The $M _3[D]$ construction and n-modularity
 George Grätzer, Friedrich Wehrung

To cite this version:

George Grätzer, Friedrich Wehrung. The M_3[D] construction and n-modularity. Algebra Universalis, 1999, 41, no. 2, pp.87-114. 10.1007/s000120050102 . hal-00004046

HAL Id: hal-00004046

https://hal.science/hal-00004046

Submitted on 24 Jan 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE $M_{3}[D]$ CONSTRUCTION AND n-MODULARITY

G. GRÄTZER AND F. WEHRUNG

Abstract

In 1968, E. T. Schmidt introduced the $M_{3}[D]$ construction, an extension of the five-element nondistributive lattice M_{3} by a bounded distributive lattice D, defined as the lattice of all triples $\langle x, y, z\rangle \in D^{3}$ satisfying $x \wedge y=x \wedge z=y \wedge z$. The lattice $M_{3}[D]$ is a modular congruence-preserving extension of D.

In this paper, we investigate this construction for an arbitrary lattice L. For every $n>0$, we exhibit an identity $\boldsymbol{\mu}_{n}$ such that $\boldsymbol{\mu}_{1}$ is modularity and $\boldsymbol{\mu}_{n+1}$ is properly weaker than $\boldsymbol{\mu}_{n}$. Let \mathbf{M}_{n} denote the variety defined by $\boldsymbol{\mu}_{n}$, the variety of n-modular lattices. If L is n-modular, then $M_{3}[L]$ is a lattice, in fact, a congruence-preserving extension of L; we also prove that, in this case, $\operatorname{Id} M_{3}[L] \cong M_{3}[\operatorname{Id} L]$.

We provide an example of a lattice L such that $M_{3}[L]$ is not a lattice. This example also provides a negative solution to a problem of R. W. Quackenbush: Is the tensor product $A \otimes B$ of two lattices A and B with zero always a lattice. We complement this result by generalizing the $M_{3}[L]$ construction to an $M_{4}[L]$ construction. This yields, in particular, a bounded modular lattice L such that $M_{4} \otimes L$ is not a lattice, thus providing a negative solution to Quackenbush's problem in the variety \mathbf{M} of modular lattices.

Finally, we sharpen a result of R. P. Dilworth: Every finite distributive lattice can be represented as the congruence lattice of a finite 3-modular lattice. We do this by verifying that a construction of G. Grätzer, H. Lakser, and E. T. Schmidt yields a 3-modular lattice.

1. Introduction

E. T. Schmidt [11] and [12] introduced the following construction. Let M_{3} be the five-element, modular, nondistributive lattice and let D be a bounded distributive lattice. The lattice M_{3} extended by D, denoted by $M_{3}[D]$, is the lattice of all triples $\langle x, y, z\rangle \in D^{3}$ satisfying $x \wedge y=x \wedge z=y \wedge z$; we call such triples balanced. Then $M_{3}[D]$ is a (modular) lattice and $M_{3}[D]$ and D have isomorphic congruence lattices. Meet in $M_{3}[D]$ is performed componentwise, while the join is the smallest balanced triple in $M_{3}[D]$ containing the triple formed by componentwise joins.

Note that the elements $\langle x, 0,0\rangle, x \in D$, form a sublattice of $M_{3}[D]$ isomorphic to D. We identify $\langle x, 0,0\rangle \in M_{3}[D]$ with $x \in D$, making $M_{3}[D]$ an extension of D.

Let L be a lattice. A lattice K is a congruence-preserving extension of L, if K is an extension of L and every congruence of L has exactly one extension to K. Of course, then the congruence lattice of L is isomorphic to the congruence lattice of K. E. T. Schmidt proved that $M_{3}[D]$ is a congruence-preserving extension of D.

[^0]This construction plays a central role in a number of papers dealing with congruences of modular lattices, see G. Grätzer and E. T. Schmidt [4] and [5], as two recent references.

This paper started with a problem proposed in G. Grätzer and E. T. Schmidt [4]: Does every lattice have a proper congruence-preserving extension? (We solved this problem in G. Grätzer and F. Wehrung [6].) Of course, if the lattice is a bounded distributive lattice D, then $M_{3}[D]$ is such an extension. So two problems were raised:

1. For what classes of lattices \mathbf{C}, is $M_{3}[L]$ a lattice for $L \in \mathbf{C}$?
2. When is $M_{3}[L]$ a congruence-preserving extension of L ?

Surprisingly, in addition to Schmidt's result ($M_{3}[D]$ is a (modular) lattice provided that D is a bounded distributive lattice), we could only find one other relevant result in the literature, see R. W. Quackenbush [10]: if L is modular, then $M_{3}[L]$ is a lattice.

In Section 2, we define a lattice identity $\boldsymbol{\mu}_{n}$, for every $n>0$, such that $\boldsymbol{\mu}_{1}$ is equivalent to the modular identity and $\boldsymbol{\mu}_{n+1}$ is weaker than $\boldsymbol{\mu}_{n}$. Let \mathbf{M}_{n} denote the variety defined by $\boldsymbol{\mu}_{n}$; we call \mathbf{M}_{n} the variety of n-modular lattices. We prove that if L is a n-modular lattice, then $M_{3}[L]$ is a lattice and it is a congruence-preserving extension of L. In Section 3, we verify that $\mathbf{M}_{n} \subset \mathbf{M}_{n+1}$ and \mathbf{M}_{n} gets very large as n gets large: $\bigcup\left(\mathbf{M}_{n} \mid n<\omega\right)$ generates the variety \mathbf{L}.

We show, in Section 4, that $M_{3}[L]$ is, in general, not a lattice. In Section 5, we show how we can remove the condition that L be bounded in the results of the previous sections. In Section 6, we explain how the two different definitions of $M_{3}[D]$ in the literature can be reconciled using tensor products, and we obtain the isomorphism $M_{3}[L] \cong M_{3} \otimes L$, for any lattice L with zero which satisfies $\boldsymbol{\mu}_{n}$ for some n. It follows, then, that the result of Section 4 can be reinterpreted: there is a lattice L with zero such that $M_{3} \otimes L$ is not a lattice. This solves, in the negative, a problem proposed in R. W. Quackenbush [10]: Is the tensor product of two lattices with zero always a lattice? In fact, our counterexample consists of two planar lattices. In Section 7, we show the there is a counterexample consisting of two modular lattices, M_{4} and the subspace lattice of any infinite dimensional vector space. There is another result on n-modular lattices in Section 6: $\operatorname{Id} M_{3}[L] \cong M_{3}[\operatorname{Id} L]$.

In Section 8, we prove that every finite distributive lattice can be represented as the congruence lattice of a finite 3 -modular lattice L. Without 3-modularity, this is a result of R. P. Dilworth. We prove this by verifying that the lattice L constructed by G. Grätzer, H. Lakser, and E. T. Schmidt [3] to represent D is, in fact, 3 -modular.

The paper concludes with a discussion of some additional results and a list of open problems in Section 9.

2. The identities

Let L be a lattice. The triple $\langle x, y, z\rangle \in L^{3}$ is balanced, if

$$
x \wedge y=x \wedge z=y \wedge z
$$

We denote by $M_{3}[L]$ the set of all balanced triples. We regard $M_{3}[L]$ as a subposet of L^{3}, in fact, a meet-subsemilattice of L^{3}.

Lemma 2.1. Let L be a lattice. Then $M_{3}[L]$ is a lattice iff $M_{3}[L]$ is a closure system in L^{3}.

Proof. If $M_{3}[L]$ is a closure system and $\left\langle x_{0}, y_{0}, z_{0}\right\rangle,\left\langle x_{1}, y_{1}, z_{1}\right\rangle \in M_{3}[L]$, then the closure of $\left\langle x_{0} \vee x_{1}, y_{0} \vee y_{1}, z_{0} \vee z_{1}\right\rangle$ in $M_{3}[L]$ is the join of $\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and $\left\langle x_{1}, y_{1}, z_{1}\right\rangle$.

Conversely, if $M_{3}[L]$ has joins, then the closure of $\langle x, y, z\rangle \in M_{3}[L]$ is

$$
\langle x, o, o\rangle \vee\langle o, y, o\rangle \vee\langle o, o, z\rangle,
$$

where o is any element of L contained in x, y, and z.
Let us define the lattice polynomials p_{n}, q_{n}, and r_{n}, for $n<\omega$, in the variables x, y, and z :

$$
\begin{array}{rlrl}
p_{0}=x, & q_{0} & =y, & r_{0}=z, \\
p_{1}=x \vee(y \wedge z), & q_{1} & =y \vee(x \wedge z), & r_{1}=z \vee(x \wedge y), \\
& \ldots & \\
p_{n+1}=p_{n} \vee\left(q_{n} \wedge r_{n}\right), & q_{n+1}=q_{n} \vee\left(p_{n} \wedge r_{n}\right), & r_{n+1}=r_{n} \vee\left(p_{n} \wedge q_{n}\right) . \\
\text { Let }\langle x, y, z\rangle \in L^{3} . & \text { Define, for } n>0, & \\
& \langle x, y, z\rangle^{(n)}=\left\langle p_{n}(x, y, z), q_{n}(x, y, z), r_{n}(x, y, z)\right\rangle
\end{array}
$$

Note that

$$
\begin{equation*}
\langle x, y, z\rangle \leq\langle x, y, z\rangle^{(1)} \leq \cdots \leq\langle x, y, z\rangle^{(n)} \leq \cdots \tag{1}
\end{equation*}
$$

Definition 2.2. For $n>0$, define the identity $\boldsymbol{\mu}_{n}$ as $p_{n}=p_{n+1}$. Let \mathbf{M}_{n} be the lattice variety defined by $\boldsymbol{\mu}_{n}$. The lattices in \mathbf{M}_{n} are called n-modular; lattices in $\mathbf{M}_{n}-\mathbf{M}_{n-1}$ are called exactly n-modular or of modularity rank n. A lattice $L \notin \mathbf{M}_{n}$, for all $n<\omega$, is of of modularity rank ∞.
Lemma 2.3. L is an n-modular lattice iff, for all $a, b, c \in L,\langle a, b, c\rangle^{(n)}$ is the closure of $\langle a, b, c\rangle$.

Proof. This statement immediately follows from the definitions.
Corollary 2.4. The following inclusions hold:

$$
\mathbf{M}_{1} \subseteq \mathbf{M}_{2} \subseteq \cdots \subseteq \mathbf{M}_{n} \subseteq \cdots
$$

Corollary 2.5. For every finite lattice L, there is an integer $n>0$ such that L is n-modular.

Proof. Indeed, if L is finite, then the increasing sequence $\langle a, b, c\rangle^{(n)}$ must terminate in L^{3}, so Lemma 2.3 yields this result.

Corollary 2.6. $\bigcup\left(\mathbf{M}_{i} \mid i<\omega\right)$ generates \mathbf{L}, the variety of all lattices.
Proof. Indeed, by Corollary 2.5, $\bigcup\left(\mathbf{M}_{i} \mid i<\omega\right)$ contains all finite lattices and it is well-known that all finite lattices generate the variety \mathbf{L}.

Lemma 2.7. \mathbf{M}_{1} is the variety of modular lattices.
Proof. If L is a modular lattice, then computing in $\mathrm{F}_{\mathbf{M}}(3)$:

$$
p_{2}=(x \vee(y \wedge z)) \vee(y \vee(x \wedge z)) \wedge(z \vee(x \wedge y))=x \vee(y \wedge z)=p_{1}
$$

Conversely, if L is nonmodular, then it contains a pentagon $N_{5}=\{o, a, b, c, i\}$ (with zero o, unit i, and with $b<a$) as a sublattice and

$$
\begin{aligned}
& p_{1}(b, a, c)=b \vee(a \wedge c)=b, \\
& p_{2}(b, a, c)=(b \vee(a \wedge c)) \vee((a \vee(b \wedge c)) \wedge(c \vee(a \wedge b))=a,
\end{aligned}
$$

so $\boldsymbol{\mu}_{1}: p_{1}=p_{2}$ fails with $x=b, y=a$, and $z=c$.
On the other hand, $p_{2}=p_{3}$ holds in N_{5}, so we obtain
Lemma 2.8. The variety \mathbf{N}_{5} generated by N_{5} is 2-modular.
E. T. Schmidt [11] and [12] proved that $M_{3}[L]$ is a modular lattice, if L is distributive. We now prove the converse.

Lemma 2.9. L be a lattice. Then $M_{3}[L]$ is a modular lattice iff L is distributive.
Proof. So let $M_{3}[L]$ be modular. Since $M_{3}[L]$ is an extension of L, it follows that L is modular. If L is not distributive, then L contains $M_{3}=\{o, a, b, c, i\}$, the five element modular nondistributive lattice, as a sublattice. Then $\langle o, o, o\rangle,\langle a, a, a\rangle$, $\langle a, a, i\rangle,\langle b, c, o\rangle,\langle i, i, i\rangle \in M_{3}[L],\langle a, a, i\rangle \wedge\langle b, c, o\rangle=\langle o, o, o\rangle,\langle a, a, a\rangle \vee\langle b, c, o\rangle=$ $\langle i, i, i\rangle$, which easily imply that

$$
N_{5}=\{\langle o, o, o\rangle,\langle a, a, a\rangle,\langle a, a, i\rangle,\langle b, c, o\rangle,\langle i, i, i\rangle\}
$$

is the five-element nonmodular lattice, a sublattice of $M_{3}[L]$, a contradiction.
The following lemma is due to E. T. Schmidt [11], for $n=1$, and to R. W. Quackenbush [10], for $n=2$:

Lemma 2.10. Let $n>0$ and let $L \in \mathbf{M}_{n}$ be a lattice. Then $M_{3}[L]$ is a lattice. Furthermore, if L is bounded, then $M_{3}[L]$ has a spanning M_{3}.
Proof. By Lemma 2.1, we have to prove that $M_{3}[L]$ is a closure system. For $\langle x, y, z\rangle \in M_{3}[L]$, define

$$
\begin{equation*}
\overline{\langle x, y, z\rangle}=\left\langle p_{n}(x, y, z), q_{n}(x, y, z), r_{n}(x, y, z)\right\rangle . \tag{2}
\end{equation*}
$$

By (1), $\langle x, y, z\rangle \leq \overline{\langle x, y, z\rangle}$. Since a polynomial is isotone, $\langle x, y, z\rangle \leq\left\langle x^{\prime}, y^{\prime}, z^{\prime}\right\rangle$ implies that $\overline{\langle x, y, z\rangle} \leq \overline{\left\langle x^{\prime}, y^{\prime}, z^{\prime}\right\rangle}$. Finally, let $\overline{\langle x, y, z\rangle}=\left\langle x^{*}, y^{*}, z^{*}\right\rangle$; then $p_{n}(x, y, z)=$ $p_{n+1}(x, y, z)=p_{1}\left(x^{*}, y^{*}, z^{*}\right)$, so $\overline{\langle x, y, z\rangle}$ is closed.

The spanning M_{3} is $\{\langle 0,0,0\rangle,\langle 1,0,0\rangle,\langle 0,1,0\rangle,\langle 0,0,1\rangle,\langle 1,1,1\rangle\}$.
Theorem 1. Let $n>0$ and let L be a bounded n-modular lattice. Then $M_{3}[L]$ is a lattice with a spanning M_{3}. The map

$$
\varepsilon: x \mapsto\langle x, 0,0\rangle
$$

embeds L into $M_{3}[L]$. If we identify $x \in L$ with $x \varepsilon=\langle x, 0,0\rangle \in M_{3}[L]$, then the lattice $M_{3}[L]$ is a congruence-preserving extension of L.

Proof. By Lemma 2.10, $M_{3}[L]$ is a lattice. Furthermore, ε is, obviously, an embedding; we identify $x \in L$ with $x \varepsilon=\langle x, 0,0\rangle$. Now let Θ be a congruence of L. Form Θ^{3}, a congruence of L^{3}, and let $M_{3}[\Theta]$ be the restriction of Θ^{3} to $M_{3}[L]$. We claim that $M_{3}[\Theta]$ is the unique extension of the congruence Θ to $M_{3}[L]$. Since $M_{3}[\Theta]$ restricted to L equals Θ, it is sufficient to prove the following two statements:
(i) $M_{3}[\Theta]$ is a congruence of $M_{3}[L]$.
(ii) Every congruence Φ of $M_{3}[L]$ is of the form $M_{3}[\Theta]$, for some congruence Θ of L.
$R e$: (i). $M_{3}[\Theta]$ is obviously a meet-congruence on $M_{3}[L]$. It remains to prove the join substitution property. So let $\left\langle x_{0}, y_{0}, z_{0}\right\rangle \equiv\left\langle x_{1}, y_{1}, z_{1}\right\rangle\left(M_{3}[\Theta]\right)$ and let $\langle u, v, w\rangle \in M_{3}[L]$. Then $x_{0} \equiv x_{1}(\Theta)$ and so $x_{0} \vee u \equiv x_{1} \vee u(\Theta)$. Similarly,
$y_{0} \vee v \equiv y_{1} \vee v(\Theta)$ and $z_{0} \vee w \equiv z_{1} \vee w(\Theta)$. Since a polynomial has the substitution property, we conclude that

$$
p_{n}\left(x_{0} \vee u, y_{0} \vee v, z_{0} \vee w\right) \equiv p_{n}\left(x_{1} \vee u, y_{1} \vee v, z_{1} \vee w\right) \quad(\Theta),
$$

and similarly for q_{n} and r_{n}. Thus

$$
\begin{aligned}
& \left\langle p_{n}\left(x_{0} \vee u, y_{0} \vee v, z_{0} \vee w\right), q_{n}\left(x_{0} \vee u, y_{0} \vee v, z_{0} \vee w\right),\right. \\
& \left.\quad r_{n}\left(x_{0} \vee u, y_{0} \vee v, z_{0} \vee w\right)\right\rangle \\
& \equiv\left\langle p_{n}\left(x_{1} \vee u, y_{1} \vee v, z_{1} \vee w\right), q_{n}\left(x_{1} \vee u, y_{1} \vee v, z_{1} \vee w\right),\right. \\
& \left.\quad r_{n}\left(x_{0} \vee u, y_{0} \vee v, z_{0} \vee w\right)\right\rangle
\end{aligned}
$$

modulo Θ^{3}, and therefore, modulo $M_{3}[\Theta]$. By (2), this last congruence is the same as

$$
\left\langle x_{0}, y_{0}, z_{0}\right\rangle \vee\langle u, v, w\rangle \equiv\left\langle x_{1}, y_{1}, z_{1}\right\rangle \vee\langle u, v, w\rangle \quad\left(M_{3}[\Theta]\right),
$$

which was to be proved.
Re: (ii). Let Φ be a congruence of $M_{3}[L]$ and let Θ be the restriction of Φ to L. We want to show that $M_{3}[\Theta]=\Phi$. Let $\left\langle x_{0}, y_{0}, z_{0}\right\rangle,\left\langle x_{1}, y_{1}, z_{1}\right\rangle \in M_{3}[L]$.

If $\left\langle x_{0}, y_{0}, z_{0}\right\rangle \equiv\left\langle x_{1}, y_{1}, z_{1}\right\rangle\left(M_{3}[\Theta]\right)$, then $x_{0} \equiv x_{1}(\Theta)$ in L and so $\left\langle x_{0}, 0,0\right\rangle \equiv$ $\left\langle x_{1}, 0,0\right\rangle\left(M_{3}[\Theta]\right)$. Since $M_{3}[\Theta]$ and Φ agree on L, we conclude that

$$
\begin{equation*}
\left\langle x_{0}, 0,0\right\rangle \equiv\left\langle x_{1}, 0,0\right\rangle \quad(\Phi) . \tag{3}
\end{equation*}
$$

Similarly, $\left\langle y_{0}, 0,0\right\rangle \equiv\left\langle y_{1}, 0,0\right\rangle(\Phi) ;$ therefore,

$$
\begin{align*}
\left\langle 0, y_{0}, 0\right\rangle & =\left(\left\langle y_{0}, 0,0\right\rangle \vee\langle 0,0,1\rangle\right) \wedge\langle 0,1,0\rangle \\
& \equiv\left(\left\langle y_{1}, 0,0\right\rangle \vee\langle 0,0,1\rangle\right) \wedge\langle 0,1,0\rangle=\left\langle 0, y_{1}, 0\right\rangle
\end{align*}
$$

that is,

$$
\begin{equation*}
\left\langle 0, y_{0}, 0\right\rangle \equiv\left\langle 0, y_{1}, 0\right\rangle \quad(\Phi) . \tag{4}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left\langle 0,0, z_{0}\right\rangle \equiv\left\langle 0,0, z_{1}\right\rangle \tag{5}
\end{equation*}
$$

Joining the three congruences (3)-(5), we obtain that $\left\langle x_{0}, y_{0}, z_{0}\right\rangle \equiv\left\langle x_{1}, y_{1}, z_{1}\right\rangle(\Phi)$.
Conversely, let $\left\langle x_{0}, y_{0}, z_{0}\right\rangle \equiv\left\langle x_{1}, y_{1}, z_{1}\right\rangle(\Phi)$. Meeting with $\left\langle x_{0} \vee x_{1}, 0,0\right\rangle \in$ $M_{3}[L]$, we derive that $\left\langle x_{0}, 0,0\right\rangle \equiv\left\langle x_{1}, 0,0\right\rangle(\Phi)$ and so $x_{0} \equiv x_{1}(\Theta)$. Similarly, $\left\langle 0, y_{0}, 0\right\rangle \equiv\left\langle 0, y_{1}, 0\right\rangle(\Phi)$. Therefore,

$$
\left\langle y_{0}, y_{0}, 1\right\rangle=\left\langle 0, y_{0}, 0\right\rangle \vee\langle 0,0,1\rangle \equiv\left\langle 0, y_{1}, 0\right\rangle \vee\langle 0,0,1\rangle=\left\langle y_{1}, y_{1}, 1\right\rangle
$$

and meeting with $\langle 1,0,0\rangle \in M_{3}[L]$, we conclude that $\left\langle y_{0}, 0,0\right\rangle \equiv\left\langle y_{1}, 0,0\right\rangle(\Phi)$, that is, $y_{0} \equiv y_{1}(\Theta)$. Similarly, $z_{0} \equiv z_{1}(\Theta)$ and so $\left\langle x_{0}, y_{0}, z_{0}\right\rangle \equiv\left\langle x_{1}, y_{1}, z_{1}\right\rangle\left(\Theta^{3}\right)$, from which it follows that $\left\langle x_{0}, y_{0}, z_{0}\right\rangle \equiv\left\langle x_{1}, y_{1}, z_{1}\right\rangle\left(M_{3}[\Theta]\right)$.

3. The variety \mathbf{M}_{n}

In this section, we prove that \mathbf{M}_{n} is properly contained in \mathbf{M}_{n+1}, for every $n>0$. It is obvious that $\mathbf{M}_{n} \subseteq \mathbf{M}_{n+1}$. To show that the equality fails, we have to construct, for each $n>0$, an exactly $(n+1)$-modular lattice L_{n}. The lattice L_{3} is shown in Figure 1. The definition of L_{n} follows the pattern of L_{3}, except that there are $n+1 x$-s: $x_{0}, x_{1}, \ldots, x_{n}$; there are $n+1 y$-s: $y_{0}, y_{1}, \ldots, y_{n}$; and so there are $n+1$ sublattices of the form C_{2}^{2} in the middle.

Since L_{n} is planar and bounded, it is a lattice.

Figure 1

Theorem 2. L_{n} is an exactly $(n+1)$-modular lattice.
Proof. It is easy to check that the free lattice on $C_{2}+C_{1}$ (see Figure VI.1.1 in [2]) is 2 -modular. This shows that $\boldsymbol{\mu}_{2}$ holds in any lattice at any triple $\langle x, y, z\rangle$ such that two of the variables x, y and z are comparable. So to check that $\boldsymbol{\mu}_{2}$ holds in L_{1} at $\langle x, y, z\rangle$, we can assume that x, y, and z form an antichain; since there are very few antichains of three elements in L_{1}, it is very easy to compute that $\boldsymbol{\mu}_{2}$ holds. So L_{1} is (exactly) 2-modular.

Now we induct on n. The interval $\left[x_{1} \wedge z_{1}, 1\right]$ of L_{n} is isomorphic to L_{n-1}. So if $x, y, z \in\left[x_{1} \wedge z_{1}, 1\right]$, then $\boldsymbol{\mu}_{n}$ holds at $\langle x, y, z\rangle$, therefore, $\boldsymbol{\mu}_{n+1}$ holds at $\langle x, y, z\rangle$. If two of x, y, z are in $\left[x_{1} \wedge z_{1}, 1\right]$, say, $y, z \in\left[x_{1} \wedge z_{1}, 1\right]$, then replacing x by $\bar{x}=x \vee(y \wedge z)$, and, similarly, for y and z, we have all three elements in $\left[x_{1} \wedge z_{1}, 1\right]$ and $\boldsymbol{\mu}_{n}$ holds for $\bar{x}, \bar{y}, \bar{z}$, so $\boldsymbol{\mu}_{n+1}$ holds for x, y, z. Since there is no three element antichain outside of $\left[x_{1} \wedge z_{1}, 1\right]$, we are left with the case that two of x, y, z are not in $\left[x_{1} \wedge z_{1}, 1\right]$, say, x and z. We cannot then have $x \leq x_{1} \wedge z_{1}$, because there is no such antichain. Similarly, $z \not \leq x_{1} \wedge z_{1}$. Theorefore, by symmetry, we can assume that $x=x_{0}$ and $z=z_{0}$. It follows that $y \in\left[x_{1} \wedge z_{1}, y_{0}\right]$. So we have $p_{1}=x_{1}$ and $q_{1}=y, r_{1}=z_{1}$, all in $\left[x_{1} \wedge z_{1}, 1\right]$. By induction, $\boldsymbol{\mu}_{n}$ holds for x_{1}, y, and z_{1} and so $\boldsymbol{\mu}_{n+1}$ holds for x, y, z.

It is clear that $\boldsymbol{\mu}_{n}$ fails in L_{n} with the substitution $x=x_{0}, y=y_{0}$, and $z=z_{0}$ because $p_{n}\left(x_{0}, y_{0}, z_{0}\right)=x_{n}<1=p_{n+1}\left(x_{0}, y_{0}, z_{0}\right)$.

Corollary 3.1. The following proper inclusions hold:

$$
\mathbf{M}_{1} \subset \mathbf{M}_{2} \subset \cdots \subset \mathbf{M}_{n} \subset \cdots
$$

4. $M_{3}[L]$ is not always a lattice

In this section, we construct a bounded lattice L such that $M_{3}[L]$ is not a lattice.
Theorem 3. For the lattice L of Figure 2, $M_{3}[L]$ is not a lattice. Moreover, L has modularity rank ∞.

Proof. The reader can easily verify that L is a lattice by exhibiting the join- and meet-tables; for instance, $x_{i} \wedge z_{j}=c_{\min (i, j)}, x_{i} \vee z_{j}=1$, and so on. By Lemma 2.1, to show that $M_{3}[L]$ is not a lattice, we have to verify that $M_{3}[L]$ is not a closure system. We claim that $\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ has no closure. So let us assume to the contrary that
$\langle\bar{x}, \bar{y}, \bar{z}\rangle$ is the closure of $\left\langle x_{0}, y_{0}, z_{0}\right\rangle$. Since $p_{1}\left(x_{0}, y_{0}, z_{0}\right)=x_{1}, q_{1}\left(x_{0}, y_{0}, z_{0}\right)=y_{0}$, $r_{1}\left(x_{0}, y_{0}, z_{0}\right)=z_{1}$, so by induction, $\langle\bar{x}, \bar{y}, \bar{z}\rangle$ must contain all $\left\langle x_{n}, y_{0}, z_{n}\right\rangle$, that is, $\left\langle x_{n}, y_{0}, z_{n}\right\rangle \leq\langle\bar{x}, \bar{y}, \bar{z}\rangle$, for all $n \geq 0$. On the other hand, $\left\langle u_{n}, y_{0}, v_{n}\right\rangle$ is balanced, so $\langle\bar{x}, \bar{y}, \bar{z}\rangle \leq\left\langle u_{n}, y_{0}, v_{n}\right\rangle$, for all $n>0$. But there is no $\langle\bar{x}, \bar{y}, \bar{z}\rangle \in L$ satisfying $\left\langle x_{n}, y_{0}, z_{n}\right\rangle \leq\langle\bar{x}, \bar{y}, \bar{z}\rangle \leq\left\langle u_{n}, y_{0}, v_{n}\right\rangle$, for all $n>0$, so $\langle\bar{x}, \bar{y}, \bar{z}\rangle$ does not exist.

Figure 2

If L was n-modular, for some $n<\omega$, then $\left\langle x_{0}, y_{0}, z_{0}\right\rangle^{(n)}=\left\langle x_{n}, y_{0}, z_{n}\right\rangle$ would be closed, but it is not.

We shall see in Section 6 that L provides a negative solution to Quackenbush's problem, namely, $M_{3} \otimes L$ is not a lattice.

5. Removing the bounds

Most results of Sections 2-4 remain valid without assuming that the lattice L has a unit. The only exception is, of course, the statement that $M_{3}[L]$ has a spanning M_{3}. If we do not assume that L has a unit, then the appropriate statement is that in $M_{3}[L]$, for every $a \in M_{3}[L]$, there is a $i \in M_{3}[L]$ such that ($\left.i\right]$ has a spanning M_{3}.

If we do not assume that L has a zero, the definition of the embedding $\varepsilon: x \mapsto$ $\langle x, 0,0\rangle$ in Theorem 1 does not make sense, affecting the crucial part about congru-ence-preserving extensions. So we need to reformulate Theorem 1:

Theorem 4. Let $n>0$ and let L be an n-modular lattice. Then $M_{3}[L]$ is a lattice. The map

$$
\psi: x \mapsto\langle x, x, x\rangle
$$

embeds L into $M_{3}[L]$. If we identify $x \in L$ with $x \psi=\langle x, x, x\rangle \in M_{3}[L]$, then the lattice $M_{3}[L]$ is a congruence-preserving extension of L.

Proof. The first part of the proof requires little change.
Let Φ be a congruence of $M_{3}[L]$ and let Θ be the restriction of Φ to L. We want to show that $M_{3}[\Theta]=\Phi$. Let $\left\langle x_{0}, y_{0}, z_{0}\right\rangle,\left\langle x_{1}, y_{1}, z_{1}\right\rangle \in M_{3}[L]$, and put $o=\bigwedge\left(x_{i} \wedge y_{i} \mid i<3\right)$.

If $\left\langle x_{0}, y_{0}, z_{0}\right\rangle \equiv\left\langle x_{1}, y_{1}, z_{1}\right\rangle\left(M_{3}[\Theta]\right)$, then $x_{0} \equiv x_{1}(\Theta)$ in L and so $\left\langle x_{0}, x_{0}, x_{0}\right\rangle \equiv$ $\left\langle x_{1}, x_{1}, x_{1}\right\rangle(\Phi)$. Therefore,

$$
\begin{align*}
\left\langle x_{0}, o, o\right\rangle & =\left\langle x_{0}, x_{0}, x_{0}\right\rangle \wedge\left\langle x_{0} \vee y_{0}, o, o\right\rangle \\
& \equiv\left\langle y_{0}, y_{0}, y_{0}\right\rangle \wedge\left\langle x_{0} \vee y_{0}, o, o\right\rangle=\left\langle y_{0}, o, o\right\rangle
\end{align*}
$$

that is,

$$
\left\langle x_{0}, o, o\right\rangle \equiv\left\langle y_{0}, o, o\right\rangle \quad(\Theta) .
$$

Similarly, $\left\langle o, y_{0}, o\right\rangle \equiv\left\langle o, y_{1}, o\right\rangle(\Phi)$ and $\left\langle o, o, z_{0}\right\rangle \equiv\left\langle o, o, z_{1}\right\rangle(\Phi)$. Joining the three congruences, we obtain $\left\langle x_{0}, y_{0}, z_{0}\right\rangle \equiv\left\langle x_{1}, y_{1}, z_{1}\right\rangle(\Phi)$.

The proof of the converse is similar to the original proof with o playing the role of 0 and $i=\bigvee\left(x_{i} \vee y_{i} \mid i<3\right)$ playing the role of 1 .

6. Two views of $M_{3}[D]$

For a finite distributive lattice D, in the literature, $M_{3}[D]$ is presented either as the lattice of balanced triples $\langle x, y, z\rangle \in D^{3}$ (as we presented it in Section 1) or as the lattice M_{3}^{P}, the lattice of isotone maps from $P=\mathrm{J}(D)$ (the poset of join-irreducible elements of D) to M_{3}. Either approach is convenient; both present a modular lattice with a spanning M_{3} with D embedded as the ideal generated by an atom of M_{3} and the lattice is generated by M_{3} and D. The second approach has the advantage that it yields with no computation that $M_{3}[D]$ is a modular lattice. The first approach, however, better lends itself to generalization, as we did it in this paper.

It follows from A. Mitchke and R. Wille [9] that the two constructions yield isomorphic lattices; indeed, both constructions yield a modular lattice with a spanning M_{3} with D embedded as the ideal generated by an atom of M_{3} and the lattice is generated by M_{3} and D and, up to isomorphism, there is only one such lattice.

In this section we shall give a more direct explanation why the two constructions yield isomorphic lattices. To this end, we introduce the concept of a capped tensor product from G. Grätzer and F. Wehrung [7].
Definition 6.1. Let A and B be $\{\vee, 0\}$-semilattices. A bi-ideal of $A \times B$ is a subset I of $A \times B$ satisfying the following conditions:
(i) I is hereditary;
(ii) I contains $\nabla_{A, B}=(A \times\{0\}) \cup(\{0\} \times B)$;
(iii) if $\left\langle a_{0}, b\right\rangle,\left\langle a_{1}, b\right\rangle \in I$, then $\left\langle a_{0} \vee a_{1}, b\right\rangle \in I$;
(iv) if $\left\langle a, b_{0}\right\rangle,\left\langle a, b_{1}\right\rangle \in I$, then $\left\langle a, b_{0} \vee b_{1}\right\rangle \in I$.

For $a \in A$ and $b \in B$, we define the bi-ideal

$$
a \otimes b=\nabla_{A, B} \cup\{\langle x, y\rangle \in A \times B \mid\langle x, y\rangle \leq\langle a, b\rangle\} .
$$

The bi-ideal lattice of $A \times B$ is an algebraic lattice. The tensor product $A \otimes B$ is the $\{\vee, 0\}$-subsemilattice of compact elements of the bi-ideal lattice of $A \times B$.

A bi-ideal I is capped, if there is a finite subset C of $A \times B$ such that I is the hereditary subset of $A \times B$ generated by C along with $\nabla_{A, B}$. A tensor product
$A \otimes B$ is capped, if all bi-ideals of $A \times B$ are capped. A capped tensor product is a lattice.

For a lattice L with zero, let L^{-}denote the join-subsemilattice $L-\{0\}$.
Let $A \otimes B$ be a capped tensor product and let $I \in A \otimes B$. We define a map $\varphi_{I}: A^{-} \rightarrow B:$

For $x \in A, x>0$, let $\varphi_{I}(x)$ be the largest element y in B such that $\langle x, y\rangle \in I$.
Lemma 6.2. φ_{I} maps A^{-}into B and

$$
\varphi_{I}\left(x_{0}\right) \wedge \varphi_{I}\left(x_{1}\right)=\varphi_{I}\left(x_{0} \vee x_{1}\right),
$$

for $x_{0}, x_{1} \in A^{-}$.
Proof. First we show that $\varphi_{I}(x)$ is defined, for all $x \in A^{-}$. Since I is capped, we can write I in the form $I=\bigcup\left(a_{i} \otimes b_{i} \mid i<n\right) \cup \nabla_{A, B}$, where n is a natural number, $a_{i} \in A, b_{i} \in B$, for $i<n$. Now define

$$
y_{i}= \begin{cases}b_{i}, & \text { if } x \leq a_{i} \\ 0, & \text { otherwise }\end{cases}
$$

for $i<n$ and let $y=\bigvee\left(y_{i} \mid i<n\right)$. By definition, $\left\langle x, y_{i}\right\rangle \in I$, so by 6.1 (iv), $\langle x, y\rangle \in I$. Now let $\langle x, z\rangle \in I$, for some $z \in B$. Then $\langle x, z\rangle \in a_{i} \otimes b_{i}$, for some $i<n$, and so $z \leq b_{i} \leq y$. This proves that y satisfies the requirements in the definition of $\varphi_{I}(x)$.

Now $\varphi_{I}\left(x_{0} \vee x_{1}\right) \leq \varphi_{I}\left(x_{0}\right)$ is obvious, hence, $\varphi_{I}\left(x_{0} \vee x_{1}\right) \leq \varphi_{I}\left(x_{0}\right) \wedge \varphi_{I}\left(x_{1}\right)$. Conversely, $\varphi_{I}\left(x_{0}\right) \wedge \varphi_{I}\left(x_{1}\right) \leq \varphi_{I}\left(x_{0}\right)$, so $\left\langle x_{0}, \varphi_{I}\left(x_{0}\right) \wedge \varphi_{I}\left(x_{1}\right)\right\rangle \in I$; similarly, $\left\langle x_{1}, \varphi_{I}\left(x_{0}\right) \wedge \varphi_{I}\left(x_{1}\right)\right\rangle \in I$, therefore, by 6.1(iii), $\left\langle x_{0} \vee x_{1}, \varphi_{I}\left(x_{0}\right) \wedge \varphi_{I}\left(x_{1}\right)\right\rangle \in I$, implying that $\varphi_{I}\left(x_{0}\right) \wedge \varphi_{I}\left(x_{1}\right) \leq \varphi_{I}\left(x_{0} \vee x_{1}\right)$.

Let B^{d} denote the dual lattice of B and let $\operatorname{Hom}_{\vee}\left(A^{-}, B^{\mathrm{d}}\right)$ denote the lattice of join-homomorphisms from A^{-}to B^{d}, ordered componentwise, as a subset of $B^{A^{-}}$ $\left(\operatorname{not}\left(B^{\mathrm{d}}\right)^{A^{-}}\right)$.

Theorem 5. Let A and B be lattices with zero and let $A \otimes B$ be capped. Then $\varepsilon: I \mapsto \varphi_{I}$ defines an isomorphism between $A \otimes B$ and $\operatorname{Hom}_{\vee}\left(A^{-}, B^{\mathrm{d}}\right)$.

Proof. Lemma 6.2 states that the map is well-defined. Since $\langle x, y\rangle \in I$ iff $y \leq \varphi_{I}(x)$, it follows that φ_{I} determines I and so ε is one-to-one. To show that ε is onto, let $\varphi \in \operatorname{Hom}_{\vee}\left(A^{-}, B^{\mathrm{d}}\right)$ and define $I=\{\langle x, y\rangle \in A \times B \mid y \leq \varphi(x)\}$. Since φ is a join-homomorphism, it follows that I is a bi-ideal and $\varphi=\varphi_{I}$.
Corollary 6.3. Let L be a lattice with zero. Then the following conditions are equivalent:
(i) $M_{3} \otimes L$ is a lattice.
(ii) For all $\langle x, y, z\rangle \in L^{3}$, there exists $n>0$ such that $\langle x, y, z\rangle^{(n)}=\langle x, y, z\rangle^{(n+1)}$. Furthermore, if (i) is satisfied, then $M_{3} \otimes L \cong M_{3}[L]$.

In particular, if L is n-modular, for some n, then $M_{3} \otimes L$ is a lattice, and $M_{3} \otimes L \cong M_{3}[L]$.
Proof. Since M_{3} is finite, $M_{3} \otimes L$ is a lattice iff $M_{3} \otimes L$ is a capped tensor product, see Theorem 3 of [8]. Furthermore, in the same theorem, it is stated that this is equivalent to saying that, for every antitone map $\xi: \mathrm{J}\left(M_{3}\right) \rightarrow L$, the adjustment sequence of ξ terminates after a finite number of steps. Here, $\mathrm{J}\left(M_{3}\right)=\{a, b, c\}$, and the ordering on $\mathrm{J}\left(M_{3}\right)$ is trivial, thus every map from $\mathrm{J}\left(M_{3}\right)$ to L is antitone.

Identify $\xi: \mathrm{J}\left(M_{3}\right) \rightarrow L$ with the triple $\langle\xi(a), \xi(b), \xi(c)\rangle$. With this identification, the adjustment sequence of ξ is easily seen to be the sequence of all $\langle\xi(a), \xi(b), \xi(c)\rangle{ }^{(n)}$, $n>0$. The equivalence between (i) and (ii) follows.

Now assume that $M_{3} \otimes L$ is a lattice. Again, $M_{3} \otimes L$ is a capped tensor product, thus, by Theorem $5, M_{3} \otimes L \cong \operatorname{Hom}_{\vee}\left(M_{3}^{-}, L^{\mathrm{d}}\right)$. For all $\xi \in \operatorname{Hom}_{\vee}\left(M_{3}^{-}, L^{\mathrm{d}}\right)$, we can identify ξ with the triple $\langle\xi(a), \xi(b), \xi(c)\rangle$, which, by Lemma 6.2 , is a balanced triple. The isomorphism $M_{3} \otimes L \cong M_{3}[L]$ follows.

Now the solution of Quackenbush's problem (discussed in the Introduction) easily follows:

Corollary 6.4. Let L be the lattice of Theorem 3. Then $M_{3} \otimes L$ is not a lattice.
Proof. This is obvious by Theorem 3 and Corollary 6.3.
Corollary 6.5. Let L be a lattice with zero. If L is n-modular, for some n, then

$$
\begin{equation*}
M_{3} \otimes L \cong M_{3}[L] . \tag{i}
\end{equation*}
$$

If L is a finite distributive lattice and $P=\mathrm{J}(L)$, the poset of join-irreducible elements of D, then

$$
\begin{equation*}
M_{3} \otimes L \cong M_{3}^{P} . \tag{ii}
\end{equation*}
$$

Proof. Part (i) follows immediately from Corollary 6.3.
If L is a finite distributive lattice, then, by Theorem $5, M_{3} \otimes L$ is isomorphic to $\operatorname{Hom}_{\vee}\left(L^{-}, M_{3}\right)$, and any $\varphi \in \operatorname{Hom}_{\vee}\left(L^{-}, M_{3}\right)$ can be identified with an isotone map from P into M_{3}.

Combining (i) and (ii) of Corollary 6.5, we obtain the desired isomorphism:
Corollary 6.6. Let D be a finite distributive lattice. Then

$$
M_{3}^{P} \cong M_{3}[D]
$$

where $P=\mathrm{J}(D)$, the poset of join-irreducible elements of D.
For a given lattice, n-modularity has the following algebraic meaning:
Proposition 6.7. Let L be a lattice with zero. Then the following conditions are equivalent:
(i) $M_{3} \otimes L^{\omega}$ is a lattice.
(ii) L is n-modular, for some $n>0$.

Proof.
(ii) implies (i). If L is n-modular, then L^{ω} is n-modular, thus, by Corollary 6.3, $M_{3} \otimes L^{\omega}$ is a lattice.
(i) implies (ii). Let us assume that the modularity rank of L is ∞. For all $n>0$, there exists, by definition, a triple $\left\langle x_{n}, y_{n}, z_{n}\right\rangle \in L^{3}$ such that

$$
\left\langle x_{n}, y_{n}, z_{n}\right\rangle^{(n)}<\left\langle x_{n}, y_{n}, z_{n}\right\rangle^{(n+1)}
$$

Define the following elements of L^{ω} :

$$
\begin{aligned}
& x=\left\langle x_{n} \mid n>0\right\rangle \\
& y=\left\langle y_{n} \mid n>0\right\rangle \\
& z=\left\langle z_{n} \mid n>0\right\rangle
\end{aligned}
$$

Then, $\langle x, y, z\rangle^{(n)}<\langle x, y, z\rangle^{(n+1)}$ holds, for all $n>0$. By Corollary 6.3, $M_{3} \otimes L^{\omega}$ is not a lattice.

Another algebraic consequence of n-modularity is the following:
Proposition 6.8. Let L be an n-modular lattice, for some $n>0$. Then

$$
M_{3}[\operatorname{Id} L] \cong \operatorname{Id} M_{3}[L]
$$

Proof. Let $U \in M_{3}[\operatorname{Id} L]$, that is, $U=\langle I, J, K\rangle \in M_{3}[\operatorname{Id} L]$. We define

$$
\widehat{U}=\left\{\langle a, b, c\rangle \in M_{3}[L] \mid a \in I, b \in J, c \in K\right\}
$$

that is, $\widehat{U}=(I \times J \times K) \cap M_{3}[L]$. Then \widehat{U} is obviously a hereditary subset of $M_{3}[L]$. We claim that it is join closed. Indeed, let $\left\langle a_{0}, b_{0}, c_{0}\right\rangle,\left\langle a_{1}, b_{1}, c_{1}\right\rangle \in \widehat{U}$, set

$$
\left\langle a_{0} \vee a_{1}, b_{0} \vee b_{1}, c_{0} \vee c_{1}\right\rangle=\langle x, y, z\rangle \in L^{3},
$$

and define $\langle x, y, z\rangle^{(n)}$ as in Section 2. We have $x \in I, y \in J, z \in K$, so $y \wedge z \in$ $J \wedge K \subseteq I$ and $x \vee(y \wedge z) \in I$; similarly, $y \vee(x \wedge z) \in J, z \vee(x \wedge y) \in K$. Thus

$$
\langle x, y, z\rangle^{(1)}=\langle x \vee(y \wedge z), y \vee(x \wedge z), z \vee(x \wedge y)\rangle \in I \times J \times K
$$

By induction, $\langle x, y, z\rangle^{(n)} \in I \times J \times K$. Since L satisfies $\boldsymbol{\mu}_{n},\left\langle a_{0}, b_{0}, c_{0}\right\rangle \vee\left\langle a_{1}, b_{1}, c_{1}\right\rangle=$ $\langle x, y, z\rangle^{(n)}$, so $\left\langle a_{0}, b_{0}, c_{0}\right\rangle \vee\left\langle a_{1}, b_{1}, c_{1}\right\rangle \in I \times J \times K$, and therefore, $\left\langle a_{0}, b_{0}, c_{0}\right\rangle \vee$ $\left\langle a_{1}, b_{1}, c_{1}\right\rangle \in \widehat{U}$, proving that \widehat{U} is an ideal of $M_{3}[L]$.

Since every $a \in I$ can be augmented to an $\langle a, b, c\rangle \in M_{3}[L]$ with suitable $b \in J$, $c \in K$ (and similarly for $b \in J$ and for $c \in K$), it follows that \widehat{U} determines U. Therefore, $\varphi: U \mapsto \widehat{U}$ is a one-to-one map from $M_{3}[\operatorname{Id} L]$ into $\operatorname{Id} M_{3}[L]$.

To complete the proof, we have to prove that φ is onto. So let $X \in \operatorname{Id} M_{3}[L]$. Define

$$
I=\left\{a \in L \mid\langle a, b, c\rangle \in X, \text { for some } b, c \in M_{3}[L]\right\}
$$

Since X is hereditary, so is I. Now let $a_{0}, a_{1} \in I$. Then $\left\langle a_{0}, b_{0}, c_{0}\right\rangle \in X$ and $\left\langle a_{1}, b_{1}, c_{1}\right\rangle \in X$, for some $b_{0}, b_{1}, c_{0}, c_{1} \in M_{3}[L]$. Let

$$
\left\langle a_{0}, b_{0}, c_{0}\right\rangle \vee\left\langle a_{1}, b_{1}, c_{1}\right\rangle=\langle x, y, z\rangle \in M_{3}[L] .
$$

Then $x \in I$ and $a_{0} \vee a_{1} \leq x$, hence, $a_{0} \vee a_{1} \in I$, proving that I is an ideal. Similarly, one can define the ideals J and K of L, by permuting the three coordinates in L^{3}.

Now we prove that

$$
\langle I, J, K\rangle \in M_{3}[\operatorname{Id} L] .
$$

Indeed, let $w \in J \wedge K$. Then $w \in J$, so there exist $i \in I$ and $k \in K$ such that $\langle i, w, k\rangle \in X$. Similarly, since $w \in K$, there exist $i^{\prime} \in I$ and $j \in J$ such that $\left\langle i^{\prime}, j, w\right\rangle \in X$. Put $o=i \wedge i^{\prime} \wedge j \wedge k \wedge w$. Since X is an ideal, we have $\langle o, w, o\rangle \in X$. Similarly, $\langle o, o, w\rangle \in X$. Since X is join closed,

$$
\langle o, w, o\rangle \vee\langle o, o, w\rangle=\overline{\langle o, w, w\rangle}=\langle w, w, w\rangle \in X,
$$

therefore, we conclude that $w \in I$, so $J \wedge K \subseteq I$. Similarly, $I \wedge K \subseteq J$ and $I \wedge J \subseteq K$, so

$$
I \wedge K=I \wedge J=J \wedge K
$$

that is, $\langle I, J, K\rangle \in M_{3}[\operatorname{Id} L]$.
Finally, we prove that, for $U=\langle I, J, K\rangle$, we have $\widehat{U}=X$. Indeed, by the definitions of I, J, and K, it is obvious that $X \subseteq \widehat{U}$. So let $\langle x, y, z\rangle \in \widehat{U}$, that is, $\langle x, y, z\rangle \in M_{3}[L]$ and $x \in I, y \in J, z \in K$. Since $x \in I$, there exist $j \in J$ and
$k \in K$ such that $\langle x, j, k\rangle \in X$. Similarly, there are $i \in I$ and $k^{\prime} \in K$ such that $\left\langle i, y, k^{\prime}\right\rangle \in X$, and there are $i^{\prime} \in I$ and $j^{\prime} \in J$ such that $\left\langle i^{\prime}, j^{\prime}, z\right\rangle \in X$. Therefore,

$$
\langle x, y, z\rangle \leq\langle x, j, k\rangle \vee\left\langle i, y, k^{\prime}\right\rangle \vee\left\langle i^{\prime}, j^{\prime}, z\right\rangle \in X,
$$

proving that $\widehat{U} \subseteq X$.
Remark 6.9. E. T. Schmidt suggested that we consider, for an arbitrary lattice L with zero, the least join-congruence Θ of L^{3} identifying all triples $\langle 0, x, x\rangle,\langle x, 0, x\rangle$, and $\langle x, x, 0\rangle$, for all $x \in L$, and relate the quotient lattice L / Θ to $M_{3}[L]$.

An alternative description of Θ is the following. For all $\langle a, b, c\rangle \in L^{3}$, denote by $\mathrm{Cl}\langle a, b, c\rangle$ the least ideal I of L^{3} containing $\langle a, b, c\rangle$ and such that if $\langle x, y, z\rangle \in I$, then $\langle x, y, z\rangle^{(1)} \in I$. In particular, if L is n-modular, for some n, then $\mathrm{Cl}\langle x, y, z\rangle$ is just the ideal of L^{3} generated by the closure $\overline{\langle x, y, z\rangle}$ of $\langle x, y, z\rangle$. Then it is not hard to verify that

$$
\left\langle x_{0}, y_{0}, z_{0}\right\rangle \equiv\left\langle x_{1}, y_{1}, z_{1}\right\rangle \quad(\Theta) \quad \text { iff } \quad \mathrm{Cl}\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\mathrm{Cl}\left\langle x_{1}, y_{1}, z_{1}\right\rangle
$$

for all x_{i}, y_{i}, z_{i} in L and for $i<2$. Hence, if L is n-modular, for some n, then L^{3} / Θ is isomorphic to $M_{3}[L]$. Furthermore, $\mathrm{Cl}\left\langle x_{0}, y_{0}, z_{0}\right\rangle=\mathrm{Cl}\left\langle x_{1}, y_{1}, z_{1}\right\rangle$ is also equivalent to

$$
\left(a \otimes x_{0}\right) \vee\left(b \otimes y_{0}\right) \vee\left(c \otimes z_{0}\right)=\left(a \otimes x_{1}\right) \vee\left(b \otimes y_{1}\right) \vee\left(c \otimes z_{1}\right)
$$

thus L^{3} / Θ is isomorphic to $M_{3} \otimes L$, in general.

7. The $M_{4}[L]$ construction

Let M_{4} denote the lattice of height 2 with four atoms, a, b, c, and d.
In this section, we prove that $M_{4} \otimes L$ is not a lattice, for a suitable modular lattice L with zero, thereby showing that R. W. Quackenbush's problem (discussed in the Introduction) has a negative solution also for modular lattices. We also find new examples of nonmodular tensor products that are not lattices, for instance, $\left(M_{3} \otimes M_{3}\right) \otimes L$.

The $M_{3}[L]$ construction has a natural extension to M_{4}. For every lattice L, define

$$
M_{4}[L]=\left\{\left\langle x_{0}, x_{1}, x_{2}, x_{3}\right\rangle \in L^{4} \mid x_{i} \wedge x_{j}=x_{0} \wedge x_{1}, \text { for } i \neq j\right\}
$$

As in Lemma 2.1, it is easy to prove that $M_{4}[L]$ is a meet-subsemilattice of L^{4}, and that it is a lattice if and only if it is a closure system in L^{4}.

Just as for triples, define the lattice polynomials q_{0}, q_{1}, q_{2}, and q_{3} in four variables, x_{0}, x_{1}, x_{2}, and x_{3}, as follows:

$$
\begin{gathered}
q_{i 0}=x_{i}, \quad \text { for } i<4, \\
q_{0, n+1}=q_{0 n} \vee\left(q_{1 n} \wedge q_{2 n}\right) \vee\left(q_{1 n} \wedge q_{3 n}\right) \vee\left(q_{2 n} \wedge q_{3 n}\right),
\end{gathered}
$$

and, cyclically, define $q_{1, n+1}, q_{2, n+1}$, and $q_{3, n+1}$.
Let $\left\langle x_{0}, x_{1}, x_{2}, x_{3}\right\rangle \in L^{4}$. Define, for $n<\omega$,

$$
\begin{align*}
& \left\langle x_{0}, x_{1}, x_{2}, x_{3}\right\rangle^{(n)} \tag{6}\\
& =\left\langle q_{0 n}\left(x_{0}, x_{1}, x_{2}, x_{3}\right), \ldots, q_{3 n}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\rangle
\end{align*}
$$

The proof of the following result is very similar to the proof of Corollary 6.3, thus we will omit it.

Proposition 7.1. Let L be a lattice with zero. Then the following are equivalent:
(i) $M_{4} \otimes L$ is a lattice.
(ii) For all $\left\langle x_{0}, x_{1}, x_{2}, x_{3}\right\rangle \in L^{4}$, there exists $n>0$ such that

$$
\left\langle x_{0}, x_{1}, x_{2}, x_{3}\right\rangle^{(n)}=\left\langle x_{0}, x_{1}, x_{2}, x_{3}\right\rangle^{(n+1)}
$$

Furthermore, if (i) is satisfied, then $M_{4} \otimes L \cong M_{4}[L]$.
Again, it is not difficult to verify that if L is distributive, then it satisfies the identity $\left\langle x_{0}, x_{1}, x_{2}, x_{3}\right\rangle^{(2)}=\left\langle x_{0}, x_{1}, x_{2}, x_{3}\right\rangle^{(1)}$. However, this is no longer true for modular lattices, as witnessed by the main result of this section:

Theorem 6. Let V be an infinite dimensional vector space over a field K. Denote by $\mathcal{L}(V)$ the lattice of all subspaces of V. Then $M_{4} \otimes \mathcal{L}(V)$ is not a lattice.

Note the contrast with the M_{3} case: $\mathcal{L}(V)$ is a modular lattice, so $M_{3} \otimes \mathcal{L}(V)$ is a lattice.

Proof. We shall work with the lattice $\mathrm{F}_{\mathbf{M}}\left(J_{1}^{4}\right)$ introduced in A. Day, C. Herrmann, and R. Wille [1] as follows. By definition, $\mathrm{F}_{\mathbf{M}}\left(J_{1}^{4}\right)$ is the modular lattice generated by the elements a, b, c, and d, subject to the relations

$$
\begin{gathered}
a \wedge b=a \wedge c=a \wedge d=b \wedge c=b \wedge d=c \wedge d=0 \\
a \vee b=a \vee c=a \vee d=b \vee d=c \vee d=1
\end{gathered}
$$

It is proved in [1] that $\mathrm{F}_{\mathbf{M}}\left(J_{1}^{4}\right)$ is isomorphic to a sublattice of the lattice of all subgroups of a free abelian group of infinite rank. Replacing the free Abelian group on a countably infinite number of generators by a vector space U of countably infinite dimension over a field K, it is easy to see that the same construction shows that $\mathrm{F}_{\mathbf{M}}\left(J_{1}^{4}\right)$ is isomorphic to a sublattice of the subspace lattice $\mathcal{L}(U)$.

The classical dualization map

$$
X \mapsto X^{\perp}=\left\{\xi \in U^{*} \mid \xi[X]=\{0\}\right\}
$$

where U^{*} denotes the dual of U, is a dual embedding from $\mathcal{L}(U)$ into $\mathcal{L}\left(U^{*}\right)$. Therefore, the dual lattice $L=\mathrm{F}_{\mathbf{M}}\left(J_{1}^{4}\right)^{\mathrm{d}}$ of $\mathrm{F}_{\mathbf{M}}\left(J_{1}^{4}\right)$ embeds into $\mathcal{L}\left(U^{*}\right)$. Now let V_{0} be a vector subspace of U^{*} satisfying the following properties:
(i) V_{0} has countably infinite dimension.
(ii) $(X+Y) \cap V_{0}=\left(X \cap V_{0}\right)+\left(Y \cap V_{0}\right)$, for all $X, Y \in L$.
(iii) $(X-Y) \cap V_{0} \neq \varnothing$, for all X, Y in L such that $X \nsubseteq Y$.

Then $X \mapsto X \cap V_{0}$ is a lattice embedding from L into $\mathcal{L}\left(V_{0}\right)$. Hence we have reached the following conclusion:
L embeds into $\mathcal{L}\left(V_{0}\right)$, where V_{0} is a countably infinite dimensional vector space over K.
$\mathcal{L}\left(V_{0}\right)$ embeds into $\mathcal{L}(V)$, thus L embeds into $\mathcal{L}(V)$.
Now suppose that $M_{4} \otimes \mathcal{L}(V)$ is a lattice. By Proposition 7.1, the adjustment sequence (6) based on any quadruple of elements of $\mathcal{L}(V)$ terminates. Thus, a fortiori, the same holds for quadruples of elements of L.

However, we shall now prove that there exists a quadruple of elements of L whose adjustment sequence does not terminate, thus completing the proof. For this, we need the following description of L, obtained by dualizing the one given in [1] for $\mathrm{F}_{\mathrm{M}}\left(J_{1}^{4}\right)$.

Put $\overline{\mathbb{N}}=\omega \cup\{\infty\}$. For $\langle i, j\rangle$ and $\langle k, l\rangle$ in $\overline{\mathbb{N}} \times \overline{\mathbb{N}}$, let us write $\langle i, j\rangle \sim\langle k, l\rangle$, if $x \equiv y(\bmod 2)$, for all $x, y \in\{i, j, k, l\}-\{\infty\}$. Then, we have

$$
L=\{\langle i, j\rangle \in \overline{\mathbb{N}} \times \overline{\mathbb{N}} \mid\langle i, j\rangle \sim\langle\infty, \infty\rangle\}
$$

The least element of L is $\langle 0,0\rangle$, the largest element of L is $\langle\infty, \infty\rangle$.
Denote by \wedge and \vee the infimum and the supremum on $\overline{\mathbb{N}}$. The meet and the join of L are given as follows:

$$
\begin{align*}
& \langle i, j\rangle \wedge\langle k, l\rangle=\left\{\begin{array}{c}
\langle i \wedge k, j \wedge l\rangle, \\
\text { if }\langle i, j\rangle \sim\langle k, l\rangle ; \\
\langle(i-1) \wedge(j-1) \wedge k,(i-1) \wedge(j-1) \wedge l\rangle, \\
\text { if }\langle i, j\rangle \nsim\langle k, l\rangle \text { and } i \wedge j \geq k \wedge l ; \\
\langle i \wedge(k-1) \wedge(l-1), j \wedge(k-1) \wedge(l-1)\rangle, \\
\text { if }\langle i, j\rangle \nsim\langle k, l\rangle \text { and } i \wedge j<k \wedge l ;
\end{array}\right. \tag{7}\\
& \langle i, j\rangle \vee\langle k, l\rangle=\left\{\begin{array}{c}
\langle i \vee k, j \vee l\rangle, \\
\text { if }\langle i, j\rangle \sim\langle k, l\rangle ; \\
\langle(i+1) \vee(j+1) \vee k,(i+1) \vee(j+1) \vee l\rangle, \\
\text { if }\langle i, j\rangle \nsim\langle k, l\rangle \text { and } i \vee j \leq k \vee l ; \\
\langle i \vee(k+1) \vee(l+1), j \vee(k+1) \vee(l+1)\rangle, \\
\text { if }\langle i, j\rangle \nsim\langle k, l\rangle \text { and } i \vee j>k \vee l .
\end{array}\right. \tag{8}
\end{align*}
$$

The base quadruple $\langle x, y, z, t\rangle$ of elements of L is given by

$$
x=\langle 0, \infty\rangle ; \quad y=\langle 1, \infty\rangle ; \quad z=\langle\infty, 1\rangle ; \quad t=\langle\infty, 0\rangle .
$$

For all $n>0$, put

$$
\langle x, y, z, t\rangle^{(n)}=\left\langle x^{(n)}, y^{(n)}, z^{(n)}, t^{(n)}\right\rangle
$$

Then an easy (though somehow tedious) induction proof, based on the formulas (7) and (8), gives that for all $n>0$, we have

$$
\begin{aligned}
& x^{(2 n+1)}=x^{(2 n+2)}=\langle 2 n+2, \infty\rangle, \\
& t^{(2 n+1)}=t^{(2 n+2)}=\langle\infty, 2 n+2\rangle, \\
& y^{(2 n)}=y^{(2 n+1)}=\langle 2 n+1, \infty\rangle, \\
& z^{(2 n)}=z^{(2 n+1)}=\langle\infty, 2 n+1\rangle .
\end{aligned}
$$

In particular, the sequence $\langle x, y, z, t\rangle^{(n)}, n>0$, is not eventually constant.
Corollary 7.2. Let V be an infinite dimensional vector space over a field K. Then $M_{3} \otimes M_{3}[\mathcal{L}(V)]$ is not a lattice.

Proof. Define $K=M_{3}[\mathcal{L}(V)]$ and $L=\mathcal{L}(V)$. Since L is modular, it follows from Corollary 6.3 that $M_{3}[L] \cong M_{3} \otimes L$. By Proposition 2.9 of [7], the tensor product of semilattices with zero is associative, thus we have

$$
M_{3} \otimes\left(M_{3} \otimes L\right) \cong\left(M_{3} \otimes M_{3}\right) \otimes L .
$$

Thus, in order to prove that $M_{3} \otimes K$ is not a lattice, it suffices to prove that $\left(M_{3} \otimes M_{3}\right) \otimes L$ is not a lattice.

Now, we note that the following four elements

$$
t=\langle 1,0,0\rangle, \quad u=\langle 0, a, b\rangle, \quad v=\langle 0, b, c\rangle, \quad w=\langle 0, c, a\rangle
$$

of $M_{3}\left[M_{3}\right]$ have pairwise meet $\langle 0,0,0\rangle$ and pairwise join $\langle 1,1,1\rangle$, thus they generate a 0 -sublattice isomorphic to M_{4}. Hence, there exists a zero preserving embedding f of M_{4} into $M_{3} \otimes M_{3} \cong M_{3}\left[M_{3}\right]$.

Now we need a very special case of Corollary 3.8 of [7]:
Let A, A^{\prime}, B be lattices with zero such that A is a $\{0\}$-sublattice of A^{\prime}. If $A^{\prime} \otimes B$ is a lattice, then $A \otimes B$ is a lattice.

Apply this with $A=M_{4}, A^{\prime}=M_{3}\left[M_{3}\right]$, and $B=L$. By Theorem $6, M_{4} \otimes L$ is not a lattice. Therefore, by the above statement, $\left(M_{3} \otimes M_{3}\right) \otimes L$ is not a lattice either.

Corollary 7.3. There is a modular lattice M such that $M_{3}[M]$ is of modularity rank ∞.

Proof. We can take $M=\mathcal{L}(V)$, for any infinite dimensional vector space V. Indeed, if $M_{3}[M]$ is n-modular, for some $n>0$, then, by Theorem $1, M_{3} \otimes M_{3}[M]$ would be a lattice, contradicting Corollary 7.2.

8. Congruence lattices

In this section, we prove that every finite distributive lattice can be represented as the congruence lattice of a finite 3-modular lattice L.

In G. Grätzer, H. Lakser, and E. T. Schmidt [3], it is proved that every finite distributive lattice D can be represented as the congruence lattice of a finite planar lattice L. This lattice L has the following properties:
(C1) L has a $\{0,1\}$-sublattice, G, the grid, which is of the form $C \times D$, where C and D are finite chains.
(C2) Every element of $H=L-G$ is doubly irreducible in L.
It follows from (C1) that for every element $x \in L$, there is a largest grid element \underline{x} with $\underline{x} \leq x$; dually, there is a smallest grid element $\bar{x} \in G$ with $x \leq \bar{x}$.
(C3) For $x, y \in H$, if $\underline{x}=\underline{y}$, then $x=y$; and dually.
(C4) For every $x \in H$, either the interval $[\underline{x}, \bar{x}]_{G}$ is a prime interval and $[\underline{x}, \bar{x}]_{L}$ is the three-element chain, or $[\underline{x}, \bar{x}]_{G}$ is a prime square and $[\underline{x}, \bar{x}]_{L}$ is an M_{3}.
Recall that a prime square is an interval of length two isomorphic to C_{2}^{2}. For a grid element x, we shall use the notation $\left\langle x_{C}, x_{D}\right\rangle$, where $x_{C} \in C$ and $x_{D} \in D$.

By (C4), if $[a, b]$ is a prime interval in G, then $[a, b]_{L}-[a, b]_{G}$ is either empty or it is a singleton; in the latter case, we denote the new element by $n(a, b)$. Similarly, if $[a, b]$ is a prime square in G, then the set $[a, b]_{L}-[a, b]_{G}$ is either empty or it is a singleton; in the latter case, we denote the new element by $m(a, b)$.

For a grid element x, the C-line through x is defined as

$$
\left\{a \in G \mid a_{D}=x_{D}\right\} ;
$$

symmetrically, we define the D-line through x.
Note the following immediate consequences of (C1)-(C4):
If $x, y \in L$ and $x \| y$, then
(C5) $x \wedge y, x \vee y \in G$.
(C6) $x \wedge y=\underline{x} \wedge \underline{y}$ and $x \vee y=\bar{x} \vee \bar{y}$.
(C7) \underline{x} is on the \bar{C}-line or on the D-line through $x \wedge y$; and symmetrically and dually.

The goal of this section is to prove the following result:
Theorem 7. Let L be a finite lattice satisfying conditions (C1)-(C4). Then L is 3 -modular.

Proof. In this proof, we shall use the notation

$$
\langle x, y, z\rangle^{(n)}=\left\langle x^{(n)}, y^{(n)}, z^{(n)}\right\rangle
$$

for a triple $\langle x, y, z\rangle$ in L and $n>0$, and with this notation we can restate the theorem:

Let L be a finite lattice satisfying conditions (C1)-(C4). Then, for any triple $\langle x, y, z\rangle$ in L, the triple $\left\langle x^{(3)}, y^{(3)}, z^{(3)}\right\rangle$ is balanced.

If $\langle x, y, z\rangle$ in L is not an antichain, then $\left\langle x^{(2)}, y^{(2)}, z^{(2)}\right\rangle$ is balanced by Lemma 2.8. So from now on, we assume that

$$
\begin{equation*}
\langle x, y, z\rangle \text { is an antichain. } \tag{A1}
\end{equation*}
$$

If $x\|y \wedge z, y\| x \wedge z, z \| x \wedge y$, then by (C5), $x^{(1)}, y^{(1)}, z^{(1)} \in G$, hence, by Lemma 2.7, the triple $\left\langle x^{(2)}, y^{(2)}, z^{(2)}\right\rangle$ is balanced. So by symmetry, we can assume: (A2)

$$
y \wedge z \leq x
$$

Equivalently, $x^{(1)}=x$.
If $x \wedge z \leq y$ and $x \wedge y \leq z$, then $\langle x, y, z\rangle$ is balanced. So we have two cases to consider: $x \wedge z \leq y, x \wedge y \| z$ (see Figure 3) and $x \wedge z\|y, x \wedge y\| z$ (see Figure 6).

Figure 3

Case 1. $x \wedge z \leq y$ and $x \wedge y \| z$; see Figure 3.
Note that the assumptions for Case 1 are symmetric in x and y.
Let $u=y \wedge z$. By (A2), $y \wedge z \leq x \wedge z$ and by the assumption for Case 1, $x \wedge z \leq y \wedge z$, so

$$
\begin{equation*}
u=x \wedge z=y \wedge z \in G \tag{9}
\end{equation*}
$$

Hence, $u \leq \underline{z}$. We distinguish two subcases: $u=\underline{z}$ and $u<\underline{z}$.
Case $1 a . u=\underline{z}$. Obviously, $z \notin G$, because $z \in G$ would imply that $z=\underline{z}=$ $u \leq x$, contradicting the assumption (A1). So either $z=m(u, \bar{z})$ or $z=n(u, \bar{z})$. In either case, $\bar{z} \not \leq x \wedge y$, see Figures 4.1 and 4.2. Let L_{C} (resp, L_{C}^{\prime}) be the C-line through u (resp., through \bar{z}). By symmetry and (C7), we can assume that $x \wedge y$ is on L_{C}.

Since $\underline{x} \wedge \underline{y}=x \wedge y$, it follows that either \underline{x} or \underline{y} is on the line L_{C}. Since the assumptions are symmetric in x and y, we can assume that \underline{x} is on the line L_{C}; but L_{C}^{\prime} "covers" L_{C} and \underline{y} cannot contain an element on L_{C}^{\prime} (that would contradict (A1)), therefore, \underline{y} also is on the line L_{C}. We conclude that \underline{x} and \underline{y} are comparable, so we can assume that $\underline{x} \leq \underline{y}$ (and so $\underline{x}=x \wedge y$). In this case, $x=\underline{x}$ leads to a contradiction with (A1), therefore, $\underline{x}<x$. Also, $\underline{x}<\underline{y}$ because $\underline{x}=\underline{y}$ would
contradict either (A1) or (C3). If $x=n(\underline{x}, \bar{x})$ with \underline{x}, \bar{x} on L_{C}, then we cannot find room for y by (A1).

Figure 4.1
Figure 4.2
So there are two possibilities for x :
(i) $x=n(\underline{x}, \bar{x})$ with \underline{x} on L_{C} and \bar{x} on L_{C}^{\prime};
(ii) $x=m(\underline{x}, \bar{x})$ with \underline{x} on L_{C} and \bar{x} on L_{C}^{\prime}.

If (i) holds, then

$$
\left\langle x^{(1)}, y^{(1)}, z^{(1)}\right\rangle=\langle x, y, \bar{x}\rangle \quad \text { and } \quad x<\bar{x},
$$

so $\left\langle x^{(3)}, y^{(3)}, z^{(3)}\right\rangle$ is balanced by Lemma 2.8. If (ii) holds, then

$$
\left\langle x^{(1)}, y^{(1)}, z^{(1)}\right\rangle=\langle x, y,(x \wedge y) \vee z\rangle
$$

is balanced.

Figure 5
Case 1b. $u<\underline{z}$. Then $x^{(1)}=x, y^{(1)}=y, z^{(1)}=(x \wedge y) \vee z$, see Figure 5. We cannot have $\underline{x}=\underline{y}(=x \wedge y)$; indeed, then $x=\underline{x}$ or $y=\underline{y}$ would contradict (A1); $\underline{x}<x$ and $\underline{y}<y$ would contradict (C3). It follows that by symmetry we can assume without loss of generality that either $\underline{x}<\underline{y}$ or $x \wedge y<\underline{x}, x \wedge y<\underline{y}$. We consider these cases separately.

Subcase I. $\underline{x}<\underline{y}$. Obviously, $x \notin G$ because $x \in G$ would imply that $x<y$, contradicting (A1). We cannot have both $\underline{x}_{C}<\underline{y}_{C}$ and $\underline{x}_{D}<\underline{y}_{D}$ because this would again imply that $x<y$, contradicting (A1).
\underline{y} and $z^{(1)}$ cannot be on the same line through \underline{x}. Indeed, if \underline{y} and $z^{(1)}$ are, say, on the D-line through \underline{x}, then $\underline{x}<\underline{y}<z^{(1)}$ (since $z^{(1)} \leq \underline{y}$ would imply that $z<y$, contradicting (A1)). So $z^{(1)}=\underline{x} \vee \bar{z}=\underline{y} \vee \bar{z}$, which implies that $\underline{x} \wedge \bar{z}<\underline{y} \wedge \bar{z}$ (since G is distributive). So $u<\underline{y} \wedge \underline{z}$, contradicting $u=y \wedge z$.

Therefore, by symmetry, we can assume that \underline{x} and \underline{y} are on the C-line through $\underline{x}=x \wedge y$ and $z^{(1)}$ is on the D-line through \underline{x}. Then \bar{x} is not on the C-line through \underline{x} (this would contradict (A1)), so either $x=n(\underline{x}, \bar{x})$ with $\underline{x}_{C}=\bar{x}_{C}$, in which case $\left\langle x^{(3)}, y^{(3)}, z^{(3)}\right\rangle$ is balanced (since $\left.x=x^{(1)} \leq z^{(1)}\right)$ or $x=m(\underline{x}, \bar{x})$, in which case $\left\langle x^{(1)}, y^{(1)}, z^{(1)}\right\rangle=\left\langle x, y, z^{(1)}\right\rangle$ is balanced.

Subcase II. $x \wedge y<\underline{x}$ and $x \wedge y<\underline{y}$. Let L_{C} be the C-line through $x \wedge y$ and let L_{D} be the D-line through $x \wedge y$. Since $z^{(1)}=(x \wedge y) \vee \bar{z}$, it follows that $z^{(1)}$ is on L_{C} or on L_{D}, say, on L_{D}. Then by (A1), $\underline{y}<z^{(1)}$, which contradicts (9) as above, so this subcase cannot occur.

This completes Case 1b and, therefore, Case 1.

Figure 6

Case 2. $x \wedge z \| y$ and $x \wedge y \| z$. This case is illustrated in Figure 6; the grey filled elements are in G. Define $u=(x \wedge y) \vee(x \wedge z)$. The elements $y \wedge z, x \wedge y$, $x \wedge z$, and u are distinct; indeed, any equality would contradict with $x \wedge z \| y$ or with $x \wedge y \| z$. So u is at least a "prime square" above $y \wedge z$.

We start with two observations:

$$
\begin{equation*}
\underline{x}=u \quad \text { and } \quad y^{(1)} \wedge z^{(1)}=u \tag{10}
\end{equation*}
$$

Without loss of generality, we can assume that $x \wedge y$ is on the C-line through $y \wedge z$ and that $x \wedge z$ is on the D-line through $y \wedge z$.

If $u<\underline{x}$, then $(x \wedge y)_{C}<\underline{x}_{C}$ or $(x \wedge z)_{D}<\underline{x}_{D}$, say, $(x \wedge y)_{C}<\underline{x}_{C}$. It follows that $\underline{y}_{C}<\underline{x}_{C}$ and so $\bar{y}_{C} \leq \underline{x}_{C}$. Therefore, $y \leq x$, a contradiction.
$y \wedge z=\underline{y} \wedge \underline{z} \leq u$ implies that $\bar{y} \wedge \bar{z} \leq u$ since $\bar{y} \wedge \bar{z}$ is at most one "prime square" above $\underline{y} \wedge \underline{z}$. Thus $(\bar{y} \vee u) \wedge(\bar{z} \vee u)=u$, as claimed.

Now this case is easy. If $x=u$ or $x=m(\underline{x}, \bar{x})$, then $\left\langle x^{(1)}, y^{(1)}, z^{(1)}\right\rangle$ is balanced since $x=x^{(1)}$. If $x=n(\underline{x}, \bar{x})$, then by symmetry we can assume that $\bar{x} \leq z^{(1)}$ (since $u=\underline{x}, \underline{x} \prec \bar{x}$, and $u<z^{(1)}$) and then $x^{(2)}=x, y^{(2)}=y \vee \bar{x}, z^{(2)}=z^{(1)}$; hence $\left\langle x^{(2)}, y^{(2)}, z^{(2)}\right\rangle$ is balanced, which completes the proof.

Note that in Theorem 7, "3-modular" cannot be changed to " 2 -modular". Indeed, let $A_{0}=\{0,1,2\}$ with $0<1<2$ and $A_{1}=\{0,1\}$ with $0<1$. We take $a=\langle 1,0\rangle, b=\langle 1,1\rangle$, and $L=G \cup\{n(a, b)\}$. Then L satisfies (C1)-(C4). Set $x=n(a, b), y=\langle 2,0\rangle$, and $z=\langle 0,1\rangle$. Then $x=x^{(1)}=x^{(2)}<x^{(3)}=\langle 1,1\rangle$. So L is not 2 -modular.

Corollary 8.1. Every finite distributive lattice D can be represented as the congruence lattice of a finite planar 3-modular lattice L.

Proof. This is immediate by combining the representation theorem in G. Grätzer, H. Lakser, and E. T. Schmidt [3] with Theorem 7.

9. Discussion

Problem 1. Which lattice varieties are closed under tensor product?
There are several ways to define what it means for a lattice variety \mathbf{V} to be "closed under tensor product":
(i) If A and B are finite lattices, $A, B \in \mathbf{V}$, then $A \otimes B \in \mathbf{V}$.
(ii) If A and $B \in \mathbf{V}$ are lattices with zero, $A, B \in \mathbf{V}$, and $A \otimes B$ is capped, then $A \otimes B \in \mathbf{V}$.
(iii) If A and $B \in \mathbf{V}$ are lattices with zero, $A, B \in \mathbf{V}$, and $A \otimes B$ is a lattice, then $A \otimes B \in \mathbf{V}$.
The trivial variety, \mathbf{T}, the variety of all distributive lattices, \mathbf{D}, and the variety of all lattices, \mathbf{L}, are closed under tensor product under any of the three interpretations. The problem, whether there are any more, is open in all of its three variants.

It is easy to verify that \mathbf{T} and \mathbf{D} are the only two finitely generated varieties that are closed under tensor product (under any one of the interpretations).
Problem 2. Compute the modularity rank of $A[B]$, for small lattices A and B ?
The following examples were computed by B. Wolk:
Example 9.1. The modularity rank of $M_{3}\left[M_{k}\right]$ is 3 , for all $k>2$.
Let $M_{4}=\{0, a, b, c, d, 1\}$. Then the computations can be arranged in an array, as follows:

n	p_{n}	q_{n}	r_{n}
0	$\langle b, c, a\rangle$	$\langle b, a, d\rangle$	$\langle a, 0, c\rangle$
1	$\langle b, c, a\rangle$	$\langle b, a, d\rangle$	$\langle 1, c, c\rangle$
2	$\langle b, c, a\rangle$	$\langle 1,1,1\rangle$	$\langle 1, c, c\rangle$
3	$\langle 1,1,1\rangle$	$\langle 1,1,1\rangle$	$\langle 1,1,1\rangle$

Among the 89,217 three-element antichains in $M_{3}\left[M_{4}\right], 936$ do not satisfy $\boldsymbol{\mu}_{2}$ but they all satisfy $\boldsymbol{\mu}_{3}$. More generally, this is true in all the lattices $M_{3}\left[M_{k}\right], k>2$, that is, they are all exactly 3 -modular.

Example 9.2. Let \mathbb{F}_{7} denote the lattice of subspaces of the Fano plane. Then $M_{3}\left[\mathbb{F}_{7}\right]$ is not 3-modular.

Notation: the points are $1,2,3,4,5,6,7$; the lines are $124,235,346,457,561$, 672,713 , and the plane is $P L$. The following example shows that $M_{3}\left[\mathbb{F}_{7}\right]$ is not 3 -modular.

n	p_{n}	q_{n}	r_{n}
0	$\langle 3,6,4\rangle$	$\langle 3,457,2\rangle$	$\langle 7,2,561\rangle$
1	$\langle 3,6,4\rangle$	$\langle 3,457,2\rangle$	$\langle 713,124,561\rangle$
2	$\langle 346,346,346\rangle$	$\langle 3,457,2\rangle$	$\langle 713,124,561\rangle$
3	$\langle 346,346,346\rangle$	$\langle 713,457,672\rangle$	$\langle 713,124,561\rangle$
4	$\langle P L, 346,346\rangle$	$\langle 713,457,672\rangle$	$\langle 713,124,561\rangle$

$M_{3}\left[\mathbb{F}_{7}\right]$ is too large for a complete search of the type B. Wolk was conducting; it has 1,090 elements, and around 190 million three-element antichains.

Corollary 7.3 show that the modularity rank of $M_{3}[L]$ may be ∞ even if L is modular.

Problem 3. Let K be a field, and let V be a d-dimensional vector space over K. What is the modularity rank of $M_{3}[\mathcal{L}(V)]$.
Problem 4. Is it possible to represent every finite distributive lattice as the congruence lattice of a finite (planar) 2-modular lattice?

For $n>1$, define $s(n)$ as the smallest integer so that there is an exactly n modular lattice of size $s(n)$. Obviously, $s(2)=5$, as realized by N_{5}. The lattice presented after the proof of Theorem 7 shows that $s(3)=7$.
Problem 5. Determine the function $s(n)$. Compute $s(n)$ for small values of n.
Problem 6. Describe the free lattice with three generators over \mathbf{M}_{2}. Is it finite? What about $\mathrm{F}_{\mathbf{M}_{n}}(3)$?

References

[1] A. Day, C. Herrmann, and R. Wille, On modular lattices with four generators, Algebra Universalis 2 (1972), 317-323.
[2] G. Grätzer, General Lattice Theory, Pure and Applied Mathematics 75, Academic Press, Inc. (Harcourt Brace Jovanovich, Publishers), New York-London; Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 52. Birkhäuser Verlag, Basel-Stuttgart; Akademie Verlag, Berlin, 1978. xiii+381 pp.
[3] G. Grätzer, H. Lakser, and E. T. Schmidt, Congruence lattices of small planar lattices, Proc. Amer. Math. Soc. 123 (1995), 2619-2623.
[4] G. Grätzer and E. T. Schmidt, A lattice construction and congruence-preserving extensions, Acta Math. Hungar. 66 (1995), 275-288.
[5] _ On the Independence Theorem of related structures for modular (arguesian) lattices, manuscript. Submitted for publication in Studia Sci. Math. Hungar., March 1997.
[6] G. Grätzer and F. Wehrung, Proper congruence-preserving extensions of lattices, AMS Abstract 97T-06-189. Acta Math. Hungar., to appear.
[7] _ Tensor products of semilattices with zero, revisited, J. Pure Appl. Algebra, to appear.
[8] _, Tensor products and transferability of semilattices, AMS Abstract 97T-06-190.
[9] A. Mitchke and R. Wille, Freie modulare Verbände $F M\left({ }_{D} M_{3}\right)$. Proceedings of the University of Houston Lattice Theory Conference (Houston, Tex., 1973), pp. 383-396. Dept. Math., Univ. Houston, Houston, Tex., 1973.
[10] R. W. Quackenbush, Nonmodular varieties of semimodular lattices with a spanning M_{3}. Special volume on ordered sets and their applications (L'Arbresle, 1982). Discrete Math. 53 (1985), 193-205.
[11] E. T. Schmidt, Zur Charakterisierung der Kongruenzverbände der Verbände, Mat. Casopis Sloven. Akad. Vied. 18 (1968), 3-20.
[12] , Every finite distributive lattice is the congruence lattice of a modular lattice, Algebra Universalis 4 (1974), 49-57.

Department of Mathematics, University of Manitoba, Winnipeg Mn, R3T 2N2, Canada E-mail address: gratzer@cc.umanitoba.ca URL: http://www.maths.umanitoba.ca/homepages/gratzer.html/
C.N.R.S., Département de Mathématiques, Université de Caen, 14032 Caen Cedex, France

E-mail address: wehrung@math.unicaen.fr
URL: http://www.math.unicaen.fr/~wehrung

[^0]: Date: Sept. 17, 1998.
 1991 Mathematics Subject Classification. Primary: 06B05, Secondary: 06C05.
 Key words and phrases. Lattice, modular, congruence-preserving extension.
 The research of the first author was supported by the NSERC of Canada.

