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Approximation algorithms for the maximum Hamiltonian Path

Problem with specified endpoint(s)

Jéréme Monnot*

12 September 2003

Abstract

This paper deals with the problem of constructing Hamiltonian paths of optimal weight, called
HPP, , if the two endpoints are specified, HPP, if only one endpoint is specified. We show that

HPP,, is %—differential approximable and HPPj; is %—differential approximable. Moreover, we

observe that these problems can not be differential approximable better than %.

Based upon these results, we obtain new bounds for standard ratio: a %—standard approxima-
tion for MAX HPP, , and a % for MAX HPP,, which can be improved to % for Max HPP, ,[a, 2d]
(all the edge weights are within an interval [a, 2a]), to 2 for MAX HPP,|a, 2a] and to 2 for MIN
HPP, ,[a,2a], to % for MIN HPP[a, 2a).

Keywords: Approximate algorithms; Differential ratio; Complexity theory; Combinatorial

optimization; Performance ratio; Analysis of Algorithms; Hamiltonian paths.

1 Introduction

Routing design problems are of a major importance in combinatorial optimization, and the most im-
portant ideas of algorithmic have been applied to them during the last twenty years, see Christofides
[6], Fisher et al. [15], Haimovich and Rinnooy Kan [19], Kosaraju et al. [25], Hassin and Rubinstein
[21] and Bazgan et al. [5]. We will be concerned with some problems closely related to the Maximum
Traveling Salesman problem, namely, the problem of finding a Hamiltonian path of maximum weight.
We will study two variants depending on the number of specified endpoints (one or two) of the path.
Max HPP,; and MAX HPP,; respectively denote the Hamiltonian path problem with one fixed
endpoint s € V and two fixed endpoints s,t € V. To our knowledge and from approximation point
of view, these two latter problems have not been studied before, whereas their minimization versions
have been studied by Hoogeveen [22] and Guttmann-Beck et al. [18] (in particular, it is well known
that the minimization problems are NP-hard). We also deal with a variant called HPPj [a, 2a],
where the edge-weights are in the set {a,a+1,...,b—1,b}. Both Min— and Max HPP,; are NP-
hard, even in their restricted versions with b > a, since they are polynomial-time Karp-reducible
[24] to each other.

*monnot@lamsade.dauphine.fr, CNRS-LAMSADE UMR, 7024, Université Paris-Dauphine, France



The maximum Hamiltonian path problem mainly has the same applications as the maximum
traveling salesman problem since an optimum Hamiltonian path is easily converted to an optimum
traveling salesman by adding one (or two) dummy vertex (vertices) with appropriate distance to all
other vertices, where the specification of "appropriate" depends on the number of endpoints that have
been fixed. Thus, for instance, it is known to be a relevant model for scheduling a single processor
with setups arising in manufacturing, computing, VLSI design and many other applications, Lawler
et al. [26]. However, this problem also has specific applications to compression data, Tarhio and
Ukkonen [34] or data array clustering in DNA or marketing budgets, Hartigan [1]. For example,
the mazimal compression problem which arises in various compression data problems can be defined
as follows: given a collection of strings si,...,s,, we seek a string S such that every string in
the collection is a substring of S and that maximizes ), |s;| — [S]. In the setting, the vertices
represent strings and the weight of an edge between two "strings" is set to the amount of maximum
overlap between these strings. The optimal compression is equivalent to the weight of a maximum
Hamiltonian path. Another application to maximum Hamiltonian path with two specified endpoints
is given by the following example, Garfinkel [17]: suppose we are given a data array in the form of an
m x n matrix A = (a; ;) that consists of elements that are either 1 if it exists a relation between row
7 and column j exists or 0 if it does not. We are interested in grouping rows and columns together
in such a way that they show similar relations. For instance, consider a number of m marketing
techniques and n products. If a marketing technique ¢ works out successfully on a product j, then
a;; gets the value 1, and 0 otherwise. Similar marketing techniques are supposed to be successful on
similar products. Therefore, clustering the techniques and the products gives insight in the relations
of the marketing techniques and the products.

To formalize this, we introduce the measure of effectiveness me; j = a; j(ai—1,; + @it1,j + @i j—1 +
a; j+1) for each element a; ;. To ensure their existence, we add to the matrix A artificial rows of index
0 and m+1 and artificial columns of index 0 and n+1; these rows and columns contain zeroes only.
The total measure of effectiveness of the matrix A, denoted by tme(A), is computed by summing the
measure of effectiveness over all elements of the matrix except for the artificial rows and columns.
Thus, the goal is to find a matrix A’ constructed from A by permuting some rows and some columns
maximizing tme(A’).

For arbitrary permutations p and o of the rows and columns (representing the matrix A’), the
total measure of effectiveness of the matrix A’ is tme(A’) = tmey(A’) + tmeg(A’) where tmeq(A') =
i1 25=1(0p(0)0 () X Ap(i) ai-1) + Bp(i)0G) X Gpti),o(+1)) and tmea(A) = 5001 35 (ap) ()
Ap(i-1),0() t Ap(i)o() X Ap(i+1).0(j+1))- Rewriting tmey yields: tmei(A') = 370 Y4, 2ap 45y X
g o (j+1) Since on the one hand, p is a permutation and on the other hand, ay ;o) = ag o(nt1) = 0.
Thus, if we define the distance d(4, j) between columns ¢ and j as d(i, j) = 2> ", ak; X aj j, then we
obtain the problem of finding a maximum Hamiltonian path from column 0 to column n+1. Similarly,
we can by rewriting tmeg(A’) obtain the problem of finding a maximum Hamiltonian path from row
0 to row m-+1, where this time the distances are defined by d(i,5) = 2> }_, aix X a;. Finally, we
see that problem of clustering a data array can be decomposed into two maximum Hamiltonian path

problems, one defined on the rows and one defined on the columns.



We focus on the design of approximation algorithms with guaranteed performance ratios, that
run within polynomial time and produce sub-optimal solutions. Usually, one compares the worst case
ratio (called standard ratio) of the cost of the solution generated by the algorithm to the optimal cost,
in the worst-case. However, we mainly refer in this article to another ratio called differential ratio
which measures the worst ratio of, on the one hand, the difference between the cost of the solution
generated by the algorithm and the worst cost, and on the other hand, the difference between the
optimal cost and the worst cost. This measure, studied by Aiello et al. [2]|, Ausiello et al. [4],
Cornuejols et al. [7], Vavasis [35] (in the context of non-linear programming), Zemel [36] and more
recently by Demange and Paschos [13] and Hassin and Khuller [20], leads to new algorithms taking
into account the extreme solutions of the instance, and provides the opportunity to better understand
these problems. There are great differences between standard and differential approximation for the
maximum Hamiltonian path problems. For instance, we can easily prove that the Nearest Neighbor
Heuristic (see Fisher et al. [15] or Monnot [29]) is 3-standard approximable for Max HPP, and is
%—Standard approximable for MAX HPP,; or that we have a trivial standard approximation scheme
for MAX HPPg ¢[n; n+ 1] whereas, the Nearest Neighbor Heuristic is not a differential approximation
with any constant ratio for MAX HPP, and MAX HPP,;[n;n + 1] is not differential approximate

741

with ratio greater than —.

We now give some standard definitions:

Definition 1.1 An NPO problem 7 is a five-tuple (Z, sol,m, Triv, goal) such that:
(i) T is the set of instances and is recognizable in polynomial-time.

(ii) Given an instance I € I, sol[l] is the set of feasible solutions of I; moreover, there exists
a polynomial P such that, for any x € sol[l], |x| < P(|I|); furthermore, it is decidable in
polynomial time whether x € sol[I] for any I and for any x such that |x| < P(|I]). Finally,

there is a feasible solution Triv(I)' computable in polynomial-time for any I.

(#i) Given an instance I and a solution x of I, m[I, x| denotes the non-negative integer value of x.

The function m is computable in polynomial time and is also called the objective function.
(i) goal € {Max, Min}. O

We call 7 the NPO problem (Z, sol, m, Triv, goal) where goal is defined as follows: if goal = Max,

then goal = Min and goal = Max. The goal of an NPO-optimization problem with respect to an
instance I is to find an optimum solution x* such that opt(I) = m[l,x*] = goal{m[I, x| : x € sol[I]}.
Another important solution of 7 is a worst solution x. defined by: wor(I) = m[l,z.] = goal{m|I,x] :
x € sol[I]}. A worst solution for 7 is an optimal solution for 7 and vice versa. In Ausiello et al. [4],
the term trivial solution referred to as worst solution and all the exposed examples have the property
that a worst solution can be trivially computed in polynomial-time. For example, this is the case of

the maximum Cut problem where, given a graph, the worst solution is the empty edge-set given by

!The common definition of class NPO does not require the existence of a trivial solution.



the partition (V,0), or the Bin-Packing problem where we can trivially put the items using a distinct
bin per item. On the contrary, since a worst solution of the maximum weight Hamiltonian path from
s to t is an optimal solution of the minimum weight Hamiltonian path from s to ¢, the computation
of such a solution is NP-hard. Thus, computing a worst solution of HPP (or HPP, or HPP,,
respectively) is as hard as computing an optimal one of HPP (or HPP, or HPP, respectively).

Note that the same property occurs for a large class of problems, Monnot [27].

1.1 Approximate algorithms and reductions

In order to study algorithm performances, there are two known measures: standard ratio [16], [3],
[8] and differential ratio [13], [4], [20] and [7].

Definition 1.2 Let w be an NPO problem and x € sol[I]. We define the performance ratios of x

with respect to the instance I as

e (standard ratio) p,(I,x) = Min {m[[,x] opt(I) }

opt(I) " m[I,x]

wor(I) —mll, z]
wor(I) — opt(I)

e (differential ratio) 6,(/,x) = O

The performance ratio is a number less than or equal to 1, and is equal to 1 if and only if m[I, z] =
opt(I). Note that, compared to some definitions, we have inverted the standard performance ratio
in the case of minimization problems so that the ratio value is always between 0 and 1. Let =
be an NPO problem. For any instance I of 7, a polynomial time algorithm A returns a feasible
solution z#. The performance of A with respect to R € {6, p} on the instance I is the quantity
Ra[7)(I) = Ry (I,z%). We say that A is an e-approzimation algorithm with respect to R if for any
instance I, we have Ra([) > e.

Definition 1.3 For any performance ratio R € {0, p},

e an NPO problem belongs to the class APX(R) if there exists an e-approximation with respect
to R for some constant € €]0; 1].

e an NPO problem belongs to the class PTAS(R) if there exists an e-approximation A. for any

constant € €]0;1[. The family {A;}o<e<1 is said to be a polynomial time approximation scheme.

Clearly, the following inclusion holds for any measure R € {J, p}: PTAS(R) C APX(R). As it is
usually done, we will denote by APX and PTAS, respectively, the classes APX(p) and PTAS(p).
We could argue whether the differential ratio is really pertinent: the authors of [13] and [4] answered
positively to that question and concluded that this measure is complementary with the standard
ratio. As shown in [11], many problems can have different behavior patterns depending on whether
the differential or standard ratio is chosen: consider for instance Vertex Covering or Dominating
Set problems. On the other hand, there are problems that establish some connections between
the differential and the standard ratios, like Bin Packing [12] or maximum weight bounded-depth

spanning tree |28] and see Zemel [36] for motivations and complementarity links between the two
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measures. Besides, we show that there are tight links between both measures for the problems dealt
with in the case where the edge-weights have lower and upper bounds.

Now, consider the following approximation preserving reductions between pairs (7, R).

Definition 1.4 For m; € NPO and R; € {0,p}, i =1,2,
o an A-reduction from (w1, Ry) to (w2, Ro), denoted by (w1, Ry) <4 (w2, Ry),
is a triplet (o, f,c) such that:

(i) o<: Iy, +— Ir,, transforms an instance of m into an instance of wo in polynomial-time.

(i) f : solp,[ox (I)] — soly,[I], transforms solutions for ma into solutions for w1 in polynomial-

time.

(iii) c : [0;1] — [0;1] (called expansion of the A-reduction) is a function satisfying c=1(0) C {0}
and Ve € [0;1],VI € I, ,Vx € solg,[ox (I)]: Ra[ma](ox (I),z) > e = Ri[mi|({, f(z)) > c(e)

e an AxP-reduction from the pair (71, Ry) to the pair (12, R2), denoted by (r1, R1) <**F (ma, Ry),
is an A-reduction from (w1, R1) to (w2, R2) such that the restriction of function ¢ to some interval

[a; 1] is bijective and c¢(1) =1 (c¢(0) may be non-zero). O

An A-reduction preserves constant approximation while A x P-reduction preserves approximation
schemes. They are a natural generalization of those described by Orponen and Mannila [30] and

Crescenzi and Panconesi [9].

Definition 1.5 If (w1, Ry) <AxP (w2, R2) and (w2, R2) <AxP (w1, R1) with c(e) = &, we say that
(1, R1) is equivalent to (w2, Ra). O

The differential ratio measures how the value of an approximate solution m[I,z] is located in
the interval between opt(I) and wor(I). More exactly it is equivalent for a maximization problem
to prove d,(I,z) > e and m[l,x] > eopt(I) + (1 — e)wor(l). On the other hand, the standard ratio
measures (for a maximization problem) how the value of an approximate solution is placed in the
interval between 0 and opt(I). Hence, we have an A % P-reduction from the standard ratio to the

differential ratio:

Lemma 1.6 If 1 = (Z,s0l,m, Triv, Mazx) € NPO, then (m,p) <**F (7,8) with c(¢) = ¢.

Proof : Let I be an instance of m and x be a feasible solution. If m[I,x] > eopt(I) + (1 — e)wor(I)
then we have all the more so m[I,z] > copt(I) since wor(l) > 0. O

Note that, in general, there is no evident transfer of a positive or negative result from one
framework to the other for a minimization problem. For instance, we have proved in Demange et al.
[10] that a version of weighted minimum coloring admits a standard non-approximation threshold
equal to g in bipartite graphs whereas we have built a differential approximation scheme; in this
coloring version, the cost of a stable set is given by the maximum of the vertex weights in this stable

set.



2 The Hamiltonian path problem

The Hamiltonian path problem, also called the Traveling Salesman Path problem, is formally defined

as follows.

Definition 2.1 Consider a complete graph K, with non-negative costs d(xz,y) for each vertex pair.
We want to find an optimal-cost Hamiltonian path, where the cost of a path is the sum of the weights
on its edges. We refer this problem as HPP. When one endpoint s (resp. two endpoints s and t) of
Hamiltonian path are specified, we use the notation HPP (resp. HPPg ;).

If goal = Max, the problem is called MAX HPP, else MIN HPP. We use notation HPP, HPP;
or HPPg; with no prefiz when we consider without distinction the case goal = Max or goal = Min.

O

Standard ratio approximation results can be derived for HPP by using trivial reduction to TSP:
the first negative approximation result (that we can deduce from [33]) states that it is not possible to
approximate MIN HPP within 1/f(|I]) where f is any integer function computable within polynomial
time unless P=INP. On the other hand, metric?> MIN HPP is approximable within 2/3 [6] and MIN
HPPI1,2] is APX-complete (deduced from Papadimitriou and Yannakakis [31]). For Max HPP,
the results are more optimistic since this problem is in APX. The best-known standard ratio is equal
to 2> and can be deduced from Hassin and Rubinstein [21].

MIN METRIC HPP,; is as hard to approximate as MIN METRIC HPP. Is MIN METRIC HPP, ;
really much harder to approximate than MIN METRIC HPP? This interesting question raised the
first time by Johnson and Papadimitriou [23] on the relative hardness of the two specified endpoints
version compared to the one specified endpoint is still open today. However, the positive results
given on these problems lead to a positive answer to the question since the best-known standard
ratios are % for MiN METRrIC HPP, Hoogeveen [22| and % for MiN METRIC HPP,; Hoogeveen
[22], Guttmann-Beck et al. [18]. Finally, if we consider the case a < d(e) < 2a there are no specific
results. For example Christofides’ modification algorithm [22| remains a 2/3-standard ratio for MIN
HPP;la; 2a]. To our knowledge, no standard approximation result has been found for MaX HPP,
and Max HPPy .

We show that HPP; is % approximable and HPP,; is % approximable under the differential
framework. We can deduce from Lemma 1.6 a %—Standard approximation for MAX HPP; and a %—
standard approximation for MAX HPP, ;. Moreover, our technique allows to handle the case where
all the edge weights are within an interval [a, 2a] for any positive a since from previous results, we
deduce a % (resp. %)—standard approximation for MIN HPP[a, 2a] (resp. MIN HPPj¢[a, 2a]) and
a 2 (resp. 3)-standard approximation for MAX HPP,[a,2a] (resp. MAX HPP,,[a,2a]). Thus for
these restrictions, we improve the best-known bounds of % (resp. g) for minimization versions given

by Hoogeveen [22] (resp. Guttmann-beck et al. [18] or [22]).

2Satisfying for all vertices x, y, z the inequality: d(z,y) < d(z, 2) + d(z,y).



3 Elementary properties

Let us first establish some relations between HPP, HPP,, HPP, ; and different subcases. We prove
that HPP,; is the most general problem. As a second step, we establish for each problem some
connected relations between differential and standard ratios. In the following paragraph, without
specification, the properties that we present for HPP; are also true for HPP4 and HPP.

HPP,, is as hard as HPP, (which is itself as hard as HPP) to approximate for both performance
ratios. Moreover, from a differential approximability point of view, these different versions are very

close to the TSP, even if we consider the restriction a < d(e) < b.

Lemma 3.1 For any goal € {Min, Mazx}, we have:
(i) (goal TSP[a,b],0) <MF (goal HPP [a,b],0) with c(¢) = .
(ii) (goal HPP[a,b],8) <P (goal TSP[a,b],8) with c(e) = «.

Proof: We only show the case goal = Max.

e For (i): Let I = (n,d) with a < d(e) < b be an instance of MAX TSP[a,b]. Choose a vertex s
in K, and define I, = (n, s, v,d) an instance of MAX HPP; ,[a,b] for every v € V' \ {s}. Let u, be
a Hamiltonian path from s to v of I,, which is an e-differential approximation for MAX HPPj ,[a, b].

So, for every v € V' \ {s} we have:

m[Ly, fto] > eoptmax upp,, (Iv) + (1 — e)worvax uep,,, (Iv) (3.1)

From p,, with v € V\{s}, we construct the Hamiltonian cycle I' = argmax{m[I,T,] : v € V\{s}}
where 'y, = p, U {(s,0)}.

Now, consider v* such that an optimal Hamiltonian cycle of I = (n,d) contains edge (s, v*); thus,

we have:

optmax PP, .« (Ip+) + d(s,0") = optmax Tsp (1) (3.2)

Let u, be a worst Hamiltonian path from s to v*; u, U {(s,v*)} is an Hamiltonian cycle and we

deduce:

wormax HpP, .« (Ip+) + d(s,v") > wornax Tsp (1) (3.3)

Combining inequalities (3.1), (3.2) and (3.3), we obtain: m[I,I'] > m[l, ] + d(s,v*) >
eoptyiax TsP (L) + (1 — e)wornax Tsp(L).

e For (ii): Let I = (n,d) with a < d(e) < b be an instance of Max HPPJa,b]. We transform [
into instance < (I) = (n+1, d’) as follow: add a new vertex s to graph K,, and define d'(s,v) = a, Vv,
d'(e) = d(e) for other edges. O

Observe that the proof of item (i) also holds for the standard ratio with goal = Mazx, but in

this case, we might have a = 0. So, we deduce from the result of Hassin and Rubinstein [21] for MAX



TSP that MAXx HPP is %—standard approximable. On the other hand, from the result of Sahni
and Gonzalez [33] we know that MIN HPP,; is not in APX unless P=NP. This asymmetry in
the approximability of both versions (MAX HPP,; is in APX as later proved) can be considered as
somewhat strange given the structural symmetry existing between them. Since differential approx-
imation is stable under affine transformation of the objective function (see for instance Hassin and
Khuller [20] or Demange and Paschos [13]), MAX HPP,; and MIN HPP,, are differential-equivalent
(see Definition 1.5).

Proposition 3.2 The following assertions hold:
(1) MIN HPPg; is differential-equivalent to MAX HPPg .
(1) MinHPP,4[a,b] is differential-equivalent to MaxHPP;s[a,b).
(tii) HPP, is differential-equivalent to metric HPP .
(tv) HPPg4[a,b] is differential-equivalent to HPPg [a + t, b+ t], for any t.

Proof : Let dpar = maxeepd(e) and dyp = mineeg d(e). Given an instance with distance func-
tion d of the left problem in items (i) — (iv), we construct a distance function d’ to an instance of
the corresponding right problem in items (i) — (iv) as follows: (i) d'(€) = dmaz + dmin — d(e), (i)
d'(e) =a+b—d(e), (iii) d'(e) = dpmag + d(e), (iv) d'(e) =t + d(e). Since differential ratio is stable
under affine transformation of the objective function (see Demange and Paschos [13] or Hassin and
Khuller [20]), this concludes the proof. O

Observe that the (iv) of this proposition allows to deal with the case where the distances are
negative. The following easy theorem holds, thus giving a bridge between differential and standard

ratios for goal = Max and goal = Min, in the case where edge weights belong to an interval [a, b].

Theorem 3.3 (goal HPP[a,b], p) <P (goal HPPg[a,b],d) with the expansion satisfying:

(b—a)e
b

o ci(e) = —1—% if goal = Max

o co(e) - if goal = Min

T b—(b-a)

Proof : We only prove the goal = Max case. Let I be an instance and p be a Hamiltonian path
from s to t. If m[I, ] > eopt(I)+(1—e)wor(I), then m[l, u] > ci1(e)opt(I) since wor(I) > Fopt(I).00

The Proposition 3.2 and the Theorem 3.3 also hold for HPP, and more generally, these results
work for many specific optimization problems from graph theory, those for which all feasible solutions
have an equal size that depends on the instance size (see Monnot [27]).

MaX HPPg[a,b] and MIN HPPj[a, b] (for a and b not depending on the instance) are trivially

in APX when a > 0 since any solution is at least a a/b-standard approximation (take ¢ = 0 in



Theorem 3.3); in this case, the standard ratio may not be that meaningful since even a worst solution
yields a constant standard approximation. Nevertheless, we can deduce from this theorem that the
hardness thresholds for standard and differential framework are identical since MIN HPPg ;[a, b] is
APX-complete.

Corollary 3.4 For all b > a >0, HPP,[a,b] ¢ PTAS(J) unless P=NP.

We can also establish a limit on its differential approximation for some values of a¢ and b. Recall the

negative result of Engebretsen and Karpinski [14] for MIN TSP[1,2]: for any € > 0, no polynomial

time algorithm can guarantee a standard approximation ratio greater than, or equal to, % + €.

It is easy to observe that MIN HPPg,[1,2] and MIN HPP,[1,2] are (asymptotically) equivalent

to approximate MIN TSPJ1,2]. Thus, we can deduce that MIN HPP,[1,2] and MIN HPP,[1, 2]
740

are not standard approximable with ratio greater than £77. Finally, using Theorem 3.3 and (iv) of

Proposition 3.2, we obtain:

Proposition 3.5 For all a, HPP,[a, a+1] and HPP[a, a+1] are not approzimable with differential

ratio greater than % unless P=NP.

4 Approximate algorithms for these problems

In this section, we propose two types of algorithms which yield constant differential-ratio. For MAX
HPPy, the algorithm is obtained by getting several feasible solutions and by choosing the best
one among them. Each of these individual solutions has a differential approximation ratio tending
towards zero with the size of the instance. For MAX HPP;, the algorithm is very different and takes
into account the extreme solutions. So, on the one hand, the algorithm tries to be the nearest from
the best solution value and on the other hand, tries to be the furthest from the worst solution value.
In order to do that, it iteratively provides a solution of value greater than (wor(l;) + opt(1;))/2,
where I; is the sub-graph built at step j.

4.1 The algorithm for two specified endpoints version

Max HPPg; can also be regarded as the problem of determining a Hamiltonian cycle that contains
edge (s,t). The algorithm works by finding a maximum weight 2-matching among 2-matchings
containing (s, t) and at each step, merging the cycles two by two. The main idea consists in pointing
out that we could have lost much more by merging the two cycles in a different way. Thus, we will
build dynamically another solution which approximate the worst solution; this solution will actually
depends on the choices made by the algorithm at each iteration.

Consider two cycles C; and two edges (z1,z2) € Cy and (y1,y2) € Co, we call localchange; for

1 = 1,2 the following process:

localChangei[(Cla (1'1, l’g)), (C2a (y1, y2))] = {($1> y37i)7 (1'2, yz)} U (Cl UGy \ {($17 xQ)a (y1, yQ)})



These two processes merge the cycles C and C5 into a single cycle (see the Figure 1 for an illustra-
tion.). Note that the vertex order is important in the processes; thus, edges (x1,x2) or (y1,y2)

G G localchange, localchange,
ONNC) OO OO
& & O © @ © ©—O
, O ©) (9
& O & & W & 60—
OBNO, OBNO OO,

Figure 1: The localchange; processes between the edge (2,3) of C} and the edge (2,3) of Cs.

are implicitly given as directed edges and we have: localchange1[(C1, (z2,21)), (C2, (y1,42))] =
localchanges[(Ch, (z1,x2)), (C2, (y1,y2))]. Moreover, when C; = Cy and (x1,z2) is not adjacent

to (y1,y2), these processes simply amount to local edge swaps. We associate with localchange; a

function cost; that represents the loss in merging two cycles:
costi[(z1,22), (y1,y2)] = d(x1,22) + d(y1,y2) — d(21,y3-:) — d(z2,9:)

[LocalchangeH P Ps 4|
input: An instance (n, s, t,d);
output : A Hamilton path sol from s to t;
Change the cost of (s,t) into |V|dpma. + 1. Call this function d’;
Compute a maximum weight 2-matching M = {C;, i =1,...,k} of (n,d');
Suppose that (s,t) € C;
Choose 2 consecutive edges (z1,z3) and (23, z1) in C; different from (s, t) ;
soli = 1\ {(5,0)}, e} = (e}, a}) and e} = (wh, o)
For i=2 to k do
Choose 2 consecutive edges (2%, z}) and (2%, %) in Cj;
If costy[ei ™, (%, 23)] < costalels !, (xh, 24)] then
sol; = localchangey [(sol;_1,ei™), (Cy, (2%, x5))];
Suppose elfl = (z,y), and z}, is the other neighbor of x! in C;
Set ¢} = (y, ) and ¢} = (a1, 2f) ;
Else
sol; = localchanges|(sol;_1,es 1), (Cy, (b, 28))] ;
Suppose eé‘l = (z,y), and z is the other neighbor of x} in C;
Set ¢} = (y,a4) and ¢} = (a}, ) ;
End if ;
End for i ;

sol = soly;

10



As this algorithm is polynomial, let us then show that sol is an Hamiltonian path. Firstly, note that
by construction, (s,t) belongs to every maximum weight 2-matching of (n,d’). Moreover, ¢! and e,
obviously belong to sol; for every iteration ¢ < k of the algorithm. These two facts lead to the result.
A description of the algorithm is given in the Figure 2 when M = {C; : i = 1,2,3} with |C}| = 6,
|C2| =4 and |Cy| = 5.

? 1
Ol O—pP A R
C1 i 1 e
Q © ® /c, ; ®\i;e1
® ® i IO
M sol,
o—0
II/ , \\‘I
: &
& o O—® |
Q oo O §
G ® §

____________________________

Figure 2: The 2-Matching M and the different iterations of algorithm when k& = 3.

Theorem 4.1 The algorithm [LocalchangeHPP; ] is a %—diﬁ"erential approzimation for MAX HPP
and this ratio is tight.

Proof: Given I = (n,s,t,d), an instance of MAX HPP,;, we denote (i, ..., ) with i; € {1,2} the
sequence of choices produced by the algorithm such that, for j € {2,... k} :

sol; = localchange;;[(sol; 1, e{jl), (Cy, (x{j,:cgﬁl))]

Thus, d(solj) = d(solj_1) 4+ d(Cj) — cost;,(j) with cost;;(j) = cost;; [eg]__l, (x{j,xgjﬂ)]. Summing

11



up these equalities for j = 2 to k, and since d(soly) = d(C1) —d(s,t) and d(sol) = d(soly), we obtain:
k
d(sol) = d(M Z cost; (4.1)
7=2

The main idea is to note that edge-subset {63 i) (x3 i) x4 Z]) :j=2,...,k} belongs to solution
solp. Hence, we can "damage" the current solution by local edges-swap from this edge-subset. More

formally, consider solutions sol’; defined by sol} = soly and for j =2,...,k,
sol; = localchangeg,ij[(solg_l,eéj ), (solj 1) (.%:]3 i ,J:fl ZJ))]

An illustration of solutions sol; with ¢ < k is depicted in the Figure 3 for the example described in

Figure 2.

N e~

Figure 3: The solutions solj and solj.

Lastly, proceeding as previously, we obtain d(sol},) = d(M)—d(s,t)— ZJ o(cost; (j)+costs i, (7))
By construction, cost;;(j) + costz—;,(j) > 2cost;,(j) and wor(I) < d(sol;,). Hence:

k
wor(I) < d(M) — d(s,t) — 2 Z cost, (5) (4.2)

M is an optimal weight 2-matching among the 2-matching of (n,d) containing the edge (s, t); thus
opt(T) < d(M) — d(s, 1) (43)

By combining expressions (4.3),(4.2) and (4.1), we obtain:

2wor([)

We now show that this ratio is tight. Let J, = (n,s,t,d) be an instance defined by: V =
({2, 1<i<3,2<j<2n+1}U{s,ut}),d=l =) =d@=], =) =1V =2,....2n

d(sol) > %opt(I) + !
(

b
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d(x{,x%”) =1Vj=2,...,2n— 1, dy(s,73) = dy(u,23) = d(u,23) = d(t,23) = 1 and let the cost
of all other edges be two. The 2-matching is composed of Cy = {s,u,t} and C; = {:L‘{, xé,xé} j=

2,...,2n + 1. The edges produced by the algorithm are: el = (s,u), €3 = (u,t), el = (u,2?), €2 =

(22,22), el = (77", 2d), €} = (z],2)) 5 = 3,...,2n + 1 and cost;(2) = costa(2) = 2, cost1(j) =

costa(j) =1 j=3,...,2n+ 1.
d(sol) = 10n + 4, wor(Jop+1) =8n+3, opt(Jant1) = 12n+4

Thus, we obtain that drocaichangeHP psyt(JgnH) approaches % as n goes to infinity. Il

For the standard ratio, we deduce two new improved results by using Lemma 1.6 from the general
case and Theorem 3.3 with b = 2a for the case where the weights of the graph are bounded between

the values a and 2a.

Corollary 4.2 We have the following results:
e MaAx HPPy, is %—standard approzimable and Max HPP;;la,2a] is %—standard approximable.

e MiN HPPg[a, 2a] is %—standar‘d approzimable.

4.2 The algorithm for one specified endpoint version

We propose an algorithm which differs from the one previously studied since we explicitly compute
several solutions. Our algorithm is based upon a simple idea and uses structural properties of
solutions. It still works by finding a maximum weight 2-matching containing specified edges and
then discarding some edges and arbitrarily connecting the resulting paths to form an Hamiltonian
path from s. The principle of our algorithm is to generate not only one but several feasible solutions
following this method.

Consider a maximum weight 2-matching M, among those containing (s, r), including elementary
cycles Cj, i =1,...,k. In order to do that, we substitute |V|dyqe + 1 for the cost of (s,7) and we
compute a maximum 2-matching in this new instance. Lastly, for each cycle C;, we consider four
consecutive vertices 4,24 2%, 2%, Note that we have numbered vertices such that z{ = r and z} = s.
Moreover, if |C;| = 3 then 2% = z%. For the last cycle Cf, we consider an additional vertex y which
is the other neighbor of ¥ in Cj,. Thus, if |Cy| = 4 then y = 2% while y is a new vertex in the other

case.

[Patching 2 — matching|

input: An instance (n, s, d);

output: A Hamiltonian path sol from s;

For every r € V' \ {s} do
Change the cost of (s,7) into |V|dmas + 1. Call this function d';
Compute a maximum weight 2-matching M, = {C;,i =1,...,k} of (n,d’);
if k=1 then sol, = M, \ {(s,7)};

if k£ is even then
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St = UiSi{(ah, #h)} U {(eh, ), (5,)}
Build soly = (M, \ $1) U {(zf, 23), (23, #3)} U272 {23, 2371, (237, 237 *)} 5
(5011 is a Hamiltonian path from s to r)
Sy = UjZ {(:cl,xQ)}U{(y,xl) (s,7)}
Build 3012 = (M, \ 82) U{(z}, 2} U2 {03 23, (o a2}
(soly is a Hamiltonian path from s to y)
S3 = Uk Hh, 2))} u{(ah, 25), (s,7)} 5
Build sols = (M \ ) U {(x4, %), (2}, ) U e (R NC - B |
(sols is an Hamiltonian path from s to r)

End if ;

if k is odd then
S1 = U {(23,23)} U{(s,7)} 5
Build sozl = (M, \ 81) U{(ah, o))} U8V {23 237 (o 25N}
(soly is an Hamiltonian path from s to 7’)
S = {57} Uhy (0, )}
Build soly = (M \ S2) U; (k- 1)/2 {(:z:?j_l,x%j), (w%j,x§j+1)} ;
(soly is a Hamiltonian path from s to z¥)
Sz = Uk _i{(z,20) U (s, )}
Build soly = (M, \ S5) U {(z§, o))} U2 {1 o), (2 27} 5
(sols is a Hamiltonian path from s to r)

End if ;

sol, = argmaz{d(soly),d(sol2),d(sol3)};

End for r;
sol = argmaz{d(sol,) :r € V\ {s}};

Observe that for every r, the solutions soly, sols and sols are Hamiltonian paths (from s to different
endpoints) since the additional edges are adjacent to the ones substituted. A description of solutions
soly, sola, sols is given in the Figure 4 when M, = {C; : i = 1,2,3} with |C1| = |C3] = 6 and
|Ca| = 3.

The time-complexity of this algorithm remains polynomial since the computation of the 2-

matching problem is polynomial.

Theorem 4.3 The algorithm [Patching 2 — matching] is a % dz[ferentzal approzimation for MAX
HPP, and this ratio is tight.

Proof: Let I = (n,s,d) be an instance and let sol* be an optimal Hamiltonian path from s to r*.
We denote loss;, i = 1,2,3, the quantity d(sol;) — d(M,+) + d(s,r*). Obviously, loss; < 0 and we
have

d(sol) > d(soly) > d(My~) — d(s,r") + %(lossl + lossg + losss) (4.4)

Moreover, the following structural property holds:

sol, = Uj—123(s0l; \ M) U My« \ (S1 U S2U Ss3) is a Hamiltonian path starting from s

14
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Figure 4: The 2-Matching M, and the solutions sol;, sols and sols when k = 3.

A description of solution sol, is depicted in the Figure 5 for the example described in Figure 4.

Figure 5: The solution sol,.

d(soly) = d(My~) — d(s,r*) + loss1 + lossa + losss since d(sol; \ M=) = lossj + d(Sj) — d(s,r*)
and d(M,« \ (S1US2U S3)) = d(M+) — d(S1) — d(S2) — d(Ss) + 2d(s,r*). Hence, we deduce

wor(l) < d(My«) — d(s,r*) + lossy + lossy + losss (4.5)
Since sol* U (s,7*) is a particular 2-matching containing (s,r*), we have:
opt(I) < d(M,+) — d(s,r™) (4.6)
Lastly, combining (4.4),(4.5) and (4.6) we obtain:
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1 2
d(sol) > gwor(I) + gopt(l)

To show that the bound is approachable consider the following instances. Let I,, = (n ) b
an instance defined by' V={a] :1<i<3,1<j<2n+ 1} with 2l = s, d(:cl,a:Q) d(x
d(x],2}) = 2, Vj = L2+ 1, d(a, x ]H) 2, Vj = ,2n and d(z},2)) = d(z
2, Vj=2,....2n+ 1. Let the cost of all other edges be one. We have:

@

d(sol) < 10n + 4, opt(1,) = 12n + 4, wor(I,) = 6n + 2

leading to the conclusion that dpatching 2—matching(In) approaches % as n goes to infinity. Il

As previously, we deduce two new improved standard approximation results by using Lemma 1.6

from the general case and Theorem 3.3 with b = 2a when a < d(e) < 2a.

Corollary 4.4 We have the following results:
e MAX HPP; is %—standard approzimable and MAX HPP[a, 2a] is %—standard approzimable.
e MIN HPP,[a,2d] is 2-standard approzimable.

5 Conclusion and open problems

In this paper, we have mainly provided new results concerning the approximability of the Hamiltonian
path problem in the case in which one or two endpoints are specified. Moreover, we have exposed
some basic properties (mainly by using reductions preserving differential approximation) between
these problems and some variants of them.

Although in introduction we have pointed out some great difference between the differential and
standard approximability of these problems, when we use bounded metric and especially, when the
weights in the graph are between the values a and 2a, from differential approximation results we can
derive new standard approximation results.

An interesting open problem under differential framework is to know if the two-specified endpoints
version is really more difficult to approximate than the one-specified endpoint version (we only know
that HPP,, is at least as hard as HPP). This question is still open under standard framework.
The positive approximation results indicate a positive answer but it is not a formal proof. A formal
proof would show that the differential non-approximation threshold for HPP, ; is strictly better than
the differential non-approximation threshold for HPP,. In order to prove that, a useful technique
is to prove that a problem is not simple. Recall that an NPO problem is called simple by Paz
and Moran [32] if its restriction to instances satisfying for any fixed integer k, opt(I) < k, can be
resolved within polynomial time. So, we can also prove a standard non-approximation threshold
equal to % for the Bin-Packing problem because its restriction to instances verifying opt(I) < 2 is
still a NP-hard problem. Similarly, we will say that 7 is § — simple if its restriction 7 to instances
verifying for any integer fixed k, |wor(l) — opt(I)| < k can be solved in polynomial time. Thus, if
the sub-problem verifying |wor(I) — opt(I)| < ko is NP-hard (in other words, 7 is not § — simple)
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then for any € > 0, no polynomial time algorithm can guarantee a differential approximation ratio

kfil + €. We conjecture that HPP,; and HPP, are not ¢ — simple and

the value ko found for HPP,; is smaller that the ko found for HPP.

greater than, or equal to

Acknowledgments. Many thanks to three anonymous referees for pertinent and useful comments

and suggestions.
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