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Abstract

In bottleneck combinatorial problems, admissible solutions are com-
pared with respect to their maximal elements. In such problems, one
may work with an ordinal evaluation scale instead of a numerical scale.
We consider here a generalization of this problem in which one only has
a partially ordered scale (instead of a completely ordered scale). After
the introduction of a mappimax comparison operator between sets of
evaluations (which boils down to the classical max operator when the
order is complete), we establish computational complexity results for
this variation of the shortest path problem. Finally, we formulate our
problem as an algebraic shortest path problem and suggest adequate
algorithms to solve it in the subsequent semiring.

1 Introduction

In most combinatorial problems, the quality of a potential solution is evalu-
ated through an objective function to be optimized. This objective function
is often defined as the sum of the costs of elementary components (in the
shortest path problem, the sum of the evaluations of the arcs along the
path). We consider here situations in which preferences on solutions are not
always representable by such a numerical function.

Indeed, the evaluation scale can be qualitative, i.e. there is no way to do
cardinal comparisons between evaluations. The easiest and most common
way to deal with ordinal scales is to define the evaluation of a solution as
the largest evaluation of its components. However, such an evaluation does
not always exist when the scale is only partially ordered. Thus, a difficulty
arises to find a rule that extends a preference relation on a set of evaluations
to a preference relation on its power set.

The use of ordinal evaluation scales in combinatorial problems has been
investigated in several works. Firstly, the interested reader may consider
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the book by Zimmermann dealing with combinatorial optimization in lin-
early ordered algebraic structures [Zimmermann(1981)]. In this work, an
ordinal evaluation scale is explicitly used and the evaluation of a solution
is done thanks to a concatenation operation on the evaluations of its el-
ementary components. More recently, combinatorial problems involving
a partial order on the elementary components have been studied, such
as the problem of determining the set of minimal spanning trees of an
ordered graph [Flament and Leclerc(1983), Bossong and Schweigert(1999),
Schweigert(1999)], or the problem of determining the set of minimal paths
from a vertex to another in an ordered digraph [Bossong and Schweigert(1997)].
In these latter papers, no evaluation scale is assumed and the preference re-
lation is extended without using a concatenation operation. However, the
authors focus on an extension rule that is an ordinal counterpart of the ad-
dition operation. Consequently, the suggested algorithms are not suitable
to deal with bottleneck problems. Finally, we can also mention some works
dealing with refinements of bottleneck problems under a linearly ordered
scale[Della Croce et al.(1999)Della Croce, Paschos, and Tsoukias, Fortemps and Dubois(2001)].

In this work, we first justify the introduction of the idea of incomparabil-
ity between evaluations (Section 3), then we propose a generalization of the
minmax criterion that allows to work with a partially ordered scale (Section
4). Next, we establish some computational complexity results concerning
our problem (Section 5), with special emphasis on bottleneck problems with
missing evaluations. Finally, the problem is embedded in a semiring struc-
ture [?, see, e.g.,]]GondMin,GondM00,rote90path (Section 6), which enables
the use of the Jacobi algorithm (Section 7).

2 Preliminary definitions

We first recall some elementary definitions on binary relations.

Definition 1 For any binary relation . on a set E, the asymmetric part
and symmetric part of . are the relations < and ∼ defined as follows:

(e < e′) ⇐⇒ (e . e′) and not(e′ . e) for all e, e′ ∈ E,
(e ∼ e′) ⇐⇒ (e . e′) and (e′ . e) for all e, e′ ∈ E.

Definition 2 A binary relation is said to be:

- a partial preorder if it is reflexive and transitive.

- a complete preorder if it is reflexive, transitive and complete.

- a partial order if it is reflexive, antisymmetric and transitive.

- a complete order if it is reflexive, antisymmetric, transitive and complete.

- an equivalence relation if it is reflexive, symmetric and transitive1.

1If ∼ is an equivalence relation on a set X then the quotient set denoted by X/ ∼ is
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Definition 3 For any partial preorder . defined on a finite set E, the sets
of minimal and maximal elements of a subset A in E are respectively defined
by:

min(A, .) = {e ∈ A : not(e′ < e) for all e′ ∈ A},
max(A, .) = {e ∈ A : not(e < e′) for all e′ ∈ A}.

When there is no ambiguity, these sets are denoted Amin and Amax.

Here, . represents a weak preference relation and therefore < is the
corresponding strict preference relation. Finally, we introduce formally the
notion of evaluation scale.

Definition 4 We call evaluation scale a set of evaluations. Every element
in that set is called an evaluation.

3 A hazardous materials routing problem

Let us consider a transportation network (see Figure 1), where each arc
represents a direct link between two vertices, and assume that there is an
emergency service at each vertex. Consequently, if a breakdown arises during
the journey from a vertex to another, it is the nearest breakdown service
that is called in. Each link is evaluated on two non-commensurate criteria:

• the distance (1, 2, 3) between the two endpoints,

• the unsecurity level (a, b, c) on the link (the smaller the better).

We would like to minimize both the worst intervention time (i.e., the distance
between the two endpoints) in case of a breakdown and the worst unsecurity
level. The comparison of two links can be done thanks to the pointwise
dominance relation ≤D between two vectors x and y: x ≤D y ⇐⇒ xi ≤
yi for all i. Clearly, when taking into account only one criterion, the choice
of a “best” path from the source vertex to the destination vertex in the
network amounts to search for a path minimizing the greatest evaluation
of the arcs along it (bottleneck problem). Thus, when taking into account
only one criterion, the extension of the preference relation on the set of
evaluations to its power set reduces to a max operation with respect to the
linearly ordered evaluation scale. When taking into account two criteria, we
have to generalize the extension rule so that a partially ordered evaluation
scale could be handled. We suggest to use the mappimax criterion, that we
introduce below.

the set consisting of the equivalence classes of ∼.
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Figure 1: An instance of the hazardous material routing problem.

4 The mappimax criterion

4.1 Definition and first properties

We present here a rule to extend a partial order on a set to a partial preorder
on its power set, that we call mappimax. This generalizes the extension of
a complete order with respect to the max operator. Let .max denote this
partial preorder.

Definition 5 Let (E,≤E) be a partially ordered set. For any two sets
A, B ⊆ E, we define .max on P(E) as follows:

A .max B ⇐⇒ ∃f : A → B a mapping s.t. ∀a ∈ A, a ≤E f(a).

Remark If ≤E is a complete order, it is easy to see that mappimax reduces
to the usual bottleneck criterion.

Example Consider the graph on Figure 1. The set of evaluations along
the upper path (s, 1, 3, 4, t) is U = {(1, c), (3, a), (1, a)} whereas the set
of evaluations along the lower path (s, 2, 3, 5, t) is L = {(1, a), (2, c), (2, b),
(3, b)}. Therefore it is easy to see that the upper path is preferred to the
lower path by defining the following function f from U to L: f(1, c) = (2, c),
f(3, a) = (3, b), f(1, a) = (2, c). Moreover, it is strictly preferred since we
cannot define a function satisfying Definition 5 from L to U .

The next proposition shows in particular that .max is a partial preorder
and that the comparison of two sets of evaluations is equivalent to the com-
parison of the corresponding maximal evaluations (which are respectively
{(1, c), (3, a)} and {(2, c), (3, b)} in the previous example).

Proposition 1 (elementary properties)
(i) .max is a partial preorder on P(E),
(ii) A ⊆ B =⇒ A .max B,
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(iii)
A .max A′

B .max B′

}

=⇒ A ∪ B .max A′ ∪ B′,

(iv) A .max B ⇐⇒ Amax .max Bmax ⇐⇒ A ∪ B ∼max B,
(v) A ∼max B ⇐⇒ Amax = Bmax,
(vi) A .max B ⇐⇒ (A ∪ B)max = Bmax,
for all A, A′, B, B′ ⊆ E.

Proof. (i) .max is reflexive (for A ⊆ E, set f = IdA and then by reflexivity
of ≤E) and transitive (for f : A → B and g : B → C, set h = g ◦ f and then
by transitivity of ≤E).

(ii) For A ⊆ B, set f = IdA and then by reflexivity of ≤E .

(iii) Define h : A∪B → A′∪B′ as follows: For f : A → A′ and g : B → B′,
set h(x) = f(x) if x ∈ A and h(x) = g(x) otherwise.

(iv) Clearly, A ∼max Amax and B ∼max Bmax. By (i), this implies that
A .max B ⇐⇒ Amax .max Bmax. Moreover, B ⊆ A ∪ B implies
B .max A∪B by (ii). Besides, B .max B and A .max B implies A∪B .max

B by (iii). Consequently, A .max B ⇒ A ∪ B ∼max B. Conversely,
if A ∪ B ∼max B then A ∪ B .max B and therefore A .max B since
A .max A ∪ B by (ii).

(v) If Amax = Bmax then we clearly have Amax ∼max Bmax and, by (iv), we
deduce A ∼max B. Conversely, assume that A ∼max B and Amax\Bmax 6= ∅.
Let e ∈ Amax \ Bmax. Since A ∼max B, we have Amax ∼max Bmax and there
exists e′ ∈ Bmax such that e ≤E e′. Moreover, e 6∈ Bmax ⇒ e 6= e′. Since ≤E

is a partial order, we deduce e <E e′. Besides, there exists e′′ ∈ Amax such
that e′ ≤E e′′ since Bmax .max Amax. Therefore e <E e′′ by transitivity of
≤E , which is in contradiction with e ∈ Amax.

(vi) follows from (iv) and (v). ¤

The problem under consideration in this paper consists in:

.max-SP (Shortest Paths) Problem
Instance: I = (G, s, t,≤E) where G = (X, U) is a connected digraph with a
source vertex s and a destination vertex t included in X, v : U → E is an
evaluation function and ≤E is a partial order on E, where E denotes the
evaluation scale.
Goal: Find the quotient set of minimal paths2 from s to t with respect to
the partial preorder .max, extending ≤E , using mappimax.

2Here, we mean that we want one element from each equivalence class.
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5 Complexity considerations

In this section, we study the computational complexity of .max-SP and
related problems.

Proposition 2 The .max-SP problem is intractable.

Proof. Consider the instance I = (Kn, 1, n,≤E) where Kn = (X, U) with
X = {1, . . . , n} and U = {(i, j) | i < j}. We are looking for the paths from
1 to n. As long as all arcs have distinct evaluations and the relation ≤E is
empty, there are 2n−2 minimal solutions with respect to .max. Indeed, the
set of minimal paths is then in bijection with the power set of {2, . . . , n−1}.
¤

However, we know that the usual bottleneck shortest path problem (i.e.,
with a completely ordered scale) is solvable in polynomial time. Thus, it
appears that the computational complexity of the problem depends strongly
on the cardinality of the ordering relation. An interesting question consists
in studying the border line between tractable and intractable problems. We
now give an example representative of a special type of partially ordered
scale for which the problem is solvable in polynomial time.

Example Consider a usual bottleneck shortest path problem with missing
evaluations, i.e., there are some arcs the evaluations of which are unknown.
Moreover, the number k of unknown evaluations is within O(log2 n). We
wish to determine a set of potentially optimal paths, i.e., a set of paths such
that, for any assignments of values to unknown evaluations, there exists a
path in this set with the same evaluation as the bottleneck shortest path.
This problem reduces to a bottleneck problem on a partially ordered scale
E. We can distinguish between two sets of evaluations in E: a set A ⊆ E
of completely ordered evaluations and a set B ⊆ E (corresponding to un-
known evaluations3) such that not(e . b) and not(b . e) for all b ∈ B and
e ∈ E \ {b}.

We now presents a polynomial-time algorithm to solve this problem.
Without loss of generality, all considered paths are assumed elementary in
the sequel. Moreover, for the sake of convenience, we identify every element
in B with the corresponding arc in U . We first introduce two preliminary
definitions:

Definition 6 Let G = (X, U) be a graph and T ⊆ U . The partial graph
G[T ] is a graph the vertex set of which is X, and the set of arcs of which is
T .

3There is a distinct element in B for each arc of unknown evaluation.
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Definition 7 Let G = (X, U) be a graph. The contracted graph Gu =
(Xu, Uu) with respect to u = (x, y) ∈ X2 is a graph the vertex set of which
is Xu = X ∪ {z} \ {x, y} (the pair of vertices {x, y} is replaced by a single
contracted vertex z), and the set of arcs of which is defined by:

- (i, j) ∈ Uu if i, j ∈ X \ {x, y} and (i, j) ∈ U ,

- (i, z) ∈ Uu if i ∈ X \ {x, y} and (i, x) ∈ U ,

- (z, i) ∈ Uu if i ∈ X \ {x, y} and (y, i) ∈ U .

Note that actually the resulting graph might be a multigraph. Moreover,
the above definition is not the usual one for a contracted graph. Indeed, our
definition allows to conclude that there exists a path P in G containing arc u
iff there exists a path P ′ in G′ containing vertex z. Besides, it is easy to get
P from P ′ and P ′ from P . A quotient set of minimal paths can be computed
in polynomial time by Algorithm 5 (Bottleneck Shortest Path with Missing
Evaluations). At each stage, we denote I (resp. O) the set of arcs from B
(resp. not) to be included in the path we are looking for (abbreviations for
In and Out). The initial call of the algorithm is BSPME(G(0), B, ∅, ∅) with
G(0) = G[A].

BEGIN /BSPME(G(t), B, I, O)
If B \ (I ∪ O) 6= ∅ then

Find a bottleneck shortest path P in G(t);
µ ← maxu∈P v(u);

If P includes all vertices in I then G(t+1) ← G(t)[{u ∈ U : v(u) < µ}]

else G(t+1) ← G(t);
Choose b ∈ B \ (I ∪ O);

Do BSPME(G
(t+1)
b , B, I ∪ {b}, O);

Do BSPME(G(t+1), B, I, O ∪ {b});
END.

We now give the recursive principle on which Algorithm 5 relies. Given
b ∈ B, the set of minimal paths in G can be separated in two sets:

1. the set PU\{b} of minimal paths in G[U \ {b}].

2. the set Pb of minimal paths including b in G (in correspondence with
the set of minimal paths including the contracted vertex in Gb),

Moreover, a path in Pb cannot be optimal if its evaluation on A is not
strictly lower than the evaluation of a path in PU\{b} (see the fourth line of
the algorithm), as established by the following result:

Proposition 3 Assume that both paths P and Q are minimal. Then the
following implication holds: {u ∈ P : v(u) ∈ B} $ {u ∈ Q : v(u) ∈ B} =⇒
max{v(u) ∈ A : u ∈ P} > max{v(u) ∈ A : u ∈ Q}.

7



Proof. By contradiction, assume that max{v(u) ∈ A : u ∈ P} ≤ max{v(u) ∈
A : u ∈ Q}. If {u ∈ P : v(u) ∈ B} $ {u ∈ Q : v(u) ∈ B}, then P <max Q.
This is in contradiction with the minimality of Q. ¤

The validity of Algorithm 5 is established by the following result:

Proposition 4 In Algorithm 5, we have4:
i) A bottleneck shortest path in G(t) is minimal in G for all t,
ii) For every minimal path in G, there exists t such that an equivalent path
is found in G(t).

Proof. (i) By contradiction. Assume that a bottleneck shortest path
Q in G(t) is not minimal in G. Then there exists a better path P in the
initial graph. Necessarily, by definition of .max, {u ∈ P : v(u) ∈ B} ⊆
{u ∈ Q : v(u) ∈ B} and max{u ∈ P : v(u) ∈ B} ≤ max{u ∈ Q : v(u) ∈ B}.
Consequently, the path P is also present in G(t). Therefore Q cannot be
minimal in G(t).

(ii) Let P be a minimal path in G. It is easy to observe that 1 ≤ t ≤ 2r

where we have assumed that B = {b1, . . . , br}. Indeed, t is in bijection with
the r-vector where the component i is equals to 1 if the arc of value bi in
G is contracted and 0 otherwise. Thus, there exists a t0 corresponding to
the subset of arcs of P which are in B. In G(t0), Algorithm 5 finds a path
equivalent to P . ¤

Clearly, the number of recursive calls of Algorithm 5 is within O(2k).
Since k ∈ O(log2 n), Algorithm 5 is processed in polynomial time. The
output is the quotient set of minimal paths in G. This result shows well
that the computational complexity of the problem depends strongly on the
potential number of distinct minimal solutions.

We consider below other indicators to evaluate more precisely the com-
plexity of the problem. Namely, we study two tractable problems (as sug-
gested in [Ehrgott(2000)] for multicriteria problems):

1. the complexity of the corresponding decision problem,

2. the complexity of the corresponding counting problem.

5.1 Complexity of the corresponding decision problem

The study of the complexity of combinatorial problems is generally re-
alized on decision problems like: “Does property Pr hold in the graph

4For the ease of presentation, we identify a path in the initial graph and the corre-
sponding path after contraction.
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G = (X, U)?”, or “Given an integer k and a minimization problem (resp.
maximization) does there exist a solution of value strictly smaller (resp.
strictly greater) than k?”. The latter question is investigated in the frame-
work of a discrete optimization problem π on a completely ordered scale.
It is called the corresponding decision problem (denoted D(π)). The com-
plexity of D(π) is often a very good indicator of the difficulty to solve π
(π is very likely hard to solve as soon as D(π) is NP-complete). In our
ordinal framework, the decision problem can be written as follows: “Given
a set of evaluations A, does there exist a solution S such that Pr holds and
v(S) <max A ?” (where v(S) denotes the set of evaluations represented in S).

The underlying goal in the study of this decision problem is to get an
idea about the difficulty determining the quotient set of minimal solutions
with respect to .max. Similarly to the classical framework, if the deci-
sion problem is NP-complete then the problem of determining the set of
minimal solutions is at least as difficult. Moreover, a hardness result (NP-
completeness, #P-completeness, etc.) on a particular case remains true in
the general case. We now show that the complexity of D(.max-Pr SP) is
the same as the complexity of the problem consisting in deciding whether a
graph G = (X, U) admits a path P from s to t satisfying Pr. More formally,
we have:

Proposition 5 The complexity of D(.max-Pr SP) is:

(i) polynomial if deciding whether a graph G = (X, U) admits a path from
s to t satisfying Pr is polynomial,

(ii) NP-complete if deciding whether a graph G = (X, U) admits a path
from s to t satisfying Pr is NP-complete.

Proof. (i) Let A be a set of evaluations, we define a dominating set
Adom = {e ∈ E : ∃e′ ∈ Amax, e ≤E e′}. We then apply the following
algorithm:

BEGIN /Algorithm solving D(.max-P SP)

For all e ∈ Amax do

Ue ← {u ∈ U : v(u) ∈ Adom \ {e}} and Ge = (X, Ue);
If there exists a path from s to t satisfying Pr in Ge then

teste ← true else teste ← false;
If there exists e ∈ Amax such that teste = true then output ‘‘yes"

else output ‘‘no";
END.

This algorithm is clearly polynomial. We now prove that it finds the
right answer. Assume there exists a path with a set of evaluations B such
that B <max A, then there exists f : B → A such that e ≤E f(e) for all
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e ∈ B, and there exists e′ ∈ Amax such that not(e′ ≤E e) for all e ∈ B. Thus,
by contradiction, it implies that B ⊆ Adom\{e′}. Indeed, B∩(E\Adom) 6= ∅
would imply not(B .max A), and e′ ∈ B would imply ∃e ∈ B s.t. e′ ≤E e (by
reflexivity). Therefore the previous algorithm answers “yes”. Conversely,
one checks easily that if the algorithm answers“yes” then there exists a path
with a set of evaluations B such that B <max A.

(ii) Assume that for all instances I = (G, s, t,≤E) and for any set A of
evaluations one can answer in polynomial time to the question: “Does there
exist a path B satisfying Pr such that B <max A ?”. We now prove that we
could then decide in polynomial time whether a graph G = (X, U) admits
a path from s to t satisfying Pr. We consider a graph G = (X, U) including
two vertices s, t and we build in polynomial time an instance I = (G, s, t,≤E)
of D(.max-Pr SP) as follows:

• we set E = {1, 2} and 1 ≤E 2,

• we define v : U → E as follows: v(u) = 1 for all u ∈ U .

Let A = {2}; we decide whether there exists a path from s to t in G satis-
fying Pr by answering the question: “Does there exist a path B from s to t
satisfying Pr in G and such that: B <max A ?”. ¤

Thus, as long as the property Pr is decidable in polynomial time, we can
find one minimal solution in reasonable time but we do not really have an
idea about the complexity of finding the quotient set of minimal solutions.
In the problem under consideration here, Pr = “true” and therefore the cor-
responding decision problem is solvable in polynomial time. On the other
hand, for a property Pr like “the path is hamiltonian”, the decision problem
becomes clearly NP-complete.

5.2 Complexity of the corresponding counting problem

Another indicator measuring the hardness of that kind of problem is #P-
completeness [Valiant(1979)]. When a problem belongs to that class, the
existence of a polynomial-time algorithm to count the number of optimal
solutions is very unlikely. In our problem, we search for the number of
minimal solutions. Once more, finding all optimal solutions is clearly at
least as difficult as counting them. In an acyclic graph, the complexity of
counting minimal paths with respect to .max remains open. Nevertheless,
we now show that this problem is #P-complete when considering only paths
without shortcut. A shortcut is an arc e linking two non-consecutive vertices
of a path [Gondran and Minoux(1979)]. Thus, a path P is without shortcut
if and only if the arcs of the subgraph induced by the vertices of this path
are exactly the ones along P . Such a path is called an induced path.

Proposition 6 In an acyclic graph, counting the minimal induced paths
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with respect to .max (among the set of all induced paths) is #P-complete.

Proof. We are going to establish a parsimonious reduction5 from a problem
already known to be #P-complete. We consider the #P-complete problem
consisting in counting the number of perfect matchings in a bipartite graph
[Valiant(1979)]. A matching is a set of edges such that they have no common
endpoints. It is said perfect if its cardinality is equal to |X|/2.

Let BP = (X1, X2; E) be a bipartite graph, where X1 = {x1, ..., xn}
and X2 = {y1, ..., yn}, we construct n duplicates BP1, ..., BPn of that graph.
The graph BPi = (Xi

1, X
i
2; Ei) is determined by Xi

1 = {xi
1, ..., x

i
n}, Xi

2 =
{yi

1, ..., y
i
n} and the arcs Ui = {(xi

p, y
i
q) : (xp, yq) ∈ U}. Moreover, between

two duplicates, all the arcs from Xi
2 to Xi+1

1 do exist. In other words, for any
i ≤ n− 1, the arcs Fi = {(yi

p, x
i+1
q ) : 1 ≤ p ≤ n, 1 ≤ q ≤ n} do exist. Then,

for any p, the arcs Lp = {(xi
p, x

j
p), (yi

p, y
j
p) : 1 ≤ i < j ≤ n} ∪ {(xi

p, y
j
p) : 1 ≤

i < j ≤ n} do exist. Finally, we append a source vertex s and the arcs-set
S = {(s, x1

p) : 1 ≤ p ≤ n}, as well as a destination vertex t and the arcs-set
T = {(yn

p , t) : 1 ≤ p ≤ n}. Let G′ denote this graph. We set E = U and
v(u) = u for all u ∈ U . We construct the order relation ≤E on the arcs
by: e ≤E f if and only if e = f or there exists p ≤ n such that e /∈ Lp and
f ∈ Lp. It is easy to check that the graph G′ is acyclic and that ≤E is an
order relation. Moreover, the construction is done in polynomial time.

We claim that the number of minimal induced paths from s to t with
respect to .max in G′ is equal to n! times the number of perfect matchings in
BP . By construction, a path without shortcut from s to t in G′ never links
two vertices of the same level p without including an arc from Lp. Thus,
there exists two kinds of induced paths: the paths including at least one arc
from Lp, and those whose arcs are duplicates of a perfect matching in BP .
If A is an induced path from s to t that does not include arcs from the sets
{Lp | p ∈ 1, . . . , n}, then the set EA = {(xi, yj) : ∃p ≤ n, (xp

i , y
p
j ) ∈ A} is a

perfect matching in BP . Conversely, if E′ is a perfect matching in BP then
one can construct n! induced paths Ai, i = 1, ..., n! from s to t satisfying
EAi

= E′. Thus, the number of induced paths that do not include arcs
from {Lp | p ∈ 1, . . . , n} is equal to n! times the number of perfect match-
ings in BP . To conclude the proof, we show that only those induced paths
are minimal with respect to .max. Consider two paths A and B without
shortcut. If A and B do not include arcs from {Lp | p ∈ 1, . . . , n} then
not(A .max B) and not(B .max A); in other words, the path A is not
preferred to the path B and conversely. On the other hand, if A does not
include arcs from {Lp | p ∈ 1, . . . , n} and if B includes an arc f ∈ Lp for a
given p, then by construction for any arc e ∈ A we have e ≤ f and therefore
A .max B. Conversely, we have not(B .max A) since for any arc e ∈ A, we

5A parsimonious reduction is a polynomial time reduction that preserves the number
of solutions.
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have e /∈ (
⋃

p≤n Lp). Thus, the path A is strictly preferred to the path B
with respect to .max, which concludes the proof. ¤

Remark Finding the quotient set (with respect to the indifference relation)
of minimal solutions is also #P-complete since the set of minimal solutions
and the quotient set are equal in our reduction. Let us however note that
the counting of paths from s to t is solvable in polynomial time.

6 The semiring constructed from mappimax

We propose here an adequate semiring to formulate and solve the .max-

SP problem. Semiring theory permits to factorize many path algorithms.
Indeed, many path algorithms reduce to solving systems of linear equations
in an adequate algebraic structure. A semiring is defined as follows [?,
e.g.,]]rote90path:

Definition 8 A semiring (S,⊕,⊗,0,1) is a set S with two binary opera-
tions ⊕ and ⊗, which fulfills the following axioms:
(A1) (S,⊕) is a commutative semigroup with 0 as neutral element:

a ⊕ b = b ⊕ a,
(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c),

a ⊕ 0 = a.

(A2) (S,⊗) is a semigroup with 1 as neutral element, and for which 0 is an
absorbing element:

(a ⊗ b) ⊗ c = a ⊗ (b ⊗ c),
a ⊗ 1 = 1 ⊗ a = a,
a ⊗ 0 = 0 ⊗ a = 0.

(A3) ⊗ is distributive with respect to ⊕:

(a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c),
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c).

The following notation will prove useful:

• ∀X ⊆ P(E),Pmin (X , .max) = {Y ⊆ X : Y = min (Y, .max)},

• ∀X ⊆ E,Pmax (X,≤E) = {Y ⊆ X : Y = max (Y,≤E)},

• ∀A,B ∈ P(E), A¯ B = {max (A ∪ B,≤E) : A ∈ A, B ∈ B}.

We have:

Lemma 1 For any partial order ≤ on X, we have the following equalities
for A ⊆ X and B ⊆ X:
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1. (Amax ∪ B)max = (A ∪ B)max = (Amax ∪ Bmax)max,

2. (Amin ∪ B)min = (A ∪ B)min = (Amin ∪ Bmin)min.

Proof. We only prove part 1. The first equality is established as follows:

• Assume that x 6∈ (A∪B)max and x ∈ A∪B. Then ∃y ∈ A∪B, x < y.
There are two possibilities:

• y ∈ B. Then, y ∈ Amax ∪ B and therefore x 6∈ (Amax ∪ B)max.

• y ∈ A. Then ∃z ∈ Amax, y ≤ z. By transitivity, x < z and
therefore x 6∈ (Amax ∪ B)max.

• Assume that x 6∈ (Amax ∪ B)max and x ∈ A ∪ B. Then ∃y ∈ Amax ∪
B, x < y. As Amax ⊆ A, there is y ∈ A ∪ B such that x < y and
consequently x 6∈ (A ∪ B)max.

The second equality follows from the commutativity of union and the use of
the first equality. ¤

Hence, the following lemma becomes obvious:

Lemma 2 ¯ is commutative and associative.

Proof. By commutativity of union, ¯ is also commutative. By Lemma 1,
¯ is associative since ≤E is a partial order on E:

(A¯ B) ¯ C = {((A ∪ B)max ∪ C)max : A ∈ A, B ∈ B, C ∈ C},
= {((A ∪ B) ∪ C)max : A ∈ A, B ∈ B, C ∈ C},
= {(A ∪ (B ∪ C))max : A ∈ A, B ∈ B, C ∈ C},
= {(A ∪ (B ∪ C)max)max : A ∈ A, B ∈ B, C ∈ C},
= A¯ (B ¯ C).

¤

We can now introduce the suggested semiring:

S = Pmin (Pmax (E,≤E) , .max) ,
A⊗ B = min (A¯ B, .max) ,
A⊕ B = min (A ∪ B, .max) ,

0 = max (E,≤E) ,
1 = ∅.

We have:

Proposition 7 (S,⊗,⊕,0,1) is a semiring.
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Proof. Remark first that ⊗ and ⊕ are internal composition operators.
Moreover, .max is a partial order on Pmax (E,≤E) by items (i), (iv) and (v)
of Proposition 1.

The axioms of a semiring hold:

(A1) (S,⊕) is a commutative semigroup with 0 as neutral element:

• A ⊕ B = B ⊕A by commutativity of union.

• ⊕ is associative. Indeed, .max is a partial order on Pmax (E,≤E), and
consequently the second part of Lemma 1 applies:

(A⊕ B) ⊕ C = min (min (A ∪ B, .max) ∪ C, .max) ,
= min ((A ∪ B) ∪ C, .max) ,
= min (A ∪ (B ∪ C), .max) ,
= min (A ∪ min (B ∪ C, .max) , .max) ,
= A⊕ (B ⊕ C).

• A⊕0 = min (A ∪ Emax, .max) = min (A, .max) since ∀A ∈ A, A .max

Emax. Moreover, min (A, .max) = A by definition of S. Therefore
A⊕ 0 = A.

(A2) (S,⊗) is a semigroup with 1 as neutral element, and for which 0 is an
absorbing element:

• ⊗ is associative. First of all, A .max A′ and B .max B′ imply
A ∪ B .max A′ ∪ B′ by item (iv) of Proposition 1. Hence, we de-
duce min (A¯ B, .max) = min (min (A, .max) ¯ B, .max). The proof
is identical to that of Lemma 1 and is therefore omitted here. Finally,
thanks to Lemma 1 and Lemma 2, we deduce:

(A⊗ B) ⊗ C = ((A¯ B)min ¯ C)min = ((A¯ B) ¯ C)min,
= (A¯ (B ¯ C))min = ((B ¯ C) ¯A)min,
= ((B ¯ C)min ¯A)min = (A¯ (B ¯ C)min)min,
= A⊗ (B ⊗ C).

• A ⊗ 1 = min (A¯ ∅, .max) = min (A, .max) = A.

• A ⊗ 0 = min (A¯ Emax, .max) = min (Emax, .max) = 0.

(A3) ⊗ is distributive with respect to ⊕. The proof writes in three stages:
(i) A¯ (B ∪ C) = (A¯ B) ∪ (A¯ C)

A¯ (B ∪ C) = {max (A ∪ D,≤E) : A ∈ A, D ∈ B ∪ C},
= {max (A ∪ B,≤E) : A ∈ A, B ∈ B},
∪ {max (A ∪ C,≤E) : A ∈ A, C ∈ C},
= (A¯ B) ∪ (A¯ C).
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(ii) min (A ∪ B, .max) = min (min (A, .max) ∪ min (B, .max) , .max) by Lem-
ma 1.
(iii) We show that ⊗ is distributive.

A⊗ (B ⊕ C) = (Amin ¯ (B ∪ C)min)min,
= (A¯ (B ∪ C))min,
= ((A¯ B) ∪ (A¯ C))min,
= (A⊗ B) ⊕ (A⊗ C).

This concludes the proof. ¤

7 Jacobi iterations

The Jacobi algorithm of classical linear algebra is analogous to the well-
known Bellman algorithm6 [Gondran and Minoux(2000)]. We briefly recall
its principle. Let M = (mij) be the generalized incidence matrix of a graph
G = (X, U), defined as follows:

mij =

{
v(u) if u = (i, j) ∈ U,
0 otherwise,

where v(u) is an evaluation. As indicated in [Rote(1990)], since we are
working in a semiring structure, we can show that:

(M l)ij =
⊕

Pij a path
with l arcs

v(Pij),

where Pij denotes a path from i to j with l arcs and (M l)ij is the element
of M l = M ⊗ . . . ⊗ M

︸ ︷︷ ︸

l times

at the intersection of line i and column j.

Consequently:

(I ⊕ M ⊕ M2 ⊕ . . . ⊕ M l)ij =
⊕

Pij a path
with at most l arcs

v(Pij),

where I denotes the identity matrix with 1’s on the main diagonal and 0’s
otherwise. As soon as M ⊕ M = M (which is the case for the considered
semiring), we can show that:

(I ⊕ M)l = I ⊕ M ⊕ M2 ⊕ . . . ⊕ M l.

6In the classical framework, the Bellman algorithm writes as follows: Let x
[0]
s = 0,

x
[0]
j = +∞ (∀j 6= s); repeat x

[t]
s = 0 and x

[t]
j = minu=(i,j)∈U (x

[t−1]
i + v(u)) (∀j 6= s) until

no xj changes during an entire pass (where x denotes the distance vector).
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As we are only interested in paths starting from s, we calculate the corre-
sponding line x of (I ⊕M)l. By induction, we could show that it reduces to
iterating:

{
x[0] = (0, . . . ,0,1,0, . . . ,0),

x[l] = x[l−1] ⊗ M ⊕ (0, . . . ,0,1,0, . . . ,0) for l ≥ 1,

where 1 is on the column corresponding to the source s of the graph.

The comparison of two sets of evaluations A and B (induced by opera-
tions ⊗ and ⊕) with respect to the mappimax criterion can be realized in
polynomial time. A pairwise comparison algorithm could reach this aim.
We propose here instead a matrix algorithm. Let R denote the matrix of
the binary relation ≤E , whose components are defined as follows:

rij =

{
1 if ei ≤E ej ,
0 otherwise.

In what follows RAB denotes the submatrix whose lines correspond to ele-
ments of A and columns to elements of B, and 1|A| denotes the unit vector
with |A| components. Finally, let ≥ denote the partial order corresponding
to the usual pointwise ordering relation between vectors (∀i, xi ≥ yi).

Proposition 8 Let A and B be two sets of evaluations,

A .max B ⇐⇒ RAB1|B| ≥ 1|A|.

Proof. RAB1|B| ≥ 1|A| ⇐⇒ ∀ei ∈ A, ∃ej ∈ B, ei ≤E ej ⇐⇒ A .max B ¤

Remark Of course, A <max B iff RAB1|B| ≥ 1|A| and not(RBA1|A| ≥ 1|B|).

In our framework, this sequence converges in at most n − 1 iterations.
As long as the graph is acyclic, we are able to determine x[n−1] in one pass
only by sorting the vertices in increasing order of their ranks (so that we get
a triangular matrix A). In such a case, the complexity of the algorithm is
within O(n2×|E|2×B4), where B = |S|2−|.max|S and |.max|S denotes the
cardinality of .max on S (where S denotes the support of the semiring). In-
deed, the number of incomparable minimal paths at each vertex is bounded
above by B. Therefore, for each component of the matrix, the number of
possible concatenations is bounded above by B2, the number of comparisons
to determine the maximal evaluations of a concatenation is bounded above
by |E|2, the number of comparisons to determine the maximal sets of eval-
uations is bounded above by B2.

Remark Note that this result can be interpreted as a kind of “ordinal
pseudo-polynomiality”. Indeed, the great number of incomparable subsets
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increase the combinatorial hardness of the problem, just like the great values
increase the combinatorial hardness of valued combinatorial optimization
problems, which leads to investigate algorithms of polynomial complexity
with respect to the size of the instance and to the maximal number of in-
comparable subsets.

8 Conclusion

We have presented here a semiring that allows to solve the bottleneck short-
est path problem on a partially ordered scale. Let us underline that the
suggested semiring remains adequate whatever the partial order defined on
the evaluation space. A promising research prospect would consist in study-
ing other kinds of extension of a binary relation on a set to a binary relation
on the corresponding power set. In this respect, we might consider sev-
eral alternative proposals made in the field of decision theory [Kelly(1977),
MacIntyre and Pattanaik(1981), Sen(1991), Bossert et al.(2000)Bossert, Pattanaik, and Y.Xu],
[Spiegler(2001)]. A characterization result concerning the kind of extensions
which allow the use of a semiring structure would be worth investigating.
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