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FLAT SEMILATTICES

G. GRÄTZER AND F. WEHRUNG

Abstract. Let A, B, and S be {∨, 0}-semilattices and let f : A →֒ B be a
{∨, 0}-semilattice embedding. Then the canonical map, f ⊗ idS , of the tensor
product A⊗S into the tensor product B ⊗S is not necessarily an embedding.

The {∨, 0}-semilattice S is flat, if for every embedding f : A →֒ B, the
canonical map f ⊗ id is an embedding. We prove that a {∨, 0}-semilattice S

is flat if and only if it is distributive.

Introduction

Let A and B be {∨, 0}-semilattices. We denote by A ⊗ B the tensor product of
A and B, defined as the free {∨, 0}-semilattice generated by the set

(A − {0})× (B − {0})

subject to the relations

〈a, b0〉 ∨ 〈a, b1〉 = 〈a, b0 ∨ b1〉,

for a ∈ A − {0}, b0, b1 ∈ B − {0}; and symmetrically,

〈a0, b〉 ∨ 〈a1, b〉 = 〈a0 ∨ a1, b〉,

for a0, a1 ∈ A − {0}, b ∈ B − {0}.
A ⊗ B is a universal object with respect to a natural notion of bimorphism, see

[2], [4], and [6]. This definition is similar to the classical definition of the tensor
product of modules over a commutative ring. Thus, for instance, flatness is defined
similarly: The {∨, 0}-semilattice S is flat, if for every embedding f : A →֒ B, the
canonical map f ⊗ idS : A ⊗ S → B ⊗ S is an embedding.

Our main result is the following:

Theorem. Let S be a {∨, 0}-semilattice. Then S is flat iff S is distributive.

1. Background

1.1. Basic concepts. We shall adopt the notation and terminology of [6]. In
particular, for every {∨, 0}-semilattice A, we use the notation A− = A−{0}. Note
that A− is a subsemilattice of A.

A semilattice S is distributive, if whenever a ≤ b0 ∨ b1 in S, then there exist
a0 ≤ b0 and a1 ≤ b1 such that a = a0 ∨ a1; equivalently, iff the lattice IdS of all
ideals of S, ordered under inclusion, is a distributive lattice; see [5].
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1.2. The set representation. In [6], we used the following representation of the
tensor product.

First, we introduce the notation:

∇A,B = (A × {0}) ∪ ({0} × B).

Second, we introduce a partial binary operation on A×B: let 〈a0, b0〉, 〈a1, b1〉 ∈
A × B; the lateral join of 〈a0, b0〉 and 〈a1, b1〉 is defined if a0 = a1 or b0 = b1, in
which case, it is the join, 〈a0 ∨ a1, b0 ∨ b1〉.

Third, we define bi-ideals: a nonempty subset I of A×B is a bi-ideal of A×B,
if it satisfies the following conditions:

(i) I is hereditary;
(ii) I contains ∇A,B;
(iii) I is closed under lateral joins.

The extended tensor product of A and B, denoted by A ⊗ B, is the lattice of all
bi-ideals of A × B.

It is easy to see that A ⊗ B is an algebraic lattice. For a ∈ A and b ∈ B, we
define a ⊗ b ∈ A ⊗ B by

a ⊗ b = ∇A,B ∪ { 〈x, y〉 ∈ A × B | 〈x, y〉 ≤ 〈a, b〉 }

and call a ⊗ b a pure tensor. A pure tensor is a principal (that is, one-generated)
bi-ideal.

Now we can state the representation:

Proposition 1.1. The tensor product A⊗B can be represented as the {∨, 0}-sub-

semilattice of compact elements of A ⊗ B.

1.3. The construction of A ~⊗ B. The proof of the Theorem uses the following
representation of the tensor product, see J. Anderson and N. Kimura [1].

Let A and B be {∨, 0}-semilattices. Define

A ~⊗ B = Hom(〈A−;∨〉, 〈Id B;∩〉)

and for ξ ∈ A ~⊗ B, let

ε(ξ) = { 〈a, b〉 ∈ A− × B− | b ∈ ξ(a) } ∪ ∇A,B.

Proposition 1.2. The map ε is an order preserving isomorphism between A ⊗ B

and A ~⊗ B and, for H ∈ A ⊗ B, ε−1(H) is given by the formula

ε−1(H)(a) = { b ∈ B | 〈a, b〉 ∈ H },

for a ∈ A−.

If a ∈ A and b ∈ B, then ε(a ⊗ b) is the map ξ : A− → IdB:

ξ(x) =

{
(b], if x ≤ a;

{0}, otherwise.

If A is finite, then a homomorphism from 〈A−;∨〉 to 〈Id B;∩〉 is determined by
its restriction to J(A), the set of all join-irreducible elements of A. For example,
let A be a finite Boolean semilattice, say A = P(n) (n is a non-negative integer,
n = {0, 1, . . . , n − 1}), then A ⊗ B ∼= (Id B)n, and the isomorphism from A ⊗ B

onto (IdB)n given by Proposition 1.2 is the unique complete {∨, 0}-homomorphism
sending every element of the form {i} ⊗ b (i < n and b ∈ B) to 〈(δijb] | j < n〉
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(where δij is the Kronecker symbol). If n = 3, let β : P(3) ⊗ S → (Id S)3 denote
the natural isomorphism.

Next we compute A ~⊗ B, for A = M3, the diamond, and A = N5, the pentagon
(see Figure 1). In the following two subsections, let S be a {∨, 0}-semilattice.

Furthermore, we shall denote by S̃ the ideal lattice of S, and identify every element

s of S with its image, (s], in S̃.

Figure 1

a
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b
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N5 M3

1.4. The lattices M3⊗S and M3[S̃]; the map i. Let M3 = {0, p, q, r, 1}, J(M3) =
{p, q, r} (see Figure 1). The nontrivial relations of J(M3) are the following:

p < q ∨ r, q < p ∨ r, and r < p ∨ q. (1)

Accordingly, for every lattice L, we define

M3[L] = { 〈x, y, z〉 ∈ L3 | x ∧ y = x ∧ z = y ∧ z } (2)

(this is the Schmidt’s construction, see [9] and [10]). The isomorphism from M3⊗S

onto M3[S̃] given by Proposition 1.2 is the unique complete {∨, 0}-homomorphism
α such that, for all x ∈ S,

α(p ⊗ x) = 〈x, 0, 0〉,

α(q ⊗ x) = 〈0, x, 0〉,

α(r ⊗ x) = 〈0, 0, x〉.

We shall make use later of the unique {∨, 0}-embedding

i : M3 →֒ P(3)

defined by

i(p) = {1, 2},

i(q) = {0, 2},

i(r) = {0, 1}.
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1.5. The lattices N5 ⊗ S and N5[S̃]; the map i′. Let N5 = {0, a, b, c, 1},
J(N5) = {a, b, c} with a > c (see Figure 1). The nontrivial relations of J(N5)
are the following:

c < a and a < b ∨ c. (3)

Accordingly, for every lattice L, we define

N5[L] = { 〈x, y, z〉 ∈ L3 | y ∧ z ≤ x ≤ z }. (4)

The isomorphism from N5 ⊗ S onto N5[S̃], given by Proposition 1.2, is the unique
complete {∨, 0}-homomorphism α′ such that, for all x ∈ S,

α′(a ⊗ x) = 〈x, 0, x〉,

α′(b ⊗ x) = 〈0, x, 0〉,

α′(c ⊗ x) = 〈0, 0, x〉.

We shall make use later of the unique {∨, 0}-embedding

i′ : N5 →֒ P(3)

defined by

i′(a) = {0, 2},

i′(b) = {1, 2},

i′(c) = {0}.

1.6. The complete homomorphisms f ⊗ g. The proof of the following lemma
is straightforward:

Lemma 1.3. Let A, B, A′, and B′ be {∨, 0}-semilattices, let f : A → A′ and

g : B → B′ be {∨, 0}-homomorphisms. Then the natural {∨, 0}-homomorphism

h = f⊗g from A⊗B to A′⊗B′ extends to a unique complete {∨, 0}-homomorphism

h = f ⊗ g from A ⊗ B to A′ ⊗ B′. Furthermore, if h is an embedding, then h is

also an embedding.

We refer to Proposition 3.4 of [6] for an explicit description of the map h.

2. Characterization of flat {∨, 0}-semilattices

Our definition of flatness is similar to the usual one for modules over a commu-
tative ring:

Definition. A {∨, 0}-semilattice S is flat, if for every embedding f : A →֒ B of
{∨, 0}-semilattices, the tensor map f ⊗ idS : A ⊗ S → B ⊗ S is an embedding.

In this definition, idS is the identity map on S.
In Lemmas 2.1–2.3, let S be a {∨, 0}-semilattice and we assume that both ho-

momorphisms f = i ⊗ idS and f ′ = i′ ⊗ idS are embeddings.

As in the previous section, we use the notation S̃ = Id S, and identify every
element s of S with the corresponding principal ideal (s].

We define the maps g : M3[S̃] → S̃3 and g′ : N5[S̃] → S̃3 by the following formu-
las:

For all 〈x, y, z〉 ∈ M3[S̃], g(〈x, y, z〉) = 〈y ∨ z, x ∨ z, x ∨ y〉,

For all 〈x, y, z〉 ∈ N5[S̃], g′(〈x, y, z〉) = 〈z, y, x∨ y〉.
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Note that g and g′ are complete {∨, 0}-homomorphisms. The proof of the fol-
lowing lemma is a straightforward calculation.

Lemma 2.1. The following two diagrams commute:

M3 ⊗ S
f

−−−−→ P(3) ⊗ S

α

y
yβ

M3[S̃] −−−−→
g

S̃3

N5 ⊗ S
f ′

−−−−→ P(3) ⊗ S

α′

y
yβ

N5[S̃] −−−−→
g′

S̃3

Therefore, both g and g′ are embeddings.

Lemma 2.2. The lattice S̃ does not contain a copy of M3.

Proof. Suppose, on the contrary, that S̃ contains a copy of M3, say {o, x, y, z, i}
with o < x, y, z < i. Then both elements u = 〈x, y, z〉 and v = 〈i, i, i〉 of L3

belong to M3[S̃], and g(u) = g(v) = 〈i, i, i〉. This contradicts the fact, proved in
Lemma 2.1, that g is one-to-one. �

Lemma 2.3. The lattice S̃ does not contain a copy of N5.

Proof. Suppose, on the contrary, that S̃ contains a copy of N5, say {o, x, y, z, i} with
o < x < z < i and o < y < i. Then both elements u = 〈x, y, z〉 and v = 〈z, y, z〉 of

L3 belong to N5[S̃], and g′(u) = g′(v) = 〈z, y, i〉. This contradicts the fact, proved
in Lemma 2.1, that g′ is one-to-one. �

Lemmas 2.2 and 2.3 together prove that S̃ is distributive, and therefore S is a
distributive semilattice. Now we are in position to prove the main result of this
paper in the following form:

Theorem 1. Let S be a {∨, 0}-semilattice. Then the following are equivalent:

(i) S is flat.

(ii) Both homomorphisms i ⊗ idS and i′ ⊗ idS are embeddings.

(iii) S is distributive.

Proof.

(i) implies (ii). This is trivial.
(ii) implies (iii). This was proved in Lemmas 2.2 and 2.3.
(iii) implies (i). Let S be a distributive {∨, 0}-semilattice; we prove that S is

flat. Since the tensor product by a fixed factor preserves direct limits (see Propo-
sition 2.6 of [6]), flatness is preserved under direct limits. By P. Pudlák [8], every
distributive join-semilattice is the direct union of all its finite distributive subsemi-
lattices; therefore, it suffices to prove that every finite distributive {∨, 0}-semilattice
S is flat. Since S is a distributive lattice, it admits a lattice embedding into a finite
Boolean lattice B. We have seen in Section 1.3 that if B = P(n), then A⊗B = An

(up to a natural isomorphism), for every {∨, 0}-semilattice A. It follows that B
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is flat. Furthermore, the inclusion map S →֒ B is a lattice embedding; in particu-
lar, with the terminology of [6], an L-homomorphism. Thus, the natural map from
A ⊗ S to A ⊗ B is, by Proposition 3.4 of [6], a {∨, 0}-semilattice embedding. This
implies the flatness of S. �

3. Discussion

It is well-known that a module over a given principal ideal domain R is flat
if and only if it is torsion-free, which is equivalent to the module being a direct
limit of (finitely generated) free modules over R. So the analogue of the concept
of torsion-free module for semilattices is be the concept of distributive semilattice.
This analogy can be pushed further, by using the following result, proved in [3]:
a join-semilattice is distributive iff it is a direct limit of finite Boolean semilattices.

Problem 1. Let V be a variety of lattices. Let us say that a {∨, 0}-semilattice S

is in V, if IdS as a lattice is in V. Is every {∨, 0}-semilattice in V a direct limit
(resp., direct union) of finite join-semilattices in V?

If V is the variety of all lattices, we obtain the obvious result that every {∨, 0}-
semilattice is the direct union of its finite {∨, 0}-subsemilattices. If V is the variety
of all distributive lattices, there are two results (both quoted above): P. Pudlák’s
result and K. R. Goodearl and the second author’s result.

Problem 2. Let V be a variety of lattices. When is a {∨, 0}-semilattice S flat with
respect to {∨, 0}-semilattice embeddings in V? That is, when is it the case that for
all {∨, 0}-semilattices A and B in V and every semilattice embedding f : A →֒ B,
the natural map f ⊗ idS is an embedding?
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