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CONGRUENCE LATTICES OF FREE LATTICES IN

NON-DISTRIBUTIVE VARIETIES

MIROSLAV PLOŠČICA, JIŘÍ TŮMA, AND FRIEDRICH WEHRUNG

Abstract. We prove that for any free lattice F with at least ℵ2 generators in
any non-distributive variety of lattices, there exists no sectionally complemen-
ted lattice L with congruence lattice isomorphic to the one of F . This solves
a question formulated by Grätzer and Schmidt in 1962. This yields in turn
further examples of simply constructed distributive semilattices that are not
isomorphic to the semilattice of finitely generated two-sided ideals in any von
Neumann regular ring.

Introduction

One of the oldest and most famous open problems in lattice theory, the Congru-
ence Lattice Problem, is to decide whether for every distributive (join-) semilattice
S with zero, there exists a lattice L such that the semilattice C(L) of compact
congruences of L (the congruence semilattice of L) is isomorphic to S. Although
the answer is not known yet, many partial results have been obtained (see [7] for
a survey). Among these are positive solutions of the Congruence Lattice Problem
in the case where S has size at most ℵ1, or is a distributive lattice. In addition, it
turns out that in several cases, the solution lattice L to the problem is sectionally
complemented (e.g., for the finite case, see [3]; the case where S is countable results
from unpublished work of G. M. Bergman [1] and results in [9]). As there seems
to be a growing evidence that in all known cases, there exists a sectionally com-
plemented solution lattice L, one may be tempted to formulate the even stronger
conjecture that every distributive semilattice with zero is isomorphic to the con-
gruence semilattice of a sectionally complemented lattice. This conjecture had in
fact already been formulated in [2, Problem II.8].

In [9], using a construction presented in [8], the third author proves that it cannot
be so, by giving a distributive semilattice of size ℵ2 that is not isomorphic to the
congruence semilattice of any lattice that is, in the terminology of [9], congruence
splitting. In particular, every lattice which is either sectionally complemented,
or relatively complemented, or a direct limit of atomistic lattices, is congruence
splitting. Therefore, if one could prove that for every lattice L there exists a
sectionally complemented (or, more generally, congruence splitting) lattice K such
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that C(L) ∼= C(K), then one would obtain a negative solution to the Congruence
Lattice Problem.

This turns out to be also an open problem, more specifically the second part of
[3, Problem 1, p. 181]. In this paper we give a strong negative solution to this
problem, by proving (Corollary 4.2) that in any non-distributive variety of lattices,
if F is any (bounded or not) free lattice with at least ℵ2 generators, then there ex-
ists no congruence splitting lattice L such that C(F ) ∼= C(L); in particular, F has
no congruence-preserving embedding into any sectionally complemented lattice. By
earlier results in [9], this implies that C(F ) is never isomorphic to the semilattice of
finitely generated two-sided ideals in a von Neumann regular ring. The restrictions
on the lattice variety are optimal, because of the classical result that says that ev-
ery distributive lattice embeds congruence-preservingly into a generalized Boolean
algebra.

The strategy of the proof is the following: by the results of [9], the congruence
semilattice of any congruence splitting lattice satisfies a certain infinite axiom, the
Uniform Refinement Property (URP). In this paper, we introduce a slight weaken-
ing of URP, the weak Uniform Refinement Property (WURP), that is not satisfied
by the congruence semilattice of any free lattice with at least ℵ2 generators in any
non distributive lattice variety V . The two cases in which the proof splits, namely
whether the diamond M3 or the pentagon N5 belongs to V , are treated in a similar
fashion: they are decorated with three 2-element chains that somewhat concentrate
into a finite pattern the combinatorial core of the original infinite WURP. As in [8],
the reduction of the infinite case to the finite case is done via Kuratowski’s free set
property ([5]; see also [8, Proposition 2.5] for a short proof).

Notation and terminology

We consider semilattices of compact congruences of lattices. The semilattices are
join semilattices with 0. The mapping assigning to every lattice L its congruence
semilattice C(L) can be extended to a functor from the category of lattices and
lattice homomorphisms to the category of semilattices with homomorphisms of
semilattices; in addition, this functor preserves direct limits. The least and largest
congruence on L will be respectively denoted by 0 and 1.

For all elements a and b of a lattice L, we will denote by Θ(a, b) the least
congruence containing the pair (a, b) and we will then put Θ+(a, b) = Θ(a ∧ b, a);
thus Θ+(a, b) is the least congruence θ on L such that θ(a) ≤ θ(b).

We say that a homomorphism of semilattices µ : S → T is weak-distributive [9,
Section 1] when for all e ∈ S and all b0, b1 ∈ T such that µ(e) = b0 ∨ b1, there are
elements a0 and a1 of S such that µ(a0) ≤ b0, µ(a1) ≤ b1 and e = a0 ∨ a1.

For every non negative integer n, we will identify n with the finite set (initial
ordinal) {0, 1, . . . , n − 1}.

1. Congruence splitting lattices; uniform refinement properties

We shall recall in this section some of the definitions and results of [8, 9] as well
as a few new ones. Recall first [9, Section 3] that a lattice L is congruence splitting
when for all a ≤ b in L and all congruences a0 and a1 in L, if Θ(a, b) = a0 ∨ a1,
then there exist elements x0 and x1 of [a, b] such that x0∨x1 = b and, for all i < 2,
Θ(a, xi) ⊆ ai.
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In [9, Proposition 3.2], we give a list of sufficient conditions for a lattice to be
congruence splitting; this can be recorded here in the following fashion:

Proposition 1.1. The following holds:

(a) Every lattice that is either relatively complemented or sectionally comple-
mented is congruence splitting.

(b) Every atomistic lattice is congruence splitting.
(c) The class of congruence splitting lattices is closed under direct limits. �

There are easy examples of non congruence splitting lattices, as for example any
chain with at least three elements. However, it is to be noted that two lattices may
have isomorphic congruence lattices while one is congruence splitting and the other
one is not. Our next definition is related to the effect of the congruence splitting
property on the congruence lattice alone.

Definition 1.2. (see [9, Definition 2.1]) Let S be a semilattice, let e be an element
of S. Say that the uniform refinement property (URP) holds at e when for all
families (ai)i∈I and (bi)i∈I of elements of S such that ai ∨ bi = e (all i ∈ I), there
are families (a∗

i )i∈I , (b∗i )i∈I and (cij)(i,j)∈I×I of elements of S such that for all
i, j, k ∈ I, we have

(i) a∗
i ≤ ai and b∗i ≤ bi and a∗

i ∨ b∗i = e.
(ii) cij ≤ a∗

i , b
∗
j and a∗

i ≤ a∗
j ∨ cij .

(iii) cik ≤ cij ∨ cjk.

Say that S satisfies the URP when the URP holds at every element of S.
Then define similarly the weak uniform refinement property (WURP) at e when,

under the same hypotheses on the ai, bi (i ∈ I) and e, there are cij such that for
all i, j, k ∈ I, we have

(i′) cij ≤ ai, bj.
(ii′) cij ∨ aj ∨ bi = e.
(iii′) cik ≤ cij ∨ cjk.

Say that S satisfies the WURP when the WURP holds at every element of S.

Lemma 1.3. In the context above, the URP implies the WURP. �

Proposition 1.4. Every distributive lattice satisfies the URP.

Proof. Let (ai)i∈I and (bi)i∈I two families of elements of a distributive lattice D
such that ai + bi = constant. It is easy to verify that the elements a∗

i = ai, b∗i = bi

and cij = ai ∧ bj are as required. �

We will need later the following straightforward lemma (see also [9, Proposition
2.3] for the URP):

Lemma 1.5. Let µ : S → T be a weak-distributive homomorphism of semilattices
and let e be an element of S. If URP (resp. WURP) holds at e in S, then it also
holds at µ(e) in T . �

Corollary 1.6. Let S be a distributive semilattice. If S is the image of a distributive
lattice by a weak-distributive homomorphism, then S satisfies the URP (thus the
WURP). �

In particular, any distributive semilattice that is the image of a generalized
Boolean algebra under a weak-distributive homomorphism (this is E. T. Schmidt’s
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sufficient condition for being isomorphic to the congruence semilattice of a lattice,
[6, 7]) satisfies the WURP.

We end this section by recording one of the main results of [9]:

Theorem 1.7. [9, Theorem 3.3] Let L be a congruence splitting lattice. Then C(L)
satisfies the URP (thus the WURP). �

Hence, by Lemma 1.3, if L is a congruence splitting lattice, then C(L) also has
the WURP. In particular, if we manage to find a lattice such that its congruence
semilattice does not satisfy the WURP, then this lattice cannot be embedded con-
gruence-preservingly into a congruence splitting lattice.

2. The decorations of M3 and N5

From now on until Theorem 3.3, we shall fix a non distributive lattice variety
V . Let C2 denote the two-element chain. For every set X , denote by E(X) the
free product (=coproduct) of X copies of C2 in V . Denote by B(X) the bounded
lattice obtained from E(X) by adding a new largest element 1 and a new least
element 0; write EV(X) (resp. BV(X)) if V needs to be specified. Thus B(X) is
generated as a bounded lattice by chains si < ti (all i ∈ X). Note that if Y is a
subset of X , then there is a canonical retraction from B(X) onto B(Y ), sending
each si (resp. ti) to 0 for every i ∈ X \ Y . Thus, we shall often identify B(Y )
with the bounded sublattice of B(X) generated by all si and ti (i ∈ Y ). More-
over, the abovementioned retraction from B(X) onto B(Y ) induces a retraction
from C(B(X)) onto C(B(Y )). Hence, we shall also identify C(B(Y )) with the
corresponding subsemilattice of C(B(X)).

From now on until Theorem 3.3, we shall fix a set X such that |X | ≥ ℵ2. We
denote, for all i ∈ X , by ai and bi the compact congruences of B(X) defined by

ai = Θ(0, si) ∨ Θ(ti, 1); bi = Θ(si, ti). (2.1)

In particular, note that ai ∨ bi = 1. Now, towards a contradiction, suppose that
there are compact congruences cij (i, j ∈ X) such that for all i, j, k ∈ X , the
following holds:

cij ⊆ ai, bj (2.2)

cij ∨ aj ∨ bi = 1 (2.3)

cik ⊆ cij ∨ cjk. (2.4)

Since the C functor preserves direct limits, there exists, for all i, j ∈ X , a finite
subset U = F ({i, j}) of X such that both cij and cji belong to C(B(U)). By
Kuratowski’s Theorem, there are mutually distinct elements, which we may denote
by 0, 1, 2 of X such that 0 /∈ F ({1, 2}), 1 /∈ F ({0, 2}), and 2 /∈ F ({0, 1}). Let
π : B(X) ։ B(3) be the canonical retraction. For every i < 3, denote by i′ and i′′

the other two elements of 3, arranged in such a way that i′ < i′′. For all i < 3, put
di = C(π)(ci′i′′ ).

Therefore, applying the semilattice homomorphism C(π) to the inequalities (2.2
– 2.4) yields

d0 ⊆ a1, b2; d1 ⊆ a0, b2; d2 ⊆ a0, b1; (2.5)

d0 ∨ a2 ∨ b1 = d1 ∨ a2 ∨ b0 = d2 ∨ a1 ∨ b0 = 1; (2.6)

d1 ⊆ d0 ∨ d2. (2.7)
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Lemma 2.1. For all i < 3, di belongs to C(B(3 \ {i})).

Proof. For example for i = 0. Since 0 /∈ F ({1, 2}), c12 belongs to B(X \{0}), hence
d0 ∈ B({1, 2}). �

Now, since V is a non distributive variety of lattices, by a classical result of
lattice theory, either the diamond M3 or the pentagon N5 belongs to the variety
V . Denote by M one of these lattices that belongs to V and decorate it with three
2-element chains xi < yi (i < 3) in the following way:

Case 1. M = M3. Let p, q, r be the three atoms of M3. Put

x0 = 0 y0 = p

x1 = q y1 = 1

x2 = 0 y2 = r

Case 2. M = N5. Let a > c and b be the three join-irreducible elements of N5.
Put

x0 = 0 y0 = c

x1 = b y1 = 1

x2 = 0 y2 = a

Both cases can be described by the following picture:
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y0 = c

x0 = x2 = 0

y2 = a
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Case 2. M = N5

The relevant properties of these decorations are summarized in both following
straightforward lemmas:

Lemma 2.2. The decorations defined above satisfy the following inequalities

x0 ∧ y1 ≤ x1; y1 ≤ x1 ∨ y0; x1 ∧ y2 ≤ x2; y2 ≤ x2 ∨ y1,

but y2 6≤ x2 ∨ y0. �

Lemma 2.3. For all i < 3, the sublattice of M generated by the elements xj and
yj (j 6= i) is distributive. �

This, along with (2.5 – 2.7), will be sufficient to obtain a contradiction. Note
already that since the free product of three 2-element chains in the variety generated
by either M3 or N5 is finite, the problem is already reduced to a “computable”



6 M. PLOŠČICA, J. TŮMA, AND F. WEHRUNG

level. However, the size of the corresponding computations is such that it is useful
to reduce (greatly) their complexity to mere computations in M3 and N5. This is
what we shall do in Section 3.

3. Reduction to the distributive world

From now on, we shall denote by D be the free product of two 2-element chains
in the variety of all distributive lattices. Thus, D is generated by two chains u0 < v0

and u1 < v1.
Thus D is a finite distributive lattice, that can be represented by the following

diagram:
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u0

v0

u1

v1

u0 ∧ u1 = 0

v0 ∨ v1 = 1

The lattice D

For all i < 3, let πi : B(3 \ {i}) → D be the unique lattice homomorphism
sending si′ to u0, ti′ to v0, si′′ to u1, ti′′ to v1. Furthermore, let ρ : B(3) → M be
the unique lattice homomorphism sending si to xi and ti to yi (all i < 3); let ρi be
the restriction of ρ to B(3 \ {i}).

Lemma 3.1. Let L be any distributive lattice, let a, b, a′, b′ be elements of L.
Then we have

Θ+(a, b) ∩ Θ+(a′, b′) = Θ+(a ∧ a′, b ∨ b′).

Proof. Let B be the generalized Boolean algebra R-generated by L (in the sense of
[2, Part II, Section 4]); identify every congruence θ on L with the unique congruence
on B extending θ. For all elements x and y of B, denote by xry the unique relative
complement of x ∧ y in the interval [0, x], and then put x△y = (x r y) ∨ (y r x).
Then a pair (x, y) belongs to Θ+(a, b) (resp. Θ+(a′, b′)) if and only if x△y ≤ a r b
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(resp. x△y ≤ a′
r b′). Therefore, (x, y) belongs to Θ+(a, b)∩Θ+(a′, b′) if and only

if x△y ≤ (a r b) ∧ (a′
r b′) = (a ∧ a′) r (b ∨ b′). �

Remark. In particular, one recovers the classical result that if a ≤ b ≤ c ≤ d are
elements of any distributive lattice, then Θ(a, b) ∩ Θ(c, d) = 0.

Now, for all i < 3, put ei = C(πi)(di).

Lemma 3.2. For all i < 3, ei = Θ+(u0 ∧ v1, u1) ∨ Θ+(v1, u1 ∨ v0).

Proof. Applying C(πi) to the inequalities (2.5) and (2.6) yields both following in-
equalities:

ei ⊆ Θ(0, u0) ∨ Θ(v0, 1) and ei ⊆ Θ(u1, v1) (3.1)

ei ∨ Θ(0, u1) ∨ Θ(v1, 1) ∨ Θ(u0, v0) = 1. (3.2)

However, D is a finite distributive lattice, thus C(D) is a finite Boolean algebra,
and, by the Remark above, for all j < 2, the elements Θ(0, uj) ∨ Θ(vj , 1) and
Θ(uj, vj) are complemented elements of C(D); in fact, 1 is the disjoint union of
Θ(0, uj), Θ(uj, vj), Θ(vj , 1). Then, from both inequalities (3.1) and (3.2) and a
new application of Lemma 3.1, one deduces easily that

ei = (Θ(0, u0) ∨ Θ(v0, 1)) ∩ Θ(u1, v1)

= (Θ(0, u0) ∩ Θ(u1, v1)) ∨ (Θ(v0, 1) ∩ Θ(u1, v1))

= Θ+(u0 ∧ v1, u1) ∨ Θ+(v1, u1 ∨ v0). �

Now, for all i < 3, it results from Lemma 2.3 that there exists a unique lattice ho-
momorphism ϕi : D → M such that ϕi ◦ πi = ρi. The corresponding commutative
diagram is the following:

�
�

�
�

�
�

�
�*

?

-

πi
ϕi

ρi

(B(3 \ {i}), si′ , ti′ , si′′ , ti′′ ) (M, xi′ , yi′ , xi′′ , yi′′)

(D, u0, v0, u1, v1)

Since C is a functor, we get from this and from Lemma 3.2 that for all i < 3, we
have

C(ρ)(di) = C(ϕi)(ei) = C(ϕi)(Θ
+(u0 ∧ v1, u1) ∨ Θ+(v1, u1 ∨ v0))

= Θ+(xi′ ∧ yi′′ , xi′′ ) ∨ Θ+(yi′′ , xi′′ ∨ yi′). (3.3)

In particular, we have, using Lemma 2.2,

C(ρ)(d0) = Θ+(x1 ∧ y2, x2) ∨ Θ+(y2, x2 ∨ y1) = 0,

C(ρ)(d2) = Θ+(x0 ∧ y1, x1) ∨ Θ+(y1, x1 ∨ y0) = 0,

but C(ρ)(d1) = Θ+(x0 ∧ y2, x2) ∨ Θ+(y2, x2 ∨ y0) 6= 0.

On the other hand, by applying C(ρ) to (2.7), we obtain that

C(ρ)(d1) ≤ C(ρ)(d0) ∨C(ρ)(d2),
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a contradiction. Therefore, we have proved the following theorem:

Theorem 3.3. Let V be any non distributive variety of lattices, let X be any set
such that |X | ≥ ℵ2. Let BV(X) be the free product in V of X copies of a 2-element
chain with a least and a largest element added. Then C(BV(X)) does not satisfy
WURP at 1. �

4. Extensions to further lattices and to regular rings

This section will be devoted to harvest consequences of Theorem 3.3.

Corollary 4.1. Let L be any lattice that admits a lattice homomorphism onto a
free bounded lattice in the variety generated by either M3 or N5 with ℵ2 generators.
Then C(L) does not satisfy WURP at 1. In particular, there exists no congruence
splitting lattice K such that C(K) ∼= C(L); furthermore, C(L) does not satisfy
Schmidt’s condition.

Proof. Let V be the lattice variety generated by either M3 or N5 and, for any set
X , let FV(X) be the free bounded lattice on X in V . First, if the cardinality of X
is infinite, then there exists a surjective lattice homomorphism from FV(X) onto
BV(X) (split X into two disjoint sets X0 and X1 such that |X0| = |X1| = |X |; send
the elements of X1 (resp. X2) onto all si (resp. ti)). Therefore, if |X | = ℵ2, then
there exists by assumption a surjective lattice homomorphism f : L ։ BV(X).
By [9, Proposition 1.2], the corresponding congruence mapping C(f) : C(L) ։

C(BV(X)) is weak-distributive. Thus, if C(L) would satisfy the WURP at 1, then,
by Lemma 1.5, C(BV(X)) would also satisfy the same refinement property, there-
fore contradicting Theorem 3.3. The last two statements result from Theorem 1.7
and Corollary 1.6. �

This shows in particular that there are distributive semilattices that are repre-
sentable as congruence semilattices of lattices (the C(L)’s, with L free lattice on at
least ℵ2 generators in any non-distributive variety) that, nevertheless, do not sat-
isfy any of the known sufficient conditions implying representability (as Schmidt’s
condition).

Corollary 4.2. Let V be any non distributive variety of lattices and let F be any
free (resp. free bounded) lattice with at least ℵ2 generators in V. Then there exists
no congruence splitting lattice K such that C(K) ∼= C(F ). �

Corollary 4.3. Let V and F as above. Then there exists no von Neumann regu-
lar ring R whose semilattice of finitely generated two-sided ideals is isomorphic to
C(F ).

Proof. Proposition 1.1 (and the fact that the lattice of principal right ideals of R
is sectionally complemented), Corollary 4.2 and [9, Corollary 4.4]. �

We do not know whether every lattice of cardinality at most ℵ1 admits a con-
gruence-preserving extension into a sectionally complemented lattice. On the other
hand, G. Grätzer and E. T. Schmidt prove in [4] that every finite lattice has a con-
gruence-preserving extension into a sectionally complemented finite lattice. Note
that if V is a non distributive lattice variety generated by a single finite lattice,
then FV(X) is a direct limit of a limit system of finite lattices with embeddings
having the congruence extension property; nevertheless, its congruence semilattice
is complicated in the sense that it does not satisfy WURP.
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