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PROPER CONGRUENCE-PRESERVING EXTENSIONS OF

LATTICES

G. GRÄTZER AND F. WEHRUNG

Abstract. We prove that every lattice with more than one element has a
proper congruence-preserving extension.

1. Introduction

Let L be a lattice. A lattice K is a congruence-preserving extension of L, if K is
an extension and every congruence of L has exactly one extension to K. (Of course,
then, the congruence lattice of L is isomorphic to the congruence lattice of K.)

In [4], the first author and E. T. Schmidt raised the following question:
Is it true that every lattice L with more than one element has a proper congru-

ence-preserving extension K?
Here proper means that K properly contains L, that is, K − L 6= ∅.
The first author and E. T. Schmidt pointed out in [4] that in the finite case this

is obviously true, and they proved the following general result:

Theorem 1. Let L be a lattice. If there exist a distributive interval with more than

one element in L, then L has a proper congruence-preserving extension K.

Generalizing this result, in this paper, we provide a positive answer to the above
question:

Theorem 2. Every lattice L with more than one element has a proper congruence-

preserving extension K.

2. Background

Let K and L be lattices. If L is a sublattice of K, then we call K an extension

of L. If K is an extension of L and Θ is a congruence relation of K, then ΘL, the
restriction of Θ to L is a congruence of L. If the map Θ 7→ ΘL is a bijection between
the congruences of L and the congruences of K, then we call K a congruence-

preserving extension of L. Observe that if K a congruence-preserving extension
of L, then the congruence lattice of L is isomorphic to the congruence lattice of K

in a natural way.
The proof of Theorem 1 is based on the following construction of E. T. Schmidt

[9], summarized below as Theorem 3. (A number of papers utilize this construction;
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2 G. GRÄTZER AND F. WEHRUNG

see, for instance, E. T. Schmidt [10], [11] and the recent paper G. Grätzer and E. T.
Schmidt [5].)

Let L be a bounded distributive lattice with bounds 0 and 1, and let M3 =
{o, a, b, c, i} be the five-element nondistributive modular lattice. Let M3[L] denote
the poset of triples 〈x, y, z〉 ∈ L3 satisfying the condition

(S) x ∧ y = y ∧ z = z ∧ x.

Theorem 3.

Let D be a bounded distributive lattice with bounds 0 and 1.

(i) M3[D] is a modular lattice.

(ii) The subset

M3 = {〈0, 0, 0〉, 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈1, 1, 1〉}

of M3[D] is a sublattice of M3[D] and it is isomorphic to M3.

(iii) The subposet D = { 〈x, 0, 0〉 | x ∈ D } of M3[D] is a bounded distributive

lattice and it is isomorphic to D; we identify D with D.

(iv) M3 and D generate M3[D].
(v) Let Θ be a congruence relation of D = D; then there is a unique congru-

ence Θ of M3[D] such that Θ restricted to D is Θ; therefore, M3[D] is a

congruence-preserving extension of D.

Unfortunately, M3[L] fails, in general, to produce a lattice, if L is not distributive.
In this paper, we introduce a variant on the M3[L] construction, which we shall

denote as M3〈L〉. This lattice M3〈L〉 is a proper congruence-preserving extension
of L, for any lattice L with more than one element, verifying Theorem 2.

3. The construction

For a lattice L, let us call the triple 〈x, y, z〉 ∈ L3 Boolean, if

x = (x ∨ y) ∧ (x ∨ z),

y = (y ∨ x) ∧ (y ∨ z),(B)

z = (z ∨ x) ∧ (z ∨ y).

We denote by M3〈L〉 ⊆ L3 the poset of Boolean triples of L.
Here are some of the basic properties of Boolean triples:

Lemma 1. Let L be a lattice.

(i) Every Boolean triple of L satisfies (S), so M3〈L〉 ⊆ M3[L].
(ii) 〈x, y, z〉 ∈ L3 is Boolean iff there is a triple 〈u, v, w〉 ∈ L3 satisfying

x = u ∧ v,

y = u ∧ w,(R)

z = v ∧ w.

(iii) For every triple 〈x, y, z〉 ∈ L3, there is a smallest Boolean triple 〈x, y, z〉 ∈

L3 such that 〈x, y, z〉 ≤ 〈x, y, z〉; in fact,

〈x, y, z〉 = 〈(x ∨ y) ∧ (x ∨ z), (y ∨ x) ∧ (y ∨ z), (z ∨ x) ∧ (z ∨ y)〉.
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(iv) M3〈L〉 is a lattice with the meet operation defined as

〈x0, y0, z0〉 ∧ 〈x1, y1, z1〉 = 〈x0 ∧ x1, y0 ∧ y1, z0 ∧ z1〉

and the join operation defined by

〈x0, y0, z0〉 ∨ 〈x1, y1, z1〉 = 〈x0 ∨ x1, y0 ∨ y1, z0 ∨ z1〉.

(v) If L has 0, then the subposet { 〈x, 0, 0〉 | x ∈ L } is a sublattice and it is

isomorphic to L.

If L has 0 and 1, then M3〈L〉 has a spanning M3, that is, a {0, 1}-
sublattice isomorphic to M3, namely,

{〈0, 0, 0〉, 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈1, 1, 1〉}.

(vi) If 〈x, y, z〉 is Boolean, then one of the following holds:

(a) the components form a one-element set, so 〈x, y, z〉 = 〈a, a, a〉, for

some a ∈ L;

(b) the components form a two-element set and 〈x, y, z〉 is of the form

〈b, a, a〉, or 〈a, b, a〉, or 〈a, a, b〉, for some a, b ∈ L, a < b.

(c) the components form a three-element set and two components are

comparable and L has two incomparable elements a and b such that

〈x, y, z〉 is of the form 〈a, b, a ∧ b〉, or 〈a, a ∧ b, b〉, or 〈a ∧ b, a, b〉.
(d) the components form a three-element set and the components are pair-

wise incomparable and L has an eight-element Boolean sublattice B

so that the components are the atoms of B.

Proof.

(i) If 〈x, y, z〉 is Boolean, then

x ∧ y = ((x ∨ y) ∧ (x ∨ z)) ∧ ((y ∨ x) ∧ (y ∨ z))

= (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x),

which is the upper median of x, y, and z. So (S) holds.
(ii) If 〈x, y, z〉 is Boolean, then u = x ∨ y, v = x ∨ z, and w = y ∨ z satisfy (R).

Conversely, if there is a triple 〈u, v, w〉 ∈ L3 satisfying (R), then by Lemma I.5.9
of [1], the sublattice generated by x, y, and z is isomorphic to a quotient of C3

2

(where C2 is the two element chain) and x, y, and z are the images of the three
atoms of C3

2. Thus (x ∨ y) ∧ (x ∨ z) = x, the first part of (B). The other two parts
are proved similarly.

(iii) For 〈x, y, z〉 ∈ L3, define u = x ∨ y, v = x ∨ z, w = y ∨ z. Set x1 = u ∧ v,
y1 = u∧w, z1 = v∧w. Then 〈x1, y1, z1〉 is Boolean by (ii) and 〈x, y, z〉 ≤ 〈x1, y1, z1〉
in L3. Now if 〈x, y, z〉 ≤ 〈x2, y2, z2〉 in L3 and 〈x2, y2, z2〉 is Boolean, then

x2 = (x2 ∨ y2) ∧ (x2 ∨ z2) (by (B))

≥ (x ∨ y) ∧ (x ∨ z) (by 〈x, y, z〉 ≤ 〈x2, y2, z2〉)

= u ∧ v = x1,

and similarly, y2 ≥ y1, z2 ≥ z1. Thus 〈x2, y2, z2〉 ≥ 〈x1, y1, z1〉, and so 〈x1, y1, z1〉 is
the smallest Boolean triple containing 〈x, y, z〉.

(iv) M3〈L〉 6= ∅; for instance, for all x ∈ L, the diagonal element 〈x, x, x〉 ∈
M3〈L〉. It is obvious from (ii) that M3〈L〉 is meet closed. By (iii), M3〈L〉 is a
closure system in L3, from which the formulas of (iv) follow.

The proofs of (v) and (vi) are left to the reader. �
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4. Proof of the theorem

Let L be a lattice with more than one element. We identify x ∈ L with the
diagonal element 〈x, x, x〉 ∈ M3〈L〉, so we regard M3〈L〉 an extension of L. This
is an embedding of L into M3〈L〉 different from the embedding in Lemma 1.(v).
Moreover, the embedding in Lemma 1.(v) requires that L have a zero, while the
embedding discussed here always works.

Note that M3〈L〉 is a proper extension; indeed, since L has more than one
element, we can choose the elements a < b in L. Then 〈a, a, b〉 ∈ M3〈L〉 but
〈a, a, b〉 is not on the diagonal, so 〈a, a, b〉 ∈ M3〈L〉 − L. In fact, if L = C2, the
two-element chain, then this is the only type of nondiagonal element:

M3〈C2〉 = {〈0, 0, 0〉, 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈1, 1, 1〉}.

For a congruence Θ of L, let Θ3 denote the congruence of L3 defined component-
wise. Let M3〈Θ〉 be the restriction of Θ3 to M3〈L〉.

Lemma 2. M3〈Θ〉 is a congruence relation of M3〈L〉.

Proof. M3〈Θ〉 is obviously an equivalence relation on M3〈L〉. Since M3〈L〉 is a meet
subsemilattice of L3, it is clear that M3〈Θ〉 satisfies the Substitution Property for
meets. To verify for M3〈Θ〉 the Substitution Property for joins, let 〈x0, y0, z0〉,
〈x1, y1, z1〉 ∈ M3〈L〉, let

〈x0, y0, z0〉 ≡ 〈x1, y1, z1〉 (M3〈Θ〉),

(that is,

x0 ≡ x1 (Θ), y0 ≡ y1 (Θ), and z0 ≡ z1 (Θ)

in L) and let 〈u, v, w〉 ∈ M3〈L〉. Set

〈x′

i
, y′

i
, z′

i
〉 = 〈xi, yi, zi〉 ∨ 〈u, v, w〉

(the join formed in M3〈L〉), for i = 0, 1.
Then, using Lemma 1.(iii) and (iv) for x0 ∨u, y0 ∨ v, and z0 ∨w, we obtain that

x′

0 = (x0 ∨ u ∨ y0 ∨ v) ∧ (x0 ∨ u ∨ z0 ∨ w)

≡ (x1 ∨ u ∨ y1 ∨ v) ∧ (x1 ∨ u ∨ z1 ∨ w) = x′

1 (M3〈Θ〉),

and similarly, y′

0 ≡ y′

1 (M3〈Θ〉), z′0 ≡ z′1 (M3〈Θ〉), hence

〈x0, y0, z0〉 ∨ 〈u, v, w〉 ≡ 〈x1, y1, z1〉 ∨ 〈u, v, w〉 (M3〈Θ〉).
�

Since L was identified with the diagonal of M3〈L〉, it is obvious that M3〈Θ〉
restricted to L is Θ. So to complete the proof of Theorem 2, it is sufficient to verify
the following statement:

Lemma 3. Every congruence of M3〈L〉 is of the form M3〈Θ〉, for a suitable con-

gruence Θ of L.

Proof. Let Φ be a congruence of M3〈L〉, and let Θ denote the congruence of L

obtained by restricting Φ to the diagonal of M3〈L〉, that is, x ≡ y (Θ) in L iff
〈x, x, x〉 ≡ 〈y, y, y〉 (Φ) in M3〈L〉. We prove that Φ = M3〈Θ〉.

To show that Φ ⊆ M3〈Θ〉, let

(1) 〈x0, y0, z0〉 ≡ 〈x1, y1, z1〉 (Φ).
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Define

o = x0 ∧ x1 ∧ y0 ∧ y1 ∧ z0 ∧ z1,(2)

i = x0 ∨ x1 ∨ y0 ∨ y1 ∨ z0 ∨ z1.(3)

Meeting the congruence (1) with 〈i, o, o〉 yields

(4) 〈x0, o, o〉 ≡ 〈x1, o, o〉 (Φ).

Since

〈x0, o, o〉 ∨ 〈o, o, i〉 = 〈x0, o, i〉 = 〈x0, x0, i〉,

joining the congruence (4) with 〈o, o, i〉 yields

(5) 〈x0, x0, i〉 ≡ 〈x1, x1, i〉 (Φ).

Similarly,

(6) 〈x0, i, x0〉 ≡ 〈x1, i, x1〉 (Φ).

Now we meet the congruences (5) and (6) to obtain

(7) 〈x0, y0, z0〉 ≡ 〈x1, y1, z1〉 (Θ3)

in L3, proving that Φ ⊆ M3〈Θ〉.
To prove the converse, M3〈Θ〉 ⊆ Φ, take

(8) 〈x0, y0, z0〉 ≡ 〈x1, y1, z1〉 (M3〈Θ〉)

in M3〈L〉, that is,

x0 ≡ x1 (Θ),

y0 ≡ y1 (Θ),

z0 ≡ z1 (Θ)

in L. Equivalently,

〈x0, x0, x0〉 ≡ 〈x1, x1, x1〉 (Φ),(9)

〈y0, y0, y0〉 ≡ 〈y1, y1, y1〉 (Φ),(10)

〈z0, z0, z0〉 ≡ 〈z1, z1, z1〉 (Φ)(11)

in M3〈L〉.
Now, define o, i as in (2) and (3). Meeting the congruence (9) with 〈i, o, o〉, we

obtain

(12) 〈x0, o, o〉 ≡ 〈x1, o, o〉 (Φ).

Similarly, from (10) and (11), we obtain the congruences

〈o, y0, o〉 ≡ 〈o, y1, o〉 (Φ),(13)

〈o, o, z0〉 ≡ 〈o, o, z1〉 (Φ).(14)

Finally, joining the congruences (12)–(14), we get

(15) 〈x0, y0, z0〉 ≡ 〈x1, y1, z1〉 (Φ),

that is, M3〈Θ〉 ⊆ Φ. This completes the proof of this lemma and of Theorem 2. �
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5. Discussion

Special extensions. We can get a slightly stronger result by requiring that the
extension preserve the zero and the unit, provided they exist. To state this result,
we need the following concept.

An extension K of a lattice L is extensive, provided that the convex sublattice
of K generated by L is K.

Note that if L has a zero, 0, then an extensive extension is a {0}-extension (and
similarly for the unit, 1); if L has a zero, 0, and unit 1, then an extensive extension
is a {0, 1}-extension.

Theorem 4. Every lattice L with more than one element has a proper congruence-

preserving extensive extension K.

Proof. Indeed, every 〈x, y, z〉 ∈ M3〈L〉 is in the convex sublattice generated by L

since

〈x ∧ y ∧ z, x ∧ y ∧ z, x ∧ y ∧ z〉 ≤ 〈x, y, z〉 ≤ 〈x ∨ y ∨ z, x ∨ y ∨ z, x ∨ y ∨ z〉. �

In Theorem 3.(iii), we pointed out that M3[D] is a congruence-preserving exten-
sion of D = D, where D is an ideal of M3[D]. This raises the question whether
Theorem 2 can be strengthened by requiring that L be an ideal in K. This is easy
to do, if L has a zero, 0, since then we can identify x ∈ L with 〈x, 0, 0〉 ∈ M3〈L〉.

Theorem 5. Every lattice L with more than one element has a proper congruence-

preserving extension K with the property that L is an ideal in K.

Proof. Take an element a ∈ L such that [a) (the dual ideal generated by a) has
more than one element. Then by Lemma 1.(v), A = M3〈[a)〉 is a proper congruence-
preserving extension of [a) and I = [a) is an ideal in A. Now form the lattice K by
gluing L with the dual ideal [a) to A with the ideal I. It is clear that K is a proper
congruence-preserving extension of L. �

Modularity and semimodularity. R. W. Quackenbush [8] proved that if L is
a modular lattice, then M3[L] is a semimodular lattice. For our construction, the
analogous result fails: M3〈P 〉 is not semimodular, where P is a projective plane (a
modular lattice). Indeed, let a, b, c be a triangle in P , with sides l, m, n, that is,
let l, m, n be three distinct lines in the plane P , and define the points a = n ∧ m,
b = n ∧ l, c = m ∧ l. Let p be a point in P not on any one of these lines. Then
〈p, ∅, ∅〉 is an atom in M3〈P 〉, 〈a, b, c〉 ∈ M3〈P 〉 but

〈{p}, ∅, ∅〉 ∨ 〈a, b, c〉 = 〈p ∨ a, b, c〉 = 〈P, l, l〉

and

〈a, b, c〉 < 〈n, b, l〉 < 〈P, l, l〉,

showing that M3〈P 〉 is not semimodular.
Now we characterize when M3〈L〉 is modular.

Theorem 6. Let L be a lattice with more than one element. Then M3〈L〉 is

modular iff L is distributive.

Proof. If L is distributive, then M3〈L〉 = M3[L], so M3〈L〉 is modular by Theo-
rem 3.
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Conversely, if M3〈L〉 is modular, then L is modular since it is a sublattice of
M3〈L〉. Now if L is not distributive, then L contains an M3 = {o, a, b, c, i} as a
sublattice. By Lemma 1.(vi), the elements

〈o, o, a〉, 〈o, c, a〉, 〈c, c, i〉, 〈i, i, i〉, 〈b, o, a〉

belong to M3〈L〉. Obviously,

〈o, o, a〉 < 〈o, c, a〉 < 〈c, c, i〉 < 〈i, i, i〉

and

〈o, o, a〉 < 〈b, o, a〉 < 〈i, i, i〉.

To prove that these five elements form an N5, it is enough to prove that

〈c, c, i〉 ∧ 〈b, o, a〉 = 〈o, o, a〉

and

〈o, c, a〉 ∨ 〈b, o, a〉 = 〈i, i, i〉.

The meet is obvious. Now the join:

〈o, c, a〉 ∨ 〈b, o, a〉 = 〈b, c, a〉 = 〈i, i, i〉.

So M3〈L〉 contains N5 as a sublattice, contradicting the assumption that M3〈L〉 is
modular. Therefore, L is distributive. �

Further results. M3[L] is not a lattice for a general L. See, however, G. Grätzer
and F. Wehrung [6], where a new concept of n-modularity is introduced, for any
natural number n. Modularity is the same as 1-modularity.

By definition, n-modularity is an identity; for larger n, a weaker identity. For
an n-modular lattice L, M3[L] is a lattice, a congruence-preserving extension of L.

For distributive lattices (in fact, for n-modular lattices), the construction M3[L]
is a special case of the tensor product construction of two semilattices with zero,
see, for instance, G. Grätzer, H. Lakser, and R. W. Quackenbush [2] and R. W.
Quackenbush [8]. The M3〈L〉 construction is generalized in G. Grätzer and F.
Wehrung [7] to two bounded lattices; the new construction is called box product.
Some of the arguments of this paper carry over to box products.

Problems

Lattices. As usual, let us denote by T, D, M, and L the variety of one-element,
distributive, modular, and all lattices, respectively. A variety V is nontrivial if
V 6= T.

Let us say that a variety V of lattices has the Congruence Preserving Extension

Property (CPEP, for short), if every lattice in V with more than one element has
a proper congruence-preserving extension in V. It is easy to see that no finitely
generated lattice variety has CPEP. (Indeed, by Jónsson’s lemma, a nontrivial
finitely generated lattice variety V has a finite maximal subdirectly irreducible
member L; if K is a proper congruence-preserving extension of L, then K is also
subdirectly irreducible and |L| > |K|, a contradiction.) In particular, D does not
have CPEP.

Theorem 2 can be restated as follows: L has CPEP.

Problem 1. Find all lattice varieties V with CPEP. In particular, does M have
CPEP?



8 G. GRÄTZER AND F. WEHRUNG

Groups. Let us say that a variety V of groups has the Normal Subgroup Preserving

Extension Property (NSPEP, for short), if every group G in V with more than one
element has a proper supergroup G in V with the following property: every normal
subgroup N in G can be uniquely represented in the form N ∩ G, where N is a
normal subgroup of G.

Not every group variety V has NSPEP, for instance, the variety A of Abelian
groups does not have NSPEP.

Problem 2. Does the variety G of all groups have NSPEP? Find all group varieties
having NSPEP?

Rings. For ring varieties, we can similarly introduce the Ideal Preserving Extension

Property (IPEP, for short). The variety R of all (not necessarily commutative) rings
has IPEP. Indeed, if R is a ring with more than one element, then embed R into
M2(R) (the ring of 2 × 2 matrices over R) with the diagonal map. The two-sided
ideals of M2(R) are of the form M2(I), where I is a two-sided ideal of R, and
I = M2(I) ∩ R.

Problem 3. Find all ring varieties having IPEP? In particular, does the variety of
all commutative rings have IPEP?

The second author found a positive answer for Dedekind domains: every Dedekind
domain with more than one element has a proper ideal-preserving extension that
is, in addition, a principal ideal domain.
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