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Abstract

Deformed parabose and parafermi algebras are revised and endowed with
Hopf structure in a natural way. The noncocommutative coproduct allows for
construction of parastatistics Fock-like representations, built out of the sim-
plest deformed bose and fermi representations. The construction gives rise to
quadratic algebras of deformed anomalous commutation relations which define
the generalized Green ansatz.

Wigner was the first to remark that the cannonical quantization was not the most
general quantization scheme consistent with the Heisenberg equations of motions [1].
Parastatistics was introduced by Green [2] as a general quantization method of quan-
tum field theory different from the cannonical Bose and Fermi quantization. This
generalized statistics is based on two types of algebras with trilinear exchange rela-
tions, namely the parafermi and parabose algebras.

The representations of the parafermi and parabose algebras are labelled by a
non-negative integer p - the order of parastatistics. The simplest non-trivial repre-
sentations arise for p = 1 and coincide with the usual Bose(Fermi) Fock representa-
tions. The states in a Bose(Fermi) Fock space are totally symmetric(antisymmetric),
i.e., they transform according to the one dimensional representions of the symmet-
ric group. Fock-like representations of parastatistics of order p ≥ 2 correspond to
higher-dimensional representations of the symmetric group in the Hilbert space of
multicomponent fields.

In low dimensional physics (with space-time dimension D = 2 and D = 3) there
exist more possibilities for exotic statistics than in higher dimensions D ≥ 4 [3].
Quantum groups provide a natural playground for such nonstandard statistics. An
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important motivation arose from integrable models in two dimensional conformal field
theory and much progress was achieved through relation to the representation theory
of quantized universal enveloping algebras.

At the core of the interest in generalized statistics is (twodimensional) statistical
mechanics of phenomena such as fractional Hall effect, high-Tc superconductivity.
The experiments on quantum Hall effect confirm the existence of fractionally charged
excitations [4]. Models with fractional statistics and infinite statistics have been
explored, termed as anyon statistics [5] and quon statistics [6].

The attempts to develop nonstandard quantum statistics evolved naturally to the
study of deformed parastatistics algebras. The guiding principle in these develop-
ments is the isomorphism between the parabose algebra pB(n), parafermi algebra
pF(n) (with n degrees of freedom) and the universal enveloping algebra of the or-
thosymplectic algebra osp(1|2n), resp. orthogonal algebra so(2n + 1). The quantum
counteparts pBq(n) and pFq(n) were defined to be isomorphic as algebras to the quan-
tized universal enveloping algebras (QUEA) Uq(osp(1|2n))[7], resp. Uq(so(2n+1))[8].

In the present work we write a complete basis of relations of the algebras pBq(n)
and pFq(n) extending what has been done in [7], [8](see Theorem 1). These rela-
tions follow from the isomorphism of the deformed algebras pBq(n) and pFq(n) to
the QUEA Uq(osp(1|2n)) and Uq(so(2n + 1)) respectively. Then we continue the iso-
morphism of the algebras as Hopf algebra morphism which endows the parastatistics
algebra at hand with natural Hopf structure. With this Hopf structure the paras-
tatistics algebras pBq(n) and pFq(n) are isomorphic as Hopf algebras to the QUEA
Uq(osp(1|2n)) and Uq(so(2n + 1)) respectively (see Theorem 2).

The Green ansatz is intimately related to the coproduct on the parastatistics al-
gebras; it was realized that every parastatistics algebra representation of arbitrary
order p arises through the iterated coproduct [9](see also [10]). We make use of the
noncocommutative coproduct on the Hopf parastatistics algebras pBq(n) and pFq(n)
to construct a quadratic algebra which is a deformation of the Green ansatz for the
classical algebras pB(n) and pF(n).

The paper is organized as follows. We first recall the definition and basic proper-
ties of the classical parastatistics algebras. In section 3 we define the relations of the
quantized parastatistics and study their properties from the point of view of the iso-
morphism to the QUEA so(2n+1) and osp(1|2n). Section 4 is devoted to the analysis
of the Hopf algebra structure of the proposed quantized parastatistics algebras. In
Section 5 we show that the q-deformed bosonic (fermionic) oscillator algebra arises as
the simplest non-trivial representation of the deformed parastatistics. Further in Sec-
tion 6 the Green ansatz is generalized for the deformed parastatistics algebras pBq(n)
and pFq(n). Some important formulae and derivations are given in the Appendix.

1 Green Parastatistics Algebras

Throughout the text by an associative algebra we always mean an associative algebra
with unit 1 over the complex numbers C.

Let us recall first the definitions of the parastatistics algebras introduced by Green
[2] as a generalization of the Bose-Fermi alternative.
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DEFINITION 1 The parafermi algebra pF(n) (parabose algebra pB(n)) is an as-
sociative algebra generated by the creation a+i and annihilation a−

i operators for
i = 1, . . . , n subject to the relations

[[a+i, a−
j ]∓, a+k] = 2δk

j a+i [[a+i, a+j ]∓, a+k] = 0

[[a+i, a−
j ]∓, a−

k ] = −2δi
ka−

j [[a−
i , a−

j ]∓, a−
k ] = 0

(1)

Our convention throughout the text is that the upper (lower) sign refers to the
parafermi algebra pF(n) (parabose algebra pB(n)).

In the definition only the linearly independent relations are written. Through the
(super)Jacobi identity one obtains also the relations

[[a+i, a+j ]∓, a−
k ] = ±2δj

ka+i − 2δi
ka+j [[a−

i , a−
j ]∓, a+k] = 2δk

j a−
i ∓ 2δk

i a−
j .

The inhomogeneous defining relations in (1) imply that the bilinear combinations
ei

j = 1
2 [a+i, a−

j ]∓ close a linear algebra gl(n). These inhomogeneous relations represent

the adjoint action of the algebra gl(n) at hand on the generators a+k and a−
k . The

creation operators a+i transform as contravariant vectors, whereas the annihilation
a−

j operators transform as covariant vectors with respect to the gl(n)-action hence
the indices up and down.

The Hamiltonian H =
∑n

i=1
1
2 [a+i, a−

i ]∓ of the parastatistics system has as ein-

genvectors the creation a+i and annihilation a−
j operators

[H, a+i] = a+i [H, a−
j ] = −a−

j

with eigenvalues associated with positive and negative energies.

We shall accept the superalgebraic point of view and write the relations (1) with
supercommutators as follows

[[[[a+i, a−
j ]], a+k]] = 2δk

j a+i [[[[a+i, a+j ]], a+k]] = 0

[[[[a+i, a−
j ]], a−

k ]] = −2δi
ka−

j [[[[a−
i , a−

j ]], a−
k ]] = 0

(2)

where [[a, b]] = ab− (−1)deg(a)deg(b)ba and deg(x) ∈ {0̄, 1̄} is the Z2 degree of x. Then
the parafermi pF(n) (parabose pB(n)) algebra corresponds to the case where all the
generators are taken to be even (odd)

deg(a+i) = deg(a−
j ) = 0̄, (deg(a+i) = deg(a−

j ) = 1̄),

i.e., the parabose algebra pB(n) is a super version of the parafermi algebra pF(n). A
system containing both parafermions and parabosons is described by a superalgebra
where some of the generators a+i, a−

i are odd and others even [11] but we are not
considering such superalgebras here.

The parastatistics algebras admit an antilinear antiinvolution ∗, (ab)∗ = b∗a∗ such
that

(a+i)∗ = a−
i (a−

i )∗ = a+i

which we are referring to as conjugation. The relations of the first and the second
line of (1) are conjugated to each other and thus describe ∗-invariant ideals. Hence
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the parafermionic and the parabosonic relations are ∗-algebras.

The parafermi algebra pF(n) is isomorphic to the universal enveloping algebra
U(so(2n + 1)) of the orthogonal algebra so(2n + 1)[12] while the parabose algebra
pB(n) is isomorphic to the universal enveloping algebra U(osp(1|2n)) of the orthosym-
plectic algebra osp(1|2n)[13]

pF(n) ≃ U(so(2n + 1)) pB(n) ≃ U(osp(1|2n)). (3)

The Lie superalgebra osp(1|2n) having the same Cartan matrix as the simple algebra
B(n) is denoted B(0|n) in the Kac table [14]. The trilinear relations (1) provide
an alternative set of relations for the algebras so(2n + 1) and osp(1|2n) in terms
of paraoscillators. Thus parafermi pF(n) and parabose pB(n) algebras provide an
alternative to the usual Chevalley description of the Lie algebras and superalgebras
from the series B which justifies the name B-statistics for the parastatistics.

2 Deformed Parastatistics Algebras

The notion of deformed or quantized universal enveloping algebras (QUEA) of a Lie
algebra [15, 16, 17] or superalgebra [18] is by now a common subject in mathematical
physics. The idea of quantization of the parastatistics algebras is to “quantize” the
isomorphisms (3), i.e., to deform the trilinear relations (1) in such a way that the
arising deformed parafermi pFq(n) and parabose pBq(n) algebras are isomorphic to
the QUEAs

pFq(n) ≃ Uq(so(2n + 1)) pBq ≃ Uq(osp(1|2n)). (4)

The proofs of the algebra isomorphisms pBq ≃ Uq(osp(1|2n))[7] and pFq(n) ≃
Uq(so(2n + 1))[8] have shown the equivalence of the paraoscillator definition of the
Uq(osp(1|2n)) and Uq(so(2n+1)) with the definition in terms of Chevalley generators.
In this way a minimal set of relations (a counterpart of the Chevalley-Serre relations)
has been obtained providing an algebraic (but not linear) basis of the defining ideal
of the QUEA at hand.

We are interested in a complete description of the defining ideal for the parastatis-
tics algebras (i.e., the counterpart of the Cartan-Weyl definition of the QUEA). This
is not only a question of pure academic interest, our motivation came from the study
of the Hopf algebraic structure on the parastatistics algebras which to the best of our
knowledge was studied only for some particular cases (see [19] for pBq(2)).

Here we give a complete basis of relations for pFq(n) and pBq(n). Our result
extends what has been done in [7], [8], [20].

We proceed with the simultaneous introduction of QUEA Uq(so(2n + 1)) and
Uq(osp(1|2n)) in the Chevalley-Serre form.

The Cartan matrix (Cij)i,j=1,...,n with entries

Cij = αj(Hi) = (α∨
i , αj)

4



is the same in both cases











2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 . . . −2 2












(5)

Hence the relations of the superalgebra Uq(osp(1|2n)) are the same as these of Uq(so(2n+
1)) but instead of (deformed) commutators on has to take (deformed) supercommuta-
tors. It is more convenient to work with the symmetrized Cartan matrix (aij)i,j=1...n

aij = diCij = (αi, αj) di =
(αi, αi)

2

which in the cases under consideration is

aij = 2δij − δin − δi+1j − δij+1 di = 1 −
1

2
δin (6)

Let us denote by Hi, E±i the Chevalley basis of so(2n + 1) or osp(1|2n)

Hαi = Hi, E±αi = E±i 1 ≤ i ≤ n. (7)

The Lie superalgebra osp(1|2n) has a grading induced by deg(Hi) = 0̄ and

deg(E±i) = 0̄ 1 ≤ i ≤ n − 1 deg(E±n) = 1̄ (8)

All generators of the Lie algebra so(2n + 1) are even.
The QUE algebras Uq(so(2n+1)) and Uq(osp(1|2n)) are associative algebras gen-

erated by the elements q±Hi and E±i subject to the relations (1 [15, 16]

qHiqHj = qHj qHi for 1 ≤ i, j ≤ n

qHiE±jq
−Hi = q±aij E±j for 1 ≤ i, j ≤ n

[2][Ei, E−j ] = δi,j [2Hi] for 1 ≤ i ≤ n − 1

[[En, E−n]] = [2Hn]

[E±i, E±j ] = 0 for |i − j| ≥ 2

[E±i, [E±i, E±(i+1)]q]q−1 = 0 for 1 ≤ i ≤ n − 1

[E±(i+1), [E±(i+1), E±i]q]q−1 = 0 for 1 ≤ i ≤ n − 2

[[[[E±(n−1), E±n]q−1 , E±n]], E±n]q = 0

(9)

where we have set

[x] :=
q

x
2 − q−

x
2

q
1
2 − q−

1
2

(= [x]
q

1
2
).

1) The factors qi = qdi different from the general definition of QUEA [15, 16] (see also [21]) are
hidden in the notation as in [7]
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The relations (9) define the Chevalley-Serre form of the considered QUEA.

There exist several distinct subsets of roots which can serve as systems of simple
roots. The short roots present such an alternative subset. The simple roots αi are
related to the short roots εi through

αi = εi − εi+1 1 ≤ i ≤ n − 1, αn = εn (10)

and the corresponding change of basis on the Cartan subalgebra reads

Hi = hi − hi+1 1 ≤ i ≤ n − 1, Hn = hn. (11)

By construction
qhiqhj = qhj qhi (12)

The ladder operators E+εi and E−εi related to the roots εi are a+i and a−
j [7, 20]

and therefore the inverse change εi =
∑n

k=i αk implies

a+i = [Ei, [Ei+1, . . . [En−1, En]q−1 . . .]q−1 ]q−1

a−
i = [[. . . [E−n, E−n+1]q . . . , E−(i+1)]q, E−i]q

(13)

On the other hand the change (10) allows to express the Chevalley generators (7) as

Ei = 1
[2]q

−hi+1 [[a+i, a−
i+1]] E−i = 1

[2] [[a
+(i+1), a−

i ]]qhi+1 i < n

En = a+n E−n = a−
n

(14)

It is not difficult to check that

qhia+jq−hi = qδij a+j qhia−
j q−hi = q−δij a−

j (15)

The graded commutator of opposite ladder operators

[[a+i, a−
i ]] = [2hi] (16)

defines the partial hamiltonian Hi attached to the i-th paraoscillator

Hi =
1

[2]
[[a+i, a−

i ]] =
qhi − q−hi

q − q−1
(17)

and the full hamiltonian H is simply the sum over all paraoscillators H =
∑n

i=1 Hi.
We choose q to be on the unit circle |q| = 1 and define the antilinear (i.e., (q)∗ =

q−1 = q̄) antiinvolution ∗ on the new generators as

(a+i)∗ = a−
i (a−

i )∗ = a+i (q±hi)∗ = q∓hi (18)

Then the Chevalley basis transforms as (E±i)
∗ = E∓i and H∗

i = Hi and the Chevalley-
Serre relations (9) are closed under the action of ∗. Hence ∗ is an antiinvolution on
the whole QUEA. This fact will be extensively used in what follows.

6



THEOREM 1 The quantum parafermi pFq(n) (parabose pBq(n)) algebra is the as-

sociative (super)algebra generated by the even (odd) raising a+i and lowering a−
i gen-

erators and the even Cartan generators qhi for i = 1, . . . , n which are subject to the
relations (12,15,16) together with

[[[[a+i, a−
j ]], a+k]]q−δikσ(j,k) = [2]δk

j a+iqσ(i,j)hj + (q − q−1)θ(i, j; k)a+i[[a+k, a−
j ]] (19)

[[[[a+i1 , a+i3 ]], a+i2 ]]q2 + q[[[[a+i1 , a+i2 ]], a+i3 ]] = 0 when i1 < i2 < i3

[[[[a+i1 , a+i2 ]], a+i2 ]]q = 0 when i1 < i2

[[a+i2 , [[a+i1 , a+i3 ]]]]q2 + q[[a+i1 , [[a+i2 , a+i3 ]]]] = 0 when i1 < i2 < i3

[[a+i2 , [[a+i2 , a+i3 ]]]]q = 0 when i2 < i3

(20)

as well as their conjugated

[[[[a+i, a−
j ]], a−

k ]]
q
−δjkσ(i,k) = −[2]δi

ka−
j q−σ(i,j)hi − (q − q−1)θ(j, i; k)[[a+i, a−

k ]]a−
j (21)

[[[[a−
i1

, a−
i3

]], a−
i2

]]q2 + q[[[[a−
i1

, a−
i2

]], a−
i3

]] = 0 when i1 < i2 < i3

[[[[a−
i1

, a−
i2

]], a−
i2

]]q = 0 when i1 < i2

[[a−
i2

, [[a−
i1

, a−
i3

]]]]q2 + q[[a−
i1

, [[a−
i2

, a−
i3

]]]] = 0 when i1 < i2 < i3

[[a−
i2

, [[a−
i2

, a−
i3

]]]]q = 0 when i2 < i3

(22)

where the functions σ(i, j) and θ(i, j; k) are given by σ(i, j) = ǫij + δij
(2 or σ(i, j) =

ǫij − δij and θ(i, j; k) = 1
2ǫijǫijk(ǫjk − ǫik)(3.

Some details of the proof are given in the appendix.
The inhomogeneous relations (19,21) are related to the adjoint action of a deformed

linear algebra. These were first obtained for pBq in [20]. The homogeneous relations
(20, 22) describe an ideal which is invariant under the adjoint action of the deformed
linear group and obtained from one of the authors in [24]. The ideal is in fact a
Uq(gl(n))-module which is a deformation of a Schur module E(2,1)(see Appendix).

3 Hopf structure on parastatistics algebras

The QUE algebras Uq(so(2n + 1)) and Uq(osp(1|2n)) (9) endowed with the Drinfeld-
Jimbo coalgebraic structure [15], [16]

∆Hi = Hi ⊗ 1 + 1 ⊗ Hi S(Hi) = −Hi

∆Ei = Ei ⊗ 1 + qHi ⊗ Ei S(Ei) = −q−HiEi

∆E−i = E−i ⊗ q−Hi + 1 ⊗ E−i S(E−i) = −E−iq
Hi

(23)

ǫ(Hi) = ǫ(Ei) = ǫ(E−i) = 0

2) ǫ stays for the Levi-Civita symbol with ǫij = 1 for i < j
3)The function θ(i, j; k) = −θ(j, i; k) is vanishing except for k in between i and j, when it takes

values 1 and -1 for i < k < j and i > k > j, respectively.
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become Hopf algebra and Hopf superalgebra, respectively. As distinct from the alge-
bras the superalgebras have a graded Hopf structure with antipode which is a graded
antihomomorphism

S(ab) = (−1)deg(a)deg(b)S(b)S(a). (24)

The conjugation ∗ (18) for |q| = 1 is a coalgebraic antihomomorphism, (∆x)∗ =
∑

(x(1)⊗x(2))
∗ =

∑
x∗

(2)⊗x∗
(1) and the consistency implies S(x∗) = S(x)∗ for x ∈ Uq.

The isomorphism between the UEA U(so(2n + 1)) and the parafermionic algebra
pF(n) induces a structure of a Hopf algebra on pF(n). Analogously the isomorphism
between the UEA U(osp(1|2n)) and the parabosonic algebra pB(n) induces a Hopf
structure on the superalgebra pB(n). One can formulate the following

PROPOSITION 1 The parafermionic algebra pF(n) (parabosonic algebra pB(n))
endowed with

(i) a coproduct ∆, i.e., a homomorphism

∆ : pF(n) → pF(n) ⊗ pF(n) (∆ : pB(n) → pB(n) ⊗ pB(n))

(ii) a counit ǫ, i.e., a homomorphism

ǫ : pF(n) → C (ǫ : pB(n) → C)

(iii) an antipode S, i.e., a (graded) antihomomorphism

S : pF(n) → pF(n) (S : pB(n) → pB(n))

defined on the generators of pF(n)(pB(n)) by the relations

∆(a+i) = a+i ⊗ 1 + 1 ⊗ a+i ∆(a−
i ) = a−

i ⊗ 1 + 1 ⊗ a−
i

ǫ(a+i) = 0 ǫ(a−
i ) = 0

S(a+i) = −a+i S(a−
i ) = −a−

i

(25)

is a Hopf (super)algebra.

Proof: The explicit isomorphism mapping from U(so(2n + 1)) to pF(n) and the stan-
dard Hopf structure on U(so(2n+1)) (the limit q = 1 in (13) and (23) , respectively)
induce the Hopf structure on the basis of pF(n). In other words we continue the
algebraic homomorphism between U(so(2n+1)) and pF(n) as a Hopf morphism. The
same procedure about U(osp(1|2n)) and pB(n) but now the antipode is graded (24).

It is worth noting that the relations of the (super)algebra pF(n) (pB(n)) are closed
under the coproduct, the counit and the antipode (25) and thus generate a Hopf ideal.

In the same spirit the isomorphisms (4) induce Hopf structure on the deformed
parastatistics algebras. The induced Hopf structures on the deformed parastatistics
algebras pFq(n) and pBq(n) are more involved than their counterparts on pF(n) and
pB(n) and we are going to present the proofs in detail.
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THEOREM 2 The deformed parafermionic algebra pFq(n), the deformed parabosonic
algebra pBq(n) is a Hopf algebra, a Hopf superalgebra, respectively when endowed with

(i) a coproduct ∆ defined on the generators by

∆q±hi = q±hi ⊗ q±hi (26)

∆a+i = a+i ⊗ 1 + qhi ⊗ a+i + ω
∑

i<j≤n

[[a+i, a−
j ]] ⊗ a+j (27)

∆a−
i = a−

i ⊗ q−hi + 1 ⊗ a−
i − ω

∑

i<j≤n

a−
j ⊗ [[a+j , a−

i ]] (28)

(ii) a counit ǫ defined on the generators by

ǫ(q±hi) = 1 ǫ(ai+) = ǫ(a−
i ) = 0 (29)

(iii) an antipode S (graded for pBq(n)) defined on the generators by

S(q±hi) = q∓hi (30)

S(a+i) = −q−hia+i −
n−i∑

s=1

(−ω)s
∑

i<j1<...<js≤n

W+i

j1
W+j1

j2
. . . W+js−1

js
q−hjs a+js (31)

S(a−
i ) = −a−

i qhi −

n−i∑

s=1

(ω)s
∑

n≥js>...>j1>i

a−
js

qhjs W−js

js−1
. . . W−j2

j1
W−j1

i (32)

where W+i
j = q−hi [[a+i, a−

j ]], W−j
i = [[a+j , a−

i ]]qhi and ω = q
1
2 − q−

1
2 .

This theorem is interesting in its own because it defines the Hopf structure on an-
other basis of generators for QUEA Uq of the algebra so(2n+1) and the superalgebra
osp(1|2n). Let us note that the relations of the (super)algebra pF(n) (pB(n)) define
a Hopf ideal which turns out to be important when constructing representations.

Before proceeding to the proof we briefly recall some basic tools for QUEA Uq(g)
of a simple Lie algebra g from the paper of Faddeev, Reshetikhin and Takhtadjan
[17] which were further generalized for Lie superalgebras [18]. These computational
tools simplify and make our result transparent. The QUEA Uq(g) is generated by the
elements of an upper-triangular and a lower triangular matrices L(+) and L(−)

R(+)L
(±)
1 L

(±)
2 = L

(±)
2 L

(±)
1 R(+) R(+)L

(+)
1 L

(−)
2 = L

(−)
2 L

(+)
1 R(+) (33)

where L
(±)
1 = 1 ⊗ L(±), L

(±)
2 = L(±) ⊗ 1 and R(+) = PRP is the corresponding

R-matrix for Uq(g) [17].
The Hopf structure on the elements of L(+) and L(−) compatible with the Drinfeld

structure (23) (defined on the Chevalley basis) is given by the coproduct ∆L±, the
counit ǫ(L(±)) [17]

∆L
i(±)
k =

∑

j

L
i(±)
j ⊗ L

j(±)
k ǫ(L

i(±)
k ) = δi

k (34)

9



and the antipode S(L(±))

∑

j

L
i(±)
j S(L

j(±)
k ) = δi

k =
∑

j

S(L
i(±)
j )L

j(±)
k . (35)

Let us consider the QUEA Uq(so(2n + 1)). Then the matrices L(+) and L(−) are

(2n + 1) × (2n + 1) matrices with elements in Uq(so(2n + 1)) [17]. The corner L
i(+)
j ,

1 ≤ i, j ≤ n + 1 of the matrix L(+) is very simple when expressed in terms of the
generators a+i and a−

j

(

L
i(+)
j

)

1≤i,j≤n+1
=














qh1 ω[a+1, a−
2 ] ω[a+1, a−

3 ] . . . ω[a+1, a−
n ] ca+1

0 qh2 ω[a+2, a−
3 ] . . . ω[a+2, a−

n ] ca+2

0 0 qh3 . . . ω[a+3, a−
n ] ca+3

...
...

...
. . .

...
...

0 0 0 . . . qhn ca+n

0 0 0 . . . 0 1














(36)

where ω = q
1
2 −q−

1
2 . The coefficient c = q−

1
2 (q−q−1). We point out that the matrices

L
i(+)
j and L

i(−)
j are compatible with the Hopf structure defined in (23) which differs

from the conventions of [17].
A similar result holds for Uq(osp(1|2n)) but instead of commutators one has to

take anticommutators. Summarizing the formulae for QUEA of Lie (super)algebras
of the series B(n) and B(0|n), the left n × n minor of the upper-triangular matrix
L(+) reads

L
i(+)
i = qhi for 1 ≤ i ≤ n

L
i(+)
j = ω[[a+i, a−

j ]] for 1 ≤ i < j ≤ n
(37)

The conjugation ∗ (18) exchanges the upper-triangular matrix L(+) and the lower-
triangular matrix L(−)

(L
i(+)
j )∗ = L

j(−)
i . (38)

We shall also need a simple lemma which is easy to prove:

LEMMA 1 The triangular system of linear equations

xi +
∑

i<j≤n

M j+
i xj = bi ⇐⇒

∑

j

M j+
i xj = bi (39)

where M j+
i is upper triangular matrix with units on the diagonal (M j+

i = 0 for i < j
and M i+

i = 1) has unique solution

xi = bi +

n−i∑

s=1

(−1)s
∑

i<j1<...<js≤n

M j1+
i M j2+

j1
. . . M js+

js−1
bjs

. (40)
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Proof of Theorem 2

(i) For the diagonal elements L
i(+)
i = qhi the coproduct formula (34) yields

∆(L
i(+)
i ) =

∑

1≤j≤2n+1

L
i(+)
j ⊗ L

j(+)
i = L

i(+)
i ⊗ L

i(+)
i (41)

which implies ∆q±hi = q±hi ⊗ q±hi .

The coproduct of the elements of the kind L
i(+)
n+1 when 1 ≤ i ≤ n has the form (34)

∆L
i(+)
n+1 =

∑

1≤j≤2n+1

L
i(+)
j ⊗ L

j(+)
n+1 = L

i(+)
n+1 ⊗ 1 +

∑

i≤j≤n

L
i(+)
j ⊗ L

j(+)
n+1 (42)

where we have used the triangularity of L(+) and L
n+1(+)
n+1 = 1. Inserting into eq.(42)

the values L
i(+)
n+1 = ca+i (36) and abridging the constant c we get

∆a+i = a+i ⊗ 1 +
∑

i≤j≤n

L
i(+)
j ⊗ a+j (43)

which ends the proof of (27) in view of (37).
The expression for ∆a−

i (28) can be obtained in the same fashion starting with

the element L
n+1(−)
i but it is simpler to get it as a conjugation ∆a−

i = (∆a+i)∗ with
the antiinvolution ∗.

(ii) It follows from the definition of the counit (34).

(iii) For the diagonal elements the antipode formula (35) implies S(L
i(+)
i ) =

(L
i(+)
i )−1 hence S(q±hi) = q∓hi .
For the nondiagonal elements due to the triangularity of L(+) the antipode formula

(35) gives rise to the following system of equations

∑

i≤j≤n+1

L
i(+)
j S(L

j(+)
n+1 ) = δi

n+1 =⇒
∑

i≤j≤n

L
i(+)
j S(L

j(+)
n+1 ) = −L

i(+)
n+1. (44)

Here we have made use of S(L
(+)
n+1 n+1) = S(1) = 1. In view of S(L

i(+)
n+1) = cS(a+i)

this is a linear triangular system for S(a+i) which after normalisation takes the form

∑

i≤j≤n

U i+
j S(a+j) = −(L

i(+)
i )−1a+i with U i+

j = (L
i(+)
i )−1L

i(+)
j (45)

The matrix U i+
j is upper triangular with units on the diagonal, thus we can apply

the Lemma to the triangular linear system

S(a+i) + ω
∑

i<j≤n

W i+
j S(a+j) = −q−hia+i where W i+

j = q−hi [[a+i, a−
j ]](46)

which yields the formula (31) for the antipodes S(a+i).
The antipodes S(a−

i ) (32) are obtained through the conjugation, S(a−
i ) = (S(a+i))∗.

�
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4 The oscillator representations

The unitary representations πp of the parastatistics algebras pB(n) and pF(n) (eq.
1) with unique vacuum state are indexed by a non-negative integer p [22]. The
representation πp is the lowest weight representation with a unique vacuum state |0〉
annihilated by all a−

i and labelled by the order of parastatistics p

πp(a
−
i )|0〉 = 0 πp(a

−
i )πp(a

+j)|0〉 = pδj
i |0〉 . (47)

The vacuum representation which is the trivial representation corresponds to the value
p = 0 and is given by the counit ǫ of the Hopf parastatistics algebra

π0(x)|0〉 = ǫ(x)|0〉 x ∈ pB(n), pF(n). (48)

In the representation πp (47) of the nondeformed parastatistics algebras (1) the
hamiltonian hi = 1

2 [a+i, a−
i ]∓ and the number operator Ni = a+ia−

i associated to the
i-th paraoscillator are related by

hi = Ni ∓
p

2
(49)

where the upper (lower) sign is for parafermions (parabosons). The constant ∓ p
2 plays

the role of the energy of the vacuum.
In the representation πp of the deformed parastatistics algebras the quantum ana-

logue of the relation (49) holds (see eq. (16))

[a+i, a−
i ]∓ = [2]Hi = [2hi] = [2Ni ∓ p]

which implies the deformed analogue of the πp defining condition (47)

a−
i (p)a+j(p)|0〉

(p)
= [p]δj

i |0〉
(p)

. (50)

It is worth noting that the constant ∓[p]/[2] plays the role of energy of the vacuum

Hi |0〉
(p)

= ∓
[p]

[2]
|0〉

(p)
.

The algebra of the q-deformed bosonic oscillators Bq(n) arises as a particular
representation π of parabosonic order p = 1 of the pBq(n) (for details see [7])

a−
i a+i − qa+ia−

i = q−Ni a−
i a+i − q−1a+ia−i = qNi

a+ia+j − qǫij a+ja+i = 0 a+ia−
j − qǫjia−

j a+i = 0

a−
i a−

j − qǫij a−
j a−

i = 0 a−
i a+j − qǫjia+ja−i = 0







(51)

We have adopted the notaion π(x) = x and use N i = hi −
1
2 due to eq. (49).
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In the same way the algebra of the q-deformed fermionic oscillators Fq(n) is the
p = 1 representation of the parafermionic algebra pFq(n)

a−
i a+i + qa+ia−

i = qNi a−
i a+i + q−1a+ia−

i = q−Ni

a+ia+j + qǫjia+ja+i = 0 a+ia−
j + qǫij a−

j a+i = 0

a−
i a−

j + qǫjia−
j a−

i = 0 a−i a+j + qǫij a+ja−
i = 0

(a+i)2 = 0 (a−
i )2 = 0







(52)

where N i = hi + 1
2 . As known the homogeneous relations in (51) and (52) define a

Manin plane and its dual, respectively.
The analysis [23] of the positivity of the norm for the pBq(n) and pFq(n) represen-

tations in the simplest case p = 1 shows that such unitary representations (realized
as a finite dimensional factor representions) exist only for q being a root of unity.

Remark. Unlike the relations of pBq(n) and pFq(n) the relations of the bosonic
and fermionic oscillators do not define Hopf ideals for q 6= 1 as one can easily check.
This is the reason for the lack of Hopf structure on Bq(n) and Fq(n).

5 Green Ansatz

The Green ansantz was introduced by Green in the same paper [2] in which he de-
fined parastatistics. We briefly recall it and then bring it in a form convenient for
deformation.

Let us consider a system with n degrees of freedom quantized in accordance with
the parafermi or parabose statistics of order p, i.e., a system of n paraoscilators which
is a particular representation πp (of order p) of the parastatistics algebra with trilinear
exchange relations (1).

The Green ansatz states that the parafermi (parabose) oscillators a+i and a−
i can

be represented as sums of p fermi (bose) oscillators

πp(a
+i) =

p
∑

r=1

a+i
(r) πp(a

−
i ) =

p
∑

r=1

a−
i(r) (53)

satisfying quadratic commutation relations of the same type (i.e., fermi for parafermi
and bose for parabose) for equal indices (r)

[a−
i(r), a+k

(r)]± = δk
i , [a−

i(r), a
−
k(r)]± = [a+i

(r), a
+k
(r)]± = 0, (54)

and of the opposite type for the different indices

[a−
i(r), a

−
k(s)]∓ = [a+i

(r), a
+k
(s)]∓ = [a−

i(r), a+k
(s)]∓ = 0 r 6= s. (55)

The upper (lower) signs stay for the parafermi (parabose) case.
The coproduct endows the tensor product of A-modules of the Hopf algebra A

with the structure of an A-module. Thus one can use the coproduct for constructing
a representation out of simple ones. The simplest representations of the parastatistics
algebras are the oscillator representations π (with p = 1). A parastatistics algebra
representation of arbitrary order arises through the iterated coproduct [11].
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Let us denote the (p-fold) iteration of the coproduct by

∆(1) = id, ∆(2) = ∆, . . . , ∆(p) = (∆ ⊗ 1 ⊗ . . . ⊗ 1
︸ ︷︷ ︸

p−1

) ◦ ∆(p−1) (56)

and π denotes the projection from the (deformed) parafermi and parabose algebra onto
the (deformed) fermionic F (Fq) and bosonic B (Bq) Fock representation, respectively.

PROPOSITION 2 The Green ansatz is equivalent to the commutativity of the fol-
lowing diagrams

pF(n)
∆(p)

−→ pF(n)⊗p

πp ց ↓ π⊗p

F(n)⊗p

pB(n)
∆(p)

−→ pB(n)⊗p

πp ց ↓ π⊗p

B(n)⊗p

(57)

Proof: Using the coproduct of the Proposition 2 and projecting on the Fock rep-
resentation we can choose the components of the Green ansatz to be the summands
in the expressions

π⊗p ◦ ∆(p)(a+i) =
p∑

r=1
1 ⊗ . . . ⊗ 1
︸ ︷︷ ︸

r−1

⊗π(a+i) ⊗ 1 ⊗ . . . ⊗ 1
︸ ︷︷ ︸

p−r

:=
p∑

r=1
a+i

(r)

π⊗p ◦ ∆(p)(a−
i ) =

p∑

r=1
1 ⊗ . . . ⊗ 1
︸ ︷︷ ︸

r−1

⊗π(a−
i ) ⊗ 1 ⊗ . . . ⊗ 1

︸ ︷︷ ︸

p−r

:=
p∑

r=1
a−

i(r)

(58)

The check that the Green components a+i
(r) and a−

i(r) satisfy the bilinear commutation

relations (54) and (55) is direct, however one has to keep in mind that the tensor
product is Z2-graded in the parabose case and non-graded in the parafermi case, which
explains why the anomalous commutation relations (55) appear. We emphasize that
the grading of the tensor product turns out to be the opposite to the (independent)
grading of the bose or fermi algebra which appears on each site (r).

The diagrams (57) are commutative if and only if

πp(a
+i) = π⊗p ◦ ∆(p)(a+i) πp(a

−
i ) = π⊗p ◦ ∆(p)(a−

i ) (59)

which is exactly the statement of the Green ansatz (53). �

We are now in a position to extend the Green ansatz to the deformed parafermi
pFq(n) and parabose pBq(n) algebras. The simplest representation of pFq(n) and
pBq(n) of parastatistics order p = 1, are the deformed fermionic Fq and bosonic Bq

Fock representations, respectively and let π be the projection on these Fock spaces.

DEFINITION 2 The system of quadratic exchange relations stemming from the
commutativity of the diagrams

pFq(n)
∆(p)

−→ pFq(n)⊗p

πp ց ↓ π⊗p

Fq(n)⊗p

pBq(n)
∆(p)

−→ pBq(n)⊗p

πp ց ↓ π⊗p

Bq(n)⊗p

(60)

will be referred to as deformed Green ansatz of parastatistics of order p. Here ∆(p)

stays for the p-fold non-cocommutative coproduct (56) on the Hopf algebras pFq(n)
and pBq(n) (see Theorem 2).
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Let us show the consistency of the condition (50) with the deformed Green ansatz.

The vacuum state |0〉(p) of the representation πp is to be identified with the tensor

power of the oscillator (p = 1) vacuum, |0〉
(p)

= |0〉
⊗p

. Evaluating the iterated graded
commutator (16)

∆(p)[[a+i, a−
i ]] = [[∆(p)a+i, ∆(p)a−

i ]] =
(qhi)⊗p − (q−hi)⊗p

q
1
2 − q−

1
2

(61)

on the vacuum state |0〉
⊗p

in the oscillator representations π⊗p we get the defining
condition (50) of the deformed πp

∓π⊗p ◦ ∆(p)[[a+i, a−
i ]]|0〉(p) = πp(a

−
i )πp(a

+i)|0〉(p) = [p]|0〉(p) (=
q

p
2 − q−

p
2

q
1
2 − q−

1
2

|0〉(p))

since π(qhi) = qNi∓
1
2 , which proves the consistency.

The Green components a+i
(r) and a−

i(r) in a pFq(n) or pBq(n) representation πp of

parastatistics of order p will be chosen to be

a+i
(r) = π⊗p ◦ ∆(r−1) ⊗ 1 ⊗ ∆(p−r)

(
∑n

k=1 L
i(+)
k ⊗ a+k ⊗ 1

)

a−
i(r) = π⊗p ◦ ∆(r−1) ⊗ 1 ⊗ ∆(p−r)

(
∑n

k=1 1 ⊗ a−
k ⊗ L

k(−)
i

) (62)

Note that the conjugation ∗ acts as reflection on the Green indices (r)

(a+i
(r))

∗ = a−
i(r∗) (a−

i(r))
∗ = a+i

(r∗) r∗ = p − r + 1.

More explicitly the Green components look like

a+i
(r) =

∑

k1,...,kr

L
i(+)
k1

⊗ L
k1(+)
k2

⊗ . . . ⊗ L
kr−1(+)
kr

⊗ a+kr ⊗ 1 . . . ⊗ 1

a−
j(r) =

∑

k1,...,kp−r

1 ⊗ . . . ⊗ 1 ⊗ a−k1
⊗ L

k1(−)
k2

⊗ L
k2(−)
k3

⊗ . . . ⊗ L
kp−r(−)
j

(63)

where the upper (lower) triangularity of the matrices L(+)(L(−)) infers that only the
terms subject to the inequalities i ≤ k1 ≤ . . . ≤ kr ≤ n are non-zero ( respectively
n ≥ k1 ≥ . . . ≥ kp−r ≥ j ). Unlike the non-deformed case each Green component a+i

(r)

or a−
i(r) in the deformed Green ansatz is a sum of many terms resulting from the

mapping π⊗p ◦ ∆(p).
Let us extend the definition (56) of ∆(p) with the counit ∆(0) = ǫ of the paras-

tatistics algebra at hand (as suggested by eq.(48) ǫ = π0) and introduce the operators

Q
j(+)
i(r) = π⊗p ◦ ∆(r) ⊗ ∆(p−r) (

n∑

k=1

L
j(+)
k ⊗ L

k(−)
i ) (64)

Q
j(−)
i(r) = π⊗p ◦ ∆(r−1) ⊗ ∆(p−r+1) (

n∑

k=1

L
j(+)
k ⊗ L

k(−)
i ) (65)

One readily sees that (Q
j(+)
i(r) )∗ = Q

i(−)
j(r∗) and (Q

j(−)
i(r) )∗ = Q

i(+)
j(r∗).
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We now calculate the exchange relations of the Green components (63) of the
deformed Green ansatz. It turns out that they close quadratic algebras too.

For different Green indices the Green components (63) quommute ( [x, y]±q =
xy ± qyx) as follows (we suppose r > s)

[a+i
(r), a

+j

(s)]∓ = ∓(q − q−1)a+j

(r)a
+i
(s) [a−

i(r), a
−
j(s)]∓ = 0 i < j

[a−
i(r), a

−
j(s)]∓ = ±(q − q−1)a−

j(r)a
−
i(s) [a+i

(r), a
+j

(s)]∓ = 0 i > j
(66)

[a+i
(r), a

+i
(s)]∓q = 0 [a−

i(r), a
−
i(s)]∓q−1 = 0 (67)

[a−
i(r), a

+j

(s)]∓ = 0 for r 6= s (68)

When the Green indices coincide one gets

[a+i
(r), a

+j

(r)]±q
∓ǫij = 0 [a−

i(r), a
−
j(r)]±q

∓ǫij = 0

[a−
i(r), a

+j

(r)]±q∓1 = q∓
1
2 Q

j(−)
i(r) [a−

i(r), a
+j

(r)]±q±1 = q±
1
2 Q

j(+)
i(r)

(69)

where the operators Q
j(+)
i(r) and Q

j(−)
i(r) (65) are quadratic in the Green components

q∓
1
2 Q

j(−)
i(r) = (q − q−1)

∑r−1
s=1 q∓(r−s)a+j

(s)a
−
i(s) = (q±

1
2 Q

i(+)
j(r∗))

∗ i > j

q∓
1
2 Q

j(−)
i(r) = −(q − q−1)

∑p
s=r q∓(r−s)a+j

(s)a
−
i(s) = (q±

1
2 Q

i(+)
j(r∗))

∗ i < j
(70)

q±
1
2 Q

i(+)
i(r) = q∓(r−p

2−
1
2 )(qNi)⊗p − (q − q−1)

∑p

s=r+1 q∓(r−s)a+i
(s)a

−
i(s)

q∓
1
2 Q

i(−)
i(r) = q∓(r−p

2−
1
2 )(q−Ni)⊗p + (q − q−1)

∑r−1
s=1 q∓(r−s)a+i

(s)a
−
i(s)

(71)
In relations (66) to (69) the upper (lower) signs are for the parafermi (parabose) case.
When dealing with the parafermi algebra pFq(n) we have the complementary relations
for all Green components

(a+i
(r))

2 = 0 (a−
i(s))

2 = 0 for pFq(n) (72)

If we consider the operators Q
j(+)
i(r) and Q

j(−)
i(r) as new generators then their exchange

relations with the Green components a+i
(s) and a−

i(s) are easily calculated using the

concise formulae (65).
The system of relations (66-72) defines the generalization of the Green ansatz for

the deformed parafermi pFq(n) and parabose algebras pBq(n).
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A Appendix

Sketch of the proof of Theorem 1
The QUEA Uq(gln) has a natural inclusion in Uq(so(2n + 1)) and Uq(osp(1|2n))

being generated by the Chevalley generators E±i, 1 ≤ i ≤ n−1 and all q±hi , 1 ≤ i ≤ n
(associated to the subdiagram An−1 in the Dynkin diagram Bn).

We shall make use of the R-matrix and the RLL relations (33) in order to prove
(19), (21). This is simply done upon restricting the indices in the RLL-relations
(33). The indices of the R-matrix for the Bn-series runs from 1 to 2n + 1 [17]. The
simple form of the (n + 1) × (n + 1) minor of the L(±) matrices, given in (36,38)
gives the opportunity to obtain the commutation relations between the parastatistics
generators a+i and a−

j and the bilinears [[a+i, a−
j ]]. The restricted R-matrix with

indices running from 1 to n is the R-matrix of the deformed linear group GLq(n)[17]
which implies that the elements of the n× n minor of L(±) close Uq(gln) subalgebra.
The restriction of the indices of R from 1 to n + 1 gives all the relations (19),(21).
The parastatistics relations (19) and (21) express the adjoint action of the Uq(gln) on
the parastatistics generators a+i and a−

j .
Every Hopf algebra A is a left A-module with respect to its adjoint action [21]

Ad(x)y =
∑

i
xiyS(xi), where ∆x =

∑

i
xi ⊗ xi x, y ∈ A.

The inclusions Uq(gln) →֒ pFq(n) and Uq(gln) →֒ pBq(n) define an Uq(gln)-action on
pFq(n) and pBq(n) given from eq. (15) and the following expressions (for i ≤ n − 1)

AdEi
a+j = [Ei, a

+j ]
q

δij−δi+1 j = δj
i+1a

+i AdE−i
a+j = [E−i, a

+j ]qHi = δj
i a

+ i+1

We label the LHS of the homogeneous relations (20) by

Λi1,i2,i3 = [[[[a+i1 , a+i3 ]], a+i2 ]]q2 + q[[[[a+i1 , a+i2 ]], a+i3 ]] with i1 < i2 < i3

Λi1,i2,i2 = [[[[a+i1 , a+i2 ]], a+i2 ]]q with i1 < i2

Λ′
i1,i2,i3

= [[a+i2 , [[a+i1 , a+i3 ]]]]q2 + q[[a+i1 , [[a+i2 , a+i3 ]]]] with i1 < i2 < i3

Λ′
i2,i2,i3

= [[a+i2 , [[a+i2 , a+i3 ]]]]q with i2 < i3
(73)

Let us denote by L the space of states Λ and Λ′ where by states we mean the the
cubic polynomials of generators Λ and Λ′ (73) up to multiplication with scalars C[q].
The homogeneous relations are Uq(gln)-covariant.

LEMMA 2 The space L is an irreducible finite-dimensional Uq(gln)-module with
respect to the adjoint action (A) with highest weight Λn−1,n,n.
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Proof: All lowering Uq(gln) Chevalley generators E−i kill the state Λn−1,n,n

AdE−i
Λn−1,n,n = 0 i = 1, . . . , n − 1.

The states of the type Λi,j,n for all admissible i, j arise through the adjoint action
of the raising Uq(gln) generators as seen from the diagram Diag(n) in which the
decorated arrows denote the adjoint actions AdEi

Λn−1,n,n

En−2

��

En−1
//___ Λ′

n−1,n−1,n Diag(n)

Λn−2,n,n

En−3

��

En−1
// Λn−2,n−1,n

En−3

��

Λn−3,n,n

En−4

��

En−1
// Λn−3,n−1,n

En−4

��

En−2
// Λn−3,n−2,n

En−4

��

...

E1

��

...

E1

��

...

E1

��

Λ1,n,n

En−1
// Λ1,n−1,n

En−2
// Λ1,n−2,n

En−3
// . . . E2

// Λ1,2,n

Next, the new state Λn−2,n−1,n−1 = AdEn−1Λn−2,n−1,n stays at the top of a new
diagram Diag(n′) with n′ = n − 1. By induction we obtain all the states Λi1,i2,i3

(i1 < i2 ≤ i3 ).
For the states Λ′

i1,i2,i3
(i1 ≤ i2 < i3) a similar diagram can be written starting

with the state
Λ′

n−1,n−1,n = AdEn−1Λn−1,n,n.

Thus we have generated all the states in L starting with Λn−1,n,n.
The state Λ′

1,1,2 is the lowest weight of L

AdEi
Λ′

1,1,2 = 0 i = 1, . . . , n − 1

One can check that the adjoint Uq(gln)-action does not bring out of L which ends the
proof of the lemma.

It is worth noting that the Uq(gln)-module L is a smooth deformation of a Schur
module E(2,1). The dimension of L is equal to the number of the semistandard Young
tableaux which are fillings with numbers {1, . . . , n} of the diagram λ = (2, 1)

dimL = #

{
i j
k

}

1≤i,j,k≤n

= 2

(
n
3

)

+ 2

(
n
2

)

= 2

(
n+1
3

)

We come back to proof that the cubic polynomials Λ and Λ′ are identically zero
in the deformed parastatistics algebras pFq(n) and pBq(n). The distinguished state

18



Λn−1,n,n written in terms of the Chevalley basis (using the isomorphism (13)) is one
of the Serre relations (the last one in 9)

Λn−1,n,n = [[[[E±(n−1), E±n]q−1 , E±n]], E±n]q = 0

and thus Λn−1,n,n has to be set to zero in pFq(n) and pBq(n). Therefore the whole
space L which is built at the top of the highest weight Λn−1,n,n vanishes which proves
the homogeneous relations (20).

The homogeneous relations between the annihilation operators a−
i (22) result from

(20) with the help of the conjugation (18).
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