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Abstract. The Quota Traveling Salesman Problem is a generalization
of the well known Traveling Salesman Problem. The goal of the traveling
salesman is, in this case, to reach a given quota of the sales, minimizing
the amount of time. In this paper we address the on-line version of the
problem, where requests are given over time. We present algorithms for
various metric spaces, and analyze their performance in the usual frame-
work of the competitive analysis. In particular we present a 2-competitive
algorithm that matches the lower bound for general metric spaces. In the
case of the half-line metric space, we show that it is helpful not to move
at full speed, and this approach is also used to derive the best on-line
polynomial time algorithm known so far for the more general On-Line
TSP problem (in the homing version).

1 Introduction

Let us imagine that a traveling salesman is not forced to visit all cities in a
single tour but in each city he can sell a certain amount of merchandise and his
committment is to reach a given quota of sales, by visiting a sufficient number
of cities; then he is allowed to return back home. The problem to minimize
the amount of time in which the traveling salesman fulfills his commitment is
known as the Quota Traveling Salesman Problem (QTSP for short, see [4, 9] for
a definition of the problem) and it is also called Quorum-Cast problem in [11].
Such problem can be seen as a special case of the Prize-Collecting Traveling
Salesman Problem (PCTSP4, [6]) in which again the salesman has to fulfill a
quota but now nonnegative penalties are associated to the cities and the cost of
the salesman tour is the sum of the distance traveled and the penalties for the
non visited cities. QTSP corresponds to the case of PCTSP in which all penalties
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are 0. A special case of QTSP is the case in which the amount of merchandise
that can be sold in any city is 1; this case coincides with the so called k-TSP
problem, i.e. the problem to find the minimum tour which visits k cities among
the given ones. Moreover this problem is related with the k-MST problem, that
is the problem to find the minimum tree which spans k nodes in a graph. Clearly,
if all weights are equal to 1 and the quota to be achieved is equal to the number
of cities, the problem corresponds to the classic TSP.

The QTSP problem and the other problems mentioned above have been thor-
oughly studied in the past from the point of view of approximation algorithms.
In particular, for the k-TSP problem and for the k-MST problem a polynomial
time algorithm with an approximation ratio 3 has been shown in [15] while, for
k-MST problem, in the non rooted case, an algorithm with ratio 2.5 has been
shown in [1]. For the general PCTSP problem a polynomial time algorithm with
polylogarithmic performance guarantee has been given in [4, 5].

In this paper we wish to address the on-line version of the QTSP problem,
named OL-QTSP. On line versions of other routing problems such as the travel-
ing salesman problem [3], the traveling repairman problem [13, 16, 18], variants
of the dial-a-ride problem [2, 13], have been studied in the literature in the re-
cent years. The most updated results regarding these problems can be found
in [17]. In the on-line version of QTSP we imagine that requests are given over
time in a metric space and a server (the traveling salesman) has to decide which
requests to serve and in what order to serve them, without yet knowing the
whole sequence of requests, with the aim of fulfilling the quota by traveling the
minimum possible amount of time. As it is common in the evaluation of on-line
algorithms [14], the performance of the algorithm (cost of serving the requests
needed to fulfill the quota), is matched against the performance of an optimum
off-line server, that is a traveling salesman that knows all the requests ahead of
time and decides which requests to serve and in what order, in order to fulfill
the assigned quota. Clearly the off-line server cannot serve a request before its
release time. The ratio between the former and the latter is called competitive
ratio of the on-line algorithm (see [10]).

In the rest of the paper we first provide a formal definition of the problem
and we introduce the corresponding notation. Subsequently, in Section 2 we
provide the proof that no algorithm for the OL-QTSP problem can achieve a
competitive ratio smaller than 2 in a general metric space, and we also give a
simple 2-competitive (hence optimal) on-line algorithm. In Section 3 we discuss
the case in which the metric space is the halfline. In such case we introduce an
algorithm which achieves a competitive ratio 3/2 by not moving at full speed.
We also show a matching lower bound. In Section 4 we apply the same ‘slow is
good’ paradigm used in Section 3, to the design of an on-line algorithm for the
OL-TSP and in such way we derive the best on-line polynomial algorithm known
so far, whose competitive ratio is 2.78. In the Conclusion section we illustrate
some possible developments and open problems.
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1.1 Statement of the problem

Let us define the OL-QTSP problem in a formal way. Let M be a general metric
space, let us denote with O the origin of M , and let r1 . . . rn be an ordered
sequence of requests in M , any request ri being a triple (ti, pi, wi) where ti is
the release time of the request, pi is a point in the metric space where the request
is released and wi is the weight of the request. When we refer to the non-weighted
problem a request is simply a couple (ti, pi). Note that the sequence is ordered
in the sense that if i < j then ti < tj . The OL-QTSP problem is the problem in
which an on-line server (traveling salesman) is supposed to serve at least a quota
Q out of the overall amount of requests

∑n

j=1
wj and come back to the origin

in the minimum amount of time. In the non-weighted version of the problem
the quota Q is simply the minimum number of requests to be served. Clearly no
request can be served before its release time.

In the following we will denote by OL the On-Line Server, and by OPT
the server moved by the optimum off line server (adversary). Besides, for any
sequence of requests σ, by ZOL(σ) and Z∗(σ) we denote, respectively, the com-
pletion time of OL and OPT over the sequence σ; when there are no ambiguities,
we write ZOL and Z∗ instead of ZOL(σ) and Z∗(σ).

Furthermore, with pOL(t) and p∗(t) we denote respectively the position of
OL and OPT at time t, and with d(pi, pj) we represent the distance between
the points pi and pj in the metric space M .

2 General metric spaces

2.1 Lower bound of the problem

We first show the following result, that will be extensively used in the rest of
the paper and referenced as the speed constraint.

Lemma 1. No ρ-competitive algorithm, in any metric space, at time t can have
its server in a position distant from the origin more than t · (ρ− 1).

Proof. We simply show that any algorithm that violates the constraint has a
competitive ratio bigger than ρ. Assume that time t1 is the first instant in which
the above constraint is not respected, i.e. d(pOL(t1), O) > t1 · (ρ− 1). Then, in
the same time, the adversary releases a set of requests with overall quota Q in
the origin, and these are served immediately by the adversary (Z∗ = t1). The
completion time of the on-line server is not less than ZOL > t1 ·(ρ−1)+t1 = ρ·t1,
and this means that the competitive ratio is strictly bigger than ρ: ZOL

Z∗
> ρ·t1

t1
=

ρ. ut
Just as the TSP is a special case of QTSP, it is easy to observe that the

OL-TSP (in the Homing version, see [3]) is a special case of OL-QTSP . From
this point of view from [3] we may trivially derive a lower bound of 2 on the
competitive ratio for OL-QTSP . We now prove a stronger result that provides
a lower bound for the competitiveness of any on-line algorithm for OL-QTSP in
a general metric space, even when the quote Q is bounded by a constant.
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Theorem 1. There is no ρ-competitive algorithm for the OL-QTSP on the line
with ρ < 2, even with a maximum of 3 requests released.

Proof. Assume the metric space is the real line. The quota Q is equal to 2.
Denote by A and B the abscissa points -1 and +1 on the real line, respectively.
At moment t = 0, a request r− is released on A and a request r+ is released
at B; then, no request is released until moment t = 1.

Observe first that pOL(1) ∈ [−1, 1], but, from Lemma 1, we know that at
time 1 OL cannot be in −1 or 1 so pOL(1) ∈]− 1, 1[. Then, for x ∈ [0, 1], define
f(x) = min{d(A, pOL(1 + x)), d(B, pOL(1 + x))} and g(x) = f(x)− x. Clearly, g
is continuous if server moves in a continuous way. Also, g(0) = f(0) > 0 and
g(1) = f(1) − 1 < 0, since pOL(2) ∈] − 2, 2[. Hence, there exists x ∈ [0, 1] such
that g(x) = 0, i.e., f(x) = x. From now on let x0 be the minimum such x.

Assume first that f(x0) = d(B, pOL(1 + x0)) = x0 (this means that pOL(1 +
x0) ∈ {1−x0, 1+x0}). Actually, due to Lemma 1, only one of the two possibilities
holds and hence: pOL(1+x0) = 1−x0. In this case, if the third (last) request r3

is released in −1+x0 at moment t = 1+x0, then the optimum is equal to 2 (see
Figure 5: request r+ is served at t = 1, r3 at 1+x0, and return to the origin is at
time 2 ). On the other hand, since pOL(1+x0) = 1−x0, then then the server can
serve either r+ and r3, or r− and r3 in time equal to (1+x0)+x0+1+2(1−x0) = 4.
In both of the above cases, the OL server cannot guarantee a competitive ratio
better than 2.

Assume now f(x0) = d(A, pOL(1 + x0)) = x0. In this case, considering a
request r3 released in 1−x0 at moment t = 1+x0, arguments exactly analogous
to the previous ones imply a competitive upper bound of 2. The proof of the
theorem is now complete. ut

Note that the above lower bound is achieved with Q = 2, the total number of
requests released is 3 and two requests are released at time 0: only one request
was released on-line. Obviously, the result of Theorem 1 does not work for the
case Q = 1, neither for the case in which Q = 2 and only two request are released.
These cases are addressed in Subsection 2.3

2.2 A 2-competitive algorithm

The following algorithm is 2-competitive for the OL-QTSP problem in any metric
space:

Algorithm 1 (Wait and Go (WaG)) For any sequence σ already presented
to the server, with at least a quota Q available over all the requests in σ, the
algorithm computes Z∗(σ); at time t = Z∗(σ) the algorithm starts an optimal
tour that serves the quota and ends back in the origin.

Since WaG starts its tour at time Z∗, it concludes it at time t ≤ 2 · Z∗. So
we can state the following:

Theorem 2. Algorithm WaG is 2-competitive for the OL-QTSP problem in
general metric space.

4
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Clearly the upper bound provided by the algorithm matches the lower bound
previously given for general metric spaces and hence no better competitive ratio
can be established in the general case.

Note also that, if we deal with the non-weighted problem, where Q is the
number of requests, if Q is fixed and it is not part of the input the optimal solu-
tion of the QTSP problem can be computed in polynomial time and, therefore,
WaG is a polynomial time algorithm. If Q is part of the input, Tsitsiklis [19]
proved that, for the off-line problem, the optimal solution can be computed in
polynomial time if the underlying metric space is the line (or the halfline), while,
for general metric spaces, we have to resort to an approximation algorithm for
the OL-QTSP . Hence if such algorithm provides a solution with approximation
ratio r we obtain a 2 · r competitive algorithm.

2.3 Particular cases

In Theorem 1 we proved that, provided that Q = 2 and a minimum af 3 requests
are released, no algorithm can achieve a competitive ratio better than 2. In this
section we deal with two particular cases that we obtain when we release the
constraint on the quota and the number of requests.

We start with the case when Q = 1, and we prove that, for such case, OL-
QTSP admits a competitive ratio 3/2.

The algorithm guaranteeing such a ratio is the following:

Algorithm 2 (Eventually Replan (ER)) The server waits for the first mo-
ment t0 where a request r is released at distance at most t0; it goes to serve it at
full speed; if on the road, another request is released such that the algorithm can
serve it and return to the origin sooner than for r, it decides to serve this new
request.

Theorem 3. ER is 3/2-competitive for the OL-QTSP with Q = 1.

Proof. Suppose that an optimal algorithm should serve a request r1 released at
distance x1 from the origin at moment t1; then, Z∗ = max{t1, x1}+ x1.

Assume first Z∗ = 2x1 (x1 ≥ t1). Then the server moved by EP starts before
moment t = x1 and returns to the origin (after serving a request) before t = 3x1.
So, the competitive ratio is ρ ≤ 3x1/2x1 = 3/2.

Assume now Z∗ = t1 + x1 (x1 ≤ t1). If OL has not yet moved at moment
t = t1, then it moves in order to serve r1 (since 2x1 ≤ 2t1). In this case the
competitive ratio is ρ = (t1 +2x1)/(t1 +x1) ≤ 3/2 (recall that we deal with case
x1 ≤ t1). If the on-line algorithm has started to move before moment t = x1,
then ρ ≤ 3x1/(x1 + t1) ≤ 3/2. Finally, assume that OL starts moving at the
moment t = t0, where x1 < t0 < t1, in order to serve a request r0 released
at distance x0 ≤ t0. At t = t1, d(O, OL(t1)) ≤ t1 − t0. Independently on the
request, the on-line algorithm has decided to serve at t = t1 (this request may or
may not be r0), it decides to continue its way (guaranteeing 3t0), or to serve r1.
Hence, it can return in the origin before t = min{3t0, t1 + (t1 − t0) + 2x1} =
min{3t0, 2Z∗ − t0} ≤ (3/2)Z∗.

So, competitive ratio 3/2 is always guaranteed. ut

5
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Now we deal with the case when Q = 2 and only two requests are released. We
show in the sequel that, also in this case, we can achieve competitive ratio 3/2.

The algorithm achieving this ratio is the following:

Algorithm 3 (Serve and Wait (SaW)) The server starts at the first mo-
ment t0 such that it can serve a request r0 before time 2 · t0; once arrived in
place r0 is released, it waits until the second request is released; it serves it and
it then returns in the origin.

Theorem 4. SaW is 3/2-competitive for the OL-QTSP with Q = 2 and a total
of two requests released.

Proof. Denote by r1 and r2 the two requests released and assume that they are
served in this order by an optimal algorithm; assume that this algorithm serves r1

at instant τ1, r2 at instant τ2 and that it returns in the origin at instant τ3 = Z∗.
We distinguish the two following cases depending on the order followed by the
server moved by SaW.

Assume first that OL serves r1 before r2. It starts before moment t = τ1

(this moment is the latest departure moment for the server) since it is possible
to serve r1 before moment 2 · τ1 and this request is already released at this
moment. Since it aims at r1, it serves it at moment t = τ1 +d(0, r1). If request r2

is already released at this moment, then the server can serve both r1 and r2

and return to the origin before moment τ1 + d(O, r1) + (τ2 − τ1) + (τ3 − τ2) =
τ3 + d(0, r1) ≤ 3/2τ3 = 3/2Z∗. Otherwise, it ends its tour at most at moment
τ2 = d(r1, r2) + (τ3 − τ2) = τ3 + d(r1, r2) ≤ 3/2τ3 = 3/2Z∗.

Assume now that the server moved by SaW serves r2 before r1. Then it starts
before t = τ1 (latest departure moment) and serves r2 before t = τ1 + (τ3 − τ2).
At this moment, r1 is already released; hence server serves it and returns to the
origin before moment τ1 + (τ3 − τ2) + (τ2 − τ1) + d(0, r1) ≤ 3/2τ3.

Therefore, in both of the above cases, competitive ratio achieved is bounded
above by 3/2 and the proof of the proposition is complete. ut

3 OL-QTSP on the halfline

In this section we consider the case in which the metric space is the half-line. For
such case we are able to show a competitiveness lower bound and a matching
upper bound. As we said before the off-line version of this problem is solvabe in
polynomial time [19].

Theorem 5. For the OL-QTSP problem, when the metric space is the halfline,
for any Q ≥ 1, there are no ρ-competitive algorithms where ρ < 3/2.

Proof. We start the proof for the case in which Q = 1.
At time 1 one request in point 1 is released. Due to the speed constraint

(Lemma 1), the server moved by the on-line algorithm cannot reach the request
before time t = 2, otherwise the adversary might release immediately a request

6
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in the origin. So the on-line server cannot be back in the origin before time t = 3,
while optimal completion time is 2.

For the case in which Q > 1, it is sufficient to use the above sequence in
which we release Q requests at the same time in one point. ut

We now present a 3/2-competitive algorithm that matches the above lower
bound for the problem.

Algorithm 4 (SlowWalk (SW)) The on-line server OL moves from the ori-
gin at half speed until the first time t0 in which it is possible i) to serve a quota
Q over the weights of the requests and ii) come back to the origin in no more
than t0/2; then it goes back to the origin at full speed.

Theorem 6. For the weighted OL-QTSP problem in the halfline, and for any
value of the quota Q, the algorithm SW is ρ-competitive with ρ = 3/2.

Proof. Basically, we have to prove that the on-line algorithm proceeds in such a
way to conclude its tour not later than time t0 + t0/2 while the adversary uses at
least time t0. Let us first observe that if we consider t0 = Z∗ all requests served
by the adversary in an optimal solution have to lie between O and t0/2 and have
been released before time t0. Therefore, at time t0 = Z∗, SW can turn back
because both requirements are met and it can conclude its tour by serving all
requests on its way to the origin. The overall time it uses is t0+t0/2 = 3/2Z∗ ut

4 Application to the general OL-TSP problem

In the previous section we have observed that the server can gain in competi-
tiveness by not moving too fast. Other results based on the same approach can
be found in [17], where the notion of “non zealous” algorithm is defined, as op-
posed to the notion of “zealous” algorithm [7] that is, intuitevely, an algorithm
that never remains idle when there is work to do. In this section we consider the
different problem of the general On-Line TSP, in the homing version (H-OLTSP
[3]) that is the version in which the server has to conclude its tour in the ori-
gin. By applying the same “slow is good” paradigm we show that, also in the
H-OLTSP case, the “non-zealousness” of the server can help him in achieving a
better competitiveness ratio (see also [17]).

We consider a metric space M and denote by ∆-TSP the metric TSP. In
H-OLTSP each istance of requests denotes the on-line version; each instance of
requests is a sequence (pi, ti)i≥0 and the sequence (ti) increases. Given such an
instance, the traveler has to visit every point pi (after ti) in the least possible
time, given the fact that, at each time, he only knows the already revealed points.
The following on-line algorithm, named Wait and Slowly Move (WaSM),
uses a polynomial time r-approximation algorithm A for ∆-TSP.

Without loss of generality one can suppose that, for every ∆-TSP instance
(p1, . . . , pn) we have:

∀t, d(0, p∗(t)) ≤ max
i

(d(0, pi))

7
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Algorithm 5 (Wait and Slowly Move (WaSM))
1)B ← (3 +

√
17)/2

2) as a new request is presented at time t0, then:
the on-line traveler comes back to the origin;
he waits until time t0(1 + 1/B);
he then follows the solution performed by A with speed v(t) such that:

if d(pOL(t), 0) ≥ t/B then v(t) = 0 (ball-constraint)
else v(t) = 1;

Note that the ball-constraint means that, at every time t, the traveler is not
allowed to be further than t/B from the origin.

Theorem 7. If ∆−TSP admits a polynomial time r-approximation algorithm,
then WaSM is a (r + c)-competitive algorithm for the H − OLTSP , where c =
(1 +

√
17)/4 ' 1.2808.

Proof. Observe that the value B = (3 +
√

17)/2 satisfies (B − 1)/2 = 1 + 1/B.
Let us first note that, as the on-line traveler is constrained always to remain at
a distance at most t/B from the origin (ball-constraint), then, whenever a new
request is presented at time t0, he can be guaranteed to be at the origin at time
t0(1 + 1/B).

Let then t be the time the last request is presented. At time t(1 + 1/B) the
on-line traveler is in the origin and begins to follow the solution provided by A.
Let us consider the two cases in which the on-line traveler has to stop after time
t(1 + 1/B) (because of the ball-constraint) or not.

Case 1: ∃t1 > 0, pOL(t(1 + 1/B) + t1) = [t(1 + 1/B) + t1]/B. Let us denote
by t′ be the maximum such time, which means that pOL(t(1 + 1/B) + t′) =
[t(1 + 1/B) + t′]/B and that ∀τ > t′, pOL(t(1 + 1/B) + τ) = [t(1 + 1/B) + τ ]/B
(from then on, the on-line traveler does not stop until the end of the tour).

Note that the distance covered between t(1 + 1/B) and t(1 + 1/B) + t′ is at
least [t(1 + 1/B) + t′]/B, consequently

ZOL ≤ t(1 + 1/B) + t′ + r · Z∗ − [t(1 + 1/B) + t′]/B (1)

On the other side the furthest request being at distance at least [t(1+1/B)+
t′]/B from the origin, we have:

Z∗ ≥ 2[t(1 + 1/B) + t′]/B (2)

From relations 1 and 2 we deduce that, in this case, the related competitive ratio
is no more than r + (B − 1)/2.

Case 2: ∀t1 > 0, pOL(t(1 + 1/B) + t1) < [t(1 + 1/B) + t1]/B. Then,

ZOL ≤ t(1 + 1/B) + rZ∗

and
Z∗ ≥ t

Consequently a competitive ratio of (1+1/B +r) = (B−1)/2+r is guaranteed,
which concludes the proof. ut

8
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As a consequence of this theorem, if we use Christofides heuristic [12], that
provides an approximation factor of r = 1.5, we can easily state the following
result.

Corollary 1. H-OLTSP admits a 2.78-competitive polynomial time algorithm.

This result improves the 3-competitive result for this problem proved in [3].

5 Conclusions

In this paper the Quota Traveling Salesman Problem has been tackled from the
on-line point of view. First we have shown that for general metric spaces the
problem can be solved by means of a 2-competitive algorithm while no better
competitive algorithm is possible. In particular since the lower bound result is
proved on the real line no better on-line algorithm can be expected even for such
particular case. On the contrary, if we consider the half-line metric space we
showed a 3/2 competitive algorithm and a matching lower bound. A peculiarity
of the OL-QTSP problem is that no zealous algorithm can achieve the best
competitive performance.

Although for the classical Homing OL-TSP exponential time zealous algo-
rithms have been shown to reach the best possible competitive ratio, we show a
non zealous polynomial time algorithm wich achieves a 2.78 competitive ratio,
outperforming the best known polynomial time algorithm for the same problem.

The problem to find a polynomial time algorithm for OL-QTSP with a good
competitive ratio is still open.
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Fig. 1. A graphical example of the lower bound for general metric spaces. The plain
line on the left is the tour of the optimal server, while the dashed line is the tour of
the on-line server. As soon as the on-line server crosses the (virtual) bold line, a new
request is released in the symmetric point (with respect to the origin). Any on-line
tour that serves two requests can not end before time 4, while Z

∗ = 2

11


