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Nonhomogeneous Cahn-Hilliard fluids

Franck Boyer!,

Mathématiques Appliquées de Bordeaux, Université Bordeaux 1,
351 cours de la libération, 33405 Talence cedex, France.

Abstract - In this paper we are interested in the study of a model of nonhomogeneous diphasic incompressible
flow. More precisely we consider a coupling of a Cahn-Hilliard and an incompressible Navier-Stokes equations where
the densities of the phases are different.

For this general model we can only show the local existence of a unique very regular solution and the existence of
weaker solutions is still an open problem. But, if we look at the behavior of the system when the densities tends to
be equal (slightly nonhomogeneous case), we show the existence of a global weak solution and of a unique local strong
solution (which is in fact global in 2D). Finally, an asymptotic stability result for the metastable states is shown in this
slightly nonhomogeneous case.

Résumé - Dans cet article, nous nous intéressons a 1’étude d’un modele d’écoulement diphasique nonhomogene
incompressible. Plus précisément, nous considérons un couplage entre une équation de Cahn-Hilliard et une équation
de Navier-Stokes incompressible dans lesquelles les densités des deux phases sont différentes.

Pour ce modele général, nous pouvons seulement prouver I’existence locale et 'unicité d’une solution tres réguliere,
Pexistence de solutions plus faibles restant un probléme ouvert. En revanche, si nous considérons le comportement du
systéme quand les densités des deux phases sont proches (cas faiblement nonhomogene), nous montrons ’existence de
solutions faibles globales et I’existence et 'unicité de solutions fortes locales (en fait globales en dimension 2). Enfin,
un résultat de stabilité asymptotique des états métastables est établi, toujours dans le cas faiblement nonhomogeéne.

Key Words - Nonhomogeneous Navier-Stokes equation, Cahn-Hilliard equation.
AMS Subject Classification - 76D05, 35Q30, 76T99

1 Introduction

We are interested in the study of incompressible diphasic nonhomogeneous mixtures flows. We have pro-
posed in [6] the derivation of a mathematical model for this kind of problem based on the coupling of a
Cahn-Hilliard equation and a nonhomogeneous Navier-Stokes equation. The origine of this derivation lies on
the works of numerous authors [9], [11], [14], [23]. We obtain the following equations for the order parameter
, the potential u and the velocity v. If p{, p9 denote the densities of the two phases, the system reads

o +ove-ar (55 (515))
— +v.Vp — div \Y =0, 1.1
ot 4 p=() ~ \p=(¥) (-1
p=—alp+F'(p), (1.2)
p=(¥) 9Y 4 v.vv) - 2div (n(p)D(v)) + Vp = pVe + Loy ( a ) +p=(p)g (1.3)
ot 4 p= () ’
div (v) =0, (1.4)
the normalized density being theoretically given by
-1
pe(p) = 14—, (1.5)
with 0 o
Ip7 — P

max(p, p3)’
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representing the relative difference of the densities. Let us remark that we always have ¢ < 1. We recall the
usual notation for the deformation tensor D(u) = (Vu + Vul)/2.

For this model, we are not able to prove in general (even if € = 0) that the values of the order parameter
remain in the physical-meaningful interval [—1, 1]. This implies that if we define p. with (1.5) we are not sure
that the density remains always positive. That’s the reason why, we introduce a slightly different definition
for p., namely it must be a function satisfying :

pe(1) =1, |pllec <€

and
0 < p1 < p:=(p) < p2,

independtly of €. One may keep in mind that p. is essentially given by (1.5) into the interval [—1,1].

In some particular cases, for example (see [5]) if € = 0 and if we introduce a degenerate mobility (diffusion
coefficient) in the model, then we can show that the values of the order parameter stay in the physical-
meaningful interval [-1,1]. Hence, we know a posteriori that the density is really given by (1.5). Such a
qualitative result on the values of ¢ is also expected even in the case € > 0, if one consider a logarithmic
Cahn-Hilliard potential F' of the form

F(p) =01 —¢*) + (1 +p)log(1 + @) + (1 — ¢) log(1 — o),

which is a physical-relevant choice for F' (see [14]).

From now on, we suppose that the dimension of the space is d = 2 or d = 3. Our following study takes place
again [5] in the case of the channel under shear which corresponds to the physical experimental conditions,
but our results are still true if we consider a bounded regular domain with homogeneous boundary conditions.
Consequently, the previous system is provided with periodicity condition in the x, y-directions and on the other
boundaries, with the conditions

dp Op
i 0, (1.6)
v=Ue, on{z=1}, v=—-Ue; on {z =-1}. (1.7
U
z=1
Q
z=-1
%
-U

We shown in [6] that the numerical simulations for this model give physical-relevant results. Moreover, the
homogeneous case (¢ = 0, p:(¢) = 1) has been studied in [5], where it is shown the existence of weak solutions,
the existence and uniqueness of strong solutions and an asymptotic stability result of the metastable states of
the potential.

Our first objective is to study the existence of solutions to the system (1.1)-(1.4), (2.1)-(2.2). For any range
of admissible values of £, we can only show (theorem 3.1) the existence and uniqueness of local very strong
solutions. In this case, the existence of weak solutions is still an open question.
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Nevertheless, in the slightly nonhomogeneous regime, that is to say if we suppose the smallness of the
parameter €, we can drasticaly improve the results in this direction. More precisely, we show (theorem 3.2)
that if € is small enough, then there exists a global weak solution uniformly bounded in time in the appropriate
spaces. Furthermore, this solution converges, up to an extraction of a subsequence, towards a weak solution
of the homogeneous problem.

Moreover we show (theorem 3.3), always under the condition that e is small enough, the existence and
uniqueness of strong solutions (global in 2D and local in 3D) for regular initial data.

Finally, we establish (theorem 3.4) the same kind of asymptotic stability result than the one shown in [5],
always in the slightly nonhomogeneous case. We point out that the asymptotic stability of the metastable
stationnary states is shown even in 3D.

2 Notations and fundamental results

e Functional spaces

Throughout this paper we denote by |.|, the usual norm on the space L?, and by ||.||s the usual norm on
H*. We let 17 = (L?)* and H* = (H*)" the norms on these spaces being always denoted by |.|, and ||. |,

We have to introduce the natural homogeneous boundary conditions associated to the problem (1.1)-
(1.4),(1.6)-(1.7). Namely, we introduce, if it makes sense, the conditions

0 oA
 is periodic in the z, y-directions and satisfies 8_:,/0 = 8—1/90 =0on {z = £1}. (2.1)
u is periodic in the z, y-directions and satisfies u = 0 on {z = £1}. (2.2)

Then we define classicaly (see [5]) the spaces
®, = {p € H?, satisfying (2.1)},

Vs ={u € H?, div (u) = 0, satisfying (2.2)}.
As usual, the space Vp will be denoted by H, and the space V; by V. In the definition of H one must replace

the boundary condition u = 0 by u.v = 0. Moreover, we will denote by P the orthogonal projector in 1.? (£2)
onto the space H.

e Stokes operator
We recall (see [26]) that for any u € Vs, there exists a unique (Au,7) € H x (H'/R) such that

Au = —Au + Vr,

the operator u — Awu is a non bounded operator in H of domain V5 named the Stokes operator. Moreover,
there exists C1,Ca,Cs > 0 such that for any u € V> we have

Cillull2 < [Aulz < Collull2,
17| 2 = < Csllull2, (2.3)
|7 2/r < Cslull-

e Fundamental inequalities
We do not recall the classical Sobolev embeddings that we will use in this paper. We also refer to 3], [18]
for the different interpolation results we need in our estimates.
Let us recall the Poincaré’s and Korn’s inequalities : there exists Cy, Cs > 0 such that for any u € V, we
have
Callully < [Vuly < C5|D(u)l2- (2.4)
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1
Furthermore, for any f € L! we denote by m(f) = — [ f its average. Then [25] there exists Cs > 0 such
1€
Q

that

lle —=m(p)[lr < Cs|Vepla, Voo € 1, 25)

llo = m(@)lls+2 < Cel|Agplls, Vs >0, Vo € Dypn.
As a consequence we will systematically use inequalities like

IVellL = IV(e = m(e)ll < lle — m(p)ll2 < Cs|Apls.
Finally we will use the two following Agmon’s inequalities in dimension d = 3
1o
[flo < CUFIZ NI, for any f e H?, (2.6)

1 1
[flo < CIFIZIfN3, for any f € H®.

e Stationnary solutions
One can remark that, if we suppose that g is derived from a potential G, that is to say g = VG, then we
can construct a family of stationnary solutions of (1.1)-(1.4)

[e's) U _

PP =w, vg, =Uze,, (2.7)

where w is a given constant. We will study the asymptotic stability of this solution in the section 3.3, but
introducing these solutions is necessary in order to state precisely the results we present here.

e Mean conservation for the Cahn-Hilliard equation
We state here a fundamental property of the Cahn-Hilliard equation and more generally of the equation
(1.1) with the boundary conditions (1.6).

Lemma 2.1
Any solution ¢ of (1.1) satisfying (1.6), with a velocity field v(t) € H, satisfies

0

which implies that
m(p(t)) = m(po), as long as ¢ exists.

The proof is straightforward by choosing the constant function 1 as a test function for (1.1). We will use this
property systematically in the following.

e General assumptions

To conclude with, we make precise here the assumptions we make in the whole paper. First, we assume
that the external forces term g lies in L? and is independent of the time. In some sections, we will suppose in
addition that g is a gradient of a potential of H'. Furthermore, we assume that the viscosity 7 is a regular
function (typically of C'-class) which satisfies

0<m <nlz) <, foranyzx e R.
As far as the Cahn-Hilliard potential is concerned, we make the following assumptions (see [5])
Fis of C? class, and F >0, (2.8)

3 Fi,Fy, > 0 such that |F'(z)| < Fi|z|P + By, |F"(2)| < Fi|z|P~! + F», Vz € R,
where 1 <p<3ifd=3and1<p<+ooifd=2



Nonhomogeneous Cahn-Hilliard fluids

Vv € R, 3 F3(y) > 0, Fy(y) > 0 such that,
(z —7)F'(z) > F3(y)F(z) — Fa(y), Vz € R,
3 Fy > 0 such that F"'(z) > —Fs, Vz € R. (2.11)

(2.10)

As aremark, we point out that the condition F' > 0 is not restrictive because a physical-meaningful potential
is always bounded from below and adding a constant to the potential F' does not change the equations.

Those assumptions allows the choice of a classical Cahn-Hilliard potential : polynomial of second order
with positive dominant coefficient (see [12], [25]).

3  Slightly nonhomogeneous mixtures

In the case of general nonhomogeneous mixtures we can only show a result of local existence of strong
solutions. In fact, the solutions we obtain are stronger than the one obtained in the sequel (theorem 3.3).
This is not surprising because, when we do not suppose that ¢ is small, our system of equations (1.1)-(1.4) is
very strongly non-linear in particular in the Cahn-Hilliard equation (1.1). We give without proof the following
result

Theorem 3.1
For any U > 0, vo € vZ, +V and ¢o € ®4, there exists a time T > 0 depending on U ||lvo||1 and ||@oll4 such
that for any € < 1 there exists a unique strong solution (¢, ,ve) of the problem (1.1)-(1.4) on [0, T, satisfying

loellLoe (0,7504) + 1@z lz2(0,7506) + lve — vl 0,13v) + lve — v || L2(0,75v) < O

Ha% O,

<C,

ot Ot 2o,y ~

4

L2(0,T;®1)
where C' > 0 is independent of €.

Remark 3.1
The proof consists essentially in using slightly differently the same estimates than in the proofs of theorems
3.2 and 3.3.

In order to prove more significant results, we are interested, until the end of the paper, in the study of the
system (1.1)-(1.4) when the parameter ¢ is small. That is to say that we suppose that the densities of the two
phases are close enough. Under those conditions we can show the existence of global weak solutions and the
existence and uniqueness of strong solutions (global in 2D and local in 3D).

3.1 Weak solutions

In this subsection we are concerned with the proof of the following result.

Theorem 3.2
Let U > 0, v§ € vgo + H, ¢f € ®3, such that m(yj) is independent of e. We suppose that there exists Cy
independent of € satisfying ) \

o6l + |v5l2 + &2 [l@allz + e #ll@glls < Co.
There exists g9 depending only on Co, U and F such that for any € < € there exists a weak solution (¢.,ve)
of (1.1)-(1.4) on Rt for the initial data (p§,v§), satisfying

3 3
loellimnnn + el @esas) + € lclimmrag +lloe = vl <€ (31)
1|0 NEr
||§05||L2(t0,t0+7;<1>3) +e2 8t5 +e4 6t5
L2(to,to+7sL?) L2(to to+73HY) (3.2)

+ ||/J’5”L2(to,to+7';q>1) + ||UE - Ugo||L2(to,to+T;V) < C(T),fOI‘ any to > 0, 7 >0,
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0 peve
ot

HP < M(T), (3.3)

L2(0,T5V})
2

where C, C(1), M(T) are independent of € and ty.
Moreover, if
w5 = wo, and v5 — vg, when e — 0,

then, up to an extraction of a subsequence, (v.,y.) converges towards a solution of the homogeneous limit
system (e = 0).

Remark 3.2

The following proof is given in the case d = 3. The estimates in the 2D case are made in the same way but
are in fact much easier to derive. As an exception, we point out the difference between the 2D and 3D case
for the inequalities (3.28) and (3.29).

Proof :

In the following, it is convenient to drop the superscript € for ¢§,v§ and the subscript € for ¢., v, and pe,
but one may keep in mind that any quantity which is estimated may depend on €.

We will only give the formal derivation of the energy estimates (3.1)-(3.3). The complete proof can be
performed through an approximation process (a Galerkin method for example [5]) and we will make precise
at the end of the proof, the way we obtain the compactness necessary to take the limit in the approximated
solutions.

From now on, we are mainly concerned with the proof of the estimates (3.1)-(3.2).

e Step 1: Following [20], for A > 0 we introduce a vector field vy as in [5] depending only in z and
satisfying :

div (’U)\) = 0,
’U,\.V’U)\ = 0,
|'Uk|oo - ]-7
loals < CA,
1
[Vurls < Cﬁ(l + %), (3.4)
and
vy =e; on{z=1}, vy=—e, on{z=-1}

Now we let v = u + Uv, so that u satisfies homogeneous boundary conditions (2.2) and the equations

X% . 1 7 _
Bt +u.Vp — div (;V (;)) = —Uwvy.Vop, (3.5)
p=—alp+ F'(p), (3.6)
p (%—1: + u.Vu) —2div (n(¢)D(w)) + Vp = =Upvr.Vu — Upu.Vuy + 2U div (n(¢)D(vy))
1— 2
+uVp+e 480 \Y (%) + pg, (3.7
div (u) = 0. (3.8)

Just as in the remaining of this paper, we have denoted by p the density p(y).
o Step 2:
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We first try to get classical energy estimates for these equations. We take the inner product of (3.5) in L?
with g and of (3.7) in L? with u, and we get

& (81vei+ v+ [ F@) +2 [ aipwp+ [ Lo
O
/pgu+ /|u|2< +qu> (3.9

—U/(Z(UA.V¢)M—ULp(u.VUA)U—U/S;(’U)\.V’U.)u

+2U / n(9)D(vs) : D(w).

Remark 3.3 8y
One can easily see that this last estimate is useless if we do not have an estimate for ——. In fact, this point

is the main difference in comparison with the classical nonhomogeneous fluids model [19], [24] : as our model
takes into account exchange phenomena at the interface, the density does not satisfy the local conservation
equation

dp
ot

[ (o (G +uva)) =g ([ o) =5 [ o (52 +:5).

where the last term does not vanish.

+v.Vp =0,

so that we have

Nevertheless, we have global conservation of the order parameter (and of the density if it is defined by
(1.5)) in the sense that (lemma 2.1)
0
— =0.
o (/g “")

That’s the reason why we have to multiply (3.5) by 86—(5 to get after integration

2

dp 690
2+/Q(u.Vg0) 5t +U/(v,\.ch Bt

f7 () v

By ialy? ooty [35(55) 5% oo

__4d(a l Agl|? +a/|

-%Z&iﬁw %‘f Joo" () <o

9%
ot
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0
We see another time that this last estimate requires to have some information concerning Va—f. In this
0
direction, we multiply (3.5) by 5 (H> and integrate on Q to have
p

&

i (L3 C)) = Lot (5) oo Lo

+U
%f gt <u> - /9 p;((i))
)

)
v
52 ()L 5 )L e ()

o o o] 5
-] (- =) - L5  () %
ks \— o, 8 5 e ] e
[ G -=6) - L3 e () &

We use the assumptions (2.8)-(2.11) on the function F, to deduce (see [5])

1 1
C Fy(m(go)) + p—glvulg > ﬁlvulg + C|Vel3 + ClAg|3 + CFs(m(¢0)) (/Q F(s@)) , (3.12)
2 2
and

_Q/AWL/FI ‘ (3.13)

<C+plh) <CA+|Vels),

because in any cases H' C LP. Finally we have

2

()

1 A 1 A
< WIWI% + Ce?|uVel; < WIWI% + Ce*|Vul3|Ap|3 + Ce?m(u)?| Vel
2 2

] =

(3.14)
1 A A A
< 2|V + C[Va Al + C* (14 Vel Vil
2
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Summing (3.9), ex (3.10), €2 x (3.11), (3.12) and (3.14) we finally get the energy estimate we need

2
+ez )
2

()
1

WOl

+C|A¢|§+C</QF(<,0)>+E 88;024—53 / ‘ %f
< C Fy(m(po)) + Ce*|Vul3| Apl3 + Ce*m(u)*|Vel3
+Z/Q(1—<p2)v (%) .u+/95;(((:;))uV<p.Vu+/ng.u

—Ea/Qpp;((i))A Ve V%—f+ 1/Qp’(<p)IUI2U-VsD+%/Qp'(<p ¥ (3.15)

e [y vea [ LGt -2 [ 1V (55) Vor

e (5 HSecte, o | 010

L] () B O

—U/ ua.-Vo)u — U/ qu,\)u—U/ v,\Vuu-i-ZU/ D(u)

—6U/ UAVLpaa——EZU/ (vr.V) 5 (M)

e Step 3: We introduce the following functionals

2

d (o 5 1 9 / ol 2
o (e 1 F SEEIN
a (2 IVels + 2|\/ﬁu|2 + o (¥) +52 ’ ¥

1
+2 [ 9QID@ + 15| Val + +CIVol3
Q P2

2
a 1 a|l 3| 1 "
ye(t) = SIVel3 + 5 Pu2+/F(<p)+€—‘—Acp +e2|—=V (—) :
()= 51Vl + A+ | 3,8 ey ()]
2o(t) = m|Vul} + |Vl + 1 ‘v (%) 2+c|w|2+c|Acp|2+c(/ Fe)) +2[%2 Cera|gdef
€ =M v n - Y P o |
27 4p2 4 AR 2 2 Q ot |, p2| Ot|,
Then we can prove the following result.
Lemma 3.1
There exists 3,C > 0 such that for any 0 < ¢ < 1, we have
3 2 B
e2|VAyg|; < Clye +u2), (3.16)
3
e1]Apl; < C(y= +9P), (3.17)
and
Ye < Cze. (3.18)

Proof (of the lemma): We have from the equation (3.6)

Ap=(-p+F (),
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and so

1 U 1p F'"(y)
VAp=—=pv [#) - 2By, + Wy
v o’ (p) ap Pt o v

from which we deduce

2 2
VA <C v(ﬁ) +022 B9y +OIVe3 +C [ PP vP
P/ 2 p 2 Q
2 2
<clv (g) Lol (%) A + OVl + Clol22|Vel2
2 2
p\|? w\|? :
<clv (;) Loy (;) AQf2 + C|Vel2 + OVl Agl2.
2 2

Finally we have
3 1
e3|VApf; < O(ye +ey? +e2y?),

so that we get (3.16) with 8 = max(2,p) > 1. In order to show (3.17) we integrate by parts and we use (3.16),

1 1
el|Apl2 <& / Vol [VAG| < £4Vila [VAGh < 5|Vol} + 1< VAQ]
Q

B+1 5
<Cye +y=" ) <Oy +42)-
The third point is clear from the definitions of y. and z.. ]
Remark 3.4
- The first point of the lemma give us a control on the H®-norm of ¢ in terms of y. which is not a priori
obvious.

- The second point will be very useful in the sequel. Indeed, if we look at the definition of y. we have
e2|Apf3 < Cy,
whereas (3.17) let us estimate |Ap|3 with a smaller power of & (namely £% ) under the condition that we
allow the presence of powers of y. greater than 1.

- The third point of the lemma is the key-point of the end of the proof, when an ordinary differential
equation argument is used to conclude. Estimates (3.12)-(3.14) are just derived in order for this control
of y. by z. to be true.

Let us go back to the proof of Theorem 3.2. We obtain from (3.15) the differential inequality
d
Ve + 2. < CFy(m(po)) + Ceyeze + Ce>(1 +yP)ze + I1 + ... + I, (3.19)

where I, ..., Iog denote the twenty integrals of the right-hand side of (3.15). From now on, we wish to estimate
each of these terms in function of €, y. and z..
Using (3.8) and the boundary conditions on u, the first term reads after integration by parts
14
—— (p—m(p)Veu
Q

@ €
——uVou| ==
/Q pp)"v? ‘ 2 |Jq p(p)
< Ce(lple + [mpo))IVelz|n — m(p)]e|ule
< Ce(|Vuls + [Vul3)(IVel3 + [Velz) < Ce(ye +y2) 2.

£
|| < 5

(3.20)

10
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We notice that |p'(¢)| < & to obtain, with the Sobolev embedding H2 C L? (in dimension d < 3)
1| < p%(lu —m(p)ls + Im(w)))|Vels|Viulz < Ce[Vula(1+ [Vulz + [Vel5) | Vels
< Cel IV ila (L +|ul + [Vel)) (19013 ) (112012 (3:21)
< Cs%yézg + Cez,.
The third term is obviously estimated as follows using (3.18) and Young’s inequality

1 1
|IS| < P2|g|2|u|2 <Cy2 <C+ ng'

(3.22)
Using the previous lemma and particularly (3.16) we obtain

|| < Ce?

0
va—f\ Voli| Al < C&?
2

1 0 11
< Ces (gi vi‘ |A¢|2) (5%|VA<p|2) < Cetzl (ye +1yP)z
at |,

Using another time that |p'(¢)| < £ we get

0
v92| 1Acklvah,
2 (3.23)

151 < 5 [ 1l*19] < Celufly V4l

< CEHUH?%”VSOHI < Celul2|Vul3|Apl (3.24)

< CVe|Vul(lul3 + e|Apl3) < Ceyez..
The sixth and seventh terms are estimated as follows

|16|506/|u| < Celuf?
Q

ot
690 ‘

6t

Dol
at |,

< C’5|u|2|Vu|2

dpl|?
ot

1
6g05
< Cef Vulped | =2
e Iulz(l ulse at |,

) (3.25)

2 2
3

+ e2 R

2

dp
ot Vot

0
< 6%|u|2 <|Vu|§ +e€ _cp‘

3 1
< Cesyé ze,
2

6<p
Bt

1
> < Ceiylz..

0
|[I7] < elula|Vola | 55| < Ce[Vul2|Vel2 |V

4

< Cei|Voly <|Vu|§ +e3

2 (3.26)

Oy
Vot

2
Using (3.16), we get

690%

I3 < A —
|8| 22| S0|3 6t2

6_90 < Ce2|Ay|s| VAl v

_90
ot

ool

< et (e} v agl, )( 9¢ s

1
o), ) (¢
ot |,
<ng( %+ ‘;)
< Ye TYe | 2

In order to estimate the next term, we must derive estimates for |[VF(¢)|2 and |VF’(¢)|2. More precisely,
thanks to the assumption (2.9) on F' we have

) 1A (3.27)

11
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e Ifd=2,0ord=3 and p <2, thanks to the embedding H' C L%

IVE(o)]3 = /Q [F' (@) *|Vel* < CVel; + C/Q [0 — m(po) 7| Vep|*

(3.28)
< CIVpl3 + OVl |Agl.
e If d =3 and 2 < p < 3, thanks to the embedding H3 » C L3P
IVE(p)l3 < Vol + CVel5?|AplS. (3:29)
In the same way, in both dimensions d = 2 and d = 3, we have thanks to the embedding H' C L??—3
IVF'(9)l3 =/ [F" (@) *|Vel* < OVl +C/ | — m (o) [P~ | V|
Q (3.30)
< C|Vels + C[Ve[3P~*|Agl;.
We deduce from these estimates that
F'(y) dyp , ¢ 2 e
Iy <el|V V—| < Ce|VF \Y Ce*|VF V—
n<e|v (28| [952| < cavr ol |V5e| + V@)L voE |
p—1 d¢ 2 » ¢ (3.31)
< Ce(|Volz + Vel [Apl2) |[Vo- o, + 0 (Volz + Vel |Apl) |V o '
2

We can now write

t\:

[T10| < 5

o) o et [eveg ()

We estimate separately the two terms A and B of this last inequality, using (3.17) and (3.28)-(3.30). The
following computations are made in the case d = 3 and 2 < p < 3, but one clearly have the same kind of
estimates in the other case

< Ce %(1+ys )zE+Ce4(1+ys)zE<Ce4( +y§)z5.
" ! !
[ o (Sl EQI@) 2
Q

dp
ot

o
|A| < 2 [uls| VE' ()2 +e3uls| VE(¢)l2

8t

6
dy

< Ol vul} (E%WF'(SO)\z +HVFR) (V57|

Lf 3 +1 p-1 3
50|u|;( H(Vold + [Vl HAplE) + 5 (Vel} + Veli ' |Ag) )) (ei v

1 1
2|A90|§> .

p+1+8

<CSS:’JE (:‘/s +ye 7 )ze,

3 1 0Ayp 3 P () Oy
< g2 —u. RS 2 .
|B|_5a/9pchp 5 —I—Ea/chpAcp t‘

s 1 dyp p(p) 0 ‘
e2q Vi{-uV )V— +eda /u.V
/g (p 7)Y bt Q o8 Y2 (p) Bt

P () 9v| . 3 /1 9¢| | 3
/Q(u.Vgo)p( )V Vat e Q;V(u.VLp).VE +e2a

IN

IA
ml
S

pp) O
u.VoA i
/Q oY R (p) ot

5 0
< Cef|Vpl3uls 5 8—‘;’

VEL +Ce? [V (u.V)|a

< cet (<102 (IVulae? [

0 5
v—“"\ + Ce ule| VololAgl: |7

2
090
t |,

X%
ot

) +Ced |V(u.Vy)|s |V

12



Nonhomogeneous Cahn-Hilliard fluids

Moreover, with Agmon’s inequalities (2.6) and the Sobolev embedding H% C L* in both dimensions 2 and 3,
we have

1 1

IV (@.Vo)l2 < [Vul2| Voloo + [u.D?¢ls < [Vula|Apl3 VA3 + [uls| D?¢ls
1 1 1 3 1 3
< [Vulo|Apl3 [VARIF + [ul3 [Vul3 [Apl3 VA5,

so that finally, we get

1 1
|B| < Cedy.z, + Ceis (5136|Acp|22eg |VA<p|22) <|w|2e4

)

1 3 0
+oeh (febiva ) (Ivufiapst [v52) )
2
3 3 A
< Cetyeze + €76 (ye + ¥ )z
As a consequence, we get the following estimate for the tenth term
3 1 p+1+8
|[T0] < Ceto(y2 +ye 2 )ze. (3.32)
The estimates for the two next terms are straightforward
99| |00 o 2\ (2|00l
I1| < Ce? Vols < Cei [ |Vop|2ei|Ap|2 2 \V——
il < et |52 952w < 0et (volfetian} ) (= 957 55
< CE%ys%Zs,
and
s |8 1 s 3 10| 3| 0p
Lol < C 3 < (Ces 8|A 1|\VA 3 | 1YL

< Ce®(ye +yP)2e

Using the assumption (2.9) on F' and the Sobolev embeddlngs we derive the following estimate

|Is| < Ce2 /‘ |F" (¢ |+053/‘

2

3 _ 5 1o3%
< 2 2 p—1 3 —_r p
< Ce (’)t + Ce2 / ‘ lp|P~" + Ce 5 o]
s |0 ]? . 3.35
< Ce2 52+Ce2 ‘ lols,— 3+C52 (3.35)
2 3
3|0y s |0y 6<p p—1 s |0p]? |0y »
< 2 | — —_r —_r
< Ce 5t 2+C’5 at 6t [Vol5 +Ce? ot |, v ot |, [Vols
< Ce2z€+Ce4zEy5 +Cssz5y5 .
From the Cahn-Hilliard equation (3.5) we deduce
Iz ¢ P'(e) Iz
2(5) =0 (5 vev (%)),
p) =P\ o P2 7 \p
so that,
p\|? dpl p\|?
A(8)] <o(|5e] + uBvek +ovek+2 v (4)] ).
P/ 12 ot |, P/ 13

13
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and then with the embedding Hz C L3 we get

0
‘A (H> <C (‘_go‘ + |ul2.[VAp|2 + U|Vp|s +* |V (E) |A<p|§>
P72 ot |, P72
Finally, we obtain that the next term is estimated as follows
2 : :
4| < Ce? v(ﬁ) 9¢ < Ced (vﬁ> A(H) d¢ Va_‘p
p/)lsl Ot |s P/ 12 p)la 0t |y | Oty
5 7 d¢ 2 7 )\ [90]?
< Cet v(—) (‘— + ulo|VAQl + U|Vls + ¢ v(-) |A¢|2)‘—
P/ 2 t s P72 ot |,
3 1
< Ces (Ei V(H)‘ ) 3|00 2 |yde
- P/ s ot |, ot |,
£l (< | (227 (t]e22)
s3] (111) (4%
+Ce% |Voly |V (H> el 9 es v@_«p
PJ 2 t 1y ot |,
PRE PRE
1w ( 3 e 3 2 W 1(0p|? 3 p|?
1 - |A = 1| _r
e (e )Yl (5, (45 (4

1 Bs+1 1 3 1
< Cefylz + Ca%(yg +ye? )ze + Ce®ylz + C€%(ys2 +y55+2)zs-

The next five integrals can be easily estimated as follows

sl = | [ U0 Tl = i)
< Ulvala|Vela|n — m(p)a < UXV|a|Viulz < Uz,

T ‘U [ o o]+ ‘U [y,

1
< eU|Vel2|Vul3lvaloo + Ulvala| Vul3 < eyl ze + AUz,

|i7| < Ulvyla|Vuls < AUz,

1
|I1s] < CU|D(u)|2|D(vx)2 < g% + CU?|D(va) 3,

X%
Voo .

\Lg| < e3U|vx|4|Veola (5‘31 ) <eilUMz.

14
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Nonhomogeneous Cahn-Hilliard fluids

Finally, using (3.28)-(3.30) and Agmon’s inequalities (2.6), we can conclude our estimates with the last
term in the following way if we suppose that d =2 or d =3 and p < 2

\' 8y 9y
Il < 3 . — 2
|zo|_<‘5U/QUAV<P<p)(<P)6 +e2 / VUAVSD)V(%
+eiU /mv r(v) 6—“0A¢>‘
Q ¢) 0
3 ! 680 5 4 3 690
< Ce?|urloo| VF' ()2 5t + Ce2|vp|oo|VE(9)|2 | = +C’52|VU>\|2|V<,0|0o V=
£, at at |,
3 8<p
+ Ce2|valoo| Agpl2 |V E +C ‘U/\|OO|A90|2 Bt |, (3.43)
_ 1|0 1|0
< o1 +[Vpls™) (1avhet |52 )+CE2(1+IV¢I’2’) (1avhet |52
2 2

+ Ce?

99
ot

0 1 1
voe| 1aelfvat] + ozt (1aphet v
2

y
)

<Cs(1+y5 )Z5+CE (1+y5)z5+058(1+y5 )zE+Ce4zs+Cs4yszE

d¢p
at

+ Cet (E%|AQ0|2) <|AL,0|26% \v

In the case d = 3 and 2 < p < 3, we use (3.29) instead of (3.28) and we easily get the same kind of estimate.
e Step 4: With (3.20)-(3.43), our energy estimate (3.19) reads

]. 1 1
%ys + 1% <C+Ce3z + CAUz + Ces (1 + y9)z, (3.44)

where ¢ > 0 depends only on p and .

From now on, we impose € < &1 = (160)2 and we choose X such that CA\U < so that we have

167
0 1 1 .
ays + gzs <C+Ces(1+yl)z., (3.45)

Let M, > 0 be the solution of
1
Ces(1+ M2 = —.
eH(1+ ME) = o
One can easily see that
M, — 400, when & — 0.

Moreover, thanks to the assumption on the initial data we have for a constant K > 0,
y=(0) < K(Co +U)

so that there exists €9 < €1 such that if € < &g we have

M..

DN | =

y:(0) <

Hence, if we choose now € < g, there exists a maximal time 7% €]0,+o0] such that y.(¢t) < M. for any
t € [0,T7*[. Thanks to this property and the definition of M, we infer from (3.45) that for any ¢t € [0, T*[ we
have d

1
Eyg—l——z <,

16&‘_

15
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and so using (3.18) we deduce that on [0, T*[ we have

d
%ye + Clya S C.

We easily get from this inequality the estimate

] C C
ve(t) <we(0)e 7"+ 5 S K(Co+U) +

and finally if € is small enough so that %ME >K(Co+U)+ % we have for any ¢ € [0, 7*[ the inequality

1
ys(t) S EME'

If T* is finite, this is in contradiction with the maximality of 7*. This implies that necesarily we have
T = 400,

that is to say that we have global and uniform in time estimates

C
sup y:(t) < K(Co+U) + —;,
teRt C

t+7
sup / 2:(s)ds < 16 ((K(C’o +U)+ g, + CT) ,
teR+ J¢ ¢

which implies the estimates (3.1) and (3.2).

e Step 5: As it is classical (see [5]), we only give now the sketch of the proof of (3.3) from (3.1)-(3.2) in
the case U = 0 (for simplicity).

Denoting by Q7 the set 0, T[x (2, we take a test function w € L?(0, T} V%) for the nonhomogeneous Navier-
Stokes equation to get

o pv opv op / /
—— | w = ——w = —v.w — Nvaw — 2 D) :D
/QT P ( ot ) v o Ot v /QT ot " Qr po-Vuw Qr 1()D(v)  Dw)

2
+/ chp.w—e/ ('O—V (H) .w+/ pg.w.
Qr ar 4 p Qr

Using the fact that p and % are uniformly bounded independtly of £, and the estimate

Op ‘ /
—ovw| <€
/QT ot - Jag

we see that finally

(3.46)

2
ot

ollw| <e

%
N [v]| 2o 0,75 lwl 220, TiL3(02)) < M(T)||w||L2(o,T;v%),

L2(0,T;L5(Q2))

0 pv
7 (%) w| < u@ ol
Qr 2

Indeed, the other terms in (3.46) are estimated classicaly (see [5]), the choice of the space Va being issued
from the nonlinear term. Then, by a duality argument, the estimate (3.3) is established.

e Step 6: Passing to the limit in the equations satisfied by the approximated solutions (¢n, pn,vn) is
classical (see [5]) at the condition that we have some compactness on the velocity field (vy,). This is obtained
here just like in [19].

More precisely, the compactness on ¢,, and p,, is a straightforward consequence of (3.1) and (3.2), whereas
we get from (3.2) and (3.3) that

P(pnvy) is bounded in L2(0,T; V),

16



Nonhomogeneous Cahn-Hilliard fluids

%(P(ann)) is bounded in L*(0,T;V}),

so that a classical compactness lemma [24] implies that
P(pnvy) is compact in L2(0,T; H).

Furthermore, we have from (3.2) the weak convergence of (,/ppvy,) in L?(21) and

/ |vpnvn|2=/ pn|vn|2= P(pnvn)-vn
Qr Qr Qr
=+ [ Peoo= [ ol = [ El,
Qr Qr

Qr

so that finally, we have proved the strong convergence of |/p,v, towards ,/pv in L?(Qr). This strong conver-
gence allows us to pass to the limit in the non linear terms of the Navier-Stokes equation.

Hence, the proof of the existence of the solutions is complete.

e Step 7: As far as the limit ¢ — 0 is concerned, the key-point is that, we have enough compactness on
the velocity v, thanks to the estimate (3.1), (3.2) and (3.3) which are uniform in e.

Moreover, thanks to (3.1) and (3.2), and the fact that |pl| < & we see that

pe = 1, in L®(R"; H') strong,

36/;: — 0, in L?(Q7) strong for any T' > 0,
which allow us to perform the limit in the term
Ov:
Pe Bt
in the Navier-Stokes equation. [ |

3.2 Strong solutions

In this section, we have to suppose that |pZ |, < €. This assumption is clearly reasonable because we recall
that p. is essentially linear (see (1.5)) in the physical-meaningful interval [—1,1].

Theorem 3.3

Let U > 0, vg € v +V, @y € ®3 satisfying the boundary conditions. There exists ¢g > 0 depending on
U, |lvoll1, leolls and F, such that if € < g( there exists a unique strong solution (., v.) of the problem for the
initial data (@o,vo)-

- If d = 2, this solution is global and satisfies
lpell Lo (m+;25) + [lve — vgo“Lm(R"';V) <C,

||905||L2(t0,t0+‘r;<1>4) + ”UE - Ugo||L2(to,to+T;V2)

0 .
ot

0w,
ot

< C(r), for any tg,7 > 0,

)

L2(tg,to+7;P1) H L2(tg,to+7;H)

where C and C(7) are independent of ¢.

- If d = 3, the solution is local and satisfies locally the same regularity results than for the 2D case.

17
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Proof :

In the following we concentrate our efforts on the existence part of the theorem. Indeed, the proof of the
uniqueness is straightforward (see [5]) using the energy estimates that we obtain for these strong solutions.

e Step 1: From theorem 3.2, we obtain the following estimates for the weak solutions with initial data

(0, v0) independent of ¢ :

1 3
lell oo R+;01) + €2 el Lo (R+02) + €2 el oo ®+05) + [lve — Ugo||L°°(R+;H) <C, (3.47)
1 8SD5 3 6‘Ps
leellL2(to tot+7:25) + €2 tes
o ? ot L2(to,to+7;L2) ot L2(to,to+7;H') (3.48)

+ ”,U'E”L2(to,to+r;<l>1) + ||lve — Ugo||L2(to,to+r;V) < C(r),for any to, 7 > 0.

e Step 2: Using the fact that [|pol|s and ||ug||1 are independent of £, we can derive additional energy
estimates. We recall that we have set v = u + Uwy, and that in fact we study (3.5)-(3.8) and not (1.1)-(1.4).
We first multiply (3.5) with A2¢p to obtain after integration by parts

. 1 ° .
Ap /le (—V (—>>A2 —/u.V A? —U/’U VA2, 3.49
2mllzg AV o= | uVerly O VeATe (3.49)
and one have
!
div (lv (H>) AT (H> +ia (H>
p\p P (p) p) p \p
P () (u) 1 @) o 2. PO o 2
- VoV I[E) + ZAp+2- 2y - \v/
2 T\ P2 pH(e Vel p3(<,0)| |

. Ay,
P ORIt L

)
EPYACI RS A C))

with
Ap = —al?p+ AF'(p).

Finally, using the fact that |p'|ec < € and |p"| < €, we obtain from the previous estimate
1
A A< S [ v E)1a2 —/AF’ A2
sailaets + 512%8 < 5 [ 9|7 (1) 1%+ [ |arla%
2e .
. (—4+—3) [ 9o lullazel
pl pl Q (3‘50)
€ €
25 [ (9elivulatel+ % [ 1alula’
P1 Ja P1 Ja

+ ‘/ u.VgoAzgo‘ +U‘/ UA.chAng‘.
Q Q

Then, if we denote by .Ji, ..., J; the seven terms of the right-hand side of this inequality, we have

5 < CelVelue [ ()] 18%1 < Celvaph v () 8%,
2 N 2 (3.51)
A? VA
< oA + 2w v (&)
The second term is estimated as in [5], to obtain for ¢ > 0
Jo < =A% + C|Vel3 (1 + |Vel3). (3.52)

102

18



Nonhomogeneous Cahn-Hilliard fluids

For the third term we get with (3.13)
Jz < Ce|Vlglp — m(u)ls|A%pl2 + Celm(p)||Voli|A%ps

«a 3.53
< 1o IA%l + O AplS(1 + Vi + [l (3:53)
1
The next two terms are controlled as follows
a
Ji < Ce|Vploo| Viul2| A%l < 10,2 A%l + Ce?|VAQ[3|Vul3, (3.54)
1
and
Js < CelApls|u — m(u)ls|A%pls + Celm(p)||Apl2| A%p|
o} 3.55
< 1o |A%l3 + CEVUBIVApl + C*(1 + [Vl A (3:55)
1
If we use the Agmon-like inequality
1 3
[Vl < CIVel3 [A%0)3,
we have
1 8
Jo < ul2|Vploo|Aply < Clula| Vel |A%p]3 (3.56)
« .
and
a
Jr < ——|A%p|3 + C|Vyl3. (3.57)
10p1
Finally, the energy estimate reads
10 o 7 2
——|Ay|? AZp|2 < Ce?|V A 2 =
57 A+ 1og %613 < CT AT + |7 (4]
4
+C|Vpl; (1+ |Vol§) + C2(1+ [Vol3")|Apl; + C| Vel |uls,
which can be also written using (3.47), (3.48)
10 o}
——|Ap|3 + —|A%|2 < i
281 el + 10p§| el < fe(1), (3-58)

where f.(t) is bounded in L'(tq,to + 7) uniformly in ¢ and ¢y, > 0, for any 7 > 0. But we also know by (3.48)
that Ay is bounded in L?(tg,to + 7, L?) independently in ¢y and . We can conclude by the uniform Gronwall
lemma that

||<P||L°°(R+;<I>2) <C,

(3.59)
llellze(to,totr@a) < C(7),

where C,C(7) are independent of €.
e Step 3: We have now to obtain more regularity on the velocity. We multiply the Navier-Stokes

0
equation (3.7) by 6_:; so that after integration we obtain

ou

2l ([rorowr) < ou

| [ ooy +| [0 G

Ou du . ou

+ 0| [oon o | +0 | [ oo G|+ 20| [ aiv o0 G
ou 1— 2 ) Ou ou
+ /Q[J,VQO.E‘-FE/Q 1 V(;)E + /ng.a‘.
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A parameter «y given being given (which will be fixed in the sequel), each term of this inequality can be easily

estimated to give
0 9 1
5 ([ nopp) + 2

o) 8('02-}-—[

6t

dul?
6t

‘A |2+

3.60
A A 300
2
+CA+ [lel3)? |V (H) +Clgls,
P/ l2
where the term I is defined by
I=Cluf|Vul3, ifd=2, (3.61)

I=C|Vul§, if d = 3.

Estimate (3.60) must be supplied with a control on the HZ-norm of u, that’s the reason why we have to
multiply the Navier-Stokes equation by the value of the Stokes operator Au = —Au + V7 to get

—/Qn(cp)Au.Au = 2‘/gzn'(cp)(D(u).V<p)AU + 2U/Q n'(¢)(D(vy).V).Au + U/ p)Avy. Au — / —.Au

—/Qp(u.V)u.Au—U/Qp(UA.V)u.Au—U/Qp(u.V)vA.Au

1— 2
+/ chp.Au+6/ L v (ﬁ) .Au+/ pg.-Au,
Q o 4 p Q

m|Auf; < ‘/ () Vrr Au
Q

and so

e / 1D ()| V|| Au]

P
+CU/ |D(v,\)||ch||Au|+C’U/ |Am|lAu|+c/ ou
Q Q Q ot

| Aul
+0/ |u||Vu||Au|+CU/ |UA||VU||AU|+CU/ lul[Von | Al
Q Q Q

1—¢? p
+ [ b =mW)]||Vel||Au| + ¢ 7|V )|1Aul+C [ gl Aul.
Q Q P Q

The first term of the right-hand side member of this inequality reads after integration par parts (remember
that div (Au) = 0 and Au.v = 0 on the boundary) and using (2.3)

‘ / p)nVp.Au

< Ofnlal ViploclAulz < T5]4u3 + CIVAGE|Vul?,

p)Vr.Au| =

the other terms being easily estimated, one gets

2

Ou +1

15/4ul3 < CIVAGBIVul + CUHDEARIVAGE +C |50

(3.62)
+ C|Vul3 + ClAvy 3 Vul3 + C|Vpul3|Agl3 + Ce*(1 + l¢l3) |V

the term I being always defined by (3.61).
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If now we choose the value of the parameter v (independently of ¢) so that vC' < £, we get by summing
(3.60) and v+(3.62) and using (3.59)

% ([nopwp) + 2

oul?
6t

2
vé‘_so
ot |,

T
2—0|AU|§

< @
~ 20p2

1
+ (; + 7) I+ C|Vul? + Clavs | Vul2
v (%)
p
+ OV AQR|Vul + CyU2|D () B[V Al + Clgl2,

a 1 "
= I 2 Lind
= 20p + <7+’y) +C+C|Vu|2+C‘V (p)

2 3.63
 CIVAGRID() + CU A0 + C(1 + 9R)? (3:63)

2

2

2
voe
ot |,

2

Unfortunately, this estimate is not sufficient to conclude. Indeed, because of the first term in the right-hand
0
side member of this inequality, we must now derive estimates on 8_;0 in H! independently of .
e Step 4: The Cahn-Hilliard equation (3.5) gives us

1
o (57 (3))
p \p
and with the same computations than for the estimates (3.51)-(3.57), we deduce that
9¢
ot

independtly of to and e. This result is clearly stronger than (3.48).
e Step 5: We come back to the inequality (3.11) which gives us

10 1 u)z a
g B v AN -
28t(/9p‘ (p >+P2

2 2

dp
52| <BIvoR + U9l +
2

’
2

< C(n), (3.64)
L2(to,to+7;L2)

2
v@_go SCE/ ¢
2 Q

2
® op
s 1961+ Ce [ 1801 |5

+Ce /|F’ |‘

ol

o [1P) \8—

(3.65)
0s0 L
+Ce V(E) anl* fewaz (5)
9 (p
| fonvaz (5)]
We estimate the seven terms K, ..., K7 of this inequality in the following way
590 390 2 2|0 ?
< — A - .
K; <Ce 6t 8t ‘ +Ce [VAy|3 )’ (3.66)
6(,0 2 [ el oy 2 oy 2
< < e 2 212X )
K> < Ce|Ay|s Ce |VAcp|2 at |, < 1053 at |, Ce*|VApl|; )’ (3.67)
dp|? d¢ 2 NG
< " < p—1 [ Y i .
Ko < OIF"()lo | 52| <C+ ot |5e] <ca+ o ™| (3.68)
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2 2

0 0

ms&m%%\a—f <o+ i) 22| (3.69)

2 2

2 ; ;

P/ lsl Ot g P/ 2 p)ly| Ot |, ot |, (3.70)

a [J0e”  0el ., (u) ? (u) ?

< 2ol se|2E] ve2|a(B)] v (E)].

~ 10p: | Ot |, ot |, c YR P/ s

The sixth term is estimated just like the term I1o (see (3.32)), in the proof of theorem 3.2

2
a

10p2

0
"2 Clul(IVels + Vel |A¢]E)| Vuls

ot | 1 1 (3.71)
+ C|Apl3|Vuls + (VA2 | Agls + [Ap|3 |[VAp|2)[Vul3,

K¢ <

and in the same way

D¢
K, <CU F"(0)|oo +[F'(9)|oo) | 2| + CU%|Ag|5 2
1 < CUT(F @l + €l @) 55| +CUEIAGET0A .
+CU?|Agl3 + CU?|Vur 3|V A5
Thanks to (3.47) and (3.59), the inequality (3.65) leads to
10 1 I 2 «a oy 2 1037 2 9 9
2] 2v(E — V£ <Cc+C|ZE] +Cva c
20t (Lp‘v(p>‘)+10pz o, =" T |, T IVAGk +CIVelz (3.73)

2 2

+ C|VAp|3|Vul3 + Ce?

»(3)L7C)
p p
e Step 6: We have now collected all the inequalities we need to conclude. Indeed, if we sum (3.63) and
(3.73) we get

v (L2 ()

2 2

2 2 2 m
+ W%MU@
2 (3.74)

1
< 91(8) + 92(8) (IVuls +[Val3) + (; + 7) I,

ou

ot

Oy
Vot

p1
+_
5 20

+ n(@)ID(U)I2> + 50

where g1(t) and go(t) are two functions bounded in L!(#p,%o + 7) independently of ¢ and #, for any 7 > 0.
More precisely, this last fact comes from (3.36) and (3.64).
The conclusion is now straightforward with (3.48).

e If the dimension is d = 2, the term I (see (3.61)) is of the form g3(t)|Vu|} with g3(t) bounded in
L(tg,to + 7) independtly of ¢, and e. We obtain the desired regularity and globality from the uniform
Gronwall lemma.

e If the dimension is d = 3, as for the simple Navier-Stokes equation, the term I = C|Vu|$ limits the
estimates to be local using the Gronwall lemma.

In each case, the estimates obtained are independent of € and in particular, in the 3D case, the existence time
of the solution is independent of . ]
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3.3 Asymptotic behavior

We are interested here in proving a result of asymptotic stability for the metastable states, as in [5], but in
the case of nonhomogeneous fluids. In this subsection we have to suppose that the external force term g is
derived from a potentiel. That is to say we suppose that there exists G € L2 such that

g=Vg. (3.75)
One can think of g as a gravity forces term.

Theorem 3.4
Let w € R, and suppose that F"(w) > 0 (we say that w is a metastable state of the potential F'). Then there
exists g9 > 0, satisfying

FII (w)

€0 < 7P
|F' (w))]

and a §g > 0 such that for any § < § and any data U > 0, vg € vZ +V, @o € ®3, with m(po) = w, satisfying
U+ lvolly + llpo — wlls <6,

there exists for any € < gg, a unique global strong solution (p.,v) of the problem (1.1)-(1.4) (even in 3D)
with the initial data (g, v). Moreover, if 6 > 0 is small enough, this solution satisifies

@e(t) = w, v.(t) = vY, when t — +oc.

o7

Proof :e Step 1: First of all, we have to change the Cahn-Hilliard potential we work with. More precisely,
we introduce a function R, (z) such that R.(w) =0 and R. = p.. Then we construct, near the point z = w a
function F,, given, £ > 0 small enough being fixed, by

F'(w)

@) Re(z) - F(w), Vz€w—§w+E]

Fy(z) = F(z) -

One can easily show that we have
Fy(w) =0, F,(w)=0, Fjw)>0,
this last condition being ensured because F"'(w) > 0 and ¢ is chosen so that

B F"(w)
g =7 v P1-
|F (w)]
This function F, is strictly convex near w, so that it is easy to extend F;, to be defined and convex on R, and
to satisfy the assumptions (2.8)-(2.11).

A very important point, is that in the assumption (2.10), we can take Fy(w) = 0 (because F,, is convex,
and F,(w) = 0).

e Step 2: We perform the same estimates than in the proof of theorem 3.2 with this new potential F,,,
excepted for the term I3 which can be written thanks to (3.75)

L] = Vg.u:/g' V(e — m(p))u
il = | [ 96 = | [ 65170 - mie) -
< elGl2|Apl2|Vulz < Ceze.
Using this new estimate, the inequality (3.44) becomes
1
D+ 17 < CU D)3 + Ced oo + ONUz + Cet (14 49)z.. (3.77)
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Indeed, we have Fy(w) = 0 in (3.12) and (3.15), and the constant which appears in (3.22) is no more present
in the new estimate of I3 (3.76).
We recall that we can take

V),

. 1
A= mln(m,
so that with (3.4) we have

fl(U) = CU2|D(’U,\)|% — 0, when U — 0.

From now on, f; will always denote a real positive continous function satisfying f;(0) = 0. We follow the proof
as the one of theorem (3.2) to get, if we suppose € < m,

d 1 1
iU + gz < Hi0) + Ot (L )z,
and finally introducing the same M we have that, if € is small enough so that K§ < 1M, then we have for

any time t the estimate

d 1
— —z <
dtyE + 16z5 =~ fl(U);

and so with (3.18)
d
—Ye + C'ye < f1(U).

dt
Finally, using the assumption on the data, we deduce from the Gronwall lemma
U
vty < K5+ 1 — ),

where we used the fact that U < 6. We deduce easily that
1 3
llpe — w||L°°(R+;<I>1) +e2||pe — w||L°°(R+;<I>2) +e4|pe — w||L°°(R+;<1>3) + [Jve — Ugo||L°°(R+;H) < f2(6),  (3.78)

0 .
ot

0.
ot

1
llpe — wllz2(to,torri@s) + 2

3
+e1
L2(to,to+7;L2)

L2(tg,to+7;H?L) (3 79)
+ ||/"’E||L2(to,to+7';¢1) + ”UE - Ugo”L2(t0,to+T;V)
< (A + 7)f2(9), for any tg,7 > 0.

e Step 3: We perform the same estimate than (3.50) to obtain

1d

29 A2 LAQ 2 < £33

where f? is estimated independently of € in the following way using (3.78)-(3.79) :

1721121 ko to+r) < (1 +7)f3(8)-

We can deduce of this estimate, using the uniform Gronwall lemma, that

||90 - w||L°°(R+;<I>2) < f4(5)7

(3.80)
||QD - w||L2(to,to+T;<I>4) < (1 + T)f4(6)

As H? is embedded in L* (in both dimensions d = 2, d = 3), we deduce from (3.80) that

lo — wllpeem+x0) < f4(6),
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so that if we choose dg small enough and é < o we have

f4 (6) < fa
and so for almost every (t,z), p(t,z) lies in the interval [w — &, w + £] where the potential is defined by
F'(w)
F,(z)=F(x)— R.(z) — F(w).
(@) = Plo) = 3~ A R.(o) = F(o)

That is to say that ¢ is solution of

d¢

B TUVe - d (piso v( aA(PJFF, ))) =0
G vt (o (w1 Ef)) -
%—fﬂ.w— div (piso v( O‘A‘”FI ))> =0.

One recognize here the initial equations (1.1)-(1.2) with the potential F', and so finally, the solution we
construct here is a solution of our problem (1.1)-(1.4).

e Step 4: As the existence of a global strong solution in 2D is given by the theorem 3.3, we only have to
show that the solution obtained is a strong solution in velocity, defined globally in the 3D case. We are going
to use the fact that the initial data is chosen near a stationnary state.

If we let
1 I > 9
mo= [ 119 (4)] + [,
QP 4 Q
the estimate (3.74) reads in the 3D case
1d .
S h < 01(0) + o (0h(1) + CR(EY, (3381)

where g; and g2 are bounded independtly of ¢y and ¢ in the following way
to+1
[ awa< s, iz,
to

and thanks to (3.79) we also have

to+1
/ h(t)dt < £5(6).

to

Moreover, thanks to the assumption on the data, there exists C' such that
h(0) < C'8%.

Now let us introduce

f6(6) = (max(C'8”, f5(8)) + f(8))e' T7®).

It is straightforward to show that
f6(6) = 0, when § — 0.

Let us now choose, dy small enough so that Cfs(d)? < 1 for any § < do. In those conditions, one have

Ch(0)? < 1.
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If we denote by T the maximal time such that
Ch(t)? <1, Vte[0,T],
we get from (3.81), for any t € [0,T7,

d
S < g1(0) + (1+ () h(0),
so that, using the uniform Gronwall lemma, we have for any ¢ € [0, T'[

h(t) < f6(9).

But, by the choice of &y, we have C fs(6)2 < 1, which implies that the existence time T' of the solution is +oc.
Moreover, we deduce the following estimates on the solution (¢, v)

Il — m(‘P)||L°°(R+;<I>3) + v — Ugo||L°°(R+;V) < f2(6),
(3.82)

0
|5 lolli oty €SB+ 7).

L2(tg,to+7;P1) H ot L2(to,to+7;H)

We have shown the global and uniform in time existence of strong solutions for the problem (1.1)-(1.4).

e Step 5: In the previous step, we have obtained the stability of the stationary solution we are studying.
In order to show the asymptotic stability of this solution, we have to study the convergence of the solution
when ¢ tends to +o0.

First we study the convergence of the order parameter ¢. If one takes the scalar product of (1.1) with
¢ —w in L2, one obtains using (1.4) and the boundary conditions on v,

e+ 57 (5)
—lo—wlz+ | =V {=].Vo=0,
it £ ap \p

which can be written, using the fact that p = —alAy + F/, () (or F'(p), it is strictly equivalent),

d ) /1 <A<p> / (F’(w))
Slp—wl—al -V vp=-[ -V V.
a'? ok af \ p 4 QP p 4

d 2 / 1 2 / ( / " > / L ’(so) 2
—le—wlh+ | 5|Ap|"=a —=F(9)|Ve V|,

and so, using the fact that F,, is convex (by construction), and ¢ is bounded in L*°, we deduce

We get

d , 1
ZlP =@k + =180l < CelApl; + Ce| Vel
P2
< CeCf4(8)|Apl3 + C14(8)|Vepl3,

because we have

IFL(¢)|=IFL(w)—FL(w)|S< sup \FJJI> o —wl,

[w—&,wtE]
that is to say with (3.80)

|F (#)loo < C f4(0).
If § is small enough such that 2C f4(d) < —ll)g we deduce that we have

d
Zle—wh+ Clagl; <o,
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which implies by (2.5) that
d
29— wl+Clo—wlz <0,
and finally
lp — wl3 < lpo —wlze™,
which gives the desired convergence in ®,. The convergence in &, for any s < 2 comes directly from the
previous convergence and the fact that (o — w) is bounded uniformly in time in ®,.

o Step 6: It remains to show the convergence of the velovity field. Let us write down the equation
satisfied by v — vZ in the following way (remember that AvY = 0 and that g = VG)

U
pla) (22 (0= o). 9 0 = o)) — 24 () D(w - ) + T

= 2div ((n() — n(w))D (L)
— )WLV — %) + (v — L) V)

~ 0= ple) (5 +vw)

= m)Ve+e (55 - 2557 (L) 4 (00 - sl

from which we deduce in a straightforward way
p(w) d
2 o =oB) +mIVw = oL <2 [ In(e) - ) IDEL)IDE - o)

2 dt
+p<w>/ |v£o||v—v30||v<v—v£o)|+p<w>/ v — o8 2|Vl |
Q Q

+ [ 1ot = o ‘—+vw jo— 2|
M U
+ [ =i ||W||v—voo|+e/\—H (4) |-
+ | [ () = pleao = o%).
This last inequality leads to
W,y _
0 (o~ o) + i V(= )
< 2l ool — wleol DLV (0 — )]s + Ch oo [V (0 — 02
ov
# OVl — vl + Cely — ol (| 57|+ [Voblaoh) o=kl (39
2

7

+ C|Vul||Vplslv — v |2 + Celp? — w?|o ‘V (;) v,

|v_voo
2

+ Celp — wloslglalv — v |2,
Using (2.3), (3.80), (3.82) and the fact that
|Ugo|oo = |vvc(>]o|00 =U <4,

we obtain , for 4 small enough, the estimate

0
510~ Vool + v = oG < 91(t) + C'em Mn (),
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where g1(t) — 0 when ¢ goes to infinity, and g» is given by

2 2

v
gZ(t)_ E 27

+ AV + |Vuf2 + ‘V (%)

2

so that we have thanks to (3.79) and (3.82)

¢
/ g2(s)ds < C(1 +1¢).
0
We can suppose that C; < 1, then we show that any function y(t) satisfying

y'(t) +y(t) < gi(t) + Ce=igy(t),

necesarily tends to zero when t goes to infinity. Indeed, we have

t t
y(t) < e~'y(0) + e_t/ €91 (s)ds +C€_t/ e =2 gy (s)ds.
0 0

In this inequality it is clear that the first term converges towards zero, but also the second term using the
Cesaro theorem and the fact that go(¢) — 0. As far as the third term is concerned, we have

¢ ¢
e_t/ e(1=C13 g, (s)ds = e_te(l_cl)t/ g2(s)ds < Ce™ (1 + 1).
0 0

The conclusion is straightforward : the velocity field converges towards the stationnary velocity field in H
and so0 in Vj; for any s < 1 because we have shown that (v —vY) is bounded uniformly in time in the space V.
|
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