) and Theorem 3.1 (boundedness of u)

that:

∀(t, x) ∈ [0, T [×R
d, |g̃(t, x)| ≤ C

(

1 + |∇xu(t, x)|
2 + |∇x,xu(t, x)|

)

1{|x|≤2} (7.3)

Apply now Corollary 5.3 to c(·) = a(·, 0, u(·, 0)) and deduce for every t ∈ [0, T [:

∣

∣∇xu(t, 0)| =
∣

∣∇xũ(t, 0)|

≤ C

[

(T − t)−1/2

∫

Rd

[

∣

∣G̃
(

Γ1/2(t, T )z
)

− G̃(0)
∣

∣|z| exp
(

−
|z|2

2

)

]

dz

+

∫ T

t
(s− t)−1/2

[
∫

Rd

∣

∣g̃
(

s,Γ1/2(t, s)z
)
∣

∣|z| exp
(

−
|z|2

2

)

dz

]

ds

]

≡ T (1) + T (2).

(7.4)

Note now from Assumption (A.1) (growth of σ and G), from the boundedness of u (see Theorem

3.1) and from Assumption (A.4) (Hölder continuity of G) that:

T (1) ≤ C(T − t)−(1−α0)/2. (7.5)

Turn now to T (2). Set γ = β6.4 (cf. Theorem 6.4) and consider a small real ε > 0. Deduce

from Lemma 5.4 (with p = d/ε) and from the Hölder inequality that there exists a constant C(ε),
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depending only on ε and on known parameters quoted in the statement of Theorem 3.3, such that:

T (2) ≤ C(ε)

∫ T

t

[

(s− t)−(1+ε)/2

[
∫

B(0,2)
|g̃(s, z)|d/εdz

]ε/d]

ds

= C(ε)

∫ T

t

[

(s− t)−(1+ε)/2(T − s)−(1−γ)

[
∫

B(0,2)
(T − s)d(1−γ)/ε|g̃(s, z)|d/εdz

]ε/d]

ds

≤ C(ε)

[
∫ T

t
(s− t)−d(1+ε)/(2(d−ε))(T − s)−d(1−γ)/(d−ε) ds

]1−ε/d

×

[
∫ T

t

∫

B(0,2)
(T − s)d(1−γ)/ε|g̃(s, z)|d/εdz ds

]ε/d

.

(7.6)

Deduce finally from (5.14), (7.3) and Theorem 6.4 that for ε small enough :

T (2) ≤ C(ε)(T − t)1−ε/d−(1+ε)/2−(1−γ)(T − t)ε/d

= C(ε)(T − t)−(1+ε)/2+γ .
(7.7)

Choose ε small enough so that:

T (2) ≤ C(T − t)−(1−γ)/2. (7.8)

From (7.4), (7.5) and (7.8), we complete the proof. �

7.2 Proof of Theorem 3.4

We finally prove the Hölder estimate of the gradient. We first investigate the regularity of ∇xu with

respect to the variable x.

Lemma 7.1 There exist two constants β7.1 > 0 and C7.1, depending only on known parameters

quoted in Theorem 3.4, such that for every t ∈ [0, T [, for every (x, y) ∈ R
d:

|∇xu(t, x) −∇xu(t, y)| ≤ C7.1(T − t)−(1−β7.1)/2|x− y|β7.1 .

Proof. Assume w.l.o.g that y = 0. Note from Theorem 3.3 (local boundedness of the gradient)

that we can also assume that |x| ≤ 1. This permits to truncate the function u as done in the latter

subsection: multiply u by a smooth cutting function η : R
d → [0, 1], matching 1 on B(0, 1) and

vanishing outside B(0, 2). Recall then that the product ũ ≡ uη satisfies the following PDE:















∂ũ

∂t
(t, x) +

1

2

d
∑

i,j=1

ai,j

(

t, 0, u(t, 0)
) ∂2ũ

∂xi∂xj
(t, x) + g̃(t, x) = 0, (t, x) ∈ [0, T [×R

d,

ũ(T, x) = G̃(x), x ∈ R
d,

(7.9)

where g̃ and G̃ are given by (7.2) and satisfy (7.3). According to Theorem 5.1 and to Corollary 5.3

(with c(·) = a(·, 0, u(·, 0))), the partial derivative ∂ũ/∂xi(t, x), for a given i ∈ {1, . . . , d}, writes for

every (t, x) ∈ [0, T [×R
d:

∂ũ

∂xi
(t, x) =

∫

Rd

G̃(z)
∂ψ(c)

∂xi
(t, x;T, z)dz +

∫ T

t

∫

Rd

g̃(s, y)
∂ψ(c)

∂xi
(t, x; s, y)dy ds

≡ R(1, x) +R(2, x).

(7.10)

Note that x ∈ R
d 7→ R(1, x) is differentiable with respect to x. Using the Hölder continuity of the

boundary condition G̃ (cf. Assumptions (A.1) and (A.4)), we can show as in the proof of Theorem
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5.5, see (5.11) (the proof is even easier in this new case since the operator is space-independent),

that:

∀x ∈ R
d, |∇xR(1, x)| ≤ C(T − t)−(1−γ),

for a suitable constant γ > 0. Moreover, following the proof of Theorem 3.3 (Estimate of T (1), cf.

(7.5)), it is well-seen that:

∀x ∈ R
d, |R(1, x)| ≤ C(T − t)−(1−γ)/2.

Thus, for every ε ∈]0, 1]:

∀x ∈ R
d, |R(1, x) −R(1, 0)| ≤ 2 sup

y∈Rd

|R(1, y)|1−ε sup
y∈Rd

|∇xR(1, y)|ε|x|ε

≤ C(T − t)−(1−γ)(1−ε)/2−(1−γ)ε |x|ε

= C(T − t)−(1−γ)(1/2+ε/2)|x|ε.

Hence, for a new γ > 0:

∀x ∈ B(0, 1), |R(1, x) −R(1, 0)| ≤ C(T − t)−(1−γ/2)/2|x|γ . (7.11)

Turn now to R(2, x). Note that R(2, x) writes:

R(2, x) ≡

∫ T

t
r(2, s, x)ds, r(2, s, x) ≡

∫

Rd

g̃(s, y)
∂ψ(c)

∂xi
(t, x; s, y)dy. (7.12)

For every s ∈]t, T [, the function r(2, s, ·) is differentiable with respect to x. Following Corollary 5.3

and Lemma 5.4, for every ε ∈]0, 1], there exists a constant C(ε), depending only on ε and on known

parameters quoted in the statement of Theorem 3.4, such that:

|∇xr(2, s, x)| ≤ C(ε)(s − t)−1

∫

Rd

|g̃(s, x+ zΓ1/2(t, s))|(1 + |z|2) exp
(

−
|z|2

2

)

dz

≤ C(ε)(s − t)−(1+ε/2)

[
∫

Rd

|g̃(s, z)|d/εdz

]ε/d

.

(7.13)

Derive from (7.13) that:

∀x ∈ R
d, |r(2, s, x) − r(2, s, 0)| ≤ C(ε)|x|(s − t)−(1+ε/2)

[
∫

Rd

|g̃(s, z)|d/εdz

]ε/d

.

Note again from Corollary 5.3 and Lemma 5.4 that:

∀x ∈ R
d, |r(2, s, x)| ≤ C(ε)(s − t)−(1+ε)/2

[
∫

Rd

|g̃(s, z)|d/εdz

]ε/d

.

Derive finally that:

∀x ∈ R
d, |r(2, s, x) − r(2, s, 0)| ≤ C(ε)|x|ε(s− t)−ε(1+ε/2)−(1+ε)(1−ε)/2

[
∫

Rd

|g̃(s, z)|d/εdz

]ε/d

.

Thus,

∀x ∈ R
d, |r(2, s, x) − r(2, s, 0)| ≤ C(ε)|x|ε(s− t)−1/2−ε

[
∫

Rd

|g̃(s, z)|d/εdz

]ε/d

. (7.14)

Derive from (7.12) and (7.14) that for every x ∈ R
d:

|R(2, x) −R(2, 0)| ≤ C(ε)|x|ε
∫ T

t
(s− t)−1/2−ε

[
∫

Rd

|g̃(s, z)|d/εdz

]ε/d

ds.
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Follow (7.6) and (7.7) in the proof of Theorem 3.3 and deduce for a suitable γ > 0:

∀x ∈ B(0, 1), |R(2, x) −R(2, 0)| ≤ C(T − t)−(1−γ/2)/2|x|γ . (7.15)

Thanks to (7.10), (7.11) and (7.15), we complete the proof. �

We are now in position to complete the proof of Theorem 3.4. It is sufficient to prove the following

Lemma:

Lemma 7.2 There exist two constants β7.2 > 0 and C7.2, depending only on known parameters

quoted in Theorem 3.4, such that for every t, s ∈ [0, T [, t < s, and for every x ∈ R
d:

|∇xu(t, x) −∇xu(s, x)| ≤ C7.2(T − s)−(1−β7.2)/2(s − t)β7.2/2.

Proof. We assume w.l.o.g that x = 0. Note from Theorem 3.3 that we can also assume that

s− t ≤ T − s.

From (7.10), for i ∈ {1, . . . , d}, ∂ũ/∂xi(t, 0), writes (replace the boundary condition G̃ at time T by

the boundary condition ũ(s, ·) at time s):

∂xi
ũ(t, 0) =

∫

Rd

ũ(s, z)
∂ψ(c)

∂xi
(t, 0; s, z)dz +

∫ s

t

∫

Rd

g̃(r, z)
∂ψ(c)

∂xi
(t, 0; r, z)drdz.

Note from the definition of ψ(c) (cf. Theorem 5.1) that
∂ψ(c)

∂xi
(t, 0; s, z) = −

∂ψ(c)

∂zi
(t, 0; s, z). Thus,

deduce from an integration by parts that:

∂ũ

∂xi
(t, 0) =

∫

Rd

∂ũ

∂xi
(s, z)ψ(c)(t, 0; s, z)dz +

∫ s

t

∫

Rd

g̃(r, z)
∂ψ(c)

∂xi
(t, 0; r, z)drdz.

Thus,

∂ũ

∂xi
(t, 0) −

∂ũ

∂xi
(s, 0) =

∫

Rd

[ ∂ũ

∂xi
(s, z) −

∂ũ

∂xi
(s, 0)

]

ψ(c)(t, 0; s, z)dz

+

∫ s

t

∫

Rd

g̃(r, z)
∂ψ(c)

∂xi
(t, 0; r, z)drdz

≡ S(1) + S(2).

(7.16)

Derive from Lemma 7.1 that:

|S(1)| ≤ C(T − s)−(1−γ)/2

∫

Rd

|z|γψ(c)(t, 0; s, z)dz

≤ C(T − s)−(1−γ)/2(s − t)γ/2.

(7.17)

Deal now with S(2). Following (7.4) and (7.6) and applying Lemma 5.4, we claim for a small ε > 0:

|S(2)| ≤ C

∫ s

t
(r − t)−1/2

[
∫

Rd

∣

∣g̃
(

r,Γ1/2(t, r)z
)
∣

∣|z| exp
(

−
|z|2

2

)

dz

]

dr

≤ C(ε)

∫ s

t

[

(r − t)−(1+ε)/2

[
∫

B(0,2)
|g̃(r, z)|d/εdz

]ε/d]

dr

≤ C(ε)

[
∫ s

t
(r − t)−d(1+ε)/(2(d−ε))(T − r)−d(1−γ)/(d−ε)dr

]1−ε/d

×

[
∫ s

t

∫

B(0,2)
(T − r)d(1−γ)/ε|g̃(r, z)|d/εdz dr

]ε/d

.
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Deduce now from Theorem 3.5 that:

|S(2)| ≤ C(ε)(T − s)−(1−γ)

[
∫ s

t
(r − t)−d(1+ε)/(2(d−ε))dr

]1−ε/d

×

[
∫ T

t

∫

B(0,2)
(T − r)d(1−γ)/ε|g̃(r, z)|d/εdz dr

]ε/d

≤ C(ε)(s − t)1−ε/d−(1+ε)/2(T − s)−(1−γ)(T − t)ε/d

(7.18)

Since s− t ≤ T − s, deduce that T − t ≤ 2(T − s) and thus, from (7.18), that:

|S(2)| ≤ C(ε)(s− t)ε/2(s− t)1/2−ε/d−ε(T − s)−(1−γ)(T − s)ε/d

≤ C(ε)(s− t)ε/2(T − s)−1/2−ε+γ .
(7.19)

As ε → 0, the exponent of T − s in (7.19) tends to −1/2 + γ. Thus, for ε small enough and for a

new γ > 0:

|S(2)| ≤ C(s− t)γ/2(T − s)−(1−γ)/2. (7.20)

From (7.16), (7.17) and (7.20), we complete the proof. �

8 Conclusion

As a conclusion, we discuss the strong solvability of the FBSDE (E) and gives further applications

of the estimates given in Section 3.

Strong Solvability of (E). It is rather clear that the FBSDE (E) is not strongly solvable since

the forward equation reduces in the decoupled case (i.e. b = b(t, x) and σ = σ(t, x)) to a SDE with

Hölder continuous coefficients. It is then well-known that this one may not be solvable in the Itô

sense: see for instance Barlow [3] for a suitable example.

However, if the coefficient σ is assumed to be continuous in (t, x) and Lipschitz continuous with

respect to the variable x, the SDE (4.1) turns out to be strongly solvable (see e.g. Veretennikov

[40]): then, the solution built in Subsection 4.2 is also strong. In this frame, the method given in

Subsection 4.3 still applies and permits to prove that uniqueness also holds in the pathwise sense.

Decoupling Strategy. This remark emphasizes, to our own point of view, the deep power of

the “decoupling strategy” introduced in the earlier four step scheme of Ma, Protter and Yong [30].

Indeed, it both applies to the strong setting and to the weak point of view. In short, the crucial point

just consists in establishing a suitable integrability property of the singularities of the derivatives of

u of order one and two in x in the neighbourhood of the final bound T .

Possible Extensions. Two possible extensions of this work are conceivable. Mention first that our

result extends to the multi-dimensional setting provided that the growth of f be at most linear in z

(cf. to the Heinz example in Krylov [24], page 197, for a counter-example to the unique solvability of

a system of PDEs with a quadratic coefficient f). In this frame, the components of the process Y are

taken in S2
t,T (Ω, {F},P,Rq), q standing for the dimension of the backward component. Note however

that the proof differs from the usual multi-dimensional strategy: due to the Girsanov procedure

in Subsection 4.3, the exponential transform Φ is still necessary to establish the weak uniqueness

property.

In the same way, there is no difficulty to weaken the Lipschitz property of f in y to a monotonicity

assumption as usually considered in the theory of BSDEs. In particular, according to our previous

discussion on strong solutions to (E), we are able to recover the earlier result proved in Delarue [7]
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with the so-called “induction method”.

Note also that the bounds of the second order derivatives of order two can be strengthened if the

coefficients a, b and f are Hölder continuous with respect to the variables t and x. In this case,

the solution u to the PDE (E) belongs to C1,2([0, T [×R
d,R) and the pertubation strategy used to

establish Theorem 5.5 applies and provides the following pointwise estimate of ∇2
x,xu:

∀(t, x) ∈ [0, T [×R
d, |∇2

x,xu(t, x)| ≤ C(T − t)−1+α6 , (8.1)

for a suitable α6 > 0. We refer to Guatteri and Lunardi [16] for a similar control under stronger

assumptions on the coefficients.

Of course, such a bound as (8.1) would simplify in a very sensible way the proof of the unique

solvability of (E): taking into account the integrability of the bound in the neighbourdhood of T , a

classical Gronwall argument would apply without any difficulties.

For this reason, we feel that the estimate (8.1) could be applied to different asymptotic problems

involving the FBSDE representation. Recall indeed from Subsection 2.4 that the “decoupling strat-

egy” permits to deal with homogenization and numerical approximation. We then guess that these

works could be extended to the Hölder framework.

References

[1] Antonelli, F. (1993): Backward-forward stochastic differential equations. Annals of Applied

Probability, 3, pp. 777–793.

[2] Antonelli, F., Ma, J.(2003): Weak solution of Forward-Backward SDE’s. Stochatsic Analysis

and Application, 21, n.3, pp. 493–514.

[3] Barlow, M. T. (1982). One-dimensional stochastic differential equations with no strong solution.

J. London Math. Soc., 26, pp. 335–347.

[4] Bass, R. F. (1998): Diffusions and elliptic operators. Probability and its Applications. Springer-

Verlag, New York.
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