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NORM-CLOSED INTERVALS OF NORM-COMPLETE

ORDERED ABELIAN GROUPS

FRIEDRICH WEHRUNG

Abstract. Let (G, u) be an Archimedean norm-complete dimen-
sion group with order-unit. Continuing a previous paper, we study
intervals (i.e., nonempty upward directed lower subsets) of G which
are closed with respect to the canonical norm of (G, u). In partic-
ular, we establish a canonical one-to-one correspondence between
closed intervals of G and certain affine lower semicontinuous func-
tions on the state space of (G, u), which allows us to solve sev-
eral problems of K. R. Goodearl about inserting affine continuous
functions between convex upper semicontinuous and concave lower
semicontinuous functions. This yields in turn new results about
analogues of multiplier groups for norm-closed intervals.

Introduction

A fundamental result about affine continuous functions on Choquet
simplexes is the following one, due to D. A. Edwards (see [2, Théorème],
[1, Theorem II.3.10] or [3, Theorem 11.13]):

Edwards’ Separation Theorem. Let K be a Choquet simplex and
let p : K → R ∪ {−∞} and q : K → R ∪ {+∞} be functions such that
p is convex upper semicontinuous, q is concave lower semicontinuous
and p ≤ q (componentwise). Then there exists an affine continuous
function f : K → R such that p ≤ f ≤ q.

If one strengthens the conclusion by requiring the affine continuous
function f to lie in a given subgroup G containing 1 of the partially
ordered abelian group Aff(K) of all affine continuous functions on K,
then more stringent assumptions on p and q are necessary — at least,
for all x ∈ K, there should exist f ∈ G such that p(x) ≤ f(x) ≤ g(x).
In some cases, minor variations around the latter assumption turn out
to be sufficient, as in [3, Theorem 13.5] and [6, Theorem 3.5], or [3,
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2 F. WEHRUNG

Theorem 16.18] in the case where G satisfies countable interpolation,
with [3, Example 15.13] to show that it is not the case that every such
“reasonable” statement actually holds.

Now let (G, u) be an Archimedean norm-complete dimension group
with order-unit, let S be the state space of (G, u), let φ : G → Aff(S)
be the natural map and let p : S → {−∞}∪R and q : S → R∪ {+∞}
be functions such that p is convex upper semicontinuous, q is concave
lower semicontinuous and p ≤ q. One asks whether there exists an
element x of G such that p ≤ φ(x) ≤ q, under various additional
assumptions on p and q. In [3, Problem 13], the additional assumption
is that for every discrete extremal state s, both p(s) and q(s) belong
to s[G] ∪ {−∞,+∞}. In [3, Problem 19], the additional assumption
is that G has countable interpolation and for every discrete extremal
state s, [p(s), q(s)] ∩ s[G] is non empty.

We solve both problems here (Theorem 2.11 for Problem 13 and
Example 2.12 for Problem 19), by continuing the study, initiated in
[8], of monoids of intervals (that is, non empty upward directed lower
subsets) of partially ordered abelian groups. In fact, we will focus here
on intervals which are closed with respect to the canonical norm (see
[3]) on a partially ordered abelian group with order-unit.

Furthermore, this study will allow us, in the “good” cases, to give an
exact characterization of norm-closed intervals in terms of affine lower
semicontinuous functions. More specifically, if (G, u) is an Archime-
dean norm-complete dimension group with order-unit, if S is the state
space of (G, u) and if φ : G → Aff(S) is the natural homomorphism,
then to every interval a of G, one associates the supremum q of all φ(x)
where x ∈ a. Then q is an affine lower semicontinuous function from S
to R∪{+∞}, and, for every discrete extremal state s on S, q(s) belongs
to s[G]∪{+∞}. The main result of this paper (Theorem 2.13) is a con-
verse of this statement, generalizing to norm-closed intervals the result
already known for elements of an Archimedean norm-complete dimen-
sion group with order-unit, see [3, Theorem 15.7]. As an application
of this result, analogues of multiplier groups for Archimedean norm-
complete dimension groups with order-unit with respect to a bounded
positive norm-closed interval are norm-complete (Theorem 3.10).

Notation and Terminology

As in [8], we will widely use in this paper the results and notations
of [3]. Section 1 will be devoted to prepare the framework of the whole
paper. It recalls in particular some of the “refinement axioms” (more
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specifically, IA, WIA, RD, REF and REF′) already introduced in [8,
Section 1].

We will denote by ⊔ the disjoint union of sets. If X is a subset
of a set S (understood from the context), we will denote by χX the
characteristic function of X. If f is a function of domain X, we will
sometimes use the notation f = 〈f(x) : x ∈ X〉; moreover, if Y is a
set, we will denote by f [Y ] (resp. f−1Y ) the direct (resp. inverse)
image of Y under f . Following [3], we will denote by Z

+ the set of all
non-negative integers, and put N = Z

+ \ {0}.

As in [8], if X is a topological space and M is an additive submonoid
of R, we will denote by C(X,M) (resp. LSC(X,M), LSCb(X,M))
the space of all real-valued continuous (resp. lower semicontinuous,
bounded lower semicontinuous) functions from X to R; furthermore, if
M is an additive submonoid of R

+, let LSC±(X,M) (resp. LSC±
b (X,M))

be the ordered additive subgroup of all differences f − g where both
f and g belong to LSC(X,M) (resp. LSCb(X,M)), with the positive
cone LSC(X,M) (resp. LSCb(X,M)).

We will denote by βZ
+ the topological space of all ultrafilters of Z

+

(Čech-Stone compactification of the discrete space Z
+).

If (P,≤) is a partially ordered set and both X and Y are subsets of
P , then we will abbreviate the statement (∀x ∈ X)(∀y ∈ Y )(x ≤ y)
by X ≤ Y . Furthermore, if X = {a1, . . . , am} and Y = {b1, . . . , bn},
then we will write a1, . . . , am ≤ b1, . . . , bn. If α and β are two cardinal
numbers, then we will say that P has the (α, β)-interpolation property
when for all nonempty subsets X and Y of P such that |X| ≤ α and
|Y | ≤ β and X ≤ Y , there exists z ∈ P such that X ≤ {z} ≤ Y . The
interpolation property is the (2, 2)-interpolation property. Say that P
is directed when for all x, y ∈ P , there exists z ∈ P such that x, y ≤ z.

If X is a subset of P , then we will write ↓X = {y ∈ P : (∃x ∈
X)(y ≤ x)}, ↑X = {y ∈ P : (∃x ∈ X)(y ≥ x)} and say that X is a
lower set (resp. upper set) when X = ↓X (resp. X = ↑X). When
X = {a}, we will sometimes write ↓ a instead of ↓{a}. We will denote
by ∧,

∧

(resp. ∨,
∨

) the greatest lower bound (resp. the least upper
bound) partial operations in P .

If K is a convex subset of a topological vector space, we will denote
by ∂eK its extreme boundary (set of extreme points of K) and by
Aff(K) the space of all affine continuous real-valued functions on K.

Let G be a partially ordered abelian group. An order-unit of G
is an element u of G+ such that (∀x ∈ G)(∃n ∈ N)(x ≤ nu). Say
that G is unperforated when it satisfies, for all m ∈ N, the statement
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(∀x)(mx ≥ 0 ⇒ x ≥ 0). Say that G is Archimedean when for all
elements a, b ∈ G, (∀n ∈ Z

+)(na ≤ b) implies a ≤ 0.
An interpolation group is a partially ordered abelian group satisfying

the interpolation property. A dimension group is a directed, unperfo-
rated interpolation group.

If (G, u) is a partially ordered abelian group with order-unit, we will
denote by S(G, u) the state space of (G, u) (i.e., the set of all nor-
malized positive homomorphisms from G to R), by φ(G,u) the natural
map from G to Aff(S(G, u)) and by ψ(G,u) the natural map from G to
C(∂eS(G, u),R).

1. Preliminaries; intervals, multiplier groups

1.1. We shall mainly use the notations of [8]. Thus if (A,+, 0,≤)
is a commutative preordered monoid (i.e., (A,+, 0) is a commutative
monoid and ≤ is a partial preordering on A compatible with +), we
shall denote its positive cone by A+ = {x ∈ A : 0 ≤ x} and define a
new preordering ≤+ on A by putting

x ≤+ y ⇐⇒ (∃z ≥ 0)(x+ z = y).

We shall say thatA is positively preordered when A = A+. If A is pos-
itively preordered, let Grot(A) be the universal group (or Grothendieck
group) of A, and for all a ∈ A, denote by [a] the image of a in Grot(A)
(thus [a] = [b] if and only if there exists c such that a + c = b + c); it
is easy to verify that Grot(A)+ = {[a] : a ∈ A} is the positive cone of
a structure of partially preordered abelian group on Grot(A), which,
if A is positively ordered, is a partially ordered abelian group, see [8,
Lemma 1.2].

If A is a positively preordered commutative monoid, then for all
d ∈ A, the ideal generated by d is the submonoid

A ↾ d = {x ∈ A : (∃n ∈ N)(x ≤+ nd)}.

Moreover, one can define a monoid congruence ≈d on A by putting

x ≈d y ⇐⇒ (∃n ∈ N)(x+ nd = y + nd).

Note that if x and y are two elements of A ↾ d, then x and y have the
same image in Grot(A ↾ d) if and only if x ≈d y; thus Grot(A ↾ d)+ =
(A ↾ d)/≈d. For all x ∈ A, denote by [x]d the equivalence class of x
under ≈d.

1.2. We will need in this paper five axioms among those introduced in
[8, Section 1]. All the symbols used in these axioms will lie among +,
≤ and ≈d:
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• IA (interval axiom) is (∀a,b, c,d)IA(a,b, c,d) where IA(a,b, c,d)
is

d ≤ a + c,b + c ⇒ (∃x)(x ≤ a,b and d ≤ x + c).

• WIA (weak interval axiom) is (∀a,b, c)WIA(a,b, c) where
WIA(a,b, c) is

a + c = b + c ⇒ (∃x)(x ≤ a,b and a + c = x + c).

• RD (Riesz decomposition property) is (∀a,b, c)RD(a,b, c) where
RD(a,b, c) is

c ≤ a + b ⇒ (∃x,y)(x ≤ a and y ≤ b and c = x + y).

• REF (refinement property) is (∀a0, a1,b0,b1)REF(a0, a1,b0,b1)
where REF(a0, a1,b0,b1) is

a0 + a1 = b0 + b1 =⇒ (∃c00, c01, c10, c11)

(a0 = c00+c01 and a1 = c10+c11 and b0 = c00+c10 and b1 = c01+c11).

• REF′ is (∀d)REF′(d) where for every commutative monoid A
and every d ∈ A, A satisfies REF′(d) when Grot(A ↾ d)+ satisfies
REF.

Recall that the set Λ(A) of all intervals of (A,≤) can be equipped
with a natural structure of commutative ordered monoid, where the
addition is given by

a + b = ↓{x+ y : x ∈ a and y ∈ b},

and the order on Λ(A) is just the inclusion. Note that the positive
cone of Λ(A) is just {a ∈ Λ(A) : 0 ∈ a}; we will call positive intervals
the elements of this positive cone.

We restate here [8, Proposition 1.5]:

Proposition 1.3. Let A be a commutative ordered monoid. Then one
can define two maps

ϕ : Λ(A)+ → Λ(A+), a 7→ a ∩A+

and

ψ : Λ(A+) → Λ(A)+, a 7→ ↓ a

and they are mutually inverse isomorphisms of ordered monoids. �

In regard of this result, we will often identify positive intervals of A
and intervals of A+.

The following lemma is an abstract setting of [5, Theorem 2.7] and
the proof is essentially the same; we write it here for convenience of
the reader.
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Lemma 1.4. Let A be a positively ordered monoid, let B be a sub-
monoid of A, and let d ∈ B. Suppose that the following conditions are
satisfied:

(i) A satisfies WIA;
(ii) B satisfies both RD and REF;
(iii) For all x ∈ A ↾ d, there exists y ≤ x in B such that x ≈d y.

Then Grot(A ↾ d)+ satisfies REF. Thus, if in addition A is positively
ordered, then Grot(A ↾ d) is an interpolation group.

Proof. Let x0, x1, y0, y1 in A ↾ d such that [x0]d + [x1]d = [y0]d + [y1]d.
We prove that Grot(A ↾ d)+ satisfies REF([x0]d, [x1]d, [y0]d, [y1]d). By
assumption (iii), we may assume without loss of generality that x0,
x1, y0, y1 belong to B, and by definition, there exists n ∈ N such
that x0 + x1 + nd = y0 + y1 + nd. Since A satisfies WIA, there exists
z ∈ A such that z ≤ x0 + x1, y0 + y1 and z + nd = x0 + x1 + nd;
by assumption (iii), one may assume without loss of generality that
z ∈ B. Since B satisfies RD, there exist x′0 ≤ x0, x

′
1 ≤ x1, y

′
0 ≤ y0,

and y′1 ≤ y1 in B such that z = x′0 + x′1 = y′0 + y′1. Since B satisfies
REF, there exist zij (i, j < 2) in B witnessing the fact that B satisfies
REF(x′0, x

′
1, y

′
0, y

′
1). But x0+x1+nd = z+nd = x′0+x′1+nd ≤ x′0+x1+

nd ≤ x0 + x1 + nd and x1 ∈ A ↾ d, thus x0 ≈d x
′
0. Similarly, one shows

that x1 ≈d x
′
1 and yi ≈d y

′
i for all i < 2. It follows immediately that

([zij]d)i,j<2 witnesses REF([x0]d, [x1]d, [y0]d, [y1]d) in Grot(A ↾ d)+. The
last part of the statement results from the fact that if A is ordered, then
(A ↾ d,≤+) is also ordered, thus (by 1.1, or [8, Lemma 1.2]) Grot(A ↾ d)
is ordered. �

1.5. In particular, when G is a directed interpolation group, A =
Λ(G+) and d ∈ Λ(G+) has a countable cofinal subset, the hypotheses
above are satisfied with B = the submonoid of A consisting of intervals
with countable cofinal subsets, see [5, Proposition 2.5 and Lemma 2.6];
thus we recover the statement of [5, Theorem 2.7]. Let us recall the
correspondence between the definitions here and there:

M0(G, d) = Λ(G+) ↾ d,

M(G, d) = Grot(M0(G, d)) (multiplier group).

We shall meet in the coming sections the analogues ofΛ(G),M0(G, d)
and M(G, d) for closed intervals.



NORM-CLOSED INTERVALS 7

2. Norm-closed intervals and affine lower

semicontinuous functions in the norm-complete case

Definition 2.1. Let (H, u) be a partially ordered abelian group with
order-unit, let G be a subgroup of H , let a ∈ H . We will say that G
approximates a when for all ε > 0, there are n ∈ N and x ∈ G such
that ‖na− x‖u ≤ nε.

Note that the definition above does not depend on the choice of the
order-unit u.

Lemma 2.2. In the context of Definition 2.1, the set

G = {x ∈ H : G approximates x}

is a subgroup of H containing G.

Proof. It is clear that G ⊆ G. Let x and y in G and let ε > 0. There
are m and n in N and x′ and y′ in G such that ‖mx − x′‖u ≤ mε/2
and ‖ny−y′‖u ≤ nε/2. Thus a simple calculation yields the inequality
‖mn(x− y)− (nx′−my′)‖ ≤ mnε with nx′ −my′ ∈ G; thus we obtain
x− y ∈ G. �

Lemma 2.3. In the context of Definition 2.1 and Lemma 2.2, suppose
that u ∈ G. Then the restriction map

ρ : S(G, u) → S(G, u), s 7→ s ↾G

is an affine homeomorphism; therefore one has a commutative diagram
of homomorphisms of partially ordered abelian groups as follows:

�
�

�
�

�
�

�
�*

?

-

θ

φ(G,u)

(G, u) (Aff(S(G, u)), 1)

(G, u)

and if H is Archimedean, then θ is an embedding of ordered groups.

Proof. Since ρ is affine continuous, and also surjective, see [3, Corollary
4.3], it suffices to prove that ρ is one-to-one. Thus let s, t in S(G, u)
such that s ↾G = t ↾G. Let x ∈ G. For all ε > 0, there exist n ∈ N

and y ∈ G such that ‖nx − y‖u ≤ nε; thus |ns(x) − s(y)| ≤ nε and
|nt(x) − t(y)| ≤ nε, thus, since s(y) = t(y), |s(x) − t(x)| ≤ 2ε. Letting
ε evaporate yields s(x) = t(x); whence s = t. Thus ρ is an affine
homeomorphism. Then define θ by putting θ(x)(s) = ρ−1(s)(x); since
ρ is an affine homeomorphism, θ satisfies the required properties. The
conclusion for H Archimedean results from [3, Theorem 4.14]. �
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Lemma 2.4. Let (G, u) be a dimension group with order-unit. Put
S = S(G, u), φ = φ(G,u) and A = {φ(x)/2n : x ∈ G and n ∈ N}. Then
the following properties hold:

(a) For all q : S → R convex lower semicontinuous, we have q =
∨

{f ∈ A : f ≪ q} (the supremum being meant pointwise).
(b) For all q : S → R ∪ {+∞} concave lower semicontinuous, the

set ↓↓φ
q = {x ∈ G : φ(x) ≪ q} is an interval of G.

(c) For all a ∈ Λ(G), all λ ∈ R and all p : S → R ∪ {−∞} upper
semicontinuous, if p≪

∨

φ[a] + λ, then there exists a ∈ a such
that p≪ φ(a) + λ.

Proof. (a) Let s ∈ S and let α < q(s). By [3, Proposition 11.8], there
exists g ∈ Aff(S) such that g ≪ q and α < g(s). There exists ε > 0
such that α+ε < g(s) and g+ε≪ q. By [3, Theorem 7.9], there exists
f ∈ A such that |f − g| < ε. Thus f ∈ A, f ≪ q and f(s) > α. Thus
q(s) =

∨

{f(s) : f ∈ A and f ≪ q}.

(b) Since q is lower semicontinuous and S is compact, q is bounded
below and thus ↓↓φ

q 6= ∅. It is trivial that ↓↓φ
q is a lower set. Finally,

let a and b in ↓↓φ
q. Thus p = φ(a) ∨ φ(b) is a convex continuous (thus

upper semicontinuous) function from S to R and p ≪ q, thus, by [3,
Theorem 11.12], there exists f ∈ Aff(S) such that p ≪ f ≪ q. Let
ε > 0 such that p≪ f − ε ≪ f + ε≪ q. There exists, by [3, Theorem
7.9], g ∈ A such that |f − g| ≤ ε; thus p≪ g ≪ q. Write g = φ(x)/2n

where x ∈ G and n ∈ N. Since G is unperforated, we also have, by
[3, Corollary 4.13], 2na, 2nb ≤ x, thus, by [3, Proposition 2.21], there
exists c ∈ G such that a, b ≤ c and 2nc ≤ x; it follows immediately
that φ(c) ≪ q.

(c) By definition, we have S =
⋃

{Ua : a ∈ a} where we put Ua =
{s ∈ S : p(s) < s(a) + λ}. Since the Ua’s are open and S is compact,
there are n ∈ N and ai (i < n) in a such that S =

⋃

i<n Uai
. Since a

is upward directed, there exists a ∈ a such that (∀i < n)(ai ≤ a). It
follows immediately that p≪ φ(a) + λ. �

Now let us recall some terminology from [1]. Let S be a compact
convex set in a locally convex topological vector space E. For every
function q : S → R ∪ {+∞} which is bounded below (which happens
in particular when f is lower semicontinuous), one defines the lower
envelope q̌ of q by the formula q̌ =

∨

a(q) where we put

a(q) = {f ∈ Aff(S) : f ≤ q}.
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Furthermore, by [1, Comments page 4], q̌ is convex lower semicontinu-
ous and we also have q̌ =

∨

b(q) where we put

b(q) = {f ∈ Aff(S) : f ≪ q}.

Lemma 2.5. Let S be a compact convex set in a locally convex topo-
logical vector space, let q : S → R∪{+∞} be a concave lower semicon-
tinuous function. Then the following assertions hold:

(a) q ↾∂eS= q̌ ↾∂eS.
(b) If in addition S is a Choquet simplex, then both a(q) and b(q)

are upward directed and q̌ is affine.

Proof. Part (a) follows from Hervé’s Theorem [1, Proposition I.4.1].
The fact that both a(q) and b(q) are upward directed results from
Edwards’ Theorem (for example, to prove that a(q) is upward directed,
one applies Edwards’ Theorem to f∨g and q, for f , g ∈ a(q)). The rest
of part (b) follows from [1, Theorem II.3.8] (both applied to −q). �

For every partially ordered abelian group with order-unit (G, u), de-
note by Σ(G, u) the set of all functions from S(G, u) to R ∪ {+∞} of
the form

∨

φ(G,u)[a] where a ∈ Λ(G). Thus all elements of Σ(G, u) are
affine lower semicontinuous functions from S(G, u) to R ∪ {+∞}. As
in [5], for every compact convex set K in a topological linear space, we
shall denote by Λ(K) the additive monoid of all affine lower semiconti-
nuous functions from K to R∪{+∞}, ordered componentwise. It may
of course happen that Σ(G, u) is a proper subset of Λ(S(G, u)). We
shall omit the proof of the following lemma, which is straightforward.

Lemma 2.6. The set Σ(G, u) is a submonoid of Λ(S(G, u)), and the
map

∨

φ : a 7→
∨

φ[a] is a homomorphism of ordered monoids from Λ(G)
to Σ(G, u). �

Lemma 2.7. Let (G, u) be an Archimedean norm-complete dimension
group with order-unit; put φ = φ(G,u). Let q ∈ Σ(G, u). Then the set
↓φ q = {x ∈ G : φ(x) ≤ q} is a norm-closed interval of G.

Proof. Put S = S(G, u). Let a ∈ Λ(G) such that q =
∨

φ[a]. For
all s ∈ S, the map G → R, x 7→ φ(x)(s) is continuous, thus ↓φ q is
norm-closed. Since a 6= ∅, ↓φ q is nonempty. It is trivial that ↓φ q is a
lower set. Finally, let a, b ∈ ↓φ q. We prove first a

Claim. For all n ∈ Z
+, there exist c ∈ a and v ∈ G+ such that 2nv ≤ u

and a, b ≤ c+ v.

Proof of Claim. Since φ(a) ∨ φ(b) ≪
∨

φ[a] + 2−n, there exists by
Lemma 2.4 (c) an element c of a such that φ(a) ∨ φ(b) ≪ φ(c) + 2−n.
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Therefore, 0, 2n(a − c), 2n(b − c) ≤ u thus, by [3, Proposition 2.21],
there exists v ∈ G+ such that a, b ≤ c+ v and 2nv ≤ u. � Claim.

In particular, there exists c0 ∈ a such that a, b ≤ c0 + u; put u0 = u.
Let n ∈ Z

+ and suppose having constructed cn ∈ a and un ∈ G+

such that a, b ≤ cn + un and 2nun ≤ u. By the Claim, there exist
c ∈ a and un+1 ∈ G+ such that a, b ≤ c + un+1 and 2n+1un+1 ≤
u; without loss of generality, cn ≤ c. Then it is easy to verify that
a − un+1, b − un+1, cn ≤ c, cn + un thus, by interpolation, there exists
cn+1 ∈ G such that a − un+1, b − un+1, cn ≤ cn+1 ≤ c, cn + un. Since
cn+1 ≤ c ∈ a, we have cn+1 ∈ a. Furthermore, 0 ≤ cn+1 − cn ≤ un thus
‖cn+1 − cn‖u ≤ 2−n, and a, b ≤ cn+1 + un+1. Therefore the sequence
〈cn : n ∈ Z

+〉 thus constructed is an increasing Cauchy sequence; thus
it converges to some c ∈ G. Since ↓φ q is norm-closed, we have c ∈ ↓φ q.
Since G is Archimedean and by [3, Proposition 7.17], a, b ≤ c. Thus
↓φ q is upward directed. �

It is very strange that the hypotheses of Lemma 2.7 cannot be
weakened to arbitrary affine lower semicontinuous functions q : S →
R ∪ {+∞}, even for q continuous real-valued and G norm-discrete, as
the following example shows.

Example 2.8. An Archimedean norm-discrete dimension group with
order-unit (G, e) and q ∈ Aff(S(G, e))+ such that, putting φ = φ(G,e),
↓φ q = {x ∈ G : φ(x) ≤ q} is not upward directed.

Proof. Put X = {0, 1}Z
+

be the Cantor space, endowed with its natural
product topology, corresponding to the metric given by the formula
d(x, y) =

∑

n∈Z+ 2−n−1|x(n) − y(n)|. Put E = LSC±
b (X,Z+) and F =

LSC±
b (X,R+) as defined in the Introduction. We have seen in [8,

Proposition 3.5] that F is an Archimedean partially ordered abelian
group, thus it is also the case for E (which is an ordered subgroup of
F ).

Now, let α and β be any two distinct elements of X, and put U =
X \ {α} and V = X \ {β}; then put a = χU , b = χV and e = a + b.
Let finally H (resp. G) be the ideal of F (resp. E) generated by e.
Note that both a and b (thus also e) belong to G and that G ⊆ H
(in fact G = H ∩ E). By [8, Lemma 3.4 and Proposition 3.5], E
is an interpolation group, thus G is also an interpolation group. By
definition, e is an order-unit of G. For all f ∈ G such that ‖f‖e ≤ 1/3,
we have −e ≤ 3f ≤ e, thus, since f is Z-valued and e = χU + χV ,
f = 0; thus G is norm-discrete.

Now, let g : X → [0, 1], x 7→ min{d(x, α), d(x, β)}. Since g is con-
tinuous, it belongs to F . Since 0 ≤ g ≤ e and g is continuous, we
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have 0 ≤+ g ≤+ e and thus g ∈ H . Let us prove that G approx-
imates g, i.e., g ∈ G with the notation of Lemma 2.2. Thus let
ε > 0. Pick n ∈ N such that nε ≥ 1. Since (ng)[X] ⊆ [0, n],
we have X =

⋃

0≤k≤n(ng)−1(k − 1, k + 1). Since X is an ultramet-
ric space, it satisfies, by [8, Lemma 3.4], the open reduction property
[8, Definition 3.2] and thus, by [8, Lemma 3.3], there are clopen sub-
sets Wk (0 ≤ k ≤ n) of X such that X =

⊔

0≤k≤nWk and, for all
k ∈ {0, 1, . . . , n}, Wk ⊆ (ng)−1(k − 1, k + 1). Put h =

∑

0≤k≤n k · χWk
.

Then h is continuous and Z-valued, thus h ∈ G, and −1 ≤ ng−h ≤ 1,
thus a fortiori −e ≤ ng − h ≤ e. Since ng − h is continuous, we have
in fact −e ≤+ ng − h ≤+ e, whence ‖ng − h‖e ≤ 1 ≤ nε. Thus G
approximates g. By Lemma 2.2, G also approximates f = e− g. Since
g ≤+ a, b, we have a, b ≤+ f .

However, suppose that there exists c ∈ G such that a, b ≤+ c ≤+ f .
Put d = e − c. Then d ∈ G and g ≤+ d ≤+ a, b. Since g is positive,
0 ≤ a, b ≤ 1 and d is Z-valued, there exists W ⊆ X such that d = χW .
Since d ≤ a, b, we have W ⊆ U ∩ V . Since (∀x ∈ U ∩ V )(g(x) > 0), we
obtain W = U ∩ V . It follows that χU∩V ≤+ χU , whence χ{β} is lower
semicontinuous, a contradiction.

So we have proved that there exists no c ∈ G such that a, b ≤+ c ≤+

f . Now, let θ be the natural homomorphism of ordered groups from
G to Aff(S(G, e)) given by Lemma 2.3. Since H is Archimedean (it is
an ideal of F and F is Archimedean), θ is an order-embedding. Put
q = θ(f). Then q ∈ Aff(S(G, e)) but there exists no x ∈ G such that
a, b ≤+ x and φ(x) ≤ q. �

Note that no partially ordered abelian group satisfying the proper-
ties of Example 2.8 can be lattice-ordered. More generally, one can
easily prove, using Lemma 2.4 (b), that if (G, u) is a dimension group
with order-unit satisfying the (2,ℵ0)-interpolation property, then for
all q : S(G, u) → R ∪ {+∞} concave lower semicontinuous, the set
{x ∈ G : φ(G,u)(x) ≤ q} is an interval of G; this holds of course in
particular when G is lattice-ordered. Another case where this holds is
the case (neither more nor less general) where (G, u) is an Archimede-
an norm-complete dimension vector space with order-unit (this results
immediately from [3, Corollary 15.8].

Now, let us return back to the context of Lemma 2.7: in Lemmas
2.9 and 2.10, let (G, u) be an Archimedean norm-complete dimension
group with order-unit. Put S = S(G, u) and φ = φ(G,u).

Lemma 2.9. The map ↓φ : Σ(G, u) → Λ(G), q 7→ ↓φ q is a homomor-
phism of ordered monoids.
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Proof. It is obvious that ↓φ is order-preserving. Now, let p and q be
elements of Σ(G, u). It is obvious that ↓φ p + ↓φ q ⊆ ↓φ(p + q). Con-
versely, let a and b in Λ(G) such that p =

∨

φ[a] and q =
∨

φ[b]. Let
c ∈ ↓φ(p + q), we shall prove that c ∈ ↓φ p + ↓φ q. We first prove the
following

Claim. For all n ∈ Z
+, there are x ∈ a, y ∈ b and v ∈ G+ such that

c ≤ x+ y + v and 2nv ≤ u.

Proof of Claim. We have φ(c) ≪
∨

φ[a + b] + 2−n, thus, by Lemma 2.4
(c), there are a ∈ a and b ∈ b such that φ(c) ≪ φ(a + b) + 2−n. Thus
0, 2n(c− a− b) ≤ u, thus, by [3, Proposition 2.21] there exists v ∈ G+

such that c ≤ a+ b+ v and 2nv ≤ u. � Claim.

In particular for n = 0, we obtain a ∈ a and b ∈ b such that
c ≤ a + b + u. Put a0 = c − b − u, b0 = b and u0 = u; we have
a0 ∈ a, b0 ∈ b, 0 ≤ u0 ≤ u and c = a0 + b0 + u0. Let n ∈ Z

+

and suppose that an ∈ a, bn ∈ b and un ∈ G+ have been constructed
such that 2nun ≤ u and c = an + bn + un. By the Claim, there are
a ∈ a, b ∈ b and v ∈ G+ such that 2n+1v ≤ u and c ≤ a + b + v;
in addition, we may assume without loss of generality that an ≤ a
and bn ≤ b. It follows immediately that an, c − v − b ≤ a, c − bn;
thus, by interpolation, there exists an+1 ∈ G such that an, c− v − b ≤
an+1 ≤ a, c − bn. Since an+1 ≤ a, we have an+1 ∈ a, and furthermore,
bn, c−v−an+1 ≤ c−an+1, b, thus, by interpolation, there exists bn+1 ∈ G
such that bn, c − v − an+1 ≤ bn+1 ≤ c − an+1, b. Since bn+1 ≤ b, we
have bn+1 ∈ b. Moreover, an+1 + bn+1 ≤ c ≤ an+1 + bn+1 + v, thus
un+1 = c− (an+1 + bn+1) lies between 0 and v; therefore, 2n+1un+1 ≤ u.
Since c = an+bn+un = an+1+bn+1+un+1 and an ≤ an+1 and bn ≤ bn+1,
both an+1 − an and bn+1 − bn lie between 0 and un.

Therefore, the sequence 〈an : n ∈ Z
+〉 (resp. 〈bn : n ∈ Z

+〉) is an in-
creasing Cauchy sequence of elements of a (resp. b). If a = limn→+∞ an

and b = limn→+∞ bn, then we obtain a ∈ ↓φ p and b ∈ ↓φ q and, since
G is Archimedean and by [3, Proposition 7.17], c = a+ b, thus proving
that c ∈ ↓φ p+ ↓φ q. �

We now come to the main lemma of this section; its finiteness as-
sumption will be removed in Theorem 2.13.

Lemma 2.10. Let q : S → R be an affine lower semicontinuous func-
tion such that

(∀s ∈ ∂eS discrete)(q(s) ∈ s[G]).

Then q belongs to Σ(G, u).
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Proof. For all n ∈ Z
+, let an = {x ∈ G : φ(x) ≪ q + 2−n−1}. By

Lemma 2.4 (b), an belongs to Λ(G). Thus qn =
∨

φ[an] belongs to
Σ(G, u). Furthermore, an+1 ⊆ an thus qn+1 ≤ qn, and qn ≤ q + 2−n−1

by definition of qn.

Claim 1. For all n ∈ Z
+, one has q ≤ qn.

Proof of Claim. Let s ∈ S and let α < q(s). Since q is affine (thus
convex) lower semicontinuous, there exists, by [3, Proposition 11.8],
f ∈ Aff(S) such that f ≪ q and α < f(s). Thus, for all discrete
t ∈ ∂eS, q(t) belongs both to t[G] (by assumption) and to the interval
(f(t), q(t) + 2−n−1). Since in addition f ≪ q + 2−n−1, there exists, by
[3, Theorem 13.5], x ∈ G such that f ≪ φ(x) ≪ q + 2−n−1. Thus
by definition, x ∈ an, so that qn(s) ≥ f(s) > α. This holds for all
α < q(s), whence qn(s) ≥ q(s). � Claim 1.

Claim 2. Let n ∈ Z
+ and let a ∈ ↓φ qn. Then there exists b ∈ an+1

such that b ≤ a and ‖a− b‖u ≤ 2−n.

Proof of Claim. We have φ(a) ≤ qn ≤ q + 2−n−1 ≤ qn+1 + 2−n−1 ≪
qn+1 + 2−n, thus, by Lemma 2.4 (c), there exists x ∈ an+1 such that
φ(a) ≪ φ(x) + 2−n. Thus 2na ≤ 2nx + u, thus, by [3, Proposition
2.21], there exists v ∈ G+ such that a ≤ x + v and 2nv ≤ u. Put
b = a − v. Then b ≤ x thus b ∈ an+1, and b ≤ a. Furthermore,
‖a− b‖u = ‖v‖u ≤ 2−n. � Claim 2.

Claim 3. The set a = ↓φ q is an interval of G.

Proof of Claim. Since q is lower semicontinuous, it is bounded below
and thus a 6= ∅. It is trivial that a is a lower set. Let a, b ∈ a. By
definition, a, b ∈ a0, thus, since a0 is an interval, there exists c0 ∈ a0

such that a, b ≤ c0. Let n ∈ Z
+ and suppose having constructed cn ∈ an

such that a, b ≤ cn. By Claim 2, there exists x ∈ an+1 such that x ≤ cn
and ‖cn − x‖u ≤ 2−n. Since a, b ∈ an+1 and that an+1 is an interval,
there exists y ∈ an+1 such that a, b ≤ y; since a, b ≤ cn, one may assume
without loss of generality (using interpolation) that y ≤ cn. Since
both x and y belong to an+1 and that an+1 is an interval, there exists
z ∈ an+1 such that x, y ≤ z. Again using interpolation, there exists
cn+1 ∈ G such that x, y ≤ cn+1 ≤ z, cn. Thus a, b ≤ cn+1 and cn+1 ∈
an+1. Furthermore, 0 ≤ cn − cn+1 ≤ cn − x, thus ‖cn − cn+1‖u ≤ 2−n.
Therefore, the sequence 〈cn : n ∈ Z

+〉 thus constructed is a decreasing
Cauchy sequence such that (∀n ∈ Z

+)(cn ∈ an). Put c = limn→+∞ cn.
Then c ∈ ↓φ q (because for all n, we have qn ≤ q + 2−n−1), and, since
G is Archimedean and by [3, Proposition 7.17], a, b ≤ c. � Claim 3.

Now, to conclude the proof, it suffices to prove that q =
∨

φ[a]. It
is trivial that q ≥

∨

φ[a]. To prove the converse inequality, it suffices,
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by Lemma 2.4 (a), to prove that for all a ∈ G and all m ∈ N, if we
put f = φ(a)/2m, then f ≪ q implies f ≤

∨

φ[a]. Since φ(a) ≪
2mq0 =

∨

φ[2m
a0], there exists by Lemma 2.4 (c) an element a0 of a0

such that φ(a) ≪ 2mφ(a0), thus a ≤ 2ma0. Let n ∈ Z
+ and suppose

having constructed an ∈ an such that a ≤ 2man. By Claim 2, there
exists x ∈ an+1 such that x ≤ an and ‖an − x‖u ≤ 2−n. Furthermore,
since φ(a) ≪ 2mqn+1 =

∨

φ[2m
an+1], there exists by Lemma 2.4 (c) an

element y of an+1 such that φ(a) ≪ 2mφ(y), thus a ≤ 2my; furthermore,
since a ≤ 2man, we may assume without loss of generality that y ≤ an.
Since both x and y belong to an+1 and an+1 is upward directed, there
exists z ∈ an+1 such that x, y ≤ z. By interpolation, there exists an+1 ∈
G such that x, y ≤ an+1 ≤ z, an. Thus an+1 ∈ an+1 and a ≤ 2man+1,
and, in addition, 0 ≤ an − an+1 ≤ an − x, whence ‖an − an+1‖u ≤ 2−n.
Therefore, the sequence 〈an : n ∈ Z

+〉 thus constructed is a decreasing
Cauchy sequence such that for all n ∈ Z

+, a ≤ 2man and an ∈ an.
It follows immediately that ā = limn→+∞ an belongs to ↓φ q and that
a ≤ 2mā. Hence, f = φ(a)/2m ≤ φ(ā) ≤

∨

φ[a]. Thus q ≤
∨

φ[a], and
this completes the proof. �

This yields a positive solution to [3, Problem 13]:

Theorem 2.11. Let (G, u) be an Archimedean norm-complete dimen-
sion group with order-unit; put S = S(G, u) and φ = φ(G,u). Let
p : S → R ∪ {−∞} be convex upper semicontinuous and q : S → R ∪
{+∞} be concave lower semicontinuous such that p ≤ q and for all
discrete s ∈ ∂eS, {p(s), q(s)} ⊆ s[G] ∪ {−∞,+∞}. Then there exists
x ∈ G such that p ≤ φ(x) ≤ q.

Note that the answer would be the same if instead of considering
only one function p and one function q, one would have finitely many
convex upper semicontinuous pi (i < m) and concave lower semicon-
tinuous qj (j < n) such for all i < m and j < n, pi ≤ qj and for
all discrete s ∈ ∂eS, {pi(s), qj(s)} ⊆ s[G] ∪ {−∞,+∞}: it suffices to
apply Theorem 2.11 to

∨

i<m pi and
∧

j<n qj . In particular, if q ≥ 0 in
the statement of Theorem 2.11, then one can take x ≥ 0 — just apply
Theorem 2.11 to 0 and p on one side, q on the other side.

Proof. Since p is upper semicontinuous and S is compact, p is bounded
above. Similarly, q is bounded below. Therefore, there exists N ∈ N

such that p ≤ N and −N ≤ q. Thus p′ ≤ q′ where we put p′ = p∨(−N)
and q′ = q ∧ N . Note that p′ and q′ still satisfy the hypothesis of
Theorem 2.11, and, in addition, they are bounded (between −N and
N). Put p∗ =

∧

{f ∈ Aff(S) : p′ ≤ f} and q∗ =
∨

{f ∈ Aff(S) : f ≤ q′}.
By Lemma 2.5 (applied to −p′ and q′), we have p′ ≤ p∗ and q∗ ≤ q′,
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and p∗ is affine upper semicontinuous and q∗ is affine lower semicon-
tinuous. By [3, Theorem 11.13], there exists f ∈ Aff(S) such that
p′ ≤ f ≤ q′; thus p′ ≤ p∗ ≤ f ≤ q∗ ≤ q′. Furthermore, again by
Lemma 2.5, p∗ ↾∂eS

= p′ ↾∂eS
and q∗ ↾∂eS

= q′ ↾∂eS
. Therefore, p∗ and

q∗ satisfy again the hypothesis of Theorem 2.11. But by Lemma 2.10,
both q0 = q∗ and q1 = N−p∗ belong to Σ(G, u); furthermore, φ(Nu) =
N = q∗ + (N − q∗) ≤ q0 + q1, thus, by Lemma 2.9, Nu ∈ ↓φ q0 + ↓φ q1,
so that there exists x ∈ ↓φ q0 such that Nu − x ∈ ↓φ q1. Therefore,
φ(x) ≤ q∗, and N − φ(x) ≤ N − p∗, i.e., p∗ ≤ φ(x). It follows that one
also has p ≤ φ(x) ≤ q. �

On the other hand, the following counterexample shows that the
answer to the very similar [3, Problem 19] is this time negative, even
for Dedekind complete ℓ-groups.

Example 2.12. Put G = C(βZ
+,Z) endowed with the componentwise

ordering, and let u ∈ G be the constant function with value 1. Put
S = S(G, u) and φ = φ(G,u). Then G is a Dedekind complete ℓ-group,
but there exist an affine upper semicontinuous function p : S → R

+

and an affine continuous function q : S → R
+ such that p ≤ q and

(∀s ∈ ∂eS)(p(s) ∈ s[G]), but such that there exists no x ∈ G such that
p ≤ φ(x) ≤ q.

Proof. Since G is isomorphic to the additive group of all bounded se-
quences of integers, it is a Dedekind σ-complete ℓ-group. Put H =
C(βZ

+,R). It is easy to see that with the terminology of Definition 2.1,
G approximates every element of H . Thus, by Lemma 2.3, the state
spaces S(G, u) and S(H, u) are isomorphic by restriction, and, since
H is Archimedean, the natural map θ : H → Aff(S) is an embedding
of ordered groups.

By [3, Proposition 6.8], the elements of S(H, u) are exactly the in-
tegrals with respect to regular Borel probability measures on βZ

+.
Therefore, by [3, Proposition 5.24], the elements of ∂eS(H, u) are ex-
actly the evaluations at points of βZ

+. By previous paragraph, a sim-
ilar statement holds for ∂eS(G, u).

Let an (n ∈ ω) and b be the elements of H defined by the following
formulas:

an(U) = lim
U
〈an(k) : k ∈ Z

+〉 and b(U) = lim
U
〈b(k) : k ∈ Z

+〉

(for all U ∈ βZ
+) where we put

an(k) = 0 if k < n, 1 otherwise

and b(k) = 1 − 2−k.
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Since 〈an : n ∈ Z
+〉 is decreasing, p =

∧

n∈Z+ φ(an) is an affine upper
semicontinuous function from S to R

+. Put q = θ(b); thus q ∈ Aff(S).
For all n ∈ Z

+, we have 2nan ≤ 2nb+ u; thus p ≤ q.
Now let s ∈ ∂eS. There exists a ultrafilter U on Z

+ such that s is
the evaluation map at U . If U is principal, i.e., there exists m ∈ Z

+

such that U = {X ⊆ Z
+ : m ∈ X}, then s(an) = 0 for all n > m, thus

p(s) = 0. If U is nonprincipal, then s(an) = 1 for all n, thus p(s) = 1.
Therefore, in every case, we have p(s) ∈ s[G].

However, suppose that there exists x ∈ G such that p ≤ φ(x) ≤ q.
Since φ(x) ≤ q, we have x ≤ b; but x is Z-valued, thus x ≤ 0; thus
p ≤ 0. But if s is the limit operation with respect to a nonprincipal
ultrafilter, then p(s) = 1, a contradiction. �

We now turn to positive applications of Theorem 2.11. First, it allows
us to characterize completely the elements of Σ(G, u) (thus strength-
ening Lemma 2.10):

Theorem 2.13. Let (G, u) be an Archimedean norm-complete dimen-
sion group with order-unit; put S = S(G, u). Let q : S → R ∪ {+∞}.
Then the following are equivalent:

(i) q ∈ Σ(G, u);

(ii) q is affine lower semicontinuous and (∀s ∈ ∂eS discrete)
(

q(s) ∈

s[G] ∪ {+∞}
)

.

Proof. We prove the non-trivial direction. Thus let q satisfying con-
dition (ii). Put φ = φ(G,u). Put a = ↓φ q. We prove that a ∈ Λ(G)
and q =

∨

φ[a]. Since q is lower semicontinuous, a is a nonempty lower
subset of G. Let a, b ∈ a. Then φ(a)∨φ(b) ≤ q; it is easy to verify that
the conditions of Theorem 2.11 are fulfilled, thus there exists c ∈ G
such that φ(a) ∨ φ(b) ≤ φ(c) ≤ q. Since G is Archimedean and by
[3, Theorem 7.7], we have a, b ≤ c. This proves that a ∈ Λ(G). It is
trivial that

∨

φ[a] ≤ q. To prove the converse inequality, it suffices, by
Lemma 2.4 (a), to prove that for all f ∈ Aff(S) such that f ≪ q, we
have f ≪

∨

φ[a]. Since f is bounded above, we have f ≪ q ∧ N for
some N ∈ N. Let q∗ be the lower envelope of q ∧ N (the definition of
the lower envelope is recalled before Lemma 2.5). Since f ≪ q ∧N , S
is compact, f is continuous and q ∧ N is lower semicontinuous, there
exists ε > 0 such that f+ε ≤ q∧N . Then it follows from the definition
of q∗ that f + ε ≤ q∗. Furthermore, by Lemma 2.5, q∗ is affine lower
semicontinuous and for all s ∈ ∂eS, q∗(s) = min{q(s), N} ∈ s[G]. Since
q∗ is bounded, it results from Lemma 2.10 that q∗ ∈ Σ(G, u), so that
there exists a

∗ ∈ Λ(G) such that q∗ =
∨

φ[a∗]. Since f ≪ q∗, it results
from Lemma 2.4 (c) that there exists x ∈ a

∗ such that f ≪ φ(x). Since
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q∗ ≤ q, we also have x ∈ a. Thus f ≪ φ(x) ≤
∨

φ[a], which concludes
the proof. �

Now, equip R ∪ {+∞} with the metric d defined by d(x, y) =
min{|x− y|, 1} when both x and y are real, and d(x,+∞) = 1 when x
is real. Then the following corollary is a straightforward consequence
of Theorem 2.13:

Corollary 2.14. Let (G, u) be an Archimedean norm-complete dimen-
sion group with order-unit. Then Σ(G, u) is closed under uniform limit
in (R ∪ {+∞})S. �

The analogue of this result for the metric on R∪{+∞} inherited from
the natural metric on [−∞, +∞] is false (the sequence 〈−n : n ∈ Z

+〉
converges uniformly to −∞ in the space [−∞, +∞]S but does not
converge for the metric above to any element of Σ(G, u)), but true for
sequences which are uniformly bounded below.

Proposition 2.15. Let (G, u) be a dimension group with order-unit.
Let a ∈ Λ(G), let a ∈ G. Then the following are equivalent:

(i) a belongs to the norm-closure Cl(a) of a;
(ii) φ(a) ≤

∨

φ[a];
(iii) There exists an increasing sequence of elements of a which norm-

converges to a.

Proof. (i)⇒(ii) is easy.

(ii)⇒(iii) Assume (ii). We start with the following

Claim. For all n ∈ Z
+, there are x ∈ a and v ∈ G+ such that a ≤ x+v

and 2nv ≤ u.

Proof of Claim. Since φ(a) ≪
∨

φ[a] + 2−n, there exists by Lemma 2.4
(c) an element x of a such that φ(a) ≪ φ(x) + 2−n. Thus, by [3,
Corollary 4.13], 2na ≪ 2nx + u; thus, by [3, Proposition 2.21], there
exists v ∈ G+ such that 2nv ≤ u and a ≤ x+ v. � Claim.

In particular for n = 0, we obtain a0 ∈ a and u0 = u such that
a = a0 + u0. Let n ∈ Z

+ and suppose having constructed an ∈ a and
un ∈ G+ such that a = an + un and 2nun ≤ u. By the Claim, there are
x ∈ a and v ∈ G+ such that a ≤ x + v and 2n+1v ≤ u. Since a is an
interval, one may assume without loss of generality that an ≤ x. By
interpolation, there exists an+1 ∈ G such that a− v, an ≤ an+1 ≤ a, x.
Put un+1 = a − an+1; since 0 ≤ un+1 ≤ v, we have 2n+1un+1 ≤ u.
Since an+1 ≤ x we have an+1 ∈ a. Furthermore, 0 ≤ an+1 − an ≤ un

thus ‖an+1 − an‖u ≤ 2−n. Therefore, the sequence 〈an : n ∈ Z
+〉 thus

constructed is an increasing Cauchy sequence of elements of a, with
limit a.
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(iii)⇒(i) is trivial. �

3. The monoid of norm-closed intervals

In this section, we shall apply Theorem 2.11 to a more complete
study of norm-closed intervals of Archimedean norm-complete dimen-
sion groups with order-unit. In 3.1 – 3.5, let (G, u) be an Archimedean
norm-complete dimension group with order-unit, and put S = S(G, u)
and φ = φ(G,u). From now on, denote by Λcl(G) the space of all norm-
closed intervals of G. From Lemmas 2.6, 2.9 and Proposition 2.15, we
deduce immediately the following corollaries:

Corollary 3.1. The set Λcl(G) is closed under addition of intervals,
and the closure map a 7→ Cl(a) is a retraction from Λ(G) onto Λcl(G).

�

Recall that Σ(G, u) is an ordered submonoid of Λ(S(G, u)) (see
Lemma 2.9).

Corollary 3.2. The map ↓φ determines an isomorphism from Σ(G, u)
onto Λcl(G), and its inverse is the map

∨

φ. �

By analogy with [5], for every norm-closed positive interval (see the
comments preceding Proposition 1.3) d of G, we shall put M0,cl(G, d) =
Λcl(G)+ ↾ d and Mcl(G, d) = Grot(Λcl(G)+ ↾ d). It is to be noted that,
by Corollary 3.1, M0,cl(G, d) (resp. Mcl(G, d)) is a retract of M0(G, d)
(resp. M(G, d)).

3.3. As shown in [8, Theorem 3.8], there are cases where (G, u) is
norm-discrete (thus Λ(G) = Λcl(G)) although Λ(G)+ satisfies a strong
negation of both REF and REF′ (denoted there by NR). Thus, in order
to obtain positive results, we shall focus attention on those “countably
generated” elements of Λcl(G). The corresponding theory bears close
similarities with [5, Section 2].

Denote by Λ(σ)(G) the submonoid of Λ(G) whose elements are those
intervals of G having a countable cofinal subset; note that if such an
interval is positive, then it has a countable cofinal subset in G+. Say
that an element of Λcl(G) (resp. Σ(G, u)) is separable when it is the
image under Cl (resp.

∨

φ) of an element of Λ(σ)(G) (in the case of
an interval, this is strictly weaker than having a countable dense sub-
set), and denote by Λσ,cl(G) (resp. Σσ(G, u)) the set of all separable
elements of Λcl(G) (resp. Σ(G, u)). An important difference with the
case without any cardinality restriction is that Λσ,cl(G) is no longer a
retract of Λ(σ)(G) (it may not even be a subset of it).
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The following lemma is a version for norm-closed intervals of [5,
Lemma 2.6], and its proof uses this result.

Lemma 3.4. (a) Let a, b ∈ Λcl(G)+ and let c ∈ Λσ,cl(G)+ such
that c ⊆ a + b. Then there are a

′ ⊆ a and b
′ ⊆ b in Λσ,cl(G)+

such that c = a
′ + b

′.
(b) Let d ∈ Λσ,cl(G)+. For all a ∈ M0,cl(G, d), there exists a

′ ⊆ a

in Λσ,cl(G)+ such that a ≈d a
′.

Proof. (a) Let c0 ∈ Λ(σ)(G)+ such that c = Cl(c0). Thus c0 ⊆ a + b,
thus, by [5, Lemma 2.6], there are a0 ⊆ a and b0 ⊆ b in Λ(σ)(G)+ such
that c0 = a0 + b0. Take a

′ = Cl(a0) and b
′ = Cl(b0).

(b) There exist n ∈ N and b ∈ Λcl(G)+ such that a+b = nd. By (a)
there are a

′ ⊆ a and b
′ ⊆ b in Λσ,cl(G)+ such that nd = a

′ + b
′. Then

a
′ satisfies the required conditions. �

Lemma 3.5. The monoid Λσ,cl(G)+ satisfies the refinement property.

Proof. Let a0, a1, b0, b1 in Λσ,cl(G)+ such that a0+a1 = b0+b1. For all
i < 2, let a

′
i (resp. b

′
i) an element of Λ(σ)(G)+ of closure ai (resp. bi)

and let 〈ain : n ∈ Z
+〉 (resp. 〈bin : n ∈ Z

+〉) be an increasing sequence
of elements of G+ which is cofinal in a

′
i (resp. b

′
i). Put a∗i0 = ai0

and b∗i0 = bi0. For n ∈ Z
+ even, suppose having constructed, for all

i < 2, a∗in ∈ ai. There are b∗0,n+1 ∈ b0 and b∗1,n+1 ∈ b1 such that
a∗0n +a∗1n ≤ b∗0,n+1 + b∗1,n+1; furthermore, one can assume without loss of
generality that for all i < 2, we have b∗in, bi,n+1 ≤ b∗i,n+1. Similarly, for
n ∈ Z

+ odd, if b∗0n ∈ b0 and b∗1n ∈ b1 have been constructed, then there
are a∗0,n+1 ∈ a0 and a∗1,n+1 ∈ a1 such that b∗0n + b∗1n ≤ a∗0,n+1 +a∗1,n+1 and
for all i < 2, a∗in, ai,n+1 ≤ a∗i,n+1.

For all i < 2, let a
∗
i (resp. b

∗
i ) be the interval of G generated by

{a∗in : n ∈ Z
+} (resp. {b∗in : n ∈ Z

+}) – thus all these intervals be-
long to Λ(σ)(G)+. By construction, Cl(a∗

i ) = ai and Cl(b∗
i ) = bi, and

a
∗
0 + a

∗
1 = b

∗
0 + b

∗
1. Applying the fact that Λ(σ)(G)+ satisfies REF,

see [5, Proposition 2.5], and taking closures (use Corollary 3.1) yields
immediately REF(a0, a1, b0, b1) in Λσ,cl(G)+. �

This allows us to deduce the following

Proposition 3.6. Let (G, u) be an Archimedean norm-complete di-
mension group with order-unit, let d be the closure of a positive interval
of G with a countable cofinal subset. Then Mcl(G, d) is a dimension
group.

Proof. Since, by Corollary 3.1, Λcl(G) is an ordered submonoid of
Λ(G) and since M(G, d) (see 1.5) is unperforated, see [5, Corollary
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2.4], Mcl(G, d) is also unperforated. Since Λcl(G)+ is a retract of
Λ(G)+ (Corollary 3.1) and that Λ(G)+ satisfies IA, see [8, Lemma
1.7], Λcl(G)+ satisfies IA, thus WIA. The rest results from Lemmas
3.4, 3.5 and 1.4 (for A = Λcl(G)+ and B = Λσ,cl(G)+). �

Corollary 3.7. Let (G, u) be an Archimedean norm-complete dimen-
sion group with order-unit such that S(G, u) is metrizable. Then for
all d ∈ Λcl(G)+, Mcl(G, d) is a dimension group.

Proof. Since (G, u) is an Archimedean norm-complete dimension group
with order-unit, it embeds as an ordered group in C(S(G, u),R) (see
[3, Theorem 7.7 (a)]), and this embedding preserves the norm. Since
S(G, u) is compact metrizable, C(S(G, u),R) is separable (see for ex-
ample [3, Proposition 5.23]). Therefore, (G, u), endowed with its nat-
ural norm, is metrizable separable. Thus, d is also separable. Let
〈an : n ∈ N〉 be a dense sequence of d. Since d is a positive inter-
val, there exists an increasing sequence 〈bn : n ∈ N〉 of elements of
d ∩ G+ such that an ≤ bn for all n. Let d

′ be the interval generated
by {bn : n ∈ N}. Then d is the closure of d

′. We conclude by Proposi-
tion 3.6. �

In the case where (G, u) is an Archimedean norm-complete dimen-
sion group with order-unit such that ∂eS(G, u) is compact (i.e., G is
a ℓ-group by [3, Corollary 15.10]), then the norm-closed intervals of G
let themselves be described in a somewhat more wieldy way than in
Corollaries 3.1 and 3.2. Indeed, let ψ = ψ(G,u) be the natural map from
G to C(∂eS(G, u),R) and let Σe(G, u) be the set of all functions from
∂eS(G, u) to R ∪ {+∞} of the form

∨

ψ[a] where a ∈ Λ(G). One can
then prove the following proposition:

Proposition 3.8. Let (G, u) be an Archimedean norm-complete ℓ-
group with order-unit. Put φ = φ(G,u) and ψ = ψ(G,u). Then one can
define an isomorphism of ordered monoids from Σ(G, u) to Σe(G, u)
which for all a ∈ Λ(G) sends

∨

φ[a] to
∨

ψ[a].

Proof. Clearly, it suffices to prove that for all a and b in Λ(G), one
has

∨

φ[a] ≤
∨

φ[b] ⇔
∨

ψ[a] ≤
∨

ψ[b]; furthermore, since
∨

φ[c] =
∨

φ[Cl(c)] and
∨

ψ[c] =
∨

ψ[Cl(c)] for all c ∈ Λ(G), it suffices to prove
it for a and b norm-closed. If

∨

φ[a] ≤
∨

φ[b], then, by Proposition 2.15,
a ⊆ b thus

∨

ψ[a] ≤
∨

ψ[b]. Conversely, suppose that
∨

ψ[a] ≤
∨

ψ[b].
Put X = ∂eS(G, u); thus X is compact Hausdorff. Let a ∈ a; we have
ψ(a) ≪

∨

ψ[b] + 2−n, thus, using compactness of X, there exists b ∈ b

such that ψ(a) ≪ ψ(b) + 2−n. Thus 2n(a − b) ≤ u, thus there exists
v ∈ G+ such that a ≤ b + v and 2nv ≤ u. Put x = a− v. Then x ∈ b
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and ‖a−x‖u ≤ 2−n: this proves that a ∈ Cl(b). Since b is norm-closed,
we obtain a ⊆ b, whence

∨

φ[a] ≤
∨

φ[b]. �

This allows us to construct the following example (note the similarity
with [5, Example 7.6]).

Example 3.9. Put G = C([0, 1],R), equipped with the constant func-
tion u with value 1 as an order-unit. Then there exists a norm-closed
positive interval d of G such that Mcl(G, d) is not Archimedean.

Proof. Put E = LSC([0, 1],R ∪ {+∞}). By [3, Corollary 15.8] and
both Corollary 3.2 and Proposition 3.8, Λcl(G) is isomorphic to E;
thus we will argue in E. For all real α > 0, let fα be the function from
[0, 1] to R defined by fα(0) = α and for all t ∈ (0, 1], fα(t) = 1/t.
It is easy to verify that fα ∈ E+. Put d = f1; we shall prove that
Grot(E+ ↾ d) is not Archimedean. Put a = f0. Then a + f2 = 2d thus
a ∈ E+ ↾ d, and for all n ∈ N, na+fn+1 = (n+1)d thus n[a] ≤ (n+1)[d]
in Grot(E+ ↾ d). However, suppose that [a] ≤ [d] in Grot(E+ ↾ d). Then
there exist g ∈ E+ and n ∈ N such that a+ g+nd = (n+ 1)d, whence
a+g = d since d assumes only finite values; therefore, g = d−a = χ{0}

is lower semicontinuous, a contradiction. �

In the example above, d is an unbounded interval (although the
corresponding d ∈ Σe(G, u) takes only finite values). We shall conclude
this section by proving that when d is bounded, thenMcl(G, d) is always
Archimedean norm-complete, even though by the results of [8, Section
3], it may not have interpolation.

Theorem 3.10. Let (G, u) be an Archimedean norm-complete dimen-
sion group with order-unit, let d be a bounded positive norm-closed
interval of G. Then M0,cl(G, d) is cancellative and Mcl(G, d) is Archi-
medean and norm-complete.

Proof. Put as usual S = S(G, u) and φ = φ(G,u). Put d =
∨

φ[d].

Then, by Corollary 3.2, M0,cl(G, d) is isomorphic to Σ(G, u)+ ↾ d; since
d is real-valued, M0,cl(G, d) is cancellative. Now let f , g and h in
Σ(G, u)+ ↾ d such that for all n ∈ N, nf ≤+ ng + h. Thus for all
n ∈ N, the map hn = g − f + (1/n)h is positive lower semicontinu-
ous; since h is bounded, 〈hn : n ∈ N〉 converges uniformly to g − f ,
thus g − f is positive lower semicontinuous. For all discrete s ∈ ∂eS,
(g − f)(s) ∈ s[G], thus g − f ∈ Σ(G, u)+ by Theorem 2.13; whence
f ≤+ g. This proves that Mcl(G, d) is Archimedean.

We finally prove norm-completeness. It suffices to prove that if
〈fn : n ∈ Z

+〉 is a sequence of elements of Σ(G, d)+ ↾ d such that for
all n, ‖fn+1 − fn‖d < 2−n−1, then it is convergent for ‖ ‖d. First, since
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d is bounded, 〈fn : n ∈ Z
+〉 is a Cauchy sequence for the norm of the

uniform convergence, thus it converges uniformly to some f : S → R;
by Corollary 2.14, f belongs to Σ(G, u). Furthermore, let N ∈ N such
that for all n ∈ Z

+, ‖fn‖d < N . Then for all n ∈ Z
+, f ′

n = Nd − fn

belongs to Σ(G, u)+ and 〈f ′
n : n ∈ Z

+〉 is a Cauchy sequence (for ei-
ther norm). Thus, again by Corollary 2.14, it converges uniformly to
some f ′ ∈ Σ(G, u)+. Since fn + f ′

n = Nd for all n, we obtain that
f + f ′ = Nd; whence f ∈ Σ(G, u)+ ↾ d.

For all n ∈ Z
+, we have ‖2n+1fn+1 − 2n+1fn‖d < 1, thus there exists

gn ∈ Σ(G, u)+ such that 2n+1fn+gn = 2n+1fn+1+d, i.e., fn+gn/2
n+1 =

fn+1 + d/2n+1. It follows easily that for all k ∈ Z
+, we have

fn +
∑

i<k

gn+i

2n+i+1
= fn+k +

∑

i<k

d

2n+i+1
,

thus, letting k go to infinity,

fn +
g′n
2n

= f +
d

2n
where g′n =

∑

i∈Z+

gn+i

2i+1
.

Thus g′n is positive affine lower semicontinuous, and since fn, f and d lie
in Σ(G, u), g′n(s) ∈ s[G] for all discrete s ∈ ∂eS; thus, by Theorem 2.13,
g′n ∈ Σ(G, u)+. Therefore, 2n(fn − f) ≤+ d in Σ(G, u). One can prove
similarly that 2n(f − fn) ≤+ d in Σ(G, u). It follows that ‖fn − f‖d ≤
2−n, so that f = limn→+∞ fn for ‖ ‖d. The conclusion follows. �

Problem 1. Say as in [7] that a special sentence is a sentence of the
form (∀~x)(ϕ ⇒ (∃~y)ψ) where ϕ and ψ are conjunctions of atomic for-
mulas. Is the set of all special sentences which are true in all structures
(G,G,+, 0,≤), where (G, u) is an Archimedean norm-complete dimen-
sion group with order-unit and G = Aff(S(G, u)) (G being identified
with its natural image into G) decidable? Note that there are non-
trivial sentences to decide, as, e.g., the one leading to the relatively
complicated Example 2.8.

Problem 2. Let (G, u) be an Archimedean norm-complete dimension
group with order-unit. Do Λ(σ)(G)+ and Λσ,cl(G)+ always satisfy the
axiom SD of [8], i.e., for all a0, a1, b and c such that a0 +a1 + c = b+ c,
do there exist b0, b1, c0 and c1 such that b0 + b1 = b and c0 + c1 = c
and ai + ci = bi + ci for all i < 2?
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