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Weighted coloring on planar, bipartite and split graphs:

complexity and approximation

D. de Werra * M. Demange' B. Escoffier? J. Monnot* V. Th. Paschos?

Abstract

We study complexity and approximation of MIN WEIGHTED NODE COLORING in planar, bi-
partite and split graphs. We show that this problem is NP-complete in planar graphs, even if
they are triangle-free and their maximum degree is bounded above by 4. Then, we prove that
MIN WEIGHTED NODE COLORING is NP-complete in Ps-free bipartite graphs, but polynomial for
Ps-free bipartite graphs. We next focus ourselves on approximability in general bipartite graphs
and improve earlier approximation results by giving approximation ratios matching inapprox-
imability bounds. We next deal with MIN WEIGHTED EDGE COLORING in bipartite graphs. We
show that this problem remains strongly NP-complete, even in the case where the input-graph is
both cubic and planar. Furthermore, we provide an inapproximability bound of 7/6 — ¢, for any
e > 0 and we give an approximation algorithm with the same ratio. Finally, we show that MIN
WEIGHTED NODE COLORING in split graphs can be solved by a polynomial time approximation
scheme.

Keywords: Graph coloring; ; weighted node coloring; weighted edge coloring; approximability;
NP-completeness; planar graphs; bipartite graphs; split graphs.

1 Introduction

We give in this paper some complexity results as well as some improved approximation results for
MIN WEIGHTED NODE COLORING, originally studied in Guan and Zhu [7| and more recently in [4].
A k-coloring of G = (V, E) is a partition S = (S1,. .., Sk) of the node set V of G into stable sets S;.
In this case, the objective is to determine a node coloring minimizing k. A natural generalization
of this problem is obtained by assigning a strictly positive integer weight w(v) for any node v € V,
and defining the weight of stable set S of G as w(S) = max{w(v) : v € S}. Then, the objective
is to determine S = (S1,...,Sk) a node coloring of G minimizing the quantity Zle w(S;). This
problem is easily shown NP-hard; it suffices to consider w(v) = 1, Vo € V and MIN WEIGHTED
NODE COLORING becomes the classical node coloring problem. Other versions of weighted colorings

have been studied in Hassin and Monnot [§].
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Consider an instance I of an NP-hard optimization problem II and a polynomial time algorithm A
computing feasible solutions for II. Denote by my(I,S) the value of a II-solution S computed by A
on I and by opt(I), the value of an optimal Il-solution for I. The quality of A is expressed by
the ratio (called approximation ratio in what follows) pa(I) = ma(I,S)/opt(I), and the quantity
pa = inf{r : pa(I) < r, I instance of II}. A very favourable situation for polynomial approximation
occurs when an algorithm achieves ratios bounded above by 1+ ¢, for any ¢ > 0. We call such
algorithms polynomial time approzrimation schemes. The complexity of such schemes may be poly-
nomial or exponential in 1/ (they are always polynomial in the sizes of the instances). A polynomial
time approximation scheme with complexity polynomial also in 1/e is called fully polynomial time
approzimation scheme.

This paper extends results on MIN WEIGHTED NODE COLORING, the study of which has started
in Demange et al. [4]. We first deal with planar graphs and we show that, for this family, the
problem studied is NP-complete, even if we restrict to triangle-free planar graphs with node-degree
not exceeding 4.

We then deal with particular families of bipartite graphs. The NP-completeness of MIN WEIGHTED
NODE COLORING has been established in [4] for general bipartite graphs. We show here that this
remains true even if we restrict to planar bipartite graphs or to Pa1-free bipartite graphs (for defini-
tions graph-theoretical notions used in this paper, the interested reader is referred to Berge [1]). It
is interesting to observe that these results are obtained as corollaries of a kind of generic reduction
from the precoloring extension problem shown to be NP-complete in Bodlaender et al. [2], Hujter
and Tuza [10, 11|, Kratochvil [13]. Then, we slightly improve the last result to Ps-free bipartite
graphs and show that the problem becomes polynomial in Ps-free bipartite graphs. Observe that
in [4], we have proved that MIN WEIGHTED NODE COLORING is polynomial for Ps-free graphs and
NP-complete for Ps-free graphs.

Then, we focus ourselves on approximability of MIN WEIGHTED NODE COLORING in (general)
bipartite graphs. As proved in [4], this problem is approximable in such graphs within approximation
ratio 4/3; in the same paper a lower bound of 8/7 — ¢, for any ¢ > 0, was also provided. Here we
improve the approximation ratio of [4] by matching the 8/7-lower bound of [4] with a same upper
bound; in other words, we show here that MIN WEIGHTED NODE COLORING in bipartite graphs is
approximable within approximation ratio bounded above by 8/7.

We next deal with MIN WEIGHTED EDGE COLORING in bipartite graphs. In this problem we
consider an edge-weighted graph G and try to determine a partition of the edges of G into matchings
in such a way that the sum of the weights of these matchings is minimum (analogously to the node-
model, the weight of a matching is the maximum of the weights of its edges). In [4], it is shown
that MIN WEIGHTED EDGE COLORING is NP-complete for cubic bipartite graphs. Here, we slightly
strengthen this result showing that this problem remains strongly NP-complete, even in cubic and
planar bipartite graphs. Furthermore, we strengthen the inapproximability bound provided in [4],
by reducing it from 8/7 — e to 7/6 — €, for any £ > 0. Also, we match it with an upper bound of the
same value, improving so the 5/3-approximation ratio provided in [4].

Finally, we deal with approximation of MIN WEIGHTED NODE COLORING in split graphs. As



proved in [4], MIN WEIGHTED NODE COLORING is strongly NP-complete in such graphs, even if
the nodes of the input graph receive only one of two distinct weights. It followed that this problem
cannot be solved by fully polynomial time approximation schemes, but no approximation study was
addressed there. In this paper we show that MIN WEIGHTED NODE COLORING in split graphs can
be solved by a polynomial time approximation scheme.

In the remainder of the paper we shall assume for any weighted node or edge coloring & =
(S1,...,5¢) considered, we will have w(S7) > ... > w(S).

2  Weighted node coloring in triangle-free planar graphs

The node coloring problem in planar graphs has been shown NP-complete by Garey and Johnson
[5], even if the maximum degree does not exceed 4. On the other hand, this problem becomes easy
in triangle-free planar graphs, (see Grotzsch [6]). Here, we show that the weighted node coloring
problem is NP-complete in triangle-free planar graphs with maximum degree 4 by using a reduction
from 3-SAT PLANAR, proved to be NP-complete in Lichtenstein [14]. This problem is defined as
follows: Given a collection C = (C1,...,Cy,) of clauses over the set X = {z1,...,2,} of Boolean
variables such that each clause C; has at most three literals (and at least two), is there a truth
assignment f satisfying C 7 Moreover, the bipartite graph BP = (L, R; E) is planar where |L| = n,

|R| = m and [z;,¢;] € E iff the variable z; (or Z;) appears in the clause C}.

Theorem 2.1 MIN WEIGHTED NODE COLORING is NP-complete in triangle-free planar graphs with

a maximum degree 4.

Proof: Let BP = (L, R; E) be the bipartite graph representing an instance (X, C) of 3-SAT PLANAR
where L = {z1,...,zn}, R ={c1,...,cm}. We construct an instance I = (G, w) of MIN WEIGHTED
NODE COLORING by using two gadgets: The gadgets clause F'(C}) are given in Figure 1 for clause
C; of size 3 and in Figure 2 for clause Cj of size 2. The nodes c;? are those that will be linked to the
rest of the graph.

c} G G
3 3 3
2 2 2 2T—O3

2

Figure 1: Graph F(C}) representing a clause C; of size 3.

The gadgets variable H (z;) is given in Figure 3 for variable z;. Assume that x; appears p; times
positively and po times negatively in (X,C), then in H(z;) there are 2p = 2(p; + p2) special nodes

xf,x_f, k=1,...,p. These nodes form a path which meets nodes xf“', xf alternately.
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Figure 2: Graph F(C}) representing a clause C; of size 2.

3 3 3 3 3 3

Figure 3: Graph H (z;) representing variable x;

The weight of nodes which are not given in Figures 1, 2 and 3 are 1. These gadgets are linked

together by the following process. If variable x; appears positively (resp. negatively) in clause ¢;, we

link one of the variables :Uf (resp. xf), with a different % for each C, to one of the three nodes cé of

gadget F'(C;). This can be done in a way which preserves the planarity of the graph. Observe that
G is triangle-free and planar with maximum degree 4. Moreover, we assume that G is not bipartite
(otherwise, we add a disjoint cycle I' with |[I'| = 7 and Vv € V(I'), w(v) = 1).

It is then not difficult to check that (X, C) is satisfiable iff opt(I) < 6. O

3  Weighted node coloring in bipartite graphs

3.1 Complexity results

The NP-completeness of MIN WEIGHTED NODE COLORING in bipartite graphs has been proved in [4].
Here, we show that some more restrictive versions are also NP-complete, namely bipartite planar
graphs and Pg-free bipartite graphs, i.e. bipartite graphs which do not contain induced paths of
length 8 or more. We use a generic reduction from the precoloring extension node coloring problem
(in short PREXT NODE COLORING). This latter problem studied in [2, 10, 13, 11], can be described
as follows. Given a positive integer k, a graph G = (V, E) and k pairwise disjoint subsets Vi, ..., Vj
of V, we want to decide if there exists a node coloring S = (S1,...,,Sk) of G such that V; C S;, for
all ¢ < k. Moreover, we restrict to some class of graphs G: we assume that G is closed when we add
a pending edge with a new node (i.e., if G = (V,E) € Gand x € V, y ¢ V, then G + [z,y] € G).

Theorem 3.1 Let G be a class of graphs which is closed when we add a pending edge with a new
node. If PREXT NODE COLORING is INP-complete for graphs in G, then MIN WEIGHTED NODE



COLORING is NP-complete for graphs in G.

Proof : Let G be such a class of graphs. We shall reduce PREXT NODE COLORING in G graphs to
weighted node coloring in G graphs. Let G = (V, E) € G and k pairwise disjoint subsets Vi,...,Vj
of V. We build instance I = (G',w) of weighted node coloring using several gadgets T;, for i =

1,..., k. The construction of T; is given by induction as follows: T} is simply a root v; with weight
w(vy) = 2871 Given Ty,...,T;_1, T} is a tree with a root v; of weight w(v;) = 28~ that we link to
tree T}, via edge [v;, vy for each p=1,...,i— 1.

T Ty

T
ok—1 ok—2 //22:1\\
O O—'\—O [
(%1 (%) N V1 7 N

\ /
\ok—2 2k—1/
2\

S~ _ -

Figure 4: Gadgets for 77,75 and T3.

Figure 4 illustrates the gadgets 11,5, T3. Now, I = (G',w) where G’ = (V', E’) is constructed
in the following way: G’ contains G. For all i = 1,...,k, we replace each node v € V; by a copy of
the gadget T; where we identify v with root v;. For all v € V' \ (UE_,V;) we set w(v) = 1. Note that,
by hypothesis, G’ € G.

One can verify that the precoloring of G (given by Vi,..., Vi) can be extended to a proper node
coloring of G using at most k colors iff opt(I) < 2% — 1. O

Using the results of Kratochvil [13] on the NP-completeness of PREXT NODE COLORING in

bipartite planar graphs for £ = 3 and P;3-free bipartite graphs for k = 5, we deduce:

Corollary 3.2 In bipartite planar graphs, MIN WEIGHTED NODE COLORING 1s strongly NP-complete
and it is not % — e-approzimable unless P=NP.

Corollary 3.3 In Ps-free bipartite graphs, MIN WEIGHTED NODE COLORING is strongly N P-complete

and it is not % — g-approrimable unless P=NP.

In Hujter and Tuza [11], it is shown that PREXT NODE COLORING is NP-complete in Pgs-free
bipartite chordal graphs for unbounded k. Unfortunately, we cannot use this result in Theorem 3.1
since the resulting graph has an induced path with arbitrarily large length. However, we can adapt

their reduction.

Theorem 3.4 MIN WEIGHTED NODE COLORING is INP-complete in Ps-free bipartite graphs.

Proof : We shall reduce 3-SAT-3, proved to be NP-complete in Papadimitriou [16] to our problem.

Given a collection C = (C1, . .., Cy,) of clauses over the set X = {z1,...,z,} of Boolean variables such



that each clause C; has at most three literals and each variable has at most 3 occurrences (2 positive
and one negative), we construct an instance I = (BP,w) in the following way: we start from BP; =
(L1, Ry; Ey), a complete bipartite graph K, ,, where L; = {z1,...,z,} and Ry = {c1,...,cm}.
Moreover, each node of BP; has weight 1. There is also another bipartite graph BP, isomorphic
to Kop 2, where a perfect matching has been deleted. More formally, BP» = (Lg, Rg; E2) where
Ly = {li,...,lon}, Ro = {r1,...,m2n} and [l;,r;] € Ey iff i # j. Finally, w(l;) = w(r;) = 22n—i for
i=1,...,2n. Indeed, sets {lg;_1,72;—1} and {lg;, 79; } will correspond to literal x; and Z; respectively.
Between BP; and BP,, there is a set E3 of edges. [x;,7;] ¢ E3iff j =2i—1or j = 2i and [l;,¢;j] ¢ Es
iff i = 2k — 1 and xy is in C; or i = 2k and 7y, is in C;. Note that BP is a Pg-free bipartite graph.
One can verify that (X,C) is satisfiable iff opt(I) < 22" — 1. O
We end this section by stating that MIN WEIGHTED NODE COLORING is polynomial for Ps-free
bipartite graphs, i.e., without induced chain on 5 nodes. There are several characterizations of Ps-free
bipartite graphs, see for example, Hammer et al. [9], Chung et al. [3] and Hujter and Tuza [10]. In
particular, BP is a Ps-free bipartite graph iff BP is bipartite and each connected component of BP
is 2Ko-free, i.e., its complement is Cy-free. In this case, we can show that any optimal weighted node
coloring §* = (S7,..., ;) uses at most 3 colors (so, ¢ < 3) and when ¢ = 3, then for any connected
component BP; = (L;, R;; E;) of Ps-free bipartite graph we have Sf’i N L; # () and Sf’i NR; # 0,
S;’i C R; (resp., S;’i C L;) and S;’i C L; (resp., S;’i C R;) where (Sf’i, S;’i, S;’) is the restriction of
S* to the subgraph BP;. Thus, applying an exhaustive search on k1 = w(S5) and a dichotomy search
k2 = w(S%) we can find an optimal solution within O(n|w|log|w|) time where |w| = |[{w(v) : v € V'}|.

Hence, we can state:

Theorem 3.5 MIN WEIGHTED NODE COLORING is polynomial in Ps-free bipartite graphs and can

be solved within time O(n|w|log|w|).

3.2 Approximation

In Demange et al. [4], a %—approximation is given for MIN WEIGHTED NODE COLORING and it is
proved that a (% —¢)-approximation is not possible, for any £ > 0, unless P=NP, even if we consider
arbitrarily large values of opt(I). Using Corollary 3.2, we deduce that this lower bound also holds if

we consider bipartite planar graphs. Here, we give a %—approximation in bipartite graphs.

BIPARTITECOLOR
1 Sort the nodes in non-increasing weight order (i.e., w(vi) > ... > w(vy));
2 Forit=1tondo

2.1 Set V; = {vy,...,vu;};

2.2 Compute SF = (5%, 5%) (S may be empty) an optimal weighted node 2-coloring in the
subgraph BP[V;] induced by V; ;

2.3 Define node coloring S* = (S%, 53, L\ Vi, R\ V;) (L\ V; or/and R\ V; may be empty);



3 Output S = argmin{val(S): i=1,...,n};

The step 2.2 consists of computing the (unique) 2-coloration (S ;, 55 ;) (with w(S7 ;) = w(S3 ;))
of each connected component BPj,j = 1...p of BP[V;] (with S5, = 0 if BP; is an isolated node).
Then it merges the most expensive sets, i.e. it computes St = U?:lsi*,j for ¢ = 1,2. It is easy to
observe that S = (S}, 5%) is the best weighted node coloring of BP[V;] among the colorings using

at most 2 colors; such a coloring can be found in O(m) time where m = |E].

Theorem 3.6 BIPARTITECOLOR polynomially solves in time O(nm) MIN WEIGHTED NODE COLOR-

ING 1n bipartite-graphs and it is a %—appro:m'mation.

Proof : Let I = (BP,w) be a weighted bipartite-graph where BP = (L, R; F) and §* = (57, ..., S})
be an optimal node coloring of I with w(S}) > ... > w(S}). If | < 3, then BIPARTITECOLOR finds an
optimal weighted node coloring which is §". Now, assume [ > 3 and let i; = min{k : v} € S7}. We
have i; = 1 and opt(I) = w(v;,) + w(viy) + w(viy).
Let us examine several steps of this algorithm. When ¢ = is — 1, the algorithm produces a node
3-coloring 827! = (S},_,L\ S,_;,R\ S,_;). Indeed, by construction Vj,—1 C S} is an in-
dependent set, and then, S; , is defined by S?_l = W2_1,S§2_1 = () and then val(S27!) <
w(viy) + 2w(vi,). When i = i3 — 1, the algorithm produces on BP[Vj, 1] a node 2-coloring S},
with a cost val(S}, ;) < w(vi,) +w(vy,) since the coloring (S} N Vi;—1, 55 N Viy—1) is a feasible node
2-coloring of BP[Vi,_1] with cost w(v;,) + w(vy,). Thus, val(S®71) < w(vy,) + w(vi,) + 2w(vyy).
Finally, when ¢ = n, the node 2-coloring S™ satisfies val(S™) < 2w(v;, )

The convex combination of these 3 values with coefficients % x val(S™), % x val(S®~1) and

2 x val(S™71) gives the expected result. O

4 Weighted edge coloring in bipartite graphs

The weighted edge coloring problem on a graph G can be viewed as the weighted node coloring

problem on L(G) where L(QG) is the line graph of G. Here, for simplicity, we refer to the edge model.

4.1 Complexity results

Demange et al. [4] have proved that MIN WEIGHTED EDGE COLORING in bipartite cubic graphs is
strongly NP-complete and a lower bound of % is given for the approximation. Here, we slightly

improve these complexity results.

Theorem 4.1 In bipartite cubic planar graphs, MIN WEIGHTED EDGE COLORING s strongly NP-

complete and it s not % — g-approrimable unless P=NP.

Proof : We shall reduce PREXT EDGE COLORING in bipartite cubic planar graphs to our problem.
Given a bipartite cubic planar graph BP and 3 pairwise disjoint matchings F;, the question of
PREXT EDGE COLORING is to determine if it is possible to extend the edge precoloring Fy, Es, Fs



to a proper 3-edge coloring of GG. Very recently, this problem has been shown NP-complete in Marx
[15].

Let BP = (V, E) and Ej, Es, F3 be an instance of PREXT EDGE COLORING; we construct an instance
I = (BP',w) of weighted edge coloring as follows. Each edge in E; receives weight 3. Each edge
[z,y] € E9 is replaced by a gadget F» described in Figure 4.1, where we identify x and y to vg and
vg respectively. Each edge in Fs is replaced by a gadget F3 which is the same as gadget Fb except
that we have exchanged weights 1 and 2. The other edges of G receive weight 1. Remark that BP’
is still a bipartite cubic planar graph.

Figure 5: Gadget F» for e € Fs.

We can verify that the answer of PREXT EDGE COLORING instance is yes if and only if there exists
an edge coloring S of I with cost val(S) < 6. O

4.2 Approximation

In Demange et al. [4], a %-approximation is given for MIN WEIGHTED EDGE COLORING in bipartite
graphs with maximum degree 3. Here, we give a %—approximation. We need some notations: If
BP = (V,E) is a bipartite graph with node set V' = {vy,...,v,}, we always assume that its edges
E = {ey,...,en} are sorted in non-increasing weight order (i.e., w(e1) > ... > w(ey)). V' is a
subset of nodes and E’ a subset of edges, BP[V’] and BP[E’] denote the subgraph of BP induced by
V' and the partial graph of BP induced by E’ respectively. For any i < m, we set E; = {e1,...,¢€;}
and E; = E \ E;. Finally, V; denotes the set of nodes of BP incident to an edge in E; (so, it is the
subset of non-isolated nodes of BP|[E;]).

BIPARTITEEDGECOLOR

1 For i = m downto 1 do

1.1 Apply algorithm SOL1 on BP[E;];

1.2 If SOL1(BP[E;])# 0, complete in a greedy way all the colorings produced by SOL1 on the
edges of E;. Let S; be a best one among these edge colorings of BP;

1.3 For j = ¢ downto 1 do
1.3.1 Apply algorithm SOL2 on BP[E}];



1.3.2 If SOL2(BP|[E;])# 0, complete in a greedy way all the colorings produced by SOL2 on
the edges of E Let &3 5; be a best one among these edge colorings of BP:;

1.3.3 Apply algorithm SOL3 on BP[E}];

1.3.4 If SOL3(BP|[E;])# 0, complete in a greedy way all the colorings produced by SOL3 on
the edges of E Let 835 be a best one among these edge colorings of BP

2 Output S = argmin{val(S1;),val(Sk ;) k=2,3, j=1,...,4, i=1,...,m}.

The greedy steps 1.2, 1.2.2 and 1.2.4 give a solution using at most 5 colors. More generally, in
[4], we have proved that, in any graph G, the greedy coloring and at least one optimal weighted node
coloring use at most A(G)+1 colors, where A(G) denotes the maximum degree of G. In our case, we
have G = L(H), the line graph of H, and we deduce A(L(H))+ 1< 2(A(H)—-1)+1=2A(H) - 1.
The 3 algorithms SOL1, SOL2 and SOL3 are used on several partial graphs BP’ of BP. In the following,
V', E' and m’ denote respectively the node set, the edge set and the number of edge of the current
graph BP'. Moreover, we set V/ = V' \ V/. It M = (M, ..., M;) with w(M;) > ... > w(M,) is an
edge coloring of BP’, we note i; = min{k : e, € M;}. We assume, for reason of readability, that
some colors M; may be empty (in this case i; = m’ 4+ 1). The principle of theses algorithms consist
in finding a decomposition of BP’ (a subgraph of BP) into two subgraphs BP] and BPj having
each a maximum degree 2. When there exists such a decomposition, we can color BP; with at most

2 colors since BP is bipartite.

SOL1

1 For j = m’/ downto 1 do

1.1 If the degree of BP'[E]] is at most 2 then
1.1.1 Consider the graph BP"” induced by the nodes of BP’ incident to at least 2 edges of
F; and restricted to the edges of FJ’

1.1.2 Determine if there exists a matching M7 of BP"” such that every node of 7]’ is
saturated;

1.1.3 If such a matching is found, consider the decomposition BP;; and BP,; of BP'
induced by E} UM/ and E’\ (Ej U M) respectively;

1.1.4 Find an optimal 2-edge coloring (MY, M3) of BPy ;;

1.1.5 Color greedily the edges of BPé,j with two colors (Mg, MZ);

1.1.6 Define Sf = (Mf, Mg, Mg, Mi) the edge coloring of BP';

2 Output {S{: j=1,...,m' —1};




Note that the step 1.1.2 is polynomial. Indeed, more generally, given a graph G and V' C Vit
is polynomial to determine if there exists a matching such that each node of V' is matched. To see
this, consider G’ where we add to G all missing edges between nodes of V' \ V'. If |V| is odd, then
we add a node to the clique V '\ V'. It is easy to see that G’ has a perfect matching if and only if G

has a matching such that each node of V' is saturated.

Lemma 4.2 If S = (M, My, M3, My) is an edge coloring of BP', then we have val(S3™') <

S0L2

1 For k = m' downto 1 do

1.1 If Ej, is a matching :

1.1.1 Determine if there exists a matching M}, of BP'[V}] such that each node of BP'[V/]
having a degree 3 in BP' is saturated.

1.1.2 If such a matching is found, consider the decomposition BPll,k and BP2’7k of BP'
induced by Ej U My, and E'\ (E} U M) respectively;

1.1.3 Color BP]; with one color MF;

1.1.4 Color greedily BP,; with two colors MY and M¥;

1.1.5 Define S§ = (MF, M}, M¥}) the edge coloring of BP';

2 Output {S§: k=1,....,m'};

Lemma 4.3 If S = (My, My, M3) is an edge coloring of BP', then we have val(S2™') < w(M;) +

SOL3

1 For k = m’ downto 1 do

1.1 Determine if there is a matching M, in BP'[E}] such that each node of degree 3 in BP’

is saturated.

1.2 If such a matching is found, consider the decomposition BP[; and BP,, of BP' induced
by My and E’\ Mj, respectively;

1.3 Color BP], with one color M¥;
1.4 Color greedily BP,, with two colors M{ and M};
1.5 Define S§¥ = (MF, M}, M¥}) the edge coloring of BP';

10



2 Output {S}: k=1,...,m' —1};

Lemma 4.4 IfS = (M, My, M3) is an edge coloring of BP', then we have val(S ™) < 2w(M) +
w(Ms).

Theorem 4.5 BIPARTITEEDGECOLOR is a % approximation for MIN WEIGHTED EDGE COLORING in

bipartite graphs with mazimum degree 3.

Proof : Let S* = (M7,..., M) with w(M7) > ... > w(MZ) be an optimal weighted edge
coloring of BP. Denote by i} the smallest index of an edge in M} (i} = m + 1 if the color is
empty). Consider the iteration of BIPARTITEEDGECOLOR corresponding to the cases ¢ = if — 1 and
j =14 — 1. Then, applying Lemma 4.2, we produce on BP' = BP[E;] an edge coloring of weight at
most w(M;) + w(Mj) + 2w(M3). Then the greedy coloring of the edges of E; produces a coloring
S; of weight val(S]) < w(My) + w(M3) + 2w(M3) + w(MF). Applying the same arguments on
Lemma 4.3 and Lemma 4.4, we produce two solutions S5 and Sj respectively satisfying val(S5) <
w(M7) + 2w(Ms) + 2w(My) and val(S5) < 2w(My) + w(M3) + 2w(My).

Notice that if there is an empty color produced by one of the algorithms SOL¢, then the bounds
are still valid. The convex combination of these 3 values with coefficients % x val(8y), % X val(Sh)
and # x val(S}) gives the expected result. O

5 Weighted node coloring in split graphs

The split graphs are a class of graphs related to bipartite graphs. Formally, G = (K1, Va; F) is a split
graph if K is a clique of G with size |K;| = n; and V3 is an independent set with size |Va| = no.
So, a split graph can be viewed as a bipartite graph where the left set is a clique. Since split graphs
forms a subclass of perfect graphs, the node coloring problem on split graphs is polynomial. On the
other hand, in [4], it is proved that the weighted node coloring problem is strongly NP-complete
in split graphs, even if the weights take only two values. Thus, we deduce that there is no fully
polynomial time approximation scheme in such a class of graphs. Here, we propose a polynomial time
approximation scheme using structural properties of optimal solutions. An immediate observation
of split graphs is that any optimal node coloring §* = (S7,...,S)) satisfies [K1| < ¢ < [K1|+ 1 and
any color S} is a subset of V, with possibly one node of Kj. In particular, for any optimal node
coloring §* = (S7,...,S}) , there exists at most one index i(S*) such that Sl NEKL = 0.
Lemma 5.1 There is an optimal weighted node coloring S* = (ST,...,S)) with w(S}) = ... >
w(Sy) and an index ig < € + 1 such that:

o Vj<igS;={vjtu{velr:v¢ u{g;llsg and [v,v;] ¢ E} for some vj € K.

o Sp =W\ (STU...US} ) and Vj >ig S} = {v;} for some v; € K;.

2
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Thus, applying an exhaustive search on all sets K{ C K with k = |K{| < [1] and on all

bijections from {1,...,k} to K{, one can find the k heaviest colors of an optimal weighted node

coloring and thus, we deduce:

Theorem 5.2 MIN WEIGHTED NODE COLORING admits a polynomial time approximation scheme

i split graphs.
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