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Abstract - In this paper we study the coupling of the Navier-Stokes equations and the Cahn-Hilliard equation
which stands for a model of a multiphase fluid under shear. We first study existence and uniqueness of solutions of the
system in dimension 2 and 3 even if the diffusion coefficient is allowed to degenerate. In the last part, an asymptotic
stability result is shown.
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Physical background

The problem of building mathematical models for multi-phase fluids have been extensively studied in the
literature ([6], [8], [11], [17]). Among all those results, we choose to study the order parameter formulation. If
we only consider the diffusion phenomenon, the evolution of the order parameter is given by the Cahn-Hilliard
equation

0
S~ div (B@)Vi) =0,
ot
where p = —aAp + F'(p) is a chemical potential derived from a coarse-grained study of the free energy of

the fluid ([11]) and B(y) is a non-negative mobility coefficient which depends on the local composition of the
alloy.
Furthermore, this equation is provided with the conditions

do Op
R TR (*)

where v is the outward normal on the boundary of the domain, which can be read as no-flux conditions. For
a mathematical study of this equation we refer to [4], [7], [9], [19].

Hereafter, we are interested in the evolution of a binary alloy in a channel under shear. This situation
arises for example in viscometric experiments. Numerous physical papers ([6], [8] for example), propose to
consider in this case, a coupling of Cahn-Hilliard and Navier-Stokes equations given by

oy .
rr +v.Vyp — div (B(¢)Vu) =0
p=—alp+F'(p)

S5 — 2div (n(©)D(v)) + (0.V) + Vp = 4V

with the boundary conditions (x), and the shear boundary conditions for v.
In this system, p is the chemical potential, B(y) the mobility, () is the viscosity of the fluid depending

on the composition of the alloy and D(v) is the tensor §(V’U + Vo'). The addition of a transport term in
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the Cahn-Hilliard equation is quite natural and the forces appearing in the right member of the Navier-Stokes
equation must be considered as capillary forces acting only near the interface.

The physical-relevant assumption on the function F' is that it must have a double-well structure, each
of them representing the two phases of the fluid. Physicians ([6], [8], [11]) often propose to consider either
functions like

F(z) = (1-2%)?
either functions like
Flz)=1-2%+ c((l + ) log(1+ ) + (1 — z) log(1 — x)),

where we suppose that ¢ is normalized in such a way that the two pure phases of the fluid are respectively
represented by the values 1 and —1 of the order parameter.

In the sequel of this paper we will concentrate on making assumptions on the function F which match
these two choices.

As far as the mobility is concerned, a mathematical difficulty is that B may or may not degenerate that is
to say that B can eventually vanish at the points —1 and 1; a possible choice for B is for example

B(z)=(1-2*)", r>0.
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1 Introduction

In this paper we investigate first the question of existence, uniqueness, regularity and globality of solutions.
Then, we are interested in qualitative results on the solutions, in particular in their asymptotic behavior.
1.1 Mathematical setting of the problem

We will consider both dimensions d = 2 and d = 3 for this problem. The system of spatial coordinates chosen
is (z,2) if d =2, and (x,y, 2) if d = 3. The channel we consider is

{-1<2z<1}CR?
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and the shear velocity is chosen to be U.e, on the upper boundary of the channel {z = 1} and —U.e, on the
lower boundary {z = —1}, where U is a positive constant.

The channel is supposed to be infinite in the direction z and y (if d = 3) but for the mathematical study of
the problem, we will represent it by a bounded domain 2 =] — L, L[?~!x] — 1, 1[ with L large, provided with
periodicity conditions in the variable x and y. The system we deal with reads

3}
a_f +0.Vp — div (B()V) =0 (1.1)
p=—alp+ F'(p) (1.2)
3}
8—;) —2div (n(¢)D(v)) + (v.V)v + Vp = uVe (1.3)
div (v) =01in Q (1.4)
v(0) = vo and ©(0) = ¥ (1.5)
provided with the boundary conditions
dp Op . .
E—%—Oon{Z—l}U{Z——l} (1.6)
 is 2L-periodic in the variables z, y (1.7
v=Ue, on {z=1}andv=-Ue, on {z=-1} (1.8)
v is 2L-periodic in the variables z, y (1.9

1.2 Functional spaces and notations

In this paper let |.|, denote the natural norm on L?((2), for p = 2 the inner product is (., .), and ||.||5 is the norm
on the space H*(2) induced by the inner product ((.,.))s. Let L7 (Q) = (LP(Q))? and HF (Q) = (H*(Q))".
The inner product of two tensors o and ¢’ is defined by

d
[ O’I = Z O'z"jO'z{’j.
i,j=1
1.2.1  Velocity
For the mathematical study of the problem, we introduce the following homogeneous conditions

uw=0on {z ==+1}, (1.10)
u is 2L-periodic in the variables z, y, (1.11)

and the spaces _
V={ueD)? div(u) =0, satisfying (1.10) and (1.11)}

V, = Y@

As usual the spaces Vy and Vi will be noted H and V. Let us recall the following results.
We introduce the Stokes operator, which is a non-bounded operator in H of domain D(A) = V5 defined by

Au=—-Au+ Vw7 € H, Vu e Vs.

Lemma 1.1 (Poincaré’s inequality [1])
The application u — |Vuls is a norm on V' equivalent to the ||.||1-norm that is to say there exists C(2) > 0
such that for all u € V we have

llull, < C()[Vuls. (1.12)
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Lemma 1.2 (Korn’s inequality [13])
Let Q an open and regular set in R? and u € H(2) a vector field on ), then we have

|Vuly < V2|D(u)ls,
with the equality if we suppose div(u) = 0.

Lemma 1.3 (Regularity of the Stokes problem [20])
There exists a constant C' > 0 such that for any u € V, we have

llulla < C|Auls,
Il zn\r < ClAuls,

72w < Cllulls-

Lemma 1.4
For u,v,w € H' (Q) we define

d Ov;
b(u,v,w) = MZZI/QWB—;Z.’UJJ',
then b is endowed by the following properties
b(u, v, w) + b(u, w,v) =0, Yu,v,w €V, (1.13)
and
[b(u, v, )| < Cllullsllvllllwlly Yu,v,w € H' (),

1 o1 1 1 (1.14)
Ib(u, v, w)| < Clul3 |lullF [o]3 l0llF lwll4, Yu,v € H (2),Vw € Va.

Later on, we denote by B(u,v) the continuous linear form on V defined by B(u,v).w = b(u,v,w). The
previous result shows that B is bilinear and continuous on V' x V.

Finally, if U > 0 is given we introduce the stationary solution of (1.3)-(1.4) under conditions (1.8)-(1.9)
when ¢ is constant which is given by

vl = Uze,. (1.15)

1.2.2 Order parameter

Here we introduce the homogeneous boundary conditions given by

oy O0Ayp
5 5 0on {z 1, (1.16)
@ is 2L-periodic in the variables z, y, (1.17)

and we will use the following functional spaces
® = {y € D(Q), satisfying (1.16) and (1.17)},

and for any s > 0,
¢, =",
endowed with the H® norm. For any f € L'(Q), let m(f) = \512_| o, f its average.
One can find in [19] the following lemma.
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Lemma 1.5
For any ¢ € ®; we have

lle —mp)lh < ClVel2, (1.18)

and for any ¢ € ®,,2 we have

lle — m(o)lls+2 < CllAgls. (1.19)

Remark 1.1
From this lemma one deduce

IVelll = V(e —m(p))lli < [l —m(p)llz < ClAp|2, Yo € Ps.
We will often use those kind of estimates.

Later on, we will use some basic Hilbertian interpolation results which can be found in [15]. We also recall
the following results ([15] and [18]).

Lemma 1.6
Let X C Y C Z three Hilbert spaces, and suppose that the embedding of X into Y is compact.

i) For any py,ps €]1,+o0[ the embedding

rerorx), Lemor o mony)

is compact.
ii) For any p > 1 the embedding
daf

is compact.
iii) The following continuous embedding holds
d
rerorx), Yeroryy o oornxyly)

2  Main results

In this section we specify what we mean by weak and strong solutions of the problem (1.1)-(1.9) and we
state precisely the different results of this paper.

2.1 Definitions
We define a first notion of weak solutions.

Definition 2.1
Let U > 0, vo € v + H, po € &, given. We say that (p,v) is a weak solution of (1.1)-(1.9) on [0,T]
0<T < +o0), if

e v and p satisfy
v—vY, € L®(0,T; H)N L3,.(0,T; V) N C°((0, T; Vi-z),
4

loc

p € L0, T;91) N Lip,.(0,T; ®5) N CO([0, T[; @)
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If we let

p=—alyp+ F'(p) inD'(]0,T[xQ), (2.1)

then p satisfies
IS Ll20c(0aT; "I)l)

We have the initial conditions

v(0) = vo, and (0) = o.

e For any w in V,

0w +bwv,w) +2 [ 1(0)DE) : Dw) = - [ . in D'(0,T]. (2:2)
e For any 1 in &4,
%(cp, P) + /Q B(o)Vu.Vip — /Q(U.V@b)tp =0 in D'(]0, T]). (2.3)

We also define the notion of strong solutions.

Definition 2.2
Given U > 0, vg € v +V, o € &2 we say that (v, ) is a strong solution of (1.1)-(1.9) on [0, T, if (v, ) is
a weak solution on [0,T[ (0 < T < +oc) and if furthermore we have

v—wf, € L®(0,T; V)N L, .(0,T; V2) N C°([0,T[; V),
@ € L™®(0,T;®2) N L2, .(0,T; &4) N C°([0, T[; ®2).

Remark 2.1 _ _
The functions of H%(Q) being continuous on Q, any strong solution ¢ is continuous on [0, T[xQ.

In the degenerate case, we allow F' to be singular at the points where B vanishes. That’s the reason why the
definition 2.1 can be irrelevant and so, if we only impose that BF" stay bounded, we have another definition
of weak solutions, weaker than definition 2.1.

Definition 2.3
Let U > 0,vo € vY + H, po € ®; given. We say that (p,v) is a weak solution, in a weaker sense than the one
of definition 2.1, of (1.1)-(1.9) on [0,T[ (0 < T < +00), if

e v and p satisfy

loc

p € L=(0,T; ®1) 1 L2,,(0,T; &) N C°([0, T[; &3).

loc

v—ovY € L®0,T; H)N L7 (0, T; V)N C°([0,T[; Vis),

e We have the initial conditions
v(0) =vo and ¢(0) = @o.

e For any w in V,

d
E(v,w) + b(v,v,w) + 2/

A n(p)D(v) : D(w) = —a/ﬂ(w.ch)Ago in D'(]0,T7]), (2.4)
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e For any v in V3,
%@mo+¢4A¢&w3wwwy543wwwmv@v¢—L@vw¢=om@ﬂmﬂy (2.5)

Remark 2.2

In this weak formulation the chemical potential y does not appear any more. In particular, in (2.4) we
replaced uVy by —aApV in the right member, because the term F'(p)Vy is the gradient of F(y) and can
be considered as a part of the pressure gradient.

2.2 Statement of the results

Later on, the functions B,n are supposed to be, at least, locally Lipschitz on R. We also suppose that there
exists 11,712 > 0 such that

m < nlz) <n2, Vz € R

2.2.1 Non-degenerate case
We suppose here that

31By,By >0, By <B(x) <B, VxeR (2.6)
Moreover we suppose that the function F' satisfies

F is of C? class, and F >0, (2.7

3 F1,Fy > 0 such that |F'(z)| < Fy|z|P + By, |F"(2)| < Fi|z|P~' + B>, Vz € R,

2.8

where 1 <p<3ifd=3and1<p<+ooifd=2 28)

Vv € R, 3 F3(y) > 0, Fy(y) > 0 such that, (2.9)
(z = 1F'(@) > Fs(1F(z) - Fi(y), Yz € R, '

3 F5 > 0 such that F"(z) > —F5, Vo € R. (2.10)

Remark 2.3
e Let us emphasize that, the physical-relevant functions F' are always bounded from below and so we can
suppose F' > 0 because adding a constant to F' does not change the equations.

e The assumption (2.9) is satisfied for example by any convex function with F3(y) = 1 and Fi(y) = F(v),
but we remind that we are interested in functions with double-well structure which are not convex.
Hence, this assumption must be seen as a generalization of a convexity property.

e As an example, polynomial functions of even order for d = 2, or of order 4 for d = 3, with strictly positive
dominant coefficient can be used as a function F'. The Cahn-Hilliard equation is often studied with such
polynomial nonlinearities ([19]).

Theorem 2.1 (Existence of global weak solutions)
Given U > 0,v9 € v, + H, py € ¥y, if B satisfies (2.6) and F satisfies (2.7)-(2.10) then there exists a global
weak solution (v, ) to (1.1)-(1.9) in the sense of definition 2.1.
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Furthermore, in order to prove a result concerning strong solutions we must suppose

B and 7 are of C'-class and B’, ' are bounded on R, (2.11)
Fis of C3-class and 3F; > 0, |F"'(z)| < Fs(1 + |z]9), Vz € R, (2.12)

where ¢ < 3ifd=3 and ¢ < o0 if d = 2.

Theorem 2.2 (Strong solutions)
Given U > 0,v € v, + V, @0 € ®o, if B satisfies (2.6), (2.11), and F satisfies (2.7)-(2.10) and (2.12), then

e If d =2, there exists a unique global strong solution of (1.1)-(1.9) on R*.

o If d = 3, there exists To(vg, U, po) > 0 and a unique strong solution of (1.1)-(1.9) on [0, Ty|[.

2.2.2 Degenerate case

The situation is slightly different and we will follow [9]. As we will see, we are going to show that if the initial
data ¢g takes its values in [—1, 1] then for almost every time, (t) has the same property. That’s the reason
why we suppose that B is a positive function of C1-class defined on [—1,1] and such that

ze€[-1,1]and B(z) =0« z € {-1,1}. (2.13)
For technical reasons we extend B to R letting B(z) = 0 if |z| > 1. In the same way we suppose that
F = Fl + FQ)

where Fj is a convex function defined on ]—1, 1], of C?-class such that the product BF}' is continuous on [—1,1],
and F; a function of C*-class on [—1,1]. We extend F; to be a function of C?-class on R with [|F}/|| e (r) < Fo.
We also suppose that

F!' is non-decreasing near z = 1 and non-increasing near z = —1. (2.14)
Finally we will be able to derive some estimates, using the function G defined on ] — 1,1[ by
G(0)=0, G'(0) =0, G"(z) = B(z)™!, Vz€]-1,1].
We can now state the following result on the existence of weak solutions in the degenerate case.
Theorem 2.3

Under assumptions (2.6),(2.13)-(2.14), for any given 0 < T < +o0o, U > 0, vo € v, + H and ¢o € ®1, such
that |poleo < 1 and

[ (Fen +6tn)) < o0 (2.15)
Q
there exists a weak solution of (1.1)-(1.9) on [0, T in the sense of definition 2.3 which satisfies

lo(t,z)| <1 for almost every (t,z) €]0, T[xQ.

Moreover, if we suppose B'(1) =0 and B'(—1) = 0, then for almost every t € [0,T[ the set

{z €9, |pt, )] =1}

has zero measure.
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Remark 2.4
1) If B'(—1) # 0 and B'(1) # 0 then one can see that G is bounded on [—1,1] and that, as BF" is supposed
to be bounded, the function F is also bounded. In that case, (2.15) is satisfied for every initial data. That
is for example the case if we take B(z) = 1—z? and F(z) = —r.z’ + (1+z)log(1+z) + (1 — z) log(1 — ).
In all other cases, the condition (2.15) is not trivial and imposes that ¢ must be far enough from the
critical values —1 and 1. An important case where this condition is fulfilled is the one where we have
loloo < 1.

2) We want to point out the importance of the L>-estimate obtained in this theorem because, in a physical
point of view, only the values of ¢ between —1 and 1 are meaningful.

3) If B is degenerating enough, then (2.15) implies that {z, |¢(t,z)| = 1} has zero measure for t = 0, and
then the last point of the theorem ensures that it is still true for almost every time. In a physical point
of view we can say that if the initial state does not contain any pure phase area, then the alloy will never
contain any pure phase area.

2.2.3 Qualitative behavior

If we only consider the Cahn-Hilliard equation, some results are known upon the asymptotic behavior of the
solutions. The existence of a Lyapunov function and of a global attractor is shown in [7] and [19].
In space dimension d = 1, several studies ([4], [5]) concern the stationary solutions which are minima of

the free energy given by
a
B(o) = [ (31968 +F ().
Q

In this case, the linear stability of those solutions is investigated in [4]. They show that for a mean w fixed,
these solutions are

i) the constant solution which is locally linearly stable,
ii) a boundary layer solution which is linearly unstable,
iii) a transition layer solution which is globally stable.

The next theorem deals with the point i). The solutions ii) and iii) are specific to the one-dimensional case
and the study above do not allow any conclusion about this kind of non constant stationary solutions. Even if
some stationary solutions are known in higher dimensions ([21], [22], [23]), we do not know any stability result
about them.

Moreover, one can see that if we consider the Cahn-Hilliard equation with a supplementary transport term
0.V with v(t, z) regular and fixed, the previous results in dimension d = 1 does not subsist.

With our complete model (1.1)-(1.9), we are able to show the stability of the stationary solution where
¢ is a constant w, and v = v under the conditions that U is small enough and that the mean w lies in a
metastable region of F' ([4], [11]) that is to say if F is convex near w.

Theorem 2.4

Let I an open interval of R and w € I given. We suppose that B is a non-negative function of C'-class defined
on I, F is a function of C3-class defined on I. Then, for U > 0 small enough, the stationary solution of
(1.1)-(1.9) given by po, = w and vY, defined by (1.15) is asymptotically stable under the conditions

B(w)

> 0, (2.16)
F'(z) > 0

for any x in a neighborhood of w. (2.17)
More precisely, for any € > 0 there exists 8 > 0 such that for any U > 0, vo € v, +V, @g € ®, satisfying

m(po) = w, [U] < B, [luolly < B, llvo = m(po)ll2 < B,
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there exists a unique global strong solution on Rt of the problem (1.1)-(1.9) in the sense of definition 2.2
such that

llv = vollLoom+5v) + [l — pollLo (m+02) < €,

and if € is small enough, we have as t — +o0o

o(t) — poo in B, for any 0 < s < 2,
v(t) —vY — 0in V, for any 0 < s < 1.

Remark 2.5

3

3.

1)

2)

3)

1

We point out that this theorem is proved in both cases d = 2 and d = 3 and that we allow B to degenerate
far from w and F to be only defined in a neighborhood of w. Hence, this theorem improves theorems 2.2
and 2.3 because we were not able under general assumptions to prove existence of global strong solutions
in the tridimensional case or in the degenerate case.

This theorem is for example applicable if

B(z)=(1-2%",r>0, and F(z) =1—2° + c((l +z)log(l +z) + (1 — z)log(l — w)),
forwin]—1,—-146[ orin]l—4,1[ for ad > 0 small enough. That is to say that the homogeneous alloy
is stable if one of the component is predominant.

Let us suppose that B is constant ([6], [7]) and that the theoretical thickness of the interface is not too
small, that is to say ([6], [8]) that for a constant C' depending only on 2, we have

—F"(z) < aC, for any z € 1. (2.18)

Then, with straightforward computations, one can deduce from the estimates given in the proof of this
theorem (section 3.5) that for U > 0, ¢o and vo given not necessarily small, if a global strong solution
(p,v) of the problem exists (if d = 2 for example), we have

p(t) —m(pg) — 0 in &, for any 0 < s < 2.

We want to emphasize that we do not suppose that m(yo) lies in a metastable region of F'.

Furthermore, if we suppose that
U S CT]2,

with C' depending only on (Q, that is to say that the Reynolds number of the flow is small, then we also
have

v(t)—vY = 0inV, for any 0 < s < 1.

In that case, we have a quantitative estimate on the smallness of the shear velocity we must impose to
control the behavior of the flow.

Proofs of the main results

The non-homogeneous boundary conditions

One of the key-points in the following proofs is to get rid of the non-homogeneous boundary condition (1.7).
We will use for that the following lemma ([16]) both in dimension d =2 or d = 3.

10
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Lemma 3.1
For any X > 0, there exists a smooth function vy = f(z)e, such that f(1) =1, f(—1) = —1 and

[ualoo =1, |oals < CaA, (3.1)
|b(u, vx,u)| < CoM||ul|} for any u in V, (3.2)
1 1

where the constant Cq depends only on the open set (2.

Remark 3.1
Such a function vy is divergence-free and satisfies

(’l))\.V)U)\ =0.

3.2 Non-degenerate case

In this subsection we give the proof of the theorem 2.1.

Theorem
Given U > 0,v9 € v, + H,po € &y, if B satisfies (2.6) and F satisfies (2.7)-(2.10) then there exists a global
weak solution (v, ) to (1.1)-(1.9) in the sense of definition 2.1.

Proof :
The idea of the proof is to use the lemma 3.1 and to let, for a given A,

v =u+ Uvy,

so that the boundary conditions for u are homogeneous. Hence, as Uvy —uZ € V, the theorem will be proved
if we show that, for a suitable A depending on U, there exists (u, ) such that

u € L®RY; H)n L} (RT; V),
p e LOO(R+;CI)1) N L?OC(R+;¢2)7

which satisfy the initial condition, u(0) = vg — Uvy = ug, ¢(0) = o, and

e for any win V

%(u,w) + b(u, u, w) + 2/ n(p)D(u) : D(w) + Ub(u, vy, w) + Ub(vx, u, w)
. (3.4)
+2U/ n(¢)D(vx) : D(w) = —/(w.Vu)go in D'(R™*),
Q Q

e for any ¢ in &,
d . X
G+ [ Bevavi— [ @e-U [ 099 =0 i D@, (3.5)
where p is always given by (2.1).

In order to show this last result we use a Galerkin approximation. We consider (w;);>1 the family of the
eigen functions of the Stokes operator A as a Galerkin base in the space V' and (1););>1 the family of the eigen
functions of the operator —A with the boundary conditions (1.16) and (1.17) as a Galerkin base in ;. We
can impose 1)1 to be the constant function equals to 1 and we remark, as usual, that the (¢;) are orthogonal

11
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both in ®; and in ®;. We define the n-dimensional spaces ¥,, = Span(11, ...,¥,) and W,, = Span(ws, ..., wy),
and Py, and Py, the orthogonal projectors on these spaces in @ (resp. in H). We remark that the choice
of the (1;) implies that ¥,, is stable under the operator —A.

Let us remark that, even if €2 is not regular enough, one can see that because of the periodic boundary
conditions, the eigenfunctions of the Stokes operator are regular.

e Step 1: At this point, we seek three functions of the form

Zaz w; € Wh, on(t 251 Yi € Vo, pn(t 271 i € U,
i=1 i=1 i=1
where a;, 8; and +; are real-valued functions of C! class, such that u,(0) = Py, (ug), ¢n(0) = Py, (o) and

e for any w in W,

(S 0) + W s 0) +2 [ 7o) Dltn) 2 D) + Ubluns 3, 0) + U0 )
Q
(3.6)
U n D : D = — - n ny
+20 [ n(ew)D(e) : D) = - [ @.Vna)p
e for any ¢ in ¥,,,
220+ [ BloVin V6 - [ @ V)on-U [ 0r:T0)p0 =0 (3.7)
where
tin = —aln + Py, (F(pn). (3.8)

The functions B, n and F' being locally Lipschitz, one can easily see that this system of equations is
equivalent to a Cauchy problem for an ordinary differential equations system in the unknowns «;, 3;, ;- The
Cauchy-Lipschitz theorem ensures that this system has a unique solution into an interval [0,t,[, t, > 0.

e Step 2: Putting ¢); =1 as a test function in (3.6), we find that, for any n > 1 and any t € [0, ¢,[, we

have p 1 p
@Pn

so that

m(en(t)) = m(en(0)) = m(Py, (v0)) = m(eo)- (3.9)

That is to say that m(y,,) is independent of ¢t and n and its value depends only on the initial data q.

e Step 3: We must now derive some a priori estimates in order to show that ¢, = +o0o for every n > 0
and that the sequences (uy), (¢,) and (u,) are bounded in the appropriate functional spaces.

- First of all, we use u,(t) € ¥, as a test function in (3.7) and we get

(d;’;naﬂn(t)) +/QB(SOH)|VIM|2 _A(un-vﬂn)wn = _U/Q(”’\‘VM")(‘D"’

and so, using (3.8), we have

% (81veuts+ [ Fiom) + [ B Vial = [ (o Tidon = U [ @1.Fpion

12
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- If we use u,(t) as a test function in (3.6), we get

d

¢ (%an) N 2/977(%)1)(%) : D(tn) = —Ub(tn, vr, )

oy / 7o) D(v3) : D(un) — / (V) — M),

because u,, is divergence free and so, with (1.16)-(1.11), one can easily see that

/un.V,un :/ div (prun) :/ o -(Un,-v) = 0.
Q Q a0

Now we use (1.13) and Korn’s inequality, and then, by summing those two last estimates, we get

d [« 1 .
& (5190uB + Gl + [ Flon)) + BulTialt + Vi

dt
< Ulb(un, vx, un)| + V20U D(03) 2| V|2 + Ulor|1|Vial2lon —m(p)ls-
Using now (1.14), (3.1), (3.2), the Sobolev embedding H* C L* ([1]) and Young’s inequality we have

d

a 1 .
S (S15en 4 hualt + [ Fon)) + BV} + Vi
Q (3.10)

B
< ONU|Vtaf3 + 2 Vunl} + CU? D)} + S [Vinl3 + CUN? Vipn 3.

e Step 4: We use o, —m(po) = pn — m(py)1 as a test function in (3.8) so that we obtain, using the
boundary conditions for ¢,

(s o — 1 pn)) = | Vg2 + / F(0n)(9n — m(p0).

But, as m(pn —m(pn)) = 0, this expression is equal to (tn — m(n), rn — m(pr)). Using now (1.18), Young’s
inequality and (2.9), one has

ol Vin3 > §1¥0nl3 + Faon(in)) [ Fig)) = Frtmtga)il. 3.11)

Moreover, if we multiply (3.8) by —A¢,,, and integrate by parts, we get
(Vitn, Vion) = alBpnls + [ P/ (o) Vionl?
Q
Young’s inequality and (2.10) lead to
1 2 2 1 2
[ Vialz > alApnl” = (F5 + 5)[Vinls. (3.12)

Finally, estimates (3.11) and (3.12) show that there exists C1,C2 > 0, depending only on «, B; and F5 such
that

B B
5 |Vhnl3 2= Vial3 + CLIVenl® + CalApal3

(3.13)
+ Gy Fa(m(p0) ( / F(%)) ~ CyFa(m(p0)).

13
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Later on, we choose
A = A\U) = min(k/U, VU). (3.14)

where k depends only on the functions B, 1 and will be fixed in the sequel. Using (3.10) with (3.13) and (3.3)
leads to

d (o 1 B, m
a (§|wn|g + gl [ F(cpn)> + LT+ Yl

i IVonl2 + Cr|Agul + CiFs(mio)) ( / F(wn))
Q

1
< CXU|Vu,|3 + C’sz(l + A3 + CU X2 |Vion |3 + CaFy(m (o))
< Ck|Vun s + f1(U) + Ck*[Vn |3 + CaFa(m(go)),

where f1(U) = CU?(1+A(U)*)/A\(U)® depends only on U and satisfies when U is small enough f1(U) = CU(1 + U?)
which tends to zero when U tends to zero. If now we let

o [m |Ch
k = min (—40, _2C> , (3.15)
d

2 (2 2 Lo By 2, 2, G 2 2
e (5190uB + hun + [ Fo)) + 521V + 2190 + SHVul + il

we get

+CFy(mig0)) [ Flon) (3.16)

< C'Fy(m(yo)) + f1(U).

Let us remark that Poincaré’s inequality (1.12) implies that, if we introduce

n(®) = 51T a0 + 3lual + [ Plow)
we have for v > 0 small enough,
Yn(t) + vun(t) < C'Fy(m(po)) + f1(U).
As we suppose that F' is positive, a Gronwall argument shows that ¢, = +oo for any n > 1 and that, with (2.7)
Yn(t) < yn(0) +7~H(C'Fa(m(po)) + f1(U)), VYt > 0.

If we use the fact that Py, and Py, are orthogonal projectors in the spaces H' and L?, we have with
(2.7)-(2.12), and the embedding H! C LP valid with the choice of p in (2.8),

(@) = §IVPe () + 5lPw. )l + [ PP, ()
< %WSOO@ + %|U0|§ + (F4(m(900))|9| + /Q [Py, (o) — m(po))| |F'(Puy, (900))|> F3(m(p0))~"
< C|Vgols + Cluls + (|Q|F4(m(900)) + [Py, (o — m(po))|2|F1 + F»| Py, (<P0)|p|2) F3(m(po)) ™"
< C|Veol3 + Cluol3 + CU? + (|Q|F4(m(<P0)) + Clpo — m(po)|2(1 + ||<Po||1f)> F3(m(go)) "

14



Mathematical study of multiphase flow under shear through order parameter formulation

We let
k1(vo, 0, U) =CFy(m(po)) + C|Viol3 + Cluels + Cf1(U) + CU?

» (3.17)
n (CF4(m(900)) + Clgo — mlgo)l2(1 + ||soo||€>)F3(m<soo)) ,

so that, using Gronwall’s lemma, we have

lun Lo+ ) + l0n — m(00)ll Lo R+;3,) < E1(vo, w0, U), (3.18)
Integrating in time (3.16) and using (3.18), one easily gets for every to > 0,7 > 0,
lunllz2(to,to+;v) + llon — m(@o)llL2 (ko to+7392) + IV nllL2(t0,t0+m522(0)) < F2(vo, 00, U, T), (3.19)
where
k2 (vo, 90, U, 7) = C(1 + 7)k1(vo, o, U). (3.20)

e Step 5: We can derive from (3.8) that

(1) = () = @~ A1) + (Pa, F' (), 1) = /Q F'(gn),

as the first term vanishes thanks to the boundary conditions (1.16) and (1.11).
So we have by (2.8) and the embedding H' C LP, for almost every t > 0

Im(pn)| < Fl/ lonl” + B|Qf < Filonlp + F21Q < Filloa(®)|f + F> < C(uo, po, U).
Q

Finally, we get from (1.18) and (3.19)

||/‘Ln||L2(t0,to+‘r;<I>1) < C(’U079007U7 T)' (321)
Moreover we have

a?|VA@ul3 < 2[Vial3 + 2|V Py, F'(0n) 3
< 2[Vial3 +2IVF (¢n) 3,

because Py, is built on the eigen functions of —A. Using now (2.8) we derive
[VEF'(¢n)f5 < C/Q(l +1enlP ) Venl* < ClVenl3 + Cllenl (3 IVenlls
< CVenl3 + Clionlsy 5| Veonls < CIVnl3 + CIVenly” | Anl3,
thanks to the choice of p in (2.8) which implies the Sobolev embeddings H* C L% and H' C L?*" 2 hold in
both dimensions d =2 or d = 3.

Finally, with (3.18), (3.19) and (3.21) we get

||‘;0n - m(SOO)”L2(to,to+‘r;<I>3) < C(“O: ¥o, Ua T)' (322)

e Step 6:

15
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- Equation (3.6) can also be written

(B(un, Un) + UB(tn,vy) + UB(vx, Un)
(3.23)
+A(Pn, un) + UA(pn,vx) + Sonvﬂn) =0,

where, for ¢ € ®1,u € V, we define A(p,u) € V' by

Alp,u)w = 2/977(@)D(u) : D(w), Yw e V.

We easily get from Korn’s inequality
|A(p, w)|v+ < Cllulls.

The fact that Py, is an orthogonal projector in V; for any s > 0 implies
1P, [l z(v,,v,) £ Land [Py, [[pevr vy <1
And finally, using the Sobolev embedding H! C L* (in dimension d = 2 or 3) one gets
leVulv: < Clela|Valz < Cliell:[Vals-

Using these properties, the embedding V' C V} and (1.14) we deduce from (3.23) that
2

du,

| SO+ Clunl2llunlly + Cllunlls + Cllonllt[Viaa-

Va
2
We deduce from this estimate and from (3.18)-(3.19),(3.21) that for any n > 1, ¢, > 0 and 7 > 0,

S C(UOJQOOJUJ T)' (324)

L2 (to ,to -‘rT;V{i )
2

dtn
dt

dyn
dt

- We work in the same way to control . With (3.7) we can write

d oy,
dt

+ Py, (div (B(pn)Viun) + div (ppuy) + U div (cpmu)) =0, (3.25)

and we clearly have
|div (B(¢)Vp)le;, < B2|Vil2, and [div (pu)le; < [ols|uls < Clle]lyflulls-

Finally, the fact that Py, is an orthogonal projector in ®; leads to

doyn
dt

< ClVpnl2 + Clleall + Cllgnllil[unll1,

@
which implies, using (3.18)-(3.19) that we have for any to > 0 and 7 > 0

Hdson

dt S C(UO,QO(),U,T). (326)

L2 (to,to+7;24)
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e Step 7: We use the estimates (3.18)-(3.19), (3.21), (3.24), (3.26) and the lemma 1.6 so that we can
extract subsequences of (uy), (¢n) and (u,) which satisfy

up = u in L®°(RT; H) weak-x,

u, = uin L} (RT;V) weak,

un, = uwin L (R*; H) strong,
dun, N du

7 E in Ll20€ (R+ ; V%I) Weak,

on — ¢ in L2 (RT; ®3) weak

Yn = @ in L®(RT; &) weak-x*,

foc

D00 o 0 s 13, (K5 8]) weak,
pn = pin L2 (R*;®;) weak.

loc

on — @ in L2 (RT; ®q) strong and a.e.,

Moreover, using the interpolations [V1,Vi]1 = Vi_,, [P3,®1]1 = @1 and the last point of lemma 1.6, we
2 4
infer that

up, = u € C°[0,T[,Vi_,) weak, ¢, — ¢ € C°([0,T[,®,) weak.

In particular, u,(0) weakly converges to u(0) in Vji_, and so u(0) = up because Py, converges to the
4

identity for the strong topology of operators. In the same way we prove ¢(0) = g

Finally, we must prove that the functions u, p and p satisfy (3.4)-(3.5).

Consider p € D(RT™*), and N > 1. For any n > N, u, satisfies (3.6) with w = wy; we multiply this
equation by p(t) and then we integrate by parts. One can easily see that the convergence properties of the
sequences (uy), (¢n) and (u,) let us pass to the limit in this equation: we recall that the convergence in the
non linear term b(u,,, u,, pwn) is valid because we have u,, — u in L?(R*, H) strong. The limit equation
obtained is fulfilled for any N and any p € D(R**) so that the density of Span(w;);>1 in V let us conclude
that u, ¢ and u satisfy (3.4). In the same way we show that (3.5) is fulfilled.

As far as (2.1) is concerned, the result comes from the fact that Py, converges to the identity for the strong
topology of operators and from the dominated convergence theorem.

|

3.3 Strong solutions in the non-degenerate case

We are going to prove the theorem 2.2.

Theorem
Given U > 0,v9 € v, +V, @o € ¥, if B satisfies (2.6), (2.11), and F satisfies (2.7)-(2.10) and (2.12), then

e If d =2, there exists a unique global strong solution of (1.1)-(1.9) on R*.
o If d = 3, there exists To(vg, U, po) > 0 and a unique strong solution of (1.1)-(1.9) on [0, Ty|[.

Proof :
In the first part of the proof we will show the existence of strong solutions; the uniqueness will be investigated
in a second part.
o Step 1: First of all, let us remark that if we have a couple of functions defined on [0,7] with
0 < T < 400, such that
v =05, € L¥(0,T;V) N Lipe(0,T5Va), ¢ € L¥(0,T;V2) N Lie(0,T; ), (3.27)

loc
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which satisfy (2.2)-(2.3) then we have similar formulas than (3.23) and (3.25) from which we easily infer that

d
d_:: lies in L? .(0,T; H) and d—f lies in L? (0,T; ®¢). Hence, we deduce from the third point of the lemma 1.6
that

Ll Ugo € CO([OaTL V): and pE CO([OvT[v cI)Z):

and finally (v, ) is a strong solution of the problem. Therefore in the following we only have to prove the
existence of a solution which fulfills (3.27).

e Step 2: As we did for weak solutions, we seek a strong solution of the form v = u 4+ Uvy and we are
going to derive some other a priori estimates on the solution of the Galerkin approximation (3.6)-(3.8) we
used in the proof of theorem 2.1.

In the following, instead of (3.14), we need to let
A = min( VU, k/U), (3.28)

where k is always given by (3.15). One can easily verify that the estimates in the proof of theorem 2.1 are the
same with this choice, which only change the value of the function f; in (3.16), which becomes for U small
enough f1(U) = CU3(1 + U3). The key point here is to remark that f,(U) tends to zero when U tends to
Z€ero.

Moreover, with this new choice of A we have with (3.3), for U small enough

1

£(U) = U%Aus§ < CU

1+ X <CcUu@ +U?).

Later on, f; will always denote a positive continuous function of U, which satisfies f;(0) = 0.

The following estimates are made on the Galerkin approximation of the weak solution that we built in the
proof of theorem 2.1, but in order to simplify the notations we will drop the subscript n in uy,, @,, Or fy,.

We use Au as a test function in (3.6), and after integration by parts, we get

1d
EEWU@ - 2/ 7' (p)Ve.(D(u + Uvy).Au) — 2/ n(e)A(u + Uvy).Au
Q Q
+ b(u,u, Au) + Ub(vy,u, Au) + Ub(u, vy, Au) (3.29)
= —a/(Au.ch)Ago.
Q

We remark that, if the Stokes operator is written Au = —Au + V7, we have

_ /Q () Au. Au = /Q ()| Aul? — /Q n(0) V. Au. (3.30)

Now, we use A%y as a test function in (3.7), it leads to

1d[Agp|3
2 dt

+/ u.VgoA2cp+U/ vr.VpAZp
@ @ (3.31)

—/ B’(w)VsO-Vquw—/B(¢)AMA2¢20_
Q Q

18



Mathematical study of multiphase flow under shear through order parameter formulation

Using the three estimates (3.29)-(3.31) one gets

d

1 1
& (31868 + 51u8) + aBila?ol + 20| u

<U [ Joal Vel [A%] + Bal AF'(9) 2| A%la + 20U v ol Auls
Q

3.32
+ 2o | V6] ID(u+ V)] 1dul + 1Bl [ Vel (V0 [6%] 52
+ |b(u, u, Au)| + Ulb(vx, u, Au)| + U|b(u, vy, Au)|
-l—a/ |Au|| V|| Agp] +/ [u|| V|| A%p| + /Vw.Au :
Q Q Q
e Step 3: We estimate each of the ten terms of the right member of (3.32), denoted by I, ..., I11.
As |ualoo = 1, we get
2 aBy o o 2 2
I; < Ulaloo| Vepl2| A%p[2 < W|A ¢la + CU"|Vel3. (3.33)
Following [19], we have
[AF' ()3 < [F" (@) 1%V eli + [F" () 2| Al
< C(L+lp —m(@)3)|Veli + C(L+ |p — m(e)[22)| Apls.
- If d = 2: we choose € > 0 such that
2
< —, 3.34
¢ g+1 ( )

and then using the Sobolev embedding H'** C L>, the interpolation H'** = [H', H']: and (1.19), we
get
1_=< €
o = m(p)lo < CIVely *|A%]3 .

Moreover, by the embedding H* C L* and the interpolation Hz = [L2, H 3]é, we have
5 1 5, 1
IVeols = V(e —m(@))la < CIVeI3 [lo —m(p)[|l7 < C[VelF|A%¢|3.
In the same way we get
2 1 2 1
[Aplz < Cllp —=m(@)ll2 < Cllp —=m(@)I} llp = m@)lli < C|Vel3|A%l3. (3.35)
Finally, we have
29(1— £ 29 & 10 2
AF' (@)} < C (14 [9ly™ P20 ) [Vl [A%013

2¢+2)(1— & £(2¢+2 4 2
+C (14 |[VolF 0 D12 212 ) 1941 A%

One easily see that (3.34) implies that all the powers of |A2¢p|, in this estimate are strictly lesser than
2, and so by Young’s inequality and (3.18) we have

4 a aB .
I < CIVgl3 (1 +|Vel3") + 5 1A%03, (3.36)

where a; > 0 depends on g and .
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- If d =3 : we use Agmon’s inequality ([3]) and interpolation H? = [H*, H']; to obtain
1 1 5 1
lo = m(@)loo < CIVe|2[lp —m(p)ll3 < CIVeIS|Ap]S.
Using now the embedding H% C L* and H? = [L?, H?] 1, we have
30, 1
Vil < ClVopl5 [A%0]3.
Hence, with (3.35) which is also valid in dimension 3, we get
10\)2 Saja2, (% 31A2
AF (@)} < € (1+Vel5" 1A% ) Vel A%];
5(g+1 1(g+1 4 2
+C (1419l V12013V (V)3 | A%15

Thanks to the assumption on g, one see that the power of |[A%yp|s are lesser than 2 and so, with Young’s
inequality

4 aB
I < C|Vel3 (1+|V9[3?) + = A%0[3, (3:37)
where as > 0.

As far as the third term is concerned, we can write

I; < CU|Avy[2 + %1|Au|§ < CHU) + ’75—1|Au|§. (3.38)

If now we use H2 C L™ for d = 2, or Agmon’s inequality if d = 3, and the interpolation between L? and
H?, we have in both cases

[Voloo < C|Ve|3|A%l3, (3.39)

so that

1 1 1 1
I < 2/ln'lleeUID(vx)2|Vel3 [A%l3 | Aulz + 2]l |loo| Veol3 |A% 0|3 V|2 Aulz

aB
Ll Aul} + S2HAG] + OVl |Vul} + £5(U)IVeol3. (3.40)

IN

We deal with the fifth term as follows

- if d=2: we have seen, when we estimate the term I that
[Aul3 < 2a|A%0]5 +2|AF (p); < C(1+|A%p[3).
We use another time the embedding H' C L* and interpolation results to derive

1 1 1 1
CIVela|Vals|A%pls < CIVol3 |Apl; [Viul3 |Aul3 1A%
aB
o |1A%013 + CIVels + CVu3|Agl3 + CIVel3 | Vul3| Agl3. (3.41)

Iy

IA

IA
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- if d=3: we need to remark that
Vil < alVAp|+|F"(9)]|Vel.

Using Agmon’s inequality together with (1.18) and (1.19) to derive

1 1
Vol = V(e —m()|e < llo —mp)|IZ ]l — m(p)||2
ClAgl3 VA3 .

IN

Finally we will use the following interpolation result
1 1 1 1
VAl < 1Al < |Apl3 [|A¢]3 < [Apls A%

If we notice that H' C L* and H? C L™, we can now estimate I5 by

Iy < CO|V¢leo| VA2 A%ls + CIF" ()]0 VI3 A%
< ClAl |A%lF +C(1 + oL AR IA% g,
< ClAplf 1A%l + C(1+Apli ™) AREI A%l
< 2PLA%R + OlApl® + 001 +Agl3) Ak, (3.42)

The term Ig is estimated as follows.

- if d=2: we use the Sobolev embedding H2z C L* and the interpolation Hz = [L2, H ']; to obtain

IN

1 3
Clula|Vuls|Auls < Clul3 |Vulz|Aul3
L Aul} + Cluf3| Vul3. (3.43)

I = [b(u, u, Au)|

IN

- if d=3: we use here the embeddings H* C L% and Hz C L? together with interpolation results to get

3 3
Is = |b(u,u, Au)| < Cluls|Vuls|Auly < C|VulF|Aul]
’75_1|Au|§ +C|Vuls. (3.44)

A

Moreover, we easily get
It < Ulvaoo| Vulo| Auly < %1|Au|§ + CU|Vul, (3.45)
and with Agmon’s inequality,

1 3
Ululoc| VorlalAula < U|Vulj [Vo]o] dul;
L Auf} + £1(0)|Vul3 (3.46)

Iy

IN

IN

Another time we use Agmon’s inequality to deduce that

3 1
af Aul2| Voo | Aply < ClAula|Ap|3 |[VAp|3
%IAUIi + ClAp3[VApl,. (3.47)

Iy

IN A
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With (3.39) we get

1 3
|ul2|Vep|oo| A%z < |ul2| V|2 [A%p]2

ClB]_ . .
1—0|A2<P|§ + Clul3|Vel3.

=~
o
A

IN

Finally, we use the lemma 1.3 to deduce after integration by parts

Ly =

/Q ' (p)nVp.Au

IN

o Step 4 - Study of the two-dimensional case:
We let

a 1
y(t) = 2180f + 1|Vl
so that, using (3.33)-(3.48), estimate (3.32) reads

OéBl

1
y'(t) + 10

i
A%[3 + 2 | 4uf}

IA

+ c(w T 1(0) + IV IVul} 4 [Vall + [VelIVal

+ uBIVuR + 1Apk IV Ak + [TAGE )y(0)
= ks(vo,p0,U) + g()y(t)-
where, using the estimates on the weak solutions (3.18)-(3.19) we define
ks (v, 00, U) = Clky + K + k) + (C + fo(U))K] (L + k") + CL(U).
In the same way, we define
ka(vo, 00, U,7) = C(U? + f4(U))T + C(kik3 + k3),

so that we have, for any tc > 0,7 >0

to+7
/ g(S)dS S k4(U0a(100;U5 T)'
to

7|2 [Veploo ]2 Aulz < CIVA@|a|jull]|Aul; < %IAUIQ’ + CIVA@[|Vul3.

4
CVyla + C|Vels + Clul3|Vels + (C + f3(U))[Vels (1 + [Vels') + Cfa(U)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

The key-point now is to use the uniform Gronwall lemma ([19]) and (3.19) to deduce that for any ¢ > 0,

y(t) < (max(y(0), k3) + ks)e.

We want to point out the fact that in all the previous estimates, u and ¢ are the Galerkin approximations
of the weak solution and so we have not u(0) = up and ¢(0) = ¢o but only u(0) = Puy and ¢(0) = P’y
where P and P’ are projectors on Galerkin spaces. Nevertheless, as we made it for weak solutions, one can

see that we have with (3.3) and (3.28)

o 1 o 1
y(0) < §|A900|§ + §|VU0|§ < §|A900|§ + §|VU0|§ + f5(U).
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Finally if we let

a 1
ks(vo, po,U) = (max (§|Ag00|§ + §|V’U0|§ + f5(U),k§> + k3) ek, (3.53)

we have
[[AQ|| Lo m+30) + [|VUe|| Lo +;22(0)) < C.ks(vo, po,U),

and going back to (3.50) we see that ¢ and u are bounded in L? (R";®,) and L} (R";V5) respectively.

It’s now straightforward to deduce the global existence of strong solutions in the two-dimensional case.
e Step 5 - Study of the three dimensional case:
In the same way we introduce y(t) and , with (3.33)-(3.48), we see that (3.32) reads
OiBl
10
4
C|Vel3 + Clul3|Vel3 + (C + f3(U))|[Vel3 (1 + [Vel5?) + Cfo(U)

C(U2+de)+¢Vﬂ§VUB+¢M§VU@+¢AMﬂVAwh+¢VA¢B>MQ

Cr( (1) +4°(1))
ks(vo, 0, U) + G(t)y(t) + C1(*(t) + 4° (1)) (3.54)

n
vt + g |A% + | Aul;

IA

+ o+

1l

A standard argument of the theory of ordinary differential equations shows that, there exists a time
T = T(vg,¢0,U) such that y is bounded on any compact interval of [0,T,[ and so we can prove that there
exists a local strong solution of our problem in the time interval [0, Tp[.

e Step 6 - Uniqueness :

As usual we suppose that we have two strong solutions v, @1, 1 and v, @2, us of (2.1)-(2.3) defined on
the interval [0, 7.

By the remark 2.1 we have @1, € C°([0,T] x Q) and so there exists R > 0 such that

|(p1(t7$)| < R’ |(p2(t,$)| < RJ Vr € Q; Vt € [O,T],

lor@®lls < B, llpa(®)l < R, for ae. te[0,T],
[[loi(@®)]lx < R, |lv2(®)|l1 < R, for a.e. t€][0,T].
We let ¢ = ¢1 — 2 and v = v1 — v2, we can derive from (2.4) and (2.5) that

e For any w inV,

G 00) + Do) + b, v, 0) + 2

(M%)—MWDD@Q:D@0+2/n@ﬂD@)JXM

o Q (3.55)
— —a/(w.ch)A(P—Ot/(w-V‘P)A802-
Q Q
e For any © in Va,
%(%1#) _/Q(v.vv,b)sol —/Q(vz-Vlb)cp
- a/(B(sol) — B(p2))VAp1.VY — a/ B(p2)VAp.Vi) (3:56)
q Q

ﬁ/@FWM—BWwﬂWwVw+/BWWﬂWﬂw=&
Q Q
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As we deal with strong solutions, ¢ and v are regular enough to take w = v as a test function in (3.55) and
1 = —alAyp as a test function in (3.56) (remark that v € V). By summing the results, integrating by parts
and using mean’s value formula, one gets

4
dt

a 1
(51768 + 31 ) +mIvol + @*BulvAGE

< [b(w, 01, )] + 200 / Iol1D (1) ID ()

+a [ |uallVellagl +a [ plVellae
& « (3.57)

+a / IB(o1) F" (1) — Blg2) F"(122)[| Ve ||V Ag

ta / IB(o2) P (02)[| V|V A

+0?|[B |l / ]|V Agr [V Ag].

Once again, we are going to estimate each of the seven terms Ji, ..., J7 of the right member in this last
inequality. Notice that the following estimates are valid in both cases d = 2 and d = 3.
We first use the embedding H# C L* and the interpolation Hi = [L2, H ']s to get

Ji < [V (v1)la]vl}
1 3
< C(R)[vl3 |Vvl3 (3.58)
n
< S IVoli + C(R) o3

For the second term, we use the embeddings Hz C L3, H' C L5 and interpolation results to get

Tz <110 lloclils D@15 D)L
1 1
< CIVe|2|Vol2|Vor|3 |lvi]l3 (3.59)
< BIVel3 + C(R)|Vel3.

With the embedding H2 C L™, one easily obtains

and

J3 < a|Vepla|Aps||v]>
< a|VAQ|2|Apaz|v]s

(3.60)
a2B1 9 9
< 3 [VApl3 + C(R)|vl3,
Ji < vz |2|Veplos | Ayl
< C(R)|VAp|2|Vel3 [VAg|3 (3.61)
Oé2Bl 9 9
< [VAp|; + C(R)|Vyls-

8
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To estimate the fifth term we use mean’s value formula to get
5 < (ﬁ“p (BF'Y@) ) Iohl Vel AGl
z|<R

C(R)|Vpl2|Ap:i|2| VAl
2B1

[VAp|3 + C(R)|Vyl3.

In a similar way we have

Js

IN

( sup |BF"<:c)|) Vil |V Ap]s
|z|<R

a’B .
—2|VAp3 + C(R)|Vel3.

IN

Once again we will use the inequality

3 1
|floe < CIATILS

satisfied by any function f € H?(f) which comes from Agmon’s inequality and the interpolation H? =
If now we remark that m(p) = m(p1) — m(p2) = 0, we get with (1.18)-(1.19)

J1 < 07[1B'[loo|¢loo| VA1 2| VA

3 1 1 5
< CIVel3|Ap1|3|A%01]3 | VA|;
o Bl

|VAp|3 + C|A‘P1|2 |A2901|2 |Agpl3.

Finally, using (3.58)-(3.64), the estimate (3.57) reads, after integration with respect to t,

/h ds, VO<t<T,

where we let 1
o
2(t) = 190l + 5o,

and h(t) = C(R) + C(R)|A%p1 |5 € L'(0,T).

Using Gronwall lemma, we obtain

2(t) < 2(0)elo MW o <t < T.

(3.62)

(3.63)

= [H', H?:.

(3.64)

As ¢1,v; and @9, vy have the same initial data g, vy, we have z(0) = 0 and so z(t) = 0 for any ¢t € [0,T]

which implies the uniqueness of the strong solution of the problem.

3.4 Weak solutions in the degenerate case

In this part we prove the theorem 2.3

Theorem

Under assumptions (2.6),(2.13)-(2.14), for any given 0 < T < 400, U > 0, vo € v{, + H and ¢y € ®,, such

that |po|eo < 1 and

/Q(F(SDO)"-G(%)) < +o0,
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there exists a weak solution of (1.1)-(1.9) on [0,T] in the sense of definition 2.3 which satisfies
|p(t,z)| < 1 for almost every (t,z) €]0, T[X Q.
Moreover, if we suppose B'(1) = 0 and B'(—1) = 0, then for almost every t € [0,T[ the set
{z e, |p(t,z)] =1}
has zero measure.
Proof :Following [9], we introduce a non-degenerate approximation of this problem. For any 0 < e < 1, let

B.(z) = B(-1+4¢) ifz<-1+¢
B.(z) = B(z) if—-14+e<z<1l-c¢
B.(z)= B(l—g¢) ifz>1-c¢.

We suppose that F; is extended to be a function on all R of C? class with || F3[|c2(r) < C and we introduce
an approximation of Fj as

)= F(0) and F§'(0) = F{(0)
Fi"(z) = Fl'(-1+¢) ifz<-1+¢
Fi'"(z) = F{(x) if—1+e<z<l-—c¢
F'"(z) = F'(l—¢) ifz>1-c.

Notice that we have Fj(z) = Fi(z) if |z| <1 —e. The function G is also approached by G, defined on R

by
Ge(0) =0, GL(0) =0, G!(z) = B(z) "

One can easily verify that B, satisfies (2.6) and F, = F} + F, satisfies (2.7)-(2.10) with p = 2. Hence,
theorem 2.1 can be applied here to obtain a solution ., p. and v, of the approached problem with B = B,
and F' = F. in the sense of definition 2.1.

e Step 1: We are going to derive some new uniform estimates on ., u. and v.. In fact, we point
out that, as in the proof of theorem 2.1, the following computations have to be performed on the Galerkin
approximations of ., . and v. to be fully justified.

We use pe(t) € @1 as a test function in (2.3) and u. = v:(t) — Uvy € V in (2.2), A being chosen later. By
summing the results we obtain in a similar way than in the proof of theorem 2.1,

d ([« 1
& (5150 gluk+ [ o))+ [ BVl 4 m(u
Q Q

<aU [ x|V || + Ve, on, )
Q

+ 2Un, / ID(ox)|D(ue).

As GY is bounded, we can use GL(p.) as a test function in (2.3) so that we have, using B.GY =1,

d
N (/ GE(‘PE)) +/ Vp: Vo, =0,

where we use the divergence theorem (because div (v.) = 0) and the boundary conditions on v. which
imply that v..v = 0 on 99). Integrating by parts, this last estimate can be written

d
% ([ 6te0) +albe+ [ @IIVel < IF 1ITicl
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We choose A = min(k/U, v/U), where k is a constant being fixed later, and using the convexity of F} and
(3.2)-(3.3) we have

d [« 1 n
———w%@+4%@f/awa+/Gmm ﬁ/&@mwaﬂwm%@+iw%@
at \ 2 2 o o o 2

<Y ool Vg |2 + ak| Ag. |2

+ A(U) + K Va2,

where f1(U) which tends to zero when U tends to zero. Hence, if we let k¥ = min (1/2,7;/4), we have
obtained

d

a 1 a n
dt <§‘Vg05|g + §|u5|§ +/ F.(¢e) +/ GE(‘PE)) + §|A‘P€|§ + E'VUE@ +/ B.(ye)| Ve ?
Q Q Q

<173 oo Vipe 3 + £1.(U).

(3.65)

One can easily see that the technical assumption (2.14) implies that for ¢ > 0 small enough, we have
Fl(z) < Fl(z) and G:(z) < G(=) for any z €] — 1,1[. By Gronwall lemma and (2.15) we get from (3.65) that
there exists C' > 0 such that

uell Loo 0,75y + lPellLoe0,130) < C, (3.66)
||Us||L2(0,T;V) + ||<Ps||L2(0,T;<I>2) <C, (3.67)
/@@) <c, (3.68)

Q L>(0,T)
||BE(SOE)VN5||L2(]O,T[><Q) <C. (3.69)

As in the proof of theorem 2.1 and using (3.69), one can derive easily the following estimates

d .
H L <C, (3.70)
dt || L>(0,1;01)
du
£ <C. (3.71)
H dt || L2(0,15v7)

We can then extract a subsequence of (u.) and (p.) which will be always denoted (u.) and (¢.) such that,
using lemma, 1.6,
0. — @ in L*(0,T;®;) strong and a.e.,

Ap. — Ay in L2(]0, T[xQ) weak,
- = ¢ in C°([0, TY, <I>%) weak,
ue — u in L*(0,T; H) strong and a.e,
ue = u in L2(0,T,V) weak,
u. = u in C°([0, T, V¥) weak.
Finally, A being fixed independently of €, we see that if we let v = v + Uv, we have

v, — v in L*(]0, T[x9) strong and a.e.,
ve — v = v —oY in L*(0,T;V) weak.

o Step 2 - L™ estimate :
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Let us remark that, by definition, G(z) > 0, G'(z) > 0if z > 0 and G(z) > 0, G'(z) < 0if z < 0. Following
9], if z > 1 we get

Gele) = Go(1 —2) + GLL ) — (1~ &) + LG~ )z — (1~ ))?
G-+ G (1 —e)w—(1—e)+ %G"a—e)(x—u—e)f
11 ,
Z EB(].—E)('Z._I) )

and in the same way, if x < —1 we have

This implies
/ (el = 1) < 2max(B(1 &), B(-1 +¢)) / Ge(p2),
Q Q

and so, using (3.68), and the fact that B(1 —¢) and B(—1+¢) tend to zero when ¢ tend to zero, we deduce
that

/ (Ipe] = 1)2 —> 0.
Q

Using, for example, Vitali’s theorem, we can perform the limit in this last integral, so that we get

/ (el — 1)2 =0,
Q

which implies that |p| < 1 for almost every time ¢ and almost every z € Q.

e Step 3 - Passing to the limit in the equations :

To conclude the proof of the theorem, we have to verify that the functions ¢ and v are solutions of the
problem.

As equation (2.4) is satisfied by v, we have for any w € V', p € D(]0,T),

- / (e, §/ (BYw)dt + / (v, ver pl(t)w) +2 /]OT[XQn«os)D(vE)=D<pw>=—a /]OT[XQ<<pw).v%>A<pE.

Passing to the limit is classical in the first two terms. In the third term we remark that, by Lebesgue’s
theorem 1(p.)D(pw) converges to n(p)D(pw) in L?(]0, T[x) strongly and so the weak convergence of D(v)
to D(v) in L?(]0, T[x2) let us pass to the limit. Finally, we remark that lemma 1.6 together with (3.67),(3.70)
implies that (up to another extraction of a subsequence) ¢, converges to ¢ in L2(0,T, H?(Q)) strongly and
so by Sobolev’s embedding V. converges to Ve in L?(0,T,L3(Q)) strongly. Using the fact that p.w €
L*(0,T;15(2)) and the weak convergence of Ay, to Ay in L2(]0,T[xf2), one can easily pass to the limit in
the last term so that ¢ and v satisfy (2.4).
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As far as equation (2.5) is concerned, we have for any ¢ € ®,, p € D(]0,T)

T
- / (e, p(E)V)dE + / B.(¢:)Ap. (pA9) + a / BL () Ap. Vo .(0V)
0 10,T[xQ 10,T[xQ (3.72)
+ / (BF")(¢:) Ve (pV1)) — / (0:-V (p8)) = = 0.
10, T[xQ2

10, T[xQ2

Passing to the limit in the first term is straightforward. Let us remark that B, is uniformly bounded by
||B||ss and that B. converges uniformly to B on R. This implies, with Lebesgue’s theorem, that B.(y.)(p.A)
converges to B(yp)(p.Av) in L2(]0, T[x ) strongly and so using the weak convergence of Ay, in L2(]0, T[x (),
we can pass to the limit in the second term.

In the third term we have p.V¢ € L*®(]0,T[x) because » € V3 and Ay, converges weakly to Ay
in L?()0,T[xQ). We can pass to the limit in this term if we show that B.(p.)Vp. converges strongly to
B'(¢).V in L*(]0,T[x ). Using the L>-estimate we have established on ¢ in the previous step, we have

/ |BL(pe)Vpe — B'(9)Vel* = / |BL(p)Vepe — B'(¢)Vep|?
10,T[x 10, T[xQN{|p|<1}

+ / |BL(¢:) Ve — B'(@)Veol”.
10, T[xQN{|p|=1}

In the first integral, we remark that, as |¢| < 1 we have BL(p.) = B'(¢) and V. = V¢ almost everywhere
and
|BL(¢pe) Ve — B'(9)Vol” < 2Bl (Ve |* + Vo),

so that Vitali’s theorem let us pass to the limit in this integral. A classical lemma ([10]) says that Vo =0
almost everywhere in {|¢| = 1}, hence the second integral can be written

IBL(p) V.l < |B'|2, / V.|

lo, T[xQn{|e|=1}

L) IVil? = 0.
10, 7[xQ@N{|p|=1}

Therefore, we have proved that we can pass to the limit in the third term of (3.72).

As we supposed that BF" is continuous on [—1, 1], one can easily see that B, F!' is uniformly bounded and
80, in order to pass to the limit in the fourth term of (3.72), we just have to show that (B.F.')(¢:) converges
to (BF")(p) almost everywhere. This last point is obvious if |¢| < 1 because for € small enough we have the
equality (B:F!)(p:) = (BF")(pe) and we conclude by continuity. Let us show that it remains true if, for
example, ¢(t,z) = 1 (the case ¢ = —1 is treated in the same way).

/]07T[><Qﬂ{|<ﬂ|=1}

e If ¢ is such that 0 < ¢ (t,z) < 1 — ¢ then we have the equality
(B-F')(¢e(t, ) = (BF")(p:(t, 2)).
e If £ is such that ¢. > 1 — £ then we have

(B-F)(¢:(t,2)) = (BFY')(1 - €) + B(1 — &) F3' (¢ (t, ).

In both cases we can conclude that (B:F!")(pc) converges to (BEF")(p) almost everywhere.

Finally, passing to the limit in the fifth term of (3.72) is straightforward because p.V¢ € L*(]0,T[x)
and ve, . both converge strongly in L?(]0,T[x£2).

Hence, we proved that the functions v, ¢ are weak solutions of the problem in the sense of definition 2.3.
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e Step 4: In this last step we suppose that B'(1) = B/(—1) = 0. It is easily seen that this implies that

G(z) converges to +0o0 when z converges to 1 or —1. Using (3.68) and Fatou’s lemma we have for almost every
t€[0,T7],

/ liminf G (p:) < C. (3.73)
qQ €0

- If |p(t,z)| < 1 then for € small enough we have G¢(p:(t,z)) = G(p:(t,x)) and so by continuity

lim G (pe (¢, 2)) = G(p(t, @)

- If p(t,z) = 1 for example, then for any € > 0 we have
Gs(‘Ps(ta .’E)) Z mln(G(l - 6),G(905(t, .73)))
And, as G(z) - 400 when z — 1, we see that

Ge(p:(t,x)) = +oo, (3.74)

- In the same way, when ¢(t,2) = —1, we have also (3.74).

Finally, using (3.73) and (3.74), one sees that

{z e, |o(t,z)| =1}

has zero measure. [ |

3.5 A qualitative result
We finally give the proof of theorem 2.4.

Theorem
Let I an open interval of R and w € I given. We suppose that B is a non-negative function of C'-class defined
on I, F is a function of C3-class defined on I. Then, for U > 0 small enough, the stationary solution of
(1.1)-(1.9) given by po, = w and vy, defined by (1.15) is asymptotically stable under the conditions

B(w)

> 0, (3.75)
F'(z) > 0

for any x in a neighborhood of w. (3.76)
More precisely, for any € > 0 there exists 8 > 0 such that for any U > 0, vg € vZ, +V, @y € ®, satisfying

m(po) = w, U] < B, llvollt < B, [lpo —m(po)ll2 < B,

there exists a unique global strong solution on Rt of the problem (1.1)-(1.9) in the sense of definition 2.2
such that

[lv — U0||L°°(R+;V) + |l - 900||L°o(R+;<1>2) <e,

and if € is small enough, we have as t — +0o0

p(t) — poo in B, for any 0 < s < 2,
v(t) —vY — 0inV, for any 0 < s < 1.
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Proof :
e Step 1 - Truncation :
Let 6 > 0 such that
Iy =w-6w+d Cl,

F" >0,B >0 on a neighborhood of Ij.

One can easily build a function F,, of C3-class such that
F,(w)=0, F.(w) =0, F)(z) = F"(z) on I5, F/(z) > 0if z ¢ I,

and such that F' is bounded on R. This function satisfies (2.7)-(2.10) and (2.12) and moreover, the
convexity of F,, leads to
0=F,(w)>F(z)+ (w—2z)F'(z), Vz € R,

so that in (2.9) we can take the constants equal to

F3(w)=1, Fy(w)=0. (3.77)
We can also easily build a function B, of C!-class satisfying (2.6) and (2.11) such that

B,(z) = B(z), Yz € I,,.

Therefore we can apply theorem 2.2 where we replaced F' by F, and B by B, to get the existence of a
strong solution (¢,,,v,,) of this modified problem.

e Step 2 - Two-dimensional case estimates :

The key-point in this proof is (3.77). Indeed, in (3.17) the terms in Fy(m(po)) = Fy(w) vanish and so we
see that k1 (vo, o, U) tends to zero when U, |vg|2 and ||po —wl|1 tends to zero. Using now (3.20), (3.51), (3.52)
and (3.53) we see finally that ks(vo, o, U) tends to zero when U, ||vg||l1 and ||po — w||2 tends to zero.

This implies that there exists § > 0 small enough such that if we suppose

U] <8, llvolls < B, llpo —wll2 < B,

we have
llv, — 7)0||L°°(R+;V) + llow — 900||L°°(R+;<I>2) <e

We can also choose 3 small enough to have |p,(t,2) —w| < § for any ¢,z (see remark 2.1) so that for any
t,x we have

B (pu(t,z)) = B(pu(t, ),
and
Fy(pu(t,z)) = Fpu(t,z)) = F(w) = (pu(t2) —w)F'(w).

We see that in (2.2) and (2.3), it is only Vu who appears and so, we can add an affine part to F without
changing the equations. We conclude that ¢, and v,, are strong solutions of the original problem with ' and
B.

e Step 3 - Existence of global strong solutions in dimension d =3 :

We have obtained the estimate (3.54) which can be written

y' () + vy (1) < ka(vo, 00, U) + G(1)y(t) + C(y* () +y* 1)y (®), (3.78)

where -y is a constant depending only on Bj,n; and € and where g satisfies

to+T7 .
/ g(S)dS < k4(’U07(p07U7T)7
to
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and we have, as in the case d = 2 above, ki, ks, k3 and k4 tending to zero when ||vol|1, ||¢o — w||2 and U
tend to zero.
Now we choose 8 > 0 such that for any U < 8, ||vg|l1 < 8 and ||pe — w|]2 < B we have

g

C(0)* +y(0)") < 5-

By a continuity argument we know that there exists a time 7" > 0 such that for any 0 < ¢t < T we have

Cly®)* +y®)*) <, (3.79)

suppose that T is the maximum time satisfying this property. On the interval [0, T, (3.78) reads

y'(t) < ks + g(t)y(t),

and so using uniform gronwall’s lemma as we did in the study of the two-dimensional case in the proof of
theorem 2.2 we have
y(t) < k5(U078005U)7 Vo0 <t< Ta

where

a 1 ~ 7
k5(U0,Q00,U) = (max (§|AQ00|% + §|V’Uo|§ + f5(U),k§> + k‘3) 6k4.

As in the two-dimensional case, we infer from (3.77) and the estimates on the weak and strong solutions,
that ks tends to zero when U, ||vo||1 and ||¢o — w|2 tend to zero. Hence, if we impose 8 to be small enough
such that

O(k2 +k3) <7,
we see that the maximal time where (3.79) is true is T' = +o00. Therefore we have proved the existence of
a global strong solution for the modified problem and this solution satisfies

y(t) < ]}}5(1}07(‘00717)7 vt > 0.

We can now conclude as we did in the end of step 2: ¢, and v, are in fact strong solutions of the initial
problem.

Therefore, we have proved the first point of the theorem.

e Step 4 - Asymptotic behavior :

The following proof is valid in both dimensions d = 2 or d = 3. We recall that we have shown that for
any (t,z), ¢(t, ) lies in the interval [w — d,w + ] where B and B,, coincide and F" is positive.

We deduce from equation (2.5) that for any ¢ € 5 we have

Lo-w) ta /Q B!, () ApVp. Vi) + a /Q Buy(9) At
+ / By (0)F" (9)Vep. V) - / (0.V4)(p — ) =0,
Q Q

and so taking ¥ = ¢ — w we have using divergence theorem that

1d

3l — ol + aBilavk < a [ BLIIAITHP,
Q

where we recall that B, is bounded from below by a constant B;. Finally, we have

1d
57l? — @k + BilAgls < allBlllec|Apla|Veli < Clip - wllblApl; < CelApl;.
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If we choose € small enough we have

ld|
2dt

and so using (1.19), there exists a constant v > 0 such that

p—wl+ _|A<P|2 <0,

|(;0 - W|2 < Ce—r)/ta

and therefore p(t) — Yo in ®¢. But we recall that p(t) — @ lies in L= (RT; ®5). So, by interpolation
results, we have ¢(t) = Yoo in @5 for any 0 < s < 2.
If we notice that (v.V)vY = 0 and AvY = 0, equation (2.2) can be written,

G0 =000 + 50,0 = o w) + (o~ o8, w) +2 | (@)D =) : D(w)

+ / (n(e) —n(w))D@Y) : D(w) = —a/ (w.Vp)Ap in D'(R+), Yw € V
Q Q

so that if we take w = v —U € V we have

1d

310 =08+ 2m IV = oD <o = ool 0= o)1+ [ [n(e) = @)Dl = DG

+a/9|v9p||mo||v—véé|-

Hence, using |VoZ |1 = |Q|U,

1d

2dtlv—voolz+2771|V(U—v )3 < Cllogallallo = v lIE + 110 llo | = Pooloo| D (v = v50) 2| D () 2

+|Vels|Apla|lv = vE |k
< CUIV(v —v%) 3 + CU V(v — o) s + Clo — vool2
—|A90|2||V(U — )5 + V(e = ve0) l3-
We recall that we have |Ap|s <€ and U < 8, so that if we impose € and § to be small enough, we get by
Sobolev embedding Hz C L3,
1d
2dt"
Using (1.12), and the convergence of go(t) t0 Yoo in @, for any s < 2 we derive from (3.80) that

—vggl3 + IV(U—U )3 < Clo = voolde + Cllp — 9ol - (3.80)

d
dt|U_Uoo|2 +’7|U_,Uoo|2 < f( )

where v > 0 is a constant, and f(¢) tends to zero when ¢ — +00. A classical argument of ordinary
differential equations leads to

¢
o —vZ |3 < |vo —vY |2e™ + e_'*t./ f(s)erds,
0
and so, as f(t) — 0, we easily deduce that v(t) — v converges to zero in H.
As v(t) —vY is uniformly bounded in V; with respect to t, we finally infer that the convergence of v(t) —vZ,
to zero takes place in V; for any 0 < s < 1.
|

Acknowledgments: The author wishes to thank professor P. Fabrie for the interest that he bears in
directing this work.

33



Asymptotic Analysis 20, numéro 2 (1999) pp 175-212

References

[1] R. A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York (1975).

[2] N. Alikakos, P. Bates, G. Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension, J.
Diff. Eq. 90, pp 81-135 (1991).

[3] S. Agmon Lectures on elliptic boundary value problems, Van Nostrand mathematical studies 2 (1965).

[4] P. W. Bates, P. C. Fife, The dynamics of nucleation for the Cahn-Hilliard equation, STAM J. Appl. Math.
53 No. 4, pp 990-1008 (1993).

[5] J. Carr, M. Gurtin, M. Slemrod, Structured phase transitions on a finite interval, Arch. Rational Mech.
Anal. 86, pp. 317-351 (1984).

[6] R. Chella, J. Vinals, Mizing of a two-phase fluid by a cavity flow, Physical Review E 53, 3832 (1996).

[7] A.Debussche, L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Analysis
24, no 10, pp 1491-1514, (1995).

[8] M. Doi, Dynamics of domains and textures, Theoretical Challenges in the Dynamics of Complex Fluids,
pp- 293-314, (1997).

[9] C.M. Elliott, H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, Siam J. Math. Anal. 27
No. 2, pp 404-423 (1996)

[10] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin
(1977)

[11] J. D. Gunton, M. San Miguel, P.S. Sahni, in Phase transitions and critical phenomena Vol. 8 ed. by Domb
and Lebowitz (Academic, London) 1983.

[12] M. E. Gurtin, D. Polignone, J. Vinals Two-phase binary fluids and immiscible fluids described by an order
parameter Mathematical Models and Methods in Applied Sciences 6, 815 (1996).

[13] C. O. Horgan, Korn’s inequalities and their applications in continuum mechanics, SIAM Review 37 No.
4, pp 491-511 (1995)

[14] D. Jasnow, J. Vinals Coarse-grained description of thermo-capillary flow Phys. Fluids, 8, 660 (1996).
[15] J.L. Lions, E. Magenes, Problémes aux limites non homogénes et applications Dunod, (1968).

[16] A. Miranville, Upper bound on the dimension of the attractor for the shear-layer flow in space dimension
3, Dynamical systems (Stockholm, 1992), pp. 61-74, World Sci. Publishing, River Edge, NJ (1993).

[17] A. Onuki, Phase transitions of fluids in shear flow, J. Phys.: Condens. Matter 9, pp 6119-6157 (1997).
[18] J. Simon, Compact sets in the space LP(0,T; B), Ann. Mat. Pura Appl. 146 No. 4, pp 65-96 (1987)

[19] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical
Science 68, Springer-Verlag (1997)

[20] R. Temam, Navier-Stokes equations, North-Holland Publishing Comp., (Studies in Mathematics and its
Applications; 2). (1977)

[21] J. Wei, M. Winter, Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. Henri Poincaré Vol. 15
no 4, pp 459-492 (1998).

34



Mathematical study of multiphase flow under shear through order parameter formulation

[22] J. Wei, M. Winter, On the stationary Cohn-Hilliard equation: interior spike solutions, J. Differential
Equations 148 no 2, pp 231-267 (1998).

[23] J. Wei, M. Winter, On the stationary Cahn-Hilliard equation: bubble solutions, SIAM J. Math. Anal. 29
no 6, pp. 1492-1518 (1998).

35



