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TENSOR PRODUCTS OF SEMILATTICES WITH ZERO,

REVISITED

G. GRÄTZER AND F. WEHRUNG

Abstract. Let A and B be lattices with zero. The classical tensor product,
A⊗B, of A and B as join-semilattices with zero is a join-semilattice with zero;
it is, in general, not a lattice. We define a very natural condition: A ⊗ B is
capped (that is, every element is a finite union of pure tensors) under which
the tensor product is always a lattice.

Let Conc L denote the join-semilattice with zero of compact congruences
of a lattice L. Our main result is that the following isomorphism holds for any
capped tensor product:

Conc A ⊗ Conc B ∼= Conc(A ⊗ B).

This generalizes from finite lattices to arbitrary lattices the main result of a
joint paper by the first author, H. Lakser, and R. W. Quackenbush.

1. Introduction

The construction of tensor products of modules over a commutative ring has an
obvious analogue for join-semilattices with zero. This construction was introduced
in J. Anderson and N. Kimura [1], G. A. Fraser [3], and Z. Shmuley [12]. If A and B
are semilattices with zero, we denote by A ⊗ B the tensor product of A and B.

While the tensor product is defined for semilattices with zero, it becomes, some-
how mysteriously, really interesting for lattices. In many cases, the tensor product
of two lattices with zero is a lattice, for example, if both lattices are finite, see
J. Anderson and N. Kimura [1].

The deepest result in this field was obtained in G. Grätzer, H. Lakser, and R. W.
Quackenbush [5]. This paper was motivated by the paper of E. T. Schmidt [11]
in which it is proved that the congruence lattice of M3[D], where D is a bounded
distributive lattice, is isomorphic to the congruence lattice of D. Since M3[D] can
be viewed as a tensor product of M3 and D, the following result is a far reaching
and surprising generalization of Schmidt’s result:

Main Result of [5]. Let A and B be finite lattices. Then the tensor product of
the congruence lattices, Con A and ConB, is isomorphic to the congruence lattice
of the tensor product A ⊗ B, in formula,

ConA ⊗ ConB ∼= Con(A ⊗ B).

There are some stronger results stated in [5], see Section 8 for a discussion.
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2 G. GRÄTZER AND F. WEHRUNG

In this paper, we generalize the main result of [5] to infinite lattices. First, one
has to observe that the isomorphism of the Main Result of [5] cannot be expected
to hold for infinite lattices; indeed, easy examples show (see Example 5.5) that
Con(A ⊗ B) is, in general, very large when compared to ConA ⊗ ConB. Indeed,
the proof of the main result of [5] computes principal congruences of A⊗B in terms
of the principal congruences of A and B. So the proper generalization ought to
change the congruence lattice to the semilattice with zero of compact congruences.
We denote by Conc L the semilattice with zero of compact congruences of the
lattice L.

To state our result, we need the concept of capping.
Let us call a subset I of A × B a bi-ideal, if I contains (A × {0}) ∪ ({0} × B),

it is hereditary, and it is join-closed in the sense that if 〈a0, b〉, 〈a1, b〉 ∈ I, then
〈a0 ∨ a1, b〉 ∈ I, and symmetrically. Then A ⊗ B can be represented as the join-
semilattice with zero of finitely generated bi-ideals of A × B.

A bi-ideal I is capped, if there is a finite subset C of A × B such that I is the
hereditary subset of A × B generated by C along with (A × {0}) ∪ ({0} × B). A
tensor product A ⊗ B is capped, if all bi-ideals in the representation of A ⊗ B are
capped. If A ⊗ B is a capped tensor product, then it is a lattice.

Main Theorem. Let A and B be lattices with zero.

(i) If A⊗B is a lattice, then there is a natural embedding of Conc A⊗Conc B
into Conc(A ⊗ B).

(ii) If A ⊗ B is a capped tensor product, then

Conc A ⊗ Conc B ∼= Conc(A ⊗ B).

Most results in this paper are stated for the more general constructions called
sub-tensor product and capped sub-tensor product, introduced in Section 4. There is
a good reason for this, although, it is not evident in this paper. In [8], we introduce
a variant of the tensor product construction, which we name box product. The
most important advantage of the new construction is that the box product of two
lattices is always a lattice. In [8], we state the analogue of the Main Theorem for
box products; it turns out that the proof for box products is very similar to the
proof in this paper. So we introduce here sub-tensor products and capped sub-
tensor products, which serve as a common platform to prove the results that apply
in this paper and also in [8].

In Section 2, we introduce the basic concepts and restate the basic results on
tensor products we shall need in this paper.

The new concepts of L-homomorphism and L-congruence are introduced in Sec-
tion 3. We establish that L-homomorphisms and L-congruences of join-semilattices
with zero behave very much like homomorphisms and congruences of lattices. These
concepts allow us to develop results for semilattices that otherwise could only be
obtained for lattices. The main result in this section is Lemma 3.6, which lifts L-
homomorphisms to tensor products, generalizing a result—Lemma 3.17 of [8]—from
finite lattices to arbitrary semilattices with zero.

Sub-tensor products are introduced in Section 4, where we prove some basic
properties. In Section 5, if A and B are lattices with zero and C is a sub-tensor
product of A and B, then for a compact congruence α of A and a compact con-
gruence β of B, we define a congruence α ⊙C β of C and prove that there is a
unique {∨, 0}-homomorphism εC from Conc A ⊗ Conc B to Conc C such that, for
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all α ∈ Conc A and all β ∈ Conc B, we have εC(α ⊗ β) = α ⊙C β. In Section 6, we
prove the Embedding Theorem, claiming that this map εC is, in fact, an embed-
ding; this verifies the sub-tensor product version of the first statement of the Main
Theorem.

In Section 7, we introduce capped sub-tensor products, and we prove the Isomor-
phism Theorem that corresponds to the second statement of the Main Theorem.

In Section 8, we apply the Embedding Theorem and the Isomorphism Theorem
to get the two statements of the Main Theorem. We also discuss related results,
in particular, some results from J. D. Farley [2], G. Grätzer, H. Lakser, and R. W.
Quackenbush [5], and G. Grätzer and E. T. Schmidt [6], and state a number of
open problems.

2. Tensor products

Let S0 denote the category of join-semilattices with zero with join- and zero-
preserving homomorphisms ({∨, 0}-semilattices with {∨, 0}-homomorphisms). For
S ∈ S0, let ωS and ιS denote the smallest and largest congruence of the {∨, 0}-
semilattice S, respectively.

Let (Ai | i ∈ I) be a family of join-semilattices with 0; the direct sum of this
family in S0, denoted by

⊕

(Ai | i ∈ I), is the {∨, 0}-semilattice of all 〈ai | i ∈ I〉
such that ai ∈ Ai, for i ∈ I, and { i ∈ I | ai 6= 0 } is finite (the zero is the “zero
vector” and the join is formed componentwise). In fact,

⊕

(Ai | i ∈ I) is the
coproduct of the family (Ai | i ∈ I) in S0.

Now we introduce the basic definitions for this paper. In [5], the tensor product
of the objects A, B ∈ S0 consists of certain hereditary subsets X of (A − {0}) ×
(B −{0}). In this paper, we find it more convenient to consider hereditary subsets
X of A × B that contain the set

∇A,B = (A × {0}) ∪ ({0} × B).

We shall use a partial binary operation on A × B: let 〈a0, b0〉, 〈a1, b1〉 ∈ A × B;
the lateral join of 〈a0, b0〉 and 〈a1, b1〉 is defined if a0 = a1 or b0 = b1, in which
case, it is the join, 〈a0 ∨ a1, b0 ∨ b1〉.

Definition 2.1. Let A and B be {∨, 0}-semilattices. A nonempty subset I of A×B
is a bi-ideal of A × B, if it satisfies the following conditions:

(i) I is hereditary;
(ii) I contains ∇A,B;
(iii) I is closed under lateral joins.

The extended tensor product of A and B, denoted by A ⊗ B, is the lattice of all
bi-ideals of A × B.

It is easy to see that A ⊗ B, is an algebraic lattice. For a ∈ A and b ∈ B, we
define a ⊗ b ∈ A ⊗ B by

a ⊗ b = ∇A,B ∪ { 〈x, y〉 ∈ A × B | 〈x, y〉 ≤ 〈a, b〉 }

and call a ⊗ b a pure tensor. A pure tensor is a (one-generated) principal bi-ideal.
Let us call (a0⊗b0)∨(a1⊗b1) a mixed tensor, if a0 ≤ a1 and b0 ≥ b1 or a0 ≥ a1 and
b0 ≤ b1. A mixed tensor is a special type of join of two pure tensors, a two-generated
bi-ideal.
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Definition 2.2. Let A and B be {∨, 0}-semilattices. The tensor product A⊗B is
the {∨, 0}-subsemilattice of compact elements of A⊗B; equivalently, A⊗ B is the
{∨, 0}-subsemilattice generated in A ⊗ B by the pure tensors.

Since pure tensors and mixed tensors are compact bi-ideals, we conclude the
following:

Proposition 2.3. All pure tensors and all mixed tensors are elements of the tensor
product.

The tensor product of {∨, 0}-semilattices may be a lattice.

Proposition 2.4. A ⊗ B is a lattice if and only if it is closed under finite inter-
section.

Proof. Indeed, let A ⊗ B be a lattice and let I ∧ J = K, where I, J , and K are
compact bi-ideals. If K is not I ∩ J , then K ⊂ I ∩ J and so there is a compact
bi-ideal H satisfying K ⊂ H ⊂ I ∩ J , contradicting that I ∧ J = K. The converse
is trivial. �

This proposition is really a statement that holds for any algebraic lattice, viewed
as the ideal lattice of a {∨, 0}-semilattice.

Corollary 2.5. The tensor product of the finite lattices A and B is always a lattice.

Proof. Indeed, then, A⊗ B = A⊗ B and A⊗ B is closed under finite intersection,
therefore, so is A ⊗ B, and thus A ⊗ B is a lattice. �

We shall next characterize the tensor product as a universal construction with
respect to bimorphisms. So first we give the definition of a bimorphism.

Definition 2.6. Let A, B, and C be {∨, 0}-semilattices. A bimorphism from A×B
to C is a map f : A × B → C such that

(i) for all 〈a, b〉 ∈ A × B, f(〈a, 0〉) = f(〈0, b〉) = 0;
(ii) for all a0, a1 ∈ A and all b ∈ B,

f(〈a0 ∨ a1, b〉) = f(〈a0, b〉) ∨ f(〈a1, b〉);

(iii) for all a ∈ A and all b0, b1 ∈ B,

f(〈a, b0 ∨ b1〉) = f(〈a, b0〉) ∨ f(〈a, b1〉).

Corollary 2.7. A bimorphism is an isotone map.

Proof. Indeed, if f : A × B → C is a bimorphism and 〈a0, b0〉, 〈a1, b1〉 ∈ A × B
satisfy 〈a0, b0〉 ≤ 〈a1, b1〉, then f(〈a0, b0〉) ∨ f(〈a0, b1〉) = f(〈a0, b1〉), by Defini-
tion 2.6(iii), and so f(〈a0, b0〉) ≤ f(〈a0, b1〉); similarly, f(〈a0, b1〉) ≤ f(〈a1, b1〉), by
Definition 2.6(ii), from which the statement follows. �

Proposition 2.8. Let A and B be {∨, 0}-semilattices. Consider the map ⊗ : A ×
B → A ⊗ B defined by 〈a, b〉 7→ a ⊗ b. Then ⊗ is a universal bimorphism, that
is, for every C ∈ S0 and every bimorphism f : A × B → C, there exists a unique
{∨, 0}-homomorphism g : A ⊗ B → C such that g(a ⊗ b) = f(〈a, b〉), for all a ∈ A
and b ∈ B.
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Note. We could have defined A ⊗ B as the {∨, 0}-semilattice freely generated by
all elements of A × B, subjected to the relations 〈a, 0〉 = 〈0, b〉 = 0, 〈a0 ∨ a1, b〉 =
〈a0, b〉 ∨ 〈a1, b〉 and 〈a, b0 ∨ b1〉 = 〈a, b0〉 ∨ 〈a, b1〉, for a, a0, a1 ∈ A and b, b0,
b1 ∈ B. With this definition, Proposition 2.8 is evident since A⊗B is a free object.
However, for most computations, we need the representation of the elements of
A⊗B by compact bi-ideals. So if we define A⊗B as a free object, then we would
replace Proposition 2.8 by the representation of A ⊗ B as the compact bi-ideal
{∨, 0}-semilattice of A × B.

Proof. It is routine to verify that the map ⊗ is a bimorphism. Since the pure
tensors generate A ⊗ B as a {∨, 0}-semilattice, the uniqueness statement is also
trivial.

For a given bimorphism f : A × B → C, we now prove the existence of g such
that g(a⊗ b) = f(〈a, b〉), for all a ∈ A and b ∈ B. Let D be the set of all subsets X
of A×B such that

∨

( f(〈x, y〉) | 〈x, y〉 ∈ X ) is defined in C. For every X ∈ D, put

h(X) =
∨

( f(〈x, y〉) | 〈x, y〉 ∈ X )

(the join is formed in C).

Claim 1. For every X ∈ D, the bi-ideal X of A × B generated by X also belongs
to D and h(X) = h(X).

Proof. Let X0 be X ∪∇A,B, and, for every integer n > 0, let Xn be the hereditary
set generated by lateral joins of elements of Xn−1. Obviously, Xn ∈ D with h(X) =
h(Xn), for all n ≥ 0. Since

X =
⋃

(Xn | n ≥ 0 ),

the statement follows. �

The proof of the following claim is obvious:

Claim 2. The set D is closed under finite unions, and h is a {∨, 0}-homomorphism
from 〈D;∪,∇A,B〉 to 〈C;∨, 0〉.

Since h is defined on all pure tensors, it follows from Claims 1 and 2 that h is
defined on A⊗B, and that the restriction g of h to A⊗B is a {∨, 0}-homomorphism
from A⊗B to C. For all 〈a, b〉 ∈ A×B, it is obvious that g(a⊗ b) = f(〈a, b〉). �

This characterization of the universal bimorphism on A×B shows that ⊗ defines,
in fact, a bifunctor on S0. This allows us to prove, in a routine fashion, the two
following basic categorical results.

Proposition 2.9. The tensor product operation is associative and commutative.
Thus, if A, B, and C are {∨, 0}-semilattices, then the following isomorphisms hold:

(A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C);

A ⊗ B ∼= B ⊗ A.

Note that these isomorphisms are natural in the categorical sense. We leave the
details to the reader.

Proposition 2.10. Let B be a {∨, 0}-semilattice. Then the functor

⊗ B
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preserves direct sums and directed colimits in S0. In particular, if (Ai | i ∈ I) is a
family of {∨, 0}-semilattices, then

⊕

(Ai | i ∈ I) ⊗ B ∼=
⊕

(Ai ⊗ B | i ∈ I).

Similarly, if I is a directed set and A = lim
−→i

Ai with respect to a limit system on

(Ai | i ∈ I), then
lim
−→

(Ai | i) ⊗ B ∼= lim
−→

(Ai ⊗ B | i).

The following purely arithmetical formulas are due to G. A. Fraser [3].

Lemma 2.11. Let A and B be {∨, 0}-semilattices. Let a0, a1 ∈ A and b0, b1 ∈ B
such that a0 ∧ a1 and b0 ∧ b1 both exist.

(i) The intersection of two pure tensors is a pure tensor, in fact,

(a0 ⊗ b0) ∩ (a1 ⊗ b1) = (a0 ∧ a1) ⊗ (b0 ∧ b1).

(ii) The join of two pure tensors is the union of four pure tensors, in fact,

(a0 ⊗ b0) ∨ (a1 ⊗ b1) =

(a0 ⊗ b0) ∪ (a1 ⊗ b1) ∪ ((a0 ∨ a1) ⊗ (b0 ∧ b1)) ∪ ((a0 ∧ a1) ⊗ (b0 ∨ b1)).

(iii) A mixed tensor is a union of two pure tensors, that is, if a0 ≤ a1 and
b0 ≥ b1, or a0 ≥ a1 and b0 ≤ b1, then

(a0 ⊗ b0) ∨ (a1 ⊗ b1) = (a0 ⊗ b0) ∪ (a1 ⊗ b1).

(iv) Let A and B be lattices with zero. Then
∨

( ai ⊗ bi | i < n ) ∧
∨

( cj ⊗ dj | j < m )

=
⋃

(p(a1, . . . , an−1) ∧ q(c1, . . . , cm−1)) ⊗ (pd(b1, . . . , bn−1) ∧ qd(d1, . . . , dm−1)),

where pd and qd are the duals of p and q, respectively, and where the union
is for all p ∈ F (n) and q ∈ F (m).

Corollary 2.12. Let A and B be lattices with zero. Let a0, a1 ∈ A and b0, b1 ∈ B
satisfy a0 ≤ a1 and b0 ≥ b1, or a0 ≥ a1 and b0 ≤ b1. Set I = a0⊗b0 and J = a1⊗b1.
Then the distributive law

(I ∨ J) ∧ H = (I ∧ H) ∨ (J ∧ H)

holds, for any H ∈ A ⊗ B.

We can rephrase the statements of this lemma with the following concept:

Definition 2.13. Let I be a bi-ideal of A×B. A capping of I is a finite subset C
of A × B so that

I = { x ∈ A × B | x ≤ i, for some i ∈ C } ∪ ∇A,B,

that is, I is the hereditary set generated by C in A×B along with ∇A,B. A capped
bi-ideal is a bi-ideal with capping.

For instance, a⊗ b is capped by {〈a, b〉} and Lemma 2.11(iii) can be restated as
follows: a mixed tensor (a0 ⊗ b0)∨ (a1 ⊗ b1) (where a0 ≤ a1 and b0 ≥ b1, or a0 ≥ a1

and b0 ≤ b1) is capped by {〈a0, b0〉, 〈a1, b1〉}.
A capped bi-ideal is compact, but, in general, a compact bi-ideal may not be

capped. In [7], the reader may find examples of compact bi-ideals that are not
capped. For instance, let a, b, and c be the atoms of M3, let x0, x1, x2 be the free
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generators of F(3), the free lattice on three generators; then M3 ⊗ F(3) contains
such examples, for instance, the bi-ideal generated by {〈a, x0〉, 〈b, x1〉, 〈c, x2〉}. See
Section 7, for applications of this concept to tensor products.

3. L-congruences

In this section, we introduce L-homomorphisms and L-congruences. These con-
cepts allow us to develop results for {∨, 0}-semilattices that otherwise could only
be obtained for lattices.

Definition 3.1. Let A and B be {∨, 0}-semilattices. Let f : A → B be a {∨, 0}-
homomorphism. We shall say that f is an L-homomorphism, if for all a0, a1 ∈ A
and b ∈ B,

b ≤ f(a0) and b ≤ f(a1)

imply the existence of an x ∈ A such that

x ≤ a0, x ≤ a1, and b ≤ f(x).

An L-congruence of a {∨, 0}-semilattice A is the kernel of an L-homomorphism
from A to some {∨, 0}-semilattice B.

In this definition, the kernel of a map is the equivalence relation induced by it.
The kernel of f will be denoted by ker f .

Corollary 3.2. If f : A → B is an L-homomorphism, a0, a1 ∈ A, and f(a0) ≤
f(a1), then there is an a0 ∈ A with a0 ≤ a0 and a0 ≤ a1 such that f(a0) = f(a0).

Proof. Choose b = f(a0). Then b ≤ f(a0) and b ≤ f(a1), so there is an a0 ∈ B
satisfying a0 ≤ a0, a0 ≤ a1, and b ≤ f(a0). Since f(a0) ≤ f(a0) = b, we conclude
that f(a0) = f(a0). �

Proposition 3.3. Let A and B be {∨, 0}-semilattices, and let f : A → B be a
L-homomorphism. Then the following holds:

(i) f is a partial meet-homomorphism, that is, for all n > 0 and all a0, . . . ,
an−1 ∈ A, if a = a0 ∧· · · ∧an−1 exists in A, then b = f(a0)∧· · · ∧f(an−1)
exists in B, and b = f(a).

(ii) If, in addition, f is one-to-one, then f is a partial meet-embedding, that
is, for all n > 0 and all a0, . . . , an−1 ∈ A, a = a0 ∧ · · · ∧ an−1 exists in A
iff b = f(a0) ∧ · · · ∧ f(an−1) exists in B, and then, b = f(a).

Conversely, if A and B are lattices, then any lattice homomorphism from A to
B is an L-homomorphism and any L-congruence of A is a lattice congruence of A.

Proof. (i) If A and B are {∨, 0}-semilattices and f : A → B is an L-homomorphism,
we prove that f is a partial meet-homomorphism. Let n > 0, let a0, . . . , an−1 ∈ A,
and let a = a0 ∧ · · · ∧ an−1 be defined in A. Since f is isotone, f(a) ≤ f(a0),
. . . , f(an−1) in B. Conversely, let b ≤ f(a0), . . . , f(an−1) in B. Since f is
an L-homomorphism, there exists x ∈ A such that x ≤ ai, for all i < n, and
b ≤ f(x). Since x ≤ a and f is isotone, we have b ≤ f(x) ≤ f(a). This proves that
f(a0) ∧ · · · ∧ f(an−1) is defined and equals f(a).

(ii) Now, suppose that f is one-to-one. Thus, since f is a join-homomorphism,
f is an order-embedding, that is, f(x) ≤ f(y) iff x ≤ y, for all x, y ∈ A. Now let
n > 0, let a0, . . . , an−1 ∈ A. Suppose that b = f(a0) ∧ · · · ∧ f(an−1) exists in B.
Since b ≤ f(ai) for all i and since f is an L-homomorphism, there exists a ∈ A
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such that a ≤ ai for all i, and b ≤ f(a). Since f is isotone, f(a) ≤ f(ai) for all
i, thus f(a) ≤ b; so b = f(a). For all x ∈ A such that x ≤ ai for all i, we have
f(x) ≤ f(ai) for all i, thus f(x) ≤ b, that is, f(x) ≤ f(a); whence x ≤ a. This
proves that a = a0 ∧ · · · ∧ an−1. Thus (ii) holds as well.

Now let A and B be lattices with zero and let f : A → B be a lattice homomor-
phism. We can choose x = a0 ∧ a1 (in the definition of L-homomorphism) to verify
that f is an L-homomorphism.

Finally, the result about L-homomorphisms implies immediately the result about
L-congruences. �

Another connection between L-homomorphisms and lattice homomorphisms is
the following:

Proposition 3.4. Let A and B be {∨, 0}-semilattices and let f : A → B be an
L-homomorphism. For an ideal I of A, define f(I) as the hereditary subset of B

generated by f(I). Then f is a join-complete, {∨,∧, 0} homomorphism of IdA to
Id B, and it has the property that the image of a principal ideal is principal.

Conversely, let g : Id A → Id B be a join-complete, {∨,∧, 0} homomorphism
with the property that the image of a principal ideal is principal. Then there exists
a unique L-homomorphism f : A → B such that g = f .

We leave the proof to the reader. All the steps in this proof are easy; we use
that f is an L-homomorphism in verifying that f(I) ∩ f(J) ⊆ f(I ∩ J).

For a set X and a binary relation α on X , we use the notation x ≡α y, for
〈x, y〉 ∈ α.

Let A and B be {∨, 0}-semilattices. Let α be an L-congruence of A and let β be
an L-congruence of B. Then α × β is a congruence on A × B. Now we define how
α × β can be naturally extended to a congruence α � β of A ⊗ B.

Definition 3.5. Let A and B be {∨, 0}-semilattices. Let α be an L-congruence of
A and let β be an L-congruence of B. Define a binary relation α � β on A ⊗ B as
follows: for H , K ∈ A ⊗ B, let H ≡

α�β
K iff, for all 〈x, y〉 ∈ H , there exists an

〈x′, y′〉 ∈ K such that x ≡α x′ and y ≡β y′, and symmetrically.

Let α � β be the restriction of α � β to A ⊗ B.

The following result allows us to give a useful explicit description of the effect of
the tensor product bifunctor ⊗ on two homomorphisms in S0.

Lemma 3.6. Let A, A′, B, B′ be {∨, 0}-semilattices, let f : A → A′ and g : B → B′

be L-homomorphisms. For a bi-ideal I of A × B, define h(I) as the the hereditary
subset of A′ × B′ generated by the image of I under f × g with ∇A′,B′ , that is,

h(I) = ∇A′,B′ ∪ { 〈u, v〉 ∈ A′ × B′ | u ≤ f(x) and v ≤ g(y), for some 〈x, y〉 ∈ I }.

Then the following properties hold:

(i) h(I) is a bi-ideal of A′ × B′.
(ii) The map h is a lattice homomorphism from A ⊗ B to A′ ⊗ B′.
(iii) h(A⊗B) ⊆ A′ ⊗B′ and the restriction of h from A⊗B to A′ ⊗B′ equals

f ⊗ g.
(iv) f ⊗ g is an L-homomorphism.
(v) kerh = ker f � ker g. Thus, ker(f ⊗ g) = ker f � ker g.
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Proof.
(i) By definition, h(I) is hereditary and contains ∇A′,B′ . Let 〈x′

0, y
′〉, 〈x′

1, y
′〉 ∈

h(I); we prove that 〈x′
0 ∨ x′

1, y
′〉 ∈ h(I). If 〈x′

0, y
′〉 ∈ A′ × {0}, then y′ = 0 and

〈x′
0 ∨ x′

1, 0〉 ∈ h(I) by the definition of h(I). Similarly, the conclusion is obvious
if 〈x′

0, y
′〉 ∈ {0} × B′. So assume that 〈x′

0, y
′〉, 〈x′

1, y
′〉 /∈ ∇A′,B′ . Then by the

definition of h(I), there exist 〈x0, y0〉, 〈x1, y1〉 ∈ I such that 〈x′
0, y

′〉 ≤ 〈f(x0), g(y0)〉
and 〈x′

1, y
′〉 ≤ 〈f(x1), g(y1)〉. Since g is an L-homomorphism, there exists a y ∈ B

such that
y ≤ y0, y ≤ y1, and y′ ≤ g(y).

Since I is hereditary, it follows that 〈x0, y〉, 〈x1, y〉 ∈ I, and so 〈x, y〉 ∈ I with
x = x0 ∨ x1. Since 〈x′

0 ∨ x′
1, y

′〉 ≤ 〈f(x), g(y)〉, this proves that 〈x′
0 ∨ x′

1, y
′〉 ∈ h(I).

By symmetry, this proves that h(I) is a bi-ideal of A′×B′ (and so h(I) ∈ A′⊗B′).
(ii) h is a join-homomorphism. Indeed, let I and J be bi-ideals of A × B. It is

obvious that h(I) ∨ h(J) ⊆ h(I ∨ J). Conversely, the following set

X = { 〈x, y〉 ∈ A × B | 〈f(x), g(y)〉 ∈ h(I) ∨ h(J) }

is a bi-ideal, and it obviously contains I and J . Thus it contains I ∨ J , which
implies that h(I ∨ J) ⊆ h(I) ∨ h(J).

Now we prove that h(I ∩ J) = h(I) ∩ h(J), for bi-ideals I and J of A × B. To
prove the nontrivial containment, let 〈u, v〉 ∈ h(I) ∩ h(J), and we want to prove
that 〈u, v〉 ∈ h(I ∩ J). This is trivial if u = 0A′ or v = 0B′ . So assume that u
and v are nonzero. Then, by definition, there are 〈x′, y′〉 ∈ I and 〈x′′, y′′〉 ∈ J
such that 〈u, v〉 ≤ 〈f(x′), g(y′)〉 and 〈u, v〉 ≤ 〈f(x′′), g(y′′)〉. Since f and g are
L-homomorphisms, there are x ∈ A and y ∈ B such that x ≤ x′, x′′ and y ≤ y′, y′′

and 〈u, v〉 ≤ 〈f(x), g(y)〉. Since 〈x, y〉 ∈ I∩J , we have proved that 〈u, v〉 ∈ h(I∩J).
(iii) is obvious, because h is a join-homomorphism and, for all 〈a, b〉 ∈ A × B,

we have that h(a ⊗ b) = f(a) ⊗ g(b) (we use here the fact that both f and g are
zero-preserving).

(iv) Put h′ = f ⊗ g. Let I0, I1 ∈ A ⊗ B and J ∈ A′ ⊗ B′ such that J ≤ h′(I0),
h′(I1). Since h is a lattice homomorphism, we obtain that J ≤ h(I) with I = I0∩I1.
Obviously, h is a complete join-homomorphism and I is the directed union of all
compact bi-ideals of A × B contained in I, therefore, there exists a compact bi-
ideal I ′ of A × B such that I ′ ≤ I and J ≤ h′(I ′). This proves that h′ is an
L-homomorphism.

(v) It suffices to prove the first statement. To prove that kerh ≤ ker f � ker g,
take I, J ∈ A ⊗ B and assume that I ≡ker h J , that is, h(I) = h(J). We prove
that for every 〈x, y〉 ∈ I there is 〈x, y〉 ∈ J such that x ≡ker f x and y ≡ker g y. If
f(x) = 0A′ , then x ≡ker f 0A and 〈0A, y〉 ∈ J , so x = 0A and y = y will do. Argue
similarly for g(y) = 0B′ . If both f(x) and g(y) are nonzero, then 〈f(x), g(y)〉 is
majorized by some 〈f(x), g(y)〉, where 〈x, y〉 ∈ J . Since f is an L-homomorphism,
just as in Corollary 3.2, there is an x0 ∈ A such that f(x) = f(x0) and x0 ≤ x,
x. Similarly, there is an y0 ∈ B such that f(y) = f(y0) and y0 ≤ y, y. Since
〈x, y〉 ∈ J , it follows that 〈x0, y0〉 ∈ J and, obviously, x ≡ker f x0 and y ≡ker g y0.
By symmetry, this proves that I ≡

ker f�ker g
J . The converse is easy. �

The results of Lemma 3.6 are formulated for L-homomorphisms. The situation
for general {∨, 0}-homomorphisms is quite different. Let us call a {∨, 0}-semilattice
S flat, if for every {∨, 0}-semilattice embedding f : A →֒ B, the map

idS ⊗ f : S ⊗ A → S ⊗ B
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is an embedding. We can prove that a {∨, 0}-semilattice is flat if and only if it is
distributive; see [9].

Corollary 3.7. Let A and B be {∨, 0}-semilattices, let α be an L-congruence of
A, and let β be an L-congruence of B. Then the following properties hold:

(i) The relation α � β is an L-congruence of A ⊗ B.
(ii) If A ⊗ B is a lattice, then α � β is a lattice congruence on A ⊗ B.
(iii) Let f (resp., g) be the canonical projection from A onto A/α (resp., from

B onto B/β). Then f ⊗ g factors into an isomorphism from A⊗B/α � β
onto (A/α) ⊗ (B/β).

(iv) If A ⊗ B is a lattice, then (A/α) ⊗ (B/β) is a lattice.

Proof. All these statements are obvious from the results of this section. �

Corollary 3.8. Let A, A′, B, B′ be lattices with zero such that A is a {0}-sublattice
of A′ and B is a {0}-sublattice of B′. Let f (resp., g) denote the inclusion map
from A into A′ (resp., B into B′). Then f ⊗ g is a join-embedding of A ⊗ B into
A′ ⊗ B′, and it is a partial meet-embedding.

In particular, if A′ ⊗B′ is a lattice, then A⊗B is a lattice and f ⊗ g is a lattice
embedding from A ⊗ B into A′ ⊗ B′.

Proof. By Lemma 3.6, h = f ⊗ g is a one-to-one L-homomorphism. Thus, by
Proposition 3.3, it is a partial meet-embedding.

If A′ ⊗ B′ is a lattice, we prove that A ⊗ B is a lattice. Let X , Y ∈ A ⊗ B.
Then h(X), h(Y ) ∈ A′ ⊗ B′, thus, since A′ ⊗ B′ is a lattice, h(X) ∧ h(Y ) exists
in A′ ⊗ B′. Since h is a partial meet-embedding, X ∧ Y exists in A ⊗ B; whence
A ⊗ B is a lattice. Since h is a L-homomorphism from one lattice to the other, it
is also, by Proposition 3.3, a lattice homomorphism. �

Corollary 3.9. Let A, A′, B and B′ be lattices with zero such that A is a sublattice
of A′ and B is a sublattice of B′ (we assume neither 0A = 0A′ nor 0B = 0B′). If
A′ ⊗ B′ is a lattice, then A ⊗ B is a lattice.

Proof. Put A′′ = A ∪ {0A′} and B′′ = B ∪ {0B′}. Then A′′ is a {0}-sublattice of
A′ and B′′ is a {0}-sublattice of B′, thus, by Corollary 3.8, A′′ ⊗ B′′ is a lattice.
Furthermore, A is a quotient of A′′ (by the map that sends 0A′ to 0A and all x ∈ A to
x—a retraction). Similarly, B is a quotient of B′′. Therefore, by Corollary 3.7(iv),
A ⊗ B is a lattice. �

These results are related to Lemma 3.17 in [5], in which it is proved that if A′

is a finite lattice and the lattice B′ with 0 is A′-lower bounded (see Section 8.2)
and A, B are {0}-sublattices of A′ and B′, respectively, then A ⊗ B has a natural
embedding into A′ ⊗ B′. Note that under these conditions, A′ ⊗ B′ is a lattice.

4. Sub-tensor products

Definition 4.1. Let A and B be lattices with zero. A sub-tensor product of A and
B is a subset C of A ⊗ B satisfying the following conditions:

(i) C contains all the mixed tensors in A ⊗ B;
(ii) C is closed under finite intersection;
(iii) C is a lattice with respect to containment.

Note about this concept:
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(i) Every pure tensor a⊗b (a ∈ A, b ∈ B) belongs to C and 0A⊗B = ∇A,B ∈ C.
(ii) A ⊗ B is not a meet-semilattice (see [7] for an example). That is why we

require that C be a meet-subsemilattice of A ⊗ B, not of A ⊗ B.
(iii) A sub-tensor product of A and B may not be a join-subsemilattice of A⊗B

(although it is a join-semilattice in its own right).
(iv) Let H0, . . . , Hn−1 ∈ C. Then

∨

(Hi | i < n ) in A ⊗ B is, in general,
smaller than

∨

(Hi | i < n ) in C. Note, however, Proposition 4.2(iv). If
we want to remind the reader that the join is formed in C, we use the
notation ∨C and

∨

C .

We now list some simple properties of sub-tensor products.

Proposition 4.2. Let A and B be lattices with zero and let C be a sub-tensor
product of A and B. Let a0, a1 ∈ A and b0, b1 ∈ B and let H, Hi ∈ C, i < n.

(i) If H =
⋂

(Hi | i < n ), then H =
∧

(Hi | i < n ) in C.
(ii) (a0 ⊗ b0) ∧ (a1 ⊗ b1) = (a0 ∧ a1) ⊗ (b0 ∧ b1) in C.
(iii) If H =

∨

(Hi | i < n ) in A ⊗ B, then H =
∨

(Hi | i < n ) in C.
(iv) Every H ∈ C can be represented in the form H =

∨

( ai ⊗ bi | i < n ) (the
join formed in C), where ai ∈ A and bi ∈ B, i < n.

(v) If a0 ≤ a1 and b0 ≥ b1, or a0 ≥ a1 and b0 ≤ b1. Then

(a0 ⊗ b0) ∨ (a1 ⊗ b1) = (a0 ⊗ b0) ∪ (a1 ⊗ b1)

holds in C.
(vi) Let a0 ≤ a1 and b0 ≥ b1, or a0 ≥ a1 and b0 ≤ b1. Set I = a0 ⊗ b0 and

J = a1 ⊗ b1. Then I, J ∈ C and the distributive law

(I ∨ J) ∧ H = (I ∧ H) ∨ (J ∧ H)

holds in C, for any H ∈ C.

Proof. If H =
⋂

(Hi | i < n ), then H =
∧

(Hi | i < n ) in the lattice A ⊗ B. Since
C is a subposet of A ⊗ B, it follows that H =

∧

(Hi | i < n ) in C, proving (i).
By Lemma 2.11(i), (a0 ⊗ b0) ∩ (a1 ⊗ b1) is (a0 ∧ a1)⊗ (b0 ∧ b1) and this element

is in C, by assumption, so (ii) follows from (i).
Let H =

∨

(Hi | i < n ) in A ⊗ B. Since C is a subposet of A ⊗ B, it follows
that H =

∨

(Hi | i < n ) in C, proving (iii).
By the definition of A ⊗ B (Definition 2.2), every H ∈ C can be represented in

the form H =
∨

( ai ⊗ bi | i < n ), where ai ∈ A and bi ∈ B, i < n and the join is
formed in A ⊗ B; so by (iii), H =

∨

( ai ⊗ bi | i < n ) in C, proving (iv).
(v) follows similarly from (iii).
Finally, (vi) follows from (v). �

This section and the next two sections deal with the congruence structure of
a sub-tensor product C of A and B. So it is reasonable to ask whether there is
such a C. We show in [8] that, for any lattices with zero A and B, there exists a
sub-tensor product C of A and B.

However, in this paper, the main result is in Section 7, where we assume that
A⊗B is capped (meaning that all the bi-ideals of A×B are capped) and, therefore, a
lattice. In this case, we always have at least one sub-tensor product, namely, A⊗B:

Proposition 4.3. A ⊗ B is a lattice if and only if it is a sub-tensor product of A
and B.
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Proof. If A ⊗ B is a lattice, then 4.1(i) holds by Proposition 2.3; 4.1(ii) holds by
Proposition 2.4; while 4.1(iii) holds, by assumption.

Conversely, if 4.1(i)–(iii) hold for C = A ⊗ B, then A ⊗ B is a lattice by Propo-
sition 2.4. �

Proposition 4.4. Let A and B be lattices with zero and let C be a sub-tensor
product of A and B. The tensor product operation, viewed as a mapping from
A × B to C, is a bimorphism.

Proof. Let a0, a1 ∈ A and b ∈ B. Since (a0 ∨ a1) ⊗ b belongs to C and since it
equals (a0 ⊗ b) ∨ (a1 ⊗ b) in A ⊗ B, by Proposition 4.2(iii), the same holds in C.
By symmetry, the conclusion follows. �

For every lattice congruence α of A and β of B, denote by α�C β the restriction
of α � β from A ⊗ B to C. Then define

εA,C(α) = α �C ωB,

εB,C(β) = ωA �C β.

Lemma 4.5. Let A and B be lattices with zero and let C be a sub-tensor product
of A and B. The map εA,C : 〈Con A;∨, ωA, ιA〉 → 〈Con C;∨, ωC , ιC〉 is a homo-
morphism (a {∨, 0, 1}-homomorphism). And, similarly, for εB,C.

Proof. It is clear that εA,C(ωA) = ωC . Let H be an element of C and let 〈x, y〉 ∈ H .
Then x ≡ιA

0A and 〈0A, y〉 ∈ 0C and so 〈x, y〉 ≡ιA�ωB
〈0A, y〉; this proves that

H ≡εA,C(ιA) 0C ; whence εA,C(ιA) = ιC .
Now let α0, α1 ∈ ConA. It is obvious that εA,C(α0)∨εA,C(α1) ≤ εA,C(α0∨α1).

Conversely, let H and K be elements of C such that H ≡εA,C(α0∨α1) K. Let us write
H in the form H =

∨

( ai⊗ bi | i < m ) (the join in C, see Proposition 4.2(iv)), with
a positive integer m. For every i < m, there exists a′

i ∈ A such that 〈a′
i, bi〉 ∈ K

and ai ≡α0∨α1
a′

i. Since ai ≡α0∨α1
ai ∧ a′

i and K is hereditary, we can replace a′
i

by ai ∧a′
i; so we can assume that a′

i ≤ ai. Thus there exist a positive integer n and
chains

ai = ai0 ≥ ai1 ≥ · · · ≥ ai,2n = a′
i

such that for all i < m and j < n, we have

ai,2j ≡α0
ai,2j+1,

ai,2j+1 ≡α1
ai,2j+2.

Now, for all j ≤ 2n, put Kj =
∨

( aij ⊗ bi | i < m ) (the joins are formed in C).
Note that K0 = H and K2n ⊆ K. Furthermore, for all i < m and j < n, we have

ai,2j ⊗ bi ≡εA,C(α0) ai,2j+1 ⊗ bi,

ai,2j+1 ⊗ bi ≡εA,C(α1) ai,2j+2 ⊗ bi,

from which it follows that K2j ≡εA,C(α0) K2j+1 and K2j+1 ≡εA,C(α1) K2j+2. This
proves the first half of the definition of H ≡εA,C(α0)∨εA,C(α1) K; the proof of the
other half is similar. �
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5. Tensor product of lattice congruences

Let A and B be lattices with zero and let C be a sub-tensor product of A and B.
For α ∈ ConA and β ∈ ConB, we define the C-tensor product of α and β in C,

α ⊙C β, by the formula

α ⊙C β = εA,C(α) ∧ εB,C(β)

= (α �C ωB) ∧ (ωA �C β).

We write α ⊙C β in order to distinguish this congruence of C from the pure
tensor α ⊗ β in the {∨, 0}-semilattice Con A ⊗ Con B.

In this section, we prove that α⊗β 7→ α⊙C β extends to a {∨, 0}-homomorphism
εC : Conc A ⊗ Conc B → Conc C. As a first step, we prove that α ⊗ β 7→ α ⊙C β
extends to a {∨, 0}-homomorphism εC : Conc A ⊗ Conc B → ConC. By Proposi-
tion 2.8, it is sufficient to prove the following:

Proposition 5.1. The map 〈α, β〉 7→ α⊙C β is a bimorphism from ConA×Con B
to Con C.

Proof. Indeed, by Lemma 4.5, εB,C(ωB) = ωC , and so α ⊙C ωB = εA,C(α) ∧
εB,C(ωB) = εA,C(α) ∧ ωC = ωC and, similarly, ωA ⊙C β = ωC . Now compute:

α ⊙C (β0 ∨ β1) = εA,C(α) ∧ εB,C(β0 ∨ β1)

(by Lemma 4.5)

= εA,C(α) ∧ (εB,C(β0) ∨ εB,C(β1))

(by the distributivity of ConC)

= (εA,C(α) ∧ εB,C(β0)) ∨ (εA,C(α) ∧ εB,C(β1))

= (α ⊙C β0) ∨ (α ⊙C β1). �

The crucial step in proving that εC maps Conc A ⊗ Conc B into Conc C is the
formula of Lemma 5.3; we prepare its proof with the following statement:

Lemma 5.2. Let γ ∈ Con C and let b ≤ b′ in B. Consider the following subset α
of A:

α =
{

〈x, y〉 ∈ A2 | ((x ∨ y) ⊗ b) ∨ ((x ∧ y) ⊗ b′) ≡γ (x ∨ y) ⊗ b′
}

.

Then α is a congruence of A.

Note that ((x ∨ y) ⊗ b) ∨ ((x ∧ y) ⊗ b′), (x ∨ y) ⊗ b′ ∈ C, so the formula makes
sense. We call this congruence α the 〈b, b′〉-projection of γ to A.

Proof. We shall prove that α satisfies the conditions listed in Lemma I.3.8 of [4]. It
is obvious that α is reflexive (because x⊗ b′ = (x⊗ b)∨ (x⊗ b′) follows from b ≤ b′)
and x ≡α y iff x ∧ y ≡α x ∨ y, for all x, y ∈ A (by the definition of α).

Now let x ≤ y ≤ z in A such that x ≡α y and y ≡α z. Then

z ⊗ b′ ≡γ (y ⊗ b′) ∨C (z ⊗ b) (since y ≤ z and y ≡α z)

≡γ (x ⊗ b′) ∨C (y ⊗ b) ∨C (z ⊗ b) (since x ≤ y and x ≡α y)

= (x ⊗ b′) ∨C (z ⊗ b) (since y ≤ z),

thus x ≡α z.
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Finally, let x, y, z ∈ A be such that x ≤ y and x ≡α y. We prove that
x ∨ z ≡α y ∨ z and x ∧ z ≡α y ∧ z. The easier computation is for the join:

(y ∨ z) ⊗ b′ = (y ⊗ b′) ∨C (z ⊗ b′) (by Proposition 5.1)

= (y ⊗ b′) ∨C (z ⊗ b′) ∨C (z ⊗ b) (since b ≤ b′)

≡γ (x ⊗ b′) ∨C (y ⊗ b) ∨C (z ⊗ b′) ∨C (z ⊗ b) (since x ≡α y, x ≤ y)

= ((x ∨ z) ⊗ b′) ∨C ((y ∨ z) ⊗ b) (by Proposition 5.1),

so that x ∨ z ≡α y ∨ z.
Now we compute the meet. Put

u = ((x ∧ z) ⊗ b′) ∨C ((y ∧ z) ⊗ b),

v = (y ∧ z) ⊗ b′,

u′ = (x ⊗ b′) ∨C (y ⊗ b),

v′ = y ⊗ b′.

Note that u ≤ v and u′ ≤ v′. By definition, x ≡α y means that u′ ≡γ v′. To prove
that x ∧ z ≡α y ∧ z, we have to verify that u ≡γ v; so it is sufficient to prove that
the interval [u, v] weakly projects up into the interval [u′, v′], that is, v ≤ v′ and
u = v ∧ u′. It is obvious that v ≤ v′. To prove u = v ∧ u′, compute, using the
distributive law of Proposition 4.2(vi):

v ∧ u′ = ((y ∧ z) ⊗ b′) ∧ ((x ⊗ b′) ∨C (y ⊗ b))

= ((x ∧ z) ⊗ b′) ∨C ((y ∧ z) ⊗ b)

= u. �

Next we show that the C-tensor product of two principal congruences is principal
again.

Lemma 5.3. Let a ≤ a′ in A and let b ≤ b′ in B. Then (a⊗b′)∨(a′⊗b), a′⊗b′ ∈ C
and the following formula holds:

ΘA(a, a′) ⊙C ΘB(b, b′) = ΘC((a ⊗ b′) ∨ (a′ ⊗ b), a′ ⊗ b′).

Proof. Put

α = ΘA(a, a′),

β = ΘB(b, b′),

γ = ΘC((a ⊗ b′) ∨C (a′ ⊗ b), a′ ⊗ b′).

Note that

a ⊗ b′ ≡εA,C(α) a′ ⊗ b′,

a′ ⊗ b ≡εB,C(β) a′ ⊗ b′.

It follows that

(a ⊗ b′) ∨ (a′ ⊗ b) ≡α⊙Cβ a′ ⊗ b′,

whence γ ≤ α ⊙C β.
Now let us prove the converse. The following statement will be helpful:

Claim 1. Let x ≤ x′ in A and y ≤ y′ in B be such that x ≡α x′ and y ≡β y′. Then

(x′ ⊗ y) ∨ (x ⊗ y′) ≡γ x′ ⊗ y′.
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Proof. Let α′ be the 〈b, b′〉-projection of γ to A, see Lemma 5.2. Then a ≡α′ a′, by
the definition of γ, whence α ≤ α′. Now let u, u′ ∈ A satisfy u ≤ u′ and u ≡α′ u′;
define β′

u,u′ as the 〈u, u′〉-projection of γ to B. Let β′ =
∧

(β′
u,u′ | u, u′ ∈ A, u ≤

u′, u ≡α′ u′ ). Then β′ is the intersection of a family of congruences of B, thus a
congruence of B. By the definition of β′, we have b ≡β′ b′; whence β ≤ β′. So if
x ≤ x′ in A and y ≤ y′ in B such that x ≡α′ x′ and y ≡β′ y′, then

x′ ⊗ y′ ≡γ (x′ ⊗ y) ∨ (x ⊗ y′).

Since α ≤ α′ and β ≤ β′, the conclusion of the claim follows immediately. �

Now let H and K be elements of C such that H ≡α⊙Cβ K. We write H as

H =
∨

C
(xi ⊗ yi | i < n),

where n is a positive integer, and xi ∈ A, yi ∈ B. Since H ≡εA,C(α)∧εB,C(β) K, for
all i < n, there exist x∗

i ≤ xi and y∗
i ≤ yi such that x∗

i ≡α xi, y∗
i ≡β yi and both

〈x∗
i , yi〉 and 〈xi, y

∗
i 〉 belong to K. But by Claim 1, it follows that

xi ⊗ yi ≡γ (x∗
i ⊗ yi) ∨ (xi ⊗ y∗

i ).

By taking the join of these congruences over i < n, we obtain that H ≡γ K ′ for
some K ′ ⊆ K; by symmetry, we obtain the proof of the symmetric inclusion and
congruence, so that H ≡γ K. Therefore, α ⊙C β ≤ γ. �

From Lemma 5.3 and Proposition 5.1, one can then deduce immediately the
following statement:

Corollary 5.4. Let α ∈ ConA and β ∈ Con B. If α and β are compact, then
α ⊙C β is compact.

At this point, we have arrived at the existence of a (unique) {∨, 0}-homomor-
phism εC from Conc A ⊗ Conc B to Conc C such that, for all α ∈ Conc A and all
β ∈ Conc B, we have

εC(α ⊗ β) = α ⊙C β.

Example 5.5. We are relating Conc(A ⊗ B) with Conc A ⊗ Conc B because, in
general, the lattice Con(A⊗B) is not isomorphic to ConA⊗ConB, not even if A
and B are locally finite. Take A = B = ω, the chain of all non-negative integers.
Then Con A = Con B ∼= Powω (the power set of ω). Since Con(A ⊗ B) is an
algebraic lattice and ConA ⊗ ConB is the {∨, 0}-semilattice of compact elements
of an algebraic lattice, the isomorphism ConA⊗ConB ∼= Con(A⊗B) would imply
that in A ⊗ B every congruence is compact, which is clearly not the case.

We can be more specific. The isomorphism Con A ⊗ Con B ∼= Con(A ⊗ B)
would imply that ConA⊗Con B is a complete lattice, thus that Powω⊗Powω is a
complete lattice. However, Pow ω⊗Powω is isomorphic to the {∨, 0}-subsemilattice
of Pow(ω × ω) generated by all rectangles, that is, the subsets of the form X × Y
where X and Y are subsets of ω; in particular, it is not complete, because the set
of all singletons {〈n, n〉}, for n ∈ ω, does not have a least upper bound.

This example contradicts Theorem 3.18 of [5].
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6. The Embedding Theorem

In this section, we will prove, still under the assumption that both A and B
are lattices with zero and C is a sub-tensor product of A and B, that the map εC

obtained in Section 5 is a {∨, 0}-semilattice embedding.
Our first lemma expresses the �C operation on congruences by the ⊙C operation:

Lemma 6.1. Let α ∈ Con A and β ∈ ConB. Then

α �C β = (α ⊙C ιB) ∨ (ιA ⊙C β).

Proof. By Lemma 4.5, we have α⊙C ιB = εA,C(α)∧εB,C(ιB) = εA,C(α) = α�C ωB

and ιA ⊙C β = εA,C(ιA) ∧ εB,C(β) = εB,C(β) = ωA �C β. It follows that (α ⊙C

ιB) ∨ (ιA ⊙C β) ≤ α �C β.
Conversely, let H and K be elements of C such that H ≡α�Cβ K. There exists

a decomposition of H in the form

H =
∨

C
(ai ⊗ bi | i < n)

with n a positive integer and ai ∈ A, bi ∈ B. For all i < n, there exist a∗
i ≤ ai and

b∗i ≤ bi such that a∗
i ≡α ai, b∗i ≡β bi, and 〈a∗

i , b
∗
i 〉 ∈ K. Thus

ai ⊗ bi ≡α⊙CιB
a∗

i ⊗ bi ≡ιA⊙Cβ a∗
i ⊗ b∗i ,

from which it follows that

H =
∨

C
(ai ⊗ bi | i < n) ≡α⊙CιB

∨

C
(a∗

i ⊗ bi | i < n)

≡ιA⊙Cβ

∨

C
(a∗

i ⊗ b∗i | i < n)

⊆ K.

By symmetry, H ≡(α⊙CιB)∨(ιA⊙Cβ) K. �

Lemma 6.2. Let α, α′ ∈ Con A and β, β′ ∈ Con B. Then

α ⊙C β ≤ α′
�C β′ iff α ≤ α′ or β ≤ β′.

Proof. Let us assume that α ⊙C β ≤ α′
�C β′ and α � α′, β � β′. Then there are

a0 < a1 in A and b0 < b1 in B such that a0 ≡α a1 but a0 6≡α′ a1, and b0 ≡β b1 but
b0 6≡β′ b1. It follows from Lemma 5.3 that

a1 ⊗ b1 ≡α⊙Cβ (a0 ⊗ b1) ∨ (a1 ⊗ b0),

thus, by assumption,

(1) a1 ⊗ b1 ≡α′�Cβ′ (a0 ⊗ b1) ∨ (a1 ⊗ b0).

By Proposition 4.2(v), (a0 ⊗ b1)∨ (a1 ⊗ b0) = (a0 ⊗ b1)∪ (a1 ⊗ b0). Thus, applying
(1), yields, for example, elements x ∈ A and y ∈ B such that a1 ≡α′ x, b1 ≡β′ y
and 〈x, y〉 ∈ a0 ⊗ b1. But since a1 6≡α′ a0 and b1 6≡β′ b0, we have x 6= 0 and y 6= 0.
Therefore, x ≤ a0 and y ≤ b1; whence, a1 ≡α′ a0, a contradiction. The reverse
implication is trivial. �

Lemma 6.3. The tensor product of distributive semilattices with zero is a distribu-
tive semilattice with zero.

Proof. Let A and B be distributive semilattices with zero and let I and J be
bi-ideals of A × B. Set X0 = I ∪ J , and, for n > 0, let Xn be the set of all
〈x, y〉 ∈ A × B such that 〈x, y〉 is the lateral join of two elements of Xn−1. It is
obvious that Xn−1 ⊆ Xn.
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Claim 1. Xn is a hereditary set, for all n ≥ 0.

Proof. The statement is obvious for n = 0. Let us assume that it is true for
n − 1. Let 〈u, v〉 ≤ 〈x, y〉 ∈ Xn. By definition, 〈x, y〉 is a lateral join of two
elements of Xn−1, that is, 〈x, y〉 = 〈x0, y〉 ∨ 〈x1, y〉, where 〈x0, y〉, 〈x1, y〉 ∈ Xn−1

(or symmetrically). Therefore, u ≤ x0 ∨ x1 in A and v ≤ y in B. Since A is
distributive, there are x′

0 ≤ x0 and x′
1 ≤ x1 in A such that u = x′

0∨x′
1. Since Xn−1

is hereditary, 〈x′
0, y〉, 〈x

′
1, y〉 ∈ Xn−1 and also 〈x′

0, v〉, 〈x
′
1, v〉 ∈ Xn−1. This implies

that 〈u, v〉 = 〈x′
0 ∨ x′

1, v〉 = 〈x′
0, v〉 ∨ 〈x′

1, v〉 ∈ Xn, since u = x′
0 ∨ x′

1 and the join,
〈x′

0, v〉 ∨ 〈x′
1, v〉, is a lateral join. �

Claim 2. I ∨ J =
⋃

(Xn | n < ω ).

Proof. Obvious, from Claim 1. �

Now to prove the lemma, let I, J , and K be bi-ideals of A × B. Since (I ∧
K) ∨ (J ∧ K) ⊆ (I ∨ J) ∧ K, to prove distributivity, it is enough to verify the
reverse inclusion. So let 〈x, y〉 ∈ (I ∨ J) ∧ K. Then 〈x, y〉 ∈ I ∨ J , so by Claim 2,
〈x, y〉 ∈ Xn, for some n ≥ 0. We now prove by induction on n that 〈x, y〉 ∈
(I ∧ K) ∨ (J ∧ K). If n = 0, then 〈x, y〉 ∈ I ∪ J ; since 〈x, y〉 ∈ K, we obtain
that 〈x, y〉 ∈ (I ∪ J) ∩ K ⊆ (I ∩ K) ∪ (J ∩ K) ⊆ (I ∧ K) ∨ (J ∧ K). Let us
assume that the statement is true for n − 1 and let 〈x, y〉 ∈ Xn. So, 〈x, y〉 is a
lateral join, that is, 〈x, y〉 = 〈x0, y〉 ∨ 〈x1, y〉, where 〈x0, y〉, 〈x1, y〉 ∈ Xn−1 (or
symmetrically). By the induction hypothesis, 〈x0, y〉, 〈x1, y〉 ∈ (I ∧ K) ∨ (J ∧ K).
Since (I ∧ K) ∨ (J ∧ K) is a bi-ideal and 〈x, y〉 = 〈x0, y〉 ∨ 〈x1, y〉 is a lateral join,
we conclude that 〈x, y〉 ∈ (I ∧ K) ∨ (J ∧ K). �

We can also derive this lemma from the theory developed in F. Wehrung [13]. Let
A and B be distributive semilattices with zero. Thus they are conical refinement
monoids in the sense of [13]. By Theorem 2.7 in [13], the tensor product A ⊗cm B
of A and B in the category of commutative monoids, monoid homomorphisms, and
monoid bimorphisms (as defined in Section 1 of [13]) is a conical refinement monoid.
But it is trivial that A ⊗cm B is also the tensor product of A and B as defined
in the present paper—this amounts to verifying that A ⊗cm B is a semilattice.
For semilattices, distributivity is equivalent to the refinement property and the
refinement property is preserved under tensor products (see [13]), so the lemma
follows.

Remark 6.4. Even for finite lattices A and B, one cannot deduce Lemma 6.3
directly from Theorem 3.3 of [3], because the tensor product considered in [3] is
the tensor product of arbitrary join-semilattices (not necessarily with zero), and
the resulting tensor product is not isomorphic to ours, in general. However, this
difficulty is easy to overcome: if A⊗F B is Fraser’s tensor product of A and B, then
it is easy to see that A ⊗ B, as defined in this paper, is the quotient of A ⊗F B by
the bi-ideal generated by all elements of the form x ⊗F 0B (x ∈ A) and 0A ⊗F y
(y ∈ B); thus we can conclude Lemma 6.3 by Theorem 3.3 of [3] for finite lattices.

Now we can state the embedding result:

Theorem 1 (Embedding Theorem). Let A and B be lattices with zero, and let
C be a sub-tensor product of A and B. Then the natural {∨, 0}-homomorphism

εC : Conc A ⊗ Conc B → Conc C
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is a {∨, 0}-embedding.

Proof. Let γ =
∨

(αi ⊗ βi | i < m ) and δ =
∨

(α′
j ⊗ β′

j | j < n ) be elements of

Conc A ⊗ Conc B (with the αi, α′
j in Conc A and the βi, β′

j in Conc B). We prove
that εC(γ) ≤ εC(δ) implies that γ ≤ δ, which implies that εC is an embedding.

The assumption means that
∨

(αi ⊙C βi | i < m ) ≤
∨

(α′
j ⊙C β′

j | j < n ).

Now recall that α′
j ⊙C β′

j = εA,C(α′
j) ∧ εB,C(β′

j). Using the fact that ConC is a
distributive lattice and that both εA,C and εB,C are {∨, 0}-homomorphisms, it is
easy to see that this is equivalent to saying that, for all i < m and all X ⊆ n, we
have

αi ⊙C βi ≤ εA,C

(

∨

(α′
j | j ∈ X )

)

∨ εB,C

(

∨

(β′
j | j ∈ n − X )

)

=
∨

(α′
j | j ∈ X ) �C

∨

(β′
j | j ∈ n − X ) (by Lemma 6.1).

Therefore, by Lemma 6.2, for all i < m and all X ⊆ n,

αi ≤
∨

(α′
j | j ∈ X ) or βi ≤

∨

(β′
j | j ∈ n − X ).

By Lemma 6.3, Conc A⊗Conc B is a distributive semilattice, thus Conc A⊗Conc B
is a distributive lattice. Therefore, computing in this lattice yields that, for all
i < m,

αi ⊗ βi ≤
∧

(
∨

(α′
j ⊗ ιB | j ∈ X ) ∨

∨

( ιA ⊗ β′
j | j ∈ n − X ) | X ⊆ n )

=
∨

(

(α′
j ⊗ ιB) ∧ (ιA ⊗ β′

j) | j < n
)

=
∨

(α′
j ⊗ β′

j | j < n ) = δ,

whence, γ ≤ δ. �

7. The Isomorphism Theorem

We introduced capped bi-ideals in Definition 2.13. We now apply this concept
to sub-tensor products and tensor products.

Definition 7.1. Let A and B be lattices with zero. A capped sub-tensor product
of A and B is a sub-tensor product C of A and B such that every element of C is
capped (that is, it is a finite union of pure tensors).

We say that the tensor product A ⊗ B is capped, if every compact bi-ideal of
A × B is capped.

In this section, we will prove that if C is a capped sub-tensor product of A and B,
then the embedding εC of the Embedding Theorem is an isomorphism.

Lemma 7.2. Let A and B be lattices with zero. Then A⊗B is capped if and only
if A ⊗ B is a capped sub-tensor product of A ⊗ B. In particular, if every element
of A ⊗ B is capped, then A ⊗ B is a lattice.

Proof. We prove the nontrivial direction. So, suppose that every element of A⊗B
is capped. Let H and K be elements of A ⊗ B. Then we can write H and K as

H =
⋃

( ai ⊗ bi | i < m ),

K =
⋃

( a′
j ⊗ b′j | j < n ),
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where m and n are positive integers and, for all i < m and j < n, ai, a′
j ∈ A and

bi, b′j ∈ B. Therefore, by Lemma 2.11,

H ∩ K =
⋃

( (ai ∧ a′
j) ⊗ (bi ∧ b′j) | i < m and j < n ),

whence, H ∩ K ∈ A ⊗ B. Thus A ⊗ B is a lattice. We conclude the argument by
Proposition 4.3. �

We prepare the proof of the Isomorphism Theorem with the following statement:

Lemma 7.3. Let A and B be lattices with zero, let C be a capped sub-tensor product
of A and B. Let n be a natural number, let a ≤ a′ in A, b ≤ b′ in B, and let ai ≤ a′

and bi ≤ b′ (for all i < n) be such that the following element

K = (a ⊗ b′) ∪ (a′ ⊗ b) ∪
⋃

( ai ⊗ bi | i < n )

belongs to C. Then the congruence ΘC(K, a′ ⊗ b′) is in the range of εC.

Proof. We prove this statement by induction on n. For n = 0, the congruence
ΘC(K, a′ ⊗ b′) is, by Lemma 5.3, equal to ΘA(a, a′)⊙C ΘB(b, b′), which belongs to
the range of εC .

Now assume that n > 0 and that the lemma holds for all integers less than n.
We prove that we can assume, without loss of generality, that a ≤ ai ≤ a′, for all
i < n. Indeed, let

K ′ = (a ⊗ b′) ∪ (a′ ⊗ b) ∪
⋃

( (a ∨ ai) ⊗ bi | i < n ).

It is obvious that K ⊆ K ′. On the other hand, for all i < n, we have

(a ⊗ b′) ∨ (ai ⊗ bi) ⊇ (a ⊗ bi) ∨ (ai ⊗ bi) = (a ∨ ai) ⊗ bi,

from which it follows that

K ′ ⊆ (a ⊗ b′) ∨ (a′ ⊗ b) ∨
∨

( ai ⊗ bi | i < n ) = K,

so that K = K ′.
Similarly, we can assume that b ≤ bi ≤ b′, for all i < n.
Set a† =

∨

( ai | i < n ).

Claim 1. The elements a† ⊗ b′, K ∩ (a† ⊗ b′) belong to C and the congruence
ΘC(a† ⊗ b′, K ∩ (a† ⊗ b′)) belongs to the range of εC.

Proof. a† ⊗ b′, K ∩ (a† ⊗ b′) ∈ C since pure tensors belong to C, K ∈ C by
assumption, and C is closed under set intersection, by definition.

For all i < n, using Proposition 4.2(i) and the fact that b ≤ bi, compute:

(2)
K ∩ (ai ⊗ b′) = (a ⊗ b′) ∪ (ai ⊗ b) ∪

⋃

( (aj ∧ ai) ⊗ bj | j < n )

= (a ⊗ b′) ∪ (ai ⊗ bi) ∪
⋃

( (aj ∧ ai) ⊗ bj | j < n, j 6= i ).

Thus, by the induction hypothesis and (2), ΘC(ai ⊗ b′, K ∩ (ai ⊗ b′)) belongs to
the range of εC .

Furthermore, for all x ∈ A, ΘC(K ∩ (x⊗ b′), x⊗ b′) is the least congruence Θ of
C such that [x ⊗ b′]Θ ≤ [K]Θ. Since a† ⊗ b′ =

∨

( ai ⊗ b′ | i < n ), it follows easily
that

ΘC(K ∩ (a† ⊗ b′), a† ⊗ b′) =
∨

(

ΘC(K ∩ (ai ⊗ b′), ai ⊗ b′) | i < n
)

.

The conclusion of the claim follows. �
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Claim 2. The elements a′ ⊗ b′, K, a†⊗ b′, K ∩ (a† ⊗ b′), (a†⊗ b′)∨ (a′ ⊗ b), belong
to C and the following equation holds:

ΘC(K, a′ ⊗ b′) = ΘC(K ∩ (a† ⊗ b′), a† ⊗ b′) ∨ ΘC((a† ⊗ b′) ∨ (a′ ⊗ b), a′ ⊗ b′).

Proof. The elements listed belong to C since pure tensors and mixed tensors belong
to C, K ∈ C by assumption, and C is closed under set intersection.

The inequality ≥ results immediately from the relations

K ⊆ (a† ⊗ b′) ∨ (a′ ⊗ b) ⊆ a′ ⊗ b′.

Conversely, let Θ be the congruence on the right side of the equation. Then (a† ⊗
b′) ∨ K ≡Θ K and (a† ⊗ b′) ∨ (a′ ⊗ b) ≡Θ a′ ⊗ b′, thus we have

a′ ⊗ b′ = K ∨ (a′ ⊗ b′) ≡Θ K ∨ (a† ⊗ b′) ∨ (a′ ⊗ b) ≡Θ K ∨ (a′ ⊗ b) = K,

which proves the inequality ≤. �

But it follows from Lemma 5.3 that

ΘC((a† ⊗ b′) ∨ (a′ ⊗ b), a′ ⊗ b′) = ΘA(a†, a′) ⊙C ΘB(b, b′),

thus this congruence belongs to the range of εC . Therefore, it follows from Claims 1
and 2 that ΘC(a′ ⊗ b′, K) belongs to the range of εC . �

Theorem 2 (Isomorphism Theorem). Let A and B be lattices with zero, let C
be a capped sub-tensor product of A and B. Then the natural embedding

εC : Conc A ⊗ Conc B → Conc C

is an isomorphism.
In particular, if C is a capped sub-tensor product of A and B, then

Conc A ⊗ Conc B ∼= Conc C.

Proof. By the Embedding Theorem and Lemma 7.2, εC is a {∨, 0}-embedding;
it remains to prove that εC is surjective. So, to conclude, it suffices to prove that
every ΘC(H, K) (where H , K ∈ C) belongs to the range of εC . Without loss of
generality, H ⊆ K. Moreover, if K =

∨

( ai ⊗ bi | i < n ), then we have

ΘC(H, K) =
∨

(ΘC((ai ⊗ bi) ∧ H, ai ⊗ bi) | i < n ),

so that it suffices to conclude in the case where H ≤ K = a′ ⊗ b′, for a′ ∈ A and
b′ ∈ B.

Moreover, since C is a capped sub-tensor product of A and B, H is then a finite
union of pure tensors ai ⊗ bi with ai ≤ a′ and bi ≤ b′. Hence, the theorem follows
immediately from Lemma 7.3 (with a = 0 and b = 0). �

8. Discussion

8.1. Some corollaries. In this section, we list some consequences of the results of
the last few sections.

The following corollary is the first part of the Main Theorem of this paper as
stated in the Introduction:

Corollary 8.1. Let A and B be lattices with zero. If A⊗B is a lattice, then there
is a natural embedding of Conc A ⊗ Conc B into Conc(A ⊗ B).
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Proof. If A ⊗ B is a lattice, then C = A ⊗ B is a sub-tensor product of A and B
by Proposition 4.3, so this corollary follows from the Embedding Theorem (Theo-
rem 1). �

The next corollary is second part of the Main Theorem of this paper:

Corollary 8.2. Let A and B be lattices with zero. If A ⊗ B is capped, then

Conc A ⊗ Conc B ∼= Conc(A ⊗ B).

In fact, an isomorphism is exhibited by the natural map ε = εA⊗B.

Proof. Indeed, if A ⊗ B is a capped tensor product, then C = A ⊗ B is a capped
sub-tensor product of A and B by Lemma 7.2, so this corollary follows from the
Isomorphism Theorem (Theorem 2). �

Corollary 8.3. Let A be a lattice with zero and let S be a simple lattice with zero.
If A ⊗ S is capped, then Con A ∼= Con(A ⊗ S).

Proof. This is obvious because if S is simple, then ConS = Conc S is the two-
element chain and so Conc A⊗Conc S ∼= Conc A. By Corollary 8.2, Conc(A⊗S) ∼=
Conc A, and therefore, Con(A ⊗ S) ∼= Con A. �

We can also recover (and generalize) Theorem 4.2 and Corollary 4.4 of [5], using
the following trivial statement:

Proposition 8.4. Let A and B be {∨, 0}-semilattices. Then the atoms of A ⊗ B
are exactly the pure tensors a⊗b, where a and b are atoms of A and B, respectively.

Corollary 8.5. Let A and B be lattices with zero with |A|, |B| > 1, let C be a capped
sub-tensor product of A and B. Then C is simple (resp., subdirectly irreducible) if
and only if A and B are simple (resp., subdirectly irreducible).

Proof. If A and B are simple, then, by the Isomorphism Theorem, Conc C ∼=
Conc A ⊗ Conc B, and so Conc C is the two-element chain; it follows that C is
simple.

If A and B are subdirectly irreducible, then A has a congruence Φ > ω with
the property that Φ ≤ α, for any congruence α > ω of A, and B has a congruence
Θ > ω with the property that Θ ≤ β, for any congruence β > ω of B. It is
evident that Φ ∈ Conc A and Θ ∈ Conc B and so Φ ⊗ Θ is the unique atom of
Conc A⊗Conc B contained in all nonzero elements. By the Isomorphism Theorem,
Φ⊙C Θ is the unique atom of Conc C contained in all nonzero elements. Since this
property is preserved when forming the ideal lattice, Φ⊙C Θ is the unique atom of
ConC contained in all nonzero elements, hence, C is subdirectly irreducible. �

8.2. The paper [5]. The first draft of [5] contained only the result stated in the
Introduction as the “Main result of [5]”. The published version, however, contained
two generalizations:

Theorem 3.16 of [5]. Let A a finite lattice and let B be an A-lower bounded lattice
with 0. Then the isomorphism

Con A ⊗ Con B ∼= Con(A ⊗ B)

holds.

In this result, the following concept is used:
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Definition 8.6. Let A be a finite lattice and let B be a lattice with 0. We say
that B is A-lower bounded, if, for every n > 0 and n-ary polynomial p0, any subset
of B of the form

{ (pd)B(b0, b1, . . . , bn−1) | pA(a0, a1, . . . , an−1) = (p0)A(a0, a1, . . . , an−1) }

(where p ranges over all n-ary polynomials) has a largest element.

By Lemma 2.11(iv), we have a formula for the meet of two elements of the tensor
product of lattices. Unfortunately, the right side is, in general, an infinite union.
However, if B is A-lower bounded, then, for given p(~a) and q(~c), we can choose the

largest pd(~b) and qd(~d) and so the right side equals a finite subunion.
Therefore, the condition that A be finite and B be A-lower bounded is the most

natural one under which A ⊗ B is a lattice. Thus Theorem 3.16 of [5] is a natural
extension of the Main result of [5]. Unfortunately, the proof retained from the finite
case the assumption that B has a 1, so, in fact, the result is proved in [5] only under
the additional assumption that B have a unit element.

The above discussion shows that if A is finite and B is A-lower bounded, then
A ⊗ B is capped, so our Isomorphism Theorem proves this result without any
additional assumptions.

Then [5] goes on to argue that nothing changes if A is only assumed to be locally
finite:

Theorem 3.18 of [5]. Let A be a locally finite lattice with zero and let B be an
A-lower bounded lattice with 0. Then the isomorphism

Con A ⊗ Con B ∼= Con(A ⊗ B)

holds.

This is obviously not true. The proof of Theorem 3.16 computes the compact
elements of Con(A ⊗ B). If A is only locally finite, then these computations show
very little about congruences in general, see our Example 5.5 (in the example, both
A and B are distributive, so B is trivially A-lower bounded). The correct form of
Theorem 3.18 of [5] switches to the isomorphism:

Conc A ⊗ Conc B ∼= Conc(A ⊗ B),

which indeed follows from our Isomorphism Theorem.

8.3. The papers [2] and [6]. Let L be a lattice and let D be a bounded distributive
lattice. The lattice L[D] is defined in G. Grätzer and E. T. Schmidt [6] as follows.
First, if D is finite, then let P be the poset of join-irreducible elements of D and
define L[D] as the function lattice LP , that is, the lattice of all order-preserving
maps from P to L, partially ordered componentwise. For an arbitrary bounded
distributive lattice D, define L[D] as the direct limit of all L[D′], where D′ is a
finite {0, 1}-sublattice of D, with the natural embeddings. This construction yields
a lattice L[D] that is isomorphic to the lattice studied in [6], see Lemma 1 in [6].
This construction is studied from a more topological point of view in [2].

L ⊗ D is defined, if L has a zero; one would expect that, in this case, the
isomorphism L[D] ∼= L ⊗ D holds. The reality is slightly more awkward. For a
lattice K, let Kd denote the dual lattice of K. Then the following isomorphism
holds:

(3) L[D] ∼= (Ld ⊗ D)d,
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provided that L has a greatest (as opposed to least) element. Formula (3) is easy
to establish for finite D and the general case follows by a direct limit argument.

In both papers, [2] and [6], the congruence lattice of L[D] is computed from ConL
and ConD. Note that ConD is isomorphic to the ideal lattice of the generalized
Boolean algebra generated by D. For example, Theorem 4 of [6] states that

(4) Conc L[D] ∼= (Conc L)[Conc D].

If L is a lattice with a greatest element, then the isomorphism in (4) is an elementary
consequence of the Isomorphism Theorem, although the proof requires a number of
tedious translations between the two constructions.

We cannot directly deduce Formula (4) for an arbitrary lattice L from the Iso-
morphism Theorem. However, this is possible. In [8], there is even a generalization
of Formula (4) for an arbitrary lattice L and for an arbitrary (not necessarily dis-
tributive) bounded lattice D, with an analogue of Formula (4).

8.4. Some open problems. Many of the problems asking whether the conditions
we use in this paper are also necessary are still open.

If A is a locally finite lattice and B is A-lower bounded, then it is easy to see
that A ⊗ B is capped.

Problem 1. Do there exist lattices A and B with zero so that A ⊗ B is capped
and neither A nor B is locally finite?

Problem 2. Let A and B be lattices with zero, let C be a sub-tensor product of
A and B. Is C a capped sub-tensor product of A and B?

Specializing Problem 2 to C = A ⊗ B yields the following question:

Problem 3. Let A and B be lattices with zero. If A ⊗ B is a lattice, is A ⊗ B
capped?

We prove in [7] that the answer to Problem 3 is positive, if A or B is locally
finite. Moreover, we provide the example M3 ⊗ F(3) of a tensor product of lattices
with zero that is not a lattice. In [10] we exhibit a three-generated planar lattice L
such that M3 ⊗ L is not a lattice.

If A ⊗ B is capped, then C = A ⊗ B is the largest sub-tensor product of A and
B.

Problem 4. Let A and B be lattices with zero. Does there always exist a largest
sub-tensor product (resp., a largest capped sub-tensor product) of A and B?

For a join-semilattice S with zero, denote by ConL S the set of all L-congruences
of S. The results of Section 3 suggest that 〈ConL S,⊆〉 must behave to some extent
as the congruence lattice of a lattice.

Problem 5. What is the structure of 〈ConL S,⊆〉?

Theorem 4.6 of [5] investigates subdirectly irreducible quotients of a tensor prod-
uct of lattices with zero. For finite lattices A and B, it is proved that the completely
meet-irreducible congruences of A⊗B are exactly the congruences of the form α�β,
where α, β are completely meet-irreducible congruences of A, B, respectively. The
proof of Theorem 4.6 (and consequently, of Theorem 4.7 and Theorem 4.9 of [5])
does not apply to infinite lattices.
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Problem 6. Let A and B be lattices with zero, let C be a capped sub-tensor
product of A and B. Are the completely meet-irreducible congruences of A ⊗
B exactly the congruences of the form α �C β where α, β are completely meet-
irreducible congruences of A, B, respectively?

Note that by Corollary 3.7(iii) and the Isomorphism Theorem, every congruence
of the form α �C β, where α, β are completely meet-irreducible congruences of A,
B, respectively, is a completely meet-irreducible congruence of C.

Notation 8.7. For a lattice L with zero,

(i) let D(L) denote the maximal distributive quotient of L;
(ii) let ΘD(L) denote the kernel of the natural homomorphism onto the max-

imal distributive quotient of L;
(iii) let ΘM(L) denote the kernel of the natural homomorphism onto the max-

imal modular quotient of L.

Problem 7. Let A and B be lattices with zero. If A⊗B is capped, is it then true
that

D(A ⊗ B) ∼= D(A) ⊗ D(B)

holds?

The proof presented in Theorem 4.7 of [5] applies to the finite case.

Problem 8. Let A and B be lattices with zero. If A⊗B is capped, is it then true
that

ΘM(A ⊗ B) = (ΘD(A) � ΘM(B)) ∧ (ΘM(A) � ΘD(B))

holds?

Again, the proof presented in Theorem 4.7 of [5] applies in the finite case.
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