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SIMULTANEOUS REPRESENTATIONS OF SEMILATTICES

BY LATTICES WITH PERMUTABLE CONGRUENCES

JIŘÍ TŮMA AND FRIEDRICH WEHRUNG

Abstract. The Congruence Lattice Problem (CLP), stated by R. P. Dilworth
in the forties, asks whether every distributive {∨, 0}-semilattice S is isomorphic

to the semilattice Conc L of compact congruences of a lattice L.
While this problem is still open, many partial solutions have been obtained,

positive and negative as well. The solution to CLP is known to be positive for
all S such that |S| ≤ ℵ1. Furthermore, one can then take L with permutable

congruences. This contrasts with the case where |S| ≥ ℵ2, where there are
counterexamples S for which L cannot be, for example, sectionally comple-
mented. We prove in this paper that the lattices of these counterexamples
cannot have permutable congruences as well.

We also isolate finite, combinatorial analogues of these results. All the
“finite” statements that we obtain are amalgamation properties of the Conc

functor. The strongest known positive results, which originate in earlier work
by the first author, imply that many diagrams of semilattices indexed by the
square 2

2 can be lifted with respect to the Conc functor.
We prove that the latter results cannot be extended to the cube, 2

3. In
particular, we give an example of a cube diagram of finite Boolean semilattices
and semilattice embeddings that cannot be lifted, with respect to the Conc

functor, by lattices with permutable congruences.
We also extend many of our results to lattices with almost permutable

congruences, that is, α ∨ β = αβ ∪ βα, for all congruences α and β.
We conclude the paper with a very short proof that no functor from finite

Boolean semilattices to lattices can lift the Conc functor on finite Boolean
semilattices.

Introduction

The classical Congruence Lattice Problem, posed by R. P. Dilworth in the early
forties, formulated in the language of semilattices, asks whether any distributive
{∨, 0}-semilattice S is isomorphic to the semilattice of compact congruences Conc L
of a lattice L. This is probably the most well-known open problem in lattice theory,
see [5] for a survey.

The answer to CLP is known to be positive if |S| ≤ ℵ1. In fact, in that case,
one can take L relatively complemented, locally finite, with zero, see [4]; this result
can also be derived from the results of [13]. Still in case |S| ≤ ℵ1, one can take L
sectionally complemented, modular (see [16]). It is an important observation that
in both cases, any two congruences of L permute, see [1].
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2 J. TŮMA AND F. WEHRUNG

Partial negative answers to this problem are obtained by applying a universal
construction, described in the second author’s paper [14], that yields, for every in-
finite cardinal number κ, a “complicated” distributive {∨, 0}-semilattice Sκ of car-
dinality κ. A variant of Sκ, with similar properties, is constructed in [8]. Although
its precise construction is relatively complicated, this variant could be described as
a distributive {∨, 0}-semilattice “freely generated” by elements aξ, bξ, for ξ < κ,
subject to the relation aξ ∨ bξ = constant, for all ξ. If κ ≥ ℵ2, then Sκ is not
isomorphic to Conc L if L is, say, sectionally complemented, or, more generally,
congruence-splitting, as defined in [15].

The key observation is that if L is congruence-splitting, then Conc L satisfies a
certain infinite axiom of the language of semilattices, called the Uniform Refinement
Property, URP. The main results can be summarized in the following theorem, see
[9, 14, 15].

Theorem 1.

(i) The class of congruence-splitting lattices contains the class of sectionally
complemented lattices and the class of atomistic lattices. Furthermore, it
is closed under direct limit.

(ii) Let L be a congruence-splitting lattice. Then Conc L satisfies URP.
(iii) Every weakly distributive image (in E. T. Schmidt’s sense, see [11]) of a

distributive lattice with zero satisfies URP.
(iv) Sκ does not satisfy URP, for all κ ≥ ℵ2.
(v) Let F be a free lattice with at least ℵ2 generators in any non-distributive

variety of lattices. Then Conc F does not satisfy URP.

Observe that every lattice L which is either atomistic or sectionally comple-
mented has permutable congruences. It is easy to see that the class of lattices with
permutable congruences is self-dual, and closed under direct limit.

Our following result provides the natural generalization of Theorem 1, contained
in Theorems 1.2, 1.5, 2.4, and Corollary 2.3:

Theorem 2. Let L be a lattice.

(i) If L is congruence-splitting, then L has permutable congruences.
(ii) Suppose that L has permutable congruences. Then Conc L satisfies a cer-

tain strengthening of URP, denoted here URP1.
(iii) Suppose that L has almost permutable congruences, that is, the equality

α ∨ β = αβ ∪ βα holds, for all congruences α and β of L. Then Conc L
satisfies a certain weakening of URP1, denoted here URP−

1 .
(iv) Let F be a free bounded lattice with at least ℵ2 generators in any non-

distributive variety of lattices. Then Conc F does not satisfy URP−
1 .

On the other hand, the proof of the negative property of the semilattices Sκ
(or of congruence lattices of free lattices) given in Theorem 1(iv,v) relies on a very
simple, but powerful, infinite combinatorial result due to C. Kuratowski [7], that
characterizes cardinal numbers of the form ℵn (and we just need it for ℵ2) via
finite-valued set maps. A look at the proofs suggests that the finite, combinatorial
core of the problem lies in amalgamation properties of the Conc functor.

Positive amalgamation results have been obtained by the first author, who
proves, in [13], that for any diagram S of distributive {∨, 0}-semilattices indexed
by the square 22 = 2 × 2 (with 2 = {0, 1}), any lifting, with respect to the Conc



REPRESENTATIONS BY LATTICES WITH PERMUTABLE CONGRUENCES 3

functor, of S minus the top semilattice, by finite atomistic lattices can be extended
to a lifting of the full diagram S, with a finite atomistic lattice at the top. This
somehow cumbersome formulation is relevant for constructing direct systems of size
ℵ1, see [4], where the results of [13] are also generalized to arbitrary lattices with
finite congruence lattices.

Because of Theorem 1, it is not hard to see that a n-dimensional version of
this result, for n arbitrary, cannot hold. Because of the result, stated in [6], that
every finite lattice admits a congruence-preserving extension into a finite sectionally
complemented lattice, this negative result can be extended to all finite lattices (not
only atomistic).

However, this proof is not constructive, and it remained to find an effective exam-
ple of the non-existence of an amalgamation. This means that one tries to extract
a combinatorial information from the existence of counterexamples of size ℵ2.

A stronger negative result, also simpler to state, would be the existence of a
diagram of finite distributive semilattices, indexed, say, by 23, without a lifting,
with respect to Conc, by finite atomistic lattices. A finite diagram without a lifting
by finite atomistic lattices has been constructed by the first author in [12], but it is
not indexed by any n-dimensional cube. A cube, without amalgamation, of related
objects, called V-measures, is constructed in the paper by H. Dobbertin [2, pp.
32–34].

In this paper, we provide a counterexample to the cube amalgamation problem
above:

Theorem 3.

(i) There exists a cube of finite Boolean semilattices and semilattice embed-
dings, that cannot be lifted, with respect to the Conc functor, by lattices
with almost permutable congruences.

(ii) There exists a cube of finite Boolean semilattices and semilattice embed-
dings that can be lifted, with respect to the Conc functor, by finite lattices,
but that cannot be lifted, with respect to the Conc functor, by lattices with
permutable congruences.

In fact, we provide somewhat stronger statements, see Theorems 4.1, 6.3, and 7.1.
Finally, in Section 8, we show a very simple example of a diagram of finite

Boolean semilattices, that cannot be lifted, in an isomorphism-preserving fashion,
with respect to the Conc functor, by arbitrary lattices. This section can be read
independently of the others. This shows that a positive solution of the Congru-
ence Lattice Problem cannot be achieved by any functor from distributive {∨, 0}-
semilattices and {∨, 0}-homomorphisms, to lattices and lattice homomorphisms.

1. Lattices with permutable congruences

We shall first recall some basic notation and terminology. If α and β are two
binary relations on a set A, then we put

αβ = { 〈x, y〉 ∈ A×A | (∃z ∈ A)(〈x, z〉 ∈ α and 〈z, y〉 ∈ β }.

If α is a binary relation on A and x, y ∈ A, we shall often write x ≡α y instead
of 〈x, y〉 ∈ α. Suppose now that A is given a structure of algebra (over a given
similarity type). For any two elements x and y of A, we denote by ΘA(x, y) (or
simply Θ(x, y)) the least congruence of A that identifies x and y. Furthermore, we
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shall say that A has permutable congruences, if for any congruences α and β of A,
the equality αβ = βα holds. As usual, the similarity type of the class of all lattices
consists of the two binary operations ∧ and ∨.

We shall first give a convenient characterization of lattices with permutable con-
gruences. The origin of the argument can be traced back to R. P. Dilworth’s paper
[1]. The authors are grateful to Ralph Freese for having pointed this out, along
with the following proof, which simplifies tremendously the original one.

Proposition 1.1. Let L be a lattice. Then the following are equivalent:

(i) L has permutable congruences.
(ii) For any elements a, b, and c of L such that a ≤ c ≤ b, there exists x ∈ L

such that a ≡Θ(c,b) x and x ≡Θ(a,c) b.

Note that if there exists an element x of L as in (ii) above, then y = (x ∨ a) ∧ b
satisfies that a ≡Θ(c,b) y, y ≡Θ(a,c) b, and a ≤ y ≤ b. So, the element x of (ii) can
be assumed to lie in the interval [a, b].

Proof. (i)⇒(ii) Assume that (i) holds. Put α = Θ(a, c) and β = Θ(c, b). Since
a ≡α c and c ≡β b, we have 〈a, b〉 ∈ αβ. By assumption, we also have 〈a, b〉 ∈ βα,
which turns out to be the desired conclusion.

(ii)⇒(i) Assume that (ii) holds. Let α and β be congruences of L, we prove that
αβ is contained into βα. Thus let a, b, c ∈ L such that a ≡α b and b ≡β c. Then
a ≡α a ∨ b and a ∨ b ≡β a ∨ b ∨ c, thus, by the assumption, there exists x such
that a ≡Θ(a∨b,a∨b∨c) x and x ≡Θ(a,a∨b) a ∨ b ∨ c. Thus a ≡β x and x ≡α a ∨ b ∨ c.
Similarly, by reversing the roles of a and c as well as α and β, there exists y such
that c ≡α y and y ≡β a ∨ b ∨ c. Put z = x ∧ y. Then a ≡β z and z ≡α c; whence
a ≡βα c. �

We recall now the following definition of [15], also used in [9]. A lattice L is
congruence-splitting, if for all u ≤ v in L and all α, β ∈ ConL such that Θ(u, v) =
α ∨ β, there exist x and y in the interval [u, v] such that x ∨ y = v, u ≡α x, and
u ≡β y.

As an immediate corollary of Proposition 1.1, we obtain the following:

Theorem 1.2. Every congruence-splitting lattice has permutable congruences.

Proof. Let L be a congruence-splitting lattice. We shall prove that the assumption
(ii) of Proposition 1.1 holds. Thus let a ≤ c ≤ b in L. Put α = Θ(a, c) and
β = Θ(c, b). Since α∨ β = Θ(a, b), there exist, by assumption, elements x and y of
[a, b] such that x∨ y = b, and a ≡α x and a ≡β y. Joining with y the first relation,
we obtain that y ≡α b. So, a ≡β y and y ≡α b, which is the desired conclusion. �

Congruence-splitting lattices have been introduced in [15] because their compact
congruence semilattices satisfy a certain infinite axiom, called the Uniform Refine-
ment Property, denoted URP. We introduce here an apparently stronger property,
denoted URP1, and we prove that the compact congruence semilattice of every
lattice with permutable congruences satisfies this property.

Definition 1.3. Let S be a {∨, 0}-semilattice, and let ε be an element of S. We
say that S satisfies URP1 at ε, if for every family 〈〈αi, βi〉 | i ∈ I〉 of elements
of S × S such that αi ∨ βi = ε for all i, there exist a family 〈〈α∗

i , β
∗
i 〉 | i ∈ I〉 of

elements of S × S and a family 〈γi,j | 〈i, j〉 ∈ I × I〉 of elements of S such that for
all i, j, k ∈ I, the following conditions hold:
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(i) α∗
i ≤ αi and β∗

i ≤ βi, and α∗
i ∨ β

∗
i = ε.

(ii) γi,j ≤ α∗
i and γi,j ≤ β∗

j .
(iii) α∗

i ≤ α∗
j ∨ γi,j and β∗

j ≤ β∗
i ∨ γi,j .

(iv) γi,k ≤ γi,j ∨ γj,k.

Furthermore, say that S satisfies URP1, if S satisfies URP1 at every element of S.

It may appear strange at first sight to refer to the system of the α∗
i , β

∗
i , γi,j

as a refinement of the αi, βi. Section 2 of [15] gives some motivation for this
terminology.

The proof of the following result is essentially the same as the proof of Proposi-
tion 2.2 of [15], so we shall omit it:

Proposition 1.4. Let S be a distributive semilattice. Then the set of all elements
of S at which URP1 holds is closed under the join operation.

Theorem 1.5. Let L be a lattice with permutable congruences. Then Conc L sat-
isfies URP1.

Proof. Since Conc L is a distributive semilattice, it suffices, by Proposition 1.4, to
prove that Conc L satisfies URP1 at every element of the form ε = Θ(u, v), where
u ≤ v in L. Thus consider a family 〈〈αi, βi〉 | i ∈ I〉 of elements of Conc L such
that αi ∨ βi = ε, for all i ∈ I. Since L has permutable congruences, we have
also 〈u, v〉 ∈ αiβi, for all i ∈ I, thus there exists xi ∈ [u, v] such that u ≡αi

xi and
xi ≡βi

v. By replacing xi by (u∨xi)∧v, one can suppose, without loss of generality,
that u ≤ xi ≤ v. Put α∗

i = Θ(u, xi), β
∗
i = Θ(xi, v) and γi,j = Θ(xi, xi ∧ xj), for all

i, j ∈ I. It is easy to verify that the elements α∗
i , β

∗
i , γi,j verify the relations (i) to

(iv) of the definition of URP1 (Definition 1.3). �

It is proved in Corollary 4.1 of [9] that if V is any non-distributive variety of
lattices and if F is a free lattice in V on at least ℵ2 generators, then Conc F does
not satisfy a certain weakening of URP1, denoted there WURP. As a corollary, we
note, in particular, the following:

Corollary 1.6. Let V be any non-distributive variety of lattices, and let F be any
free lattice in V on at least ℵ2 generators. Then there is no lattice K with permutable
congruences such that ConcK ∼= Conc F .

2. Lattices with almost permutable congruences

Two congruences α and β of an algebra A are said to be almost permutable, if
the following equality holds:

α ∨ β = αβ ∪ βα.

We say that A has almost permutable congruences, if any two congruences of A are
almost permutable. The three-element chain is an easy example of a lattice with
almost permutable congruences but not with permutable congruences.

We shall formulate an analogue of Definition 1.3 for lattices with almost per-
mutable congruences:

Definition 2.1. Let S be a {∨, 0}-semilattice, let ε ∈ S, and let

σ = 〈〈αi, βi〉 | i ∈ I〉
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be a family of elements of S × S such that

(2.1) αi ∨ βi = ε, for all i ∈ I.

We say that S satisfies URP−
1 at σ, if there exist a subsetX of I, a family 〈〈α∗

i , β
∗
i 〉 |

i ∈ I〉 of elements of S × S and a family 〈γi,j | 〈i, j〉 ∈ I × I〉 of elements of S such
that for all i, j, k ∈ I, the following conditions hold:

(i) α∗
i ≤ αi, β

∗
i ≤ βi, and α∗

i ∨ β
∗
i = ε.

(ii) γi,j ≤ α∗
i and γi,j ≤ β∗

j .
(iii) α∗

i ≤ α∗
j ∨ γi,j and β∗

j ≤ β∗
i ∨ γi,j .

(iv) γi,k ≤ γi,j ∨ γj,k, for all i, j, k ∈ I such that

{i, k} ⊆ X ⇒ j ∈ X and {i, k} ⊆ I \X ⇒ j ∈ I \X.

We say that S satisfies URP−
1 at an element ε of S, if S satisfies URP−

1 at every
family σ satisfying (2.1). Finally, we say that S satisfies URP−

1 , if it satisfies URP−
1

at ε, for all ε ∈ S.

We recall that if S and T are join-semilattices and if ε ∈ S, a join-homomorphism
µ : S → T is weakly distributive at ε, if for all α, β ∈ T such that α ∨ β = µ(ε),
there are α′, β′ ∈ S such that the following relations hold:

ε = α′ ∨ β′, µ(α′) ≤ α, µ(β′) ≤ β.

We now formulate an analogue of Proposition 2.3 of [15]. The proof is straightfor-
ward, thus we omit it.

Lemma 2.2. Let S and T be join-semilattices, let ε ∈ S. Let µ : S → T be a weakly
distributive join-homomorphism. If S satisfies URP−

1 at ε, then T satisfies URP−
1

at µ(ε).

We can now use the results of [9] to get the following negative result:

Corollary 2.3. Let V be any non-distributive variety of lattices, and let F be any
free bounded lattice in V on at least ℵ2 generators. Then Conc F does not satisfy
URP−

1 at the largest congruence, Θ(0, 1), of F .

Proof. As in [9], we shall denote by BV(I) the free product (=coproduct) of I copies
of the two-element chain in V, say, si < ti, for i ∈ I, with bounds 0, 1 added. Now
assume that |I| = ℵ2. As in Corollary 4.1 in [9], BV(I) is a quotient of F , thus, by
Proposition 1.2 of [15], the induced map f from Conc F onto Conc BV(I) is weakly
distributive. Since f(ΘF (0, 1)) equals ΘBV(I)(0, 1), it suffices, by Lemma 2.2, to

prove that Conc BV(I) does not satisfy URP−
1 at ΘBV(I)(0, 1).

We follow for this the pattern of the proof that begins in Section 2 of [9]. Suppose
that Conc BV(I) satisfies URP−

1 at ΘBV(I)(0, 1). We put, again,

αi = Θ(0, si) ∨ Θ(ti, 1) and βi = Θ(si, ti), for all i ∈ I,(2.2)

ε = Θ(0, 1).(2.3)

Observe that αi ∨ βi = ε, for all i ∈ I. By using URP−
1 , we obtain a subset X of I

and elements γi,j of Conc BV(I), for i, j ∈ I, satisfying the following conditions:

γi,j ⊆ αi, βj , for all i, j ∈ I;(2.4)

γi,j ∨ αj ∨ βi = ε, for all i, j ∈ I;(2.5)

γi,k ⊆ γi,j ∨ γj,k, for all i, j, k ∈ I such that

{i, k} ⊆ X ⇒ j ∈ X and {i, k} ⊆ I \X ⇒ j ∈ I \X.(2.6)
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Note that either |X | = ℵ2 or |I \X | = ℵ2, say, without loss of generality, |X | = ℵ2.
By restricting (2.4)–(2.6) to X , we obtain the following conditions:

γi,j ⊆ αi, βj , for all i, j ∈ X ;

γi,j ∨ αj ∨ βi = ε, for all i, j ∈ X ;

γi,k ⊆ γi,j ∨ γj,k, for all i, j, k ∈ X.

These relations hold in the join-semilattice Conc BV(I), however, by projecting
them onto Conc BV(X) (use any lattice retraction from BV(I) onto BV(X) that
preserves the bounds and the si, ti, for i ∈ X), we obtain relations of the form

γ′i,j ⊆ αi, βj , for all i, j ∈ X ;

γ′i,j ∨ αj ∨ βi = ε, for all i, j ∈ X ;

γ′i,k ⊆ γ′i,j ∨ γ
′
j,k, for all i, j, k ∈ X,

for elements γ′i,j of Conc BV(X), for i, j ∈ X . In the formulas above, we slightly
abuse the notation by still denoting αi, βi, and ε the compact congruences of BV(X)
(not BV(I)) defined within BV(X) by the formulas (2.2) and (2.3). However, since
|X | = ℵ2, this cannot exist by the proof of Theorem 3.3 of [9]. �

On the positive side, the following result relates URP−
1 with lattices with almost

permutable congruences:

Theorem 2.4. Let L be a lattice. If L has almost permutable congruences, then
Conc L satisfies URP−

1 at every principal congruence of L.

Proof. Let u ≤ v in L, we prove that Conc L satisfies URP−
1 at ε = ΘL(u, v). So,

let 〈〈αi, βi〉 | i ∈ I〉 be a family of ordered pairs of compact congruences of L such
that αi ∨ βi = ε, for all i ∈ I. Since L has almost permutable congruences, there
exists a subset X of I such that

u ≡αiβi
v, for all i ∈ X,

u ≡βiαi
v, for all i ∈ I \X.

Thus, for all i ∈ I, we obtain an element xi of the interval [u, v] such that

u ≡αi
xi and xi ≡βi

v, for all i ∈ X,

u ≡βi
xi and xi ≡αi

v, for all i ∈ I \X.

We define compact congruences α∗
i and β∗

i of L, for all i ∈ I, as follows:

α∗
i = Θ(u, xi) and β∗

i = Θ(xi, v), for all i ∈ X,

α∗
i = Θ(xi, v) and β∗

i = Θ(u, xi), for all i ∈ I \X.

Note the following properties of α∗
i and β∗

i :

α∗
i ⊆ αi; β∗

i ⊆ βi;(2.7)

α∗
i ∨ β

∗
i = ε,(2.8)

for all i ∈ I. We further define compact congruences γi,j of L, for i, j ∈ I, as
follows:

γi,j =



















Θ+(xi, xj), if i ∈ X and j ∈ X ;

Θ(u, xi ∧ xj), if i ∈ X and j /∈ X ;

Θ(xi ∨ xj , v), if i /∈ X and j ∈ X ;

Θ+(xj , xi), if i /∈ X and j /∈ X.
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We use here the convenient notation

Θ+(a, b) = Θ(a ∧ b, a), for all a, b ∈ L.

Next, we verify that the congruences α∗
i , β

∗
i , and γi,j satisfy the relations listed in

Definition 2.1. We start with the following

(2.9) γi,j ⊆ α∗
i , β

∗
j , for all i, j ∈ I.

There are four cases to consider. If i, j ∈ X , then the verification of (2.9) amounts
to the verification of the containment

Θ+(xi, xj) ⊆ Θ(u, xi), Θ(xj , v),

which is immediate. Similarly, the remaining cases i ∈ X and j /∈ X , i /∈ X and
j ∈ X , and i, j /∈ X , respectively, correspond to the containments

Θ(u, xi ∧ xj) ⊆ Θ(u, xi), Θ(u, xj),

Θ(xi ∨ xj , v) ⊆ Θ(xi, v), Θ(xj , v),

Θ+(xj , xi) ⊆ Θ(xi, v), Θ(u, xj),

all of which are obvious. This completes the verification of (2.9).
We proceed with the verification of

(2.10) α∗
i ⊆ α∗

j ∨ γi,j for all i, j ∈ I.

Again, there are the same four cases as before to consider, that correspond respec-
tively to the following containments:

Θ(u, xi) ⊆ Θ(u, xj) ∨ Θ+(xi, xj),

Θ(u, xi) ⊆ Θ(xj , v) ∨ Θ(u, xi ∧ xj),

Θ(xi, v) ⊆ Θ(u, xj) ∨ Θ(xi ∨ xj , v),

Θ(xi, v) ⊆ Θ(xj , v) ∨ Θ+(xj , xi),

all of which are obvious, thus completing the verification of (2.10).
The following system of containments can be verified in a similar fashion:

(2.11) β∗
j ⊆ β∗

i ∨ γi,j for all i, j ∈ I.

Finally, let i, j, k ∈ I, and suppose that {i, k} ⊆ X implies j ∈ X , and {i, k} ⊆
I \ X implies j ∈ I \X . We prove that γi,k ⊆ γi,j ∨ γj,k. There are six cases to
consider, which are, respectively,

i ∈ X ; j ∈ X ; k ∈ X,

i ∈ X ; j ∈ X ; k /∈ X,

i ∈ X ; j /∈ X ; k /∈ X,

i /∈ X ; j ∈ X ; k ∈ X,

i /∈ X ; j /∈ X ; k ∈ X,

i /∈ X ; j /∈ X ; k /∈ X.
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The corresponding containments to be verified are

Θ+(xi, xk) ⊆ Θ+(xi, xj) ∨ Θ+(xj , xk),

Θ(u, xi ∧ xk) ⊆ Θ+(xi, xj) ∨ Θ(u, xj ∧ xk),

Θ(u, xi ∧ xk) ⊆ Θ(u, xi ∧ xj) ∨ Θ+(xk, xj),

Θ(xi ∨ xk, v) ⊆ Θ(xi ∨ xj , v) ∨ Θ+(xj , xk),

Θ(xi ∨ xk, v) ⊆ Θ+(xj , xi) ∨ Θ(xj ∨ xk, v),

Θ+(xk, xi) ⊆ Θ+(xj , xi) ∨ Θ+(xk, xj),

all of which are obvious, thus completing the proof. �

By putting together the results of Theorem 2.4 and Corollary 2.3, we thus obtain
the following result:

Corollary 2.5. Let V be a non-distributive variety of lattices, and let F be any
free bounded lattice in V on at least ℵ2 generators. Then there exists no lattice L
with almost permutable congruences such that Conc L ∼= Conc F .

Remark. We could have simplified the statement of URP−
1 in Definition 2.1, and

thus the proof of Theorem 2.4, to obtain exactly exactly the same statement of
Corollary 2.5. For example, the statements (i)–(iv) of Definition 2.1 could have
been simplified the same way as in [9], namely, into

(ii′) γi,j ⊆ αi, βj , for all i, j ∈ I,
(iii′) γi,j ∨ αj ∨ βi = ε, for all i, j ∈ I,
(iv′) γi,k ⊆ γi,j ∨ γj,k, for all i, j, k ∈ I such that

either {i, j, k} ⊆ X or {i, j, k} ⊆ I \X.

However, this would have made us miss an important point: namely, that part
(iv) of the original definition of URP−

1 “almost” holds for all i, j, k ∈ X . The
offending cases are, respectively,

i ∈ X ; j /∈ X ; k ∈ X,

i /∈ X ; j ∈ X ; k /∈ X,

and the corresponding containments are, respectively,

Θ+(xi, xk) ⊆ Θ(0, xi ∧ xj) ∨ Θ(xj ∨ xk, 1),

Θ+(xk, xi) ⊆ Θ(xi ∨ xj , 1) ∨ Θ(xj ∨ xk, 1),

which are easily seen to fail in very simple finite lattices, for example, the five-
element modular non-distributive lattice M3, by assigning to xi, xj , and xk the
three atoms of M3. This suggests that URP1 may, in fact, not hold in general
for the semilattices Conc L, where L has almost permutable congruences. This
suggests, in the longer term, that no “uniform refinement property” of any sort
holds for the semilattices Conc L, where L is an arbitrary lattice.

3. The basic semilattice diagram, Dc

We shall construct in this section a finite diagram, Dc, of finite distributive
{∨, 0}-semilattices. The ultimate purpose of this construction will be completed in
Section 4, where it will be proved that Dc has no lifting, with respect to the Conc

functor, by lattices with permutable congruences. The semilattices of Dc are free
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semilattices. If S is a {∨, 0}-semilattice and if n ∈ ω, a free n-tuple of elements of
S is an element 〈si | i < n〉 of Sn such that the map from the powerset semilattice
〈P(n),∨,∅〉 to S defined by the rule

X 7→
∨

( si | i ∈ X )

is an embedding of {∨, 0}-semilattices.
For any poset 〈P,≤〉, we view P as a category in the usual fashion, that is, the

objects are the elements of P , and, for p, q ∈ P , there exists exactly one morphism
from p to q if p ≤ q, and none otherwise. Let A be a category. A P -diagram of A

is a functor from P (or, more precisely, the category associated with P ) to A.
Now let A and B be two categories, let F be a functor from A to B, and let

P be a poset. A P -diagram f on A is a lifting of a P -diagram g on B, if both
diagrams F ◦ f and g are isomorphic, in notation, F ◦ f ∼= g.

The case in which we shall be interested is here the following. The category A

is the category of all lattices and lattice homomorphisms, the category B is the
category of all distributive {∨, 0}-semilattices and {∨, 0}-homomorphisms, and F

is the Conc functor from A to B.

We shall now define {∨, 0}-semilattices S0, S1, S2, T0, T1, T2, and U , the building
stones of Dc.

(i) U is the powerset semilattice of the five-element set 5 = {0, 1, 2, 3, 4},
U = P(5).

We define elements ξi, ηi, and ζi (i < 4) of U as follows:

ξ0 = {0, 4}, ξ1 = {3}, ξ2 = {2}, ξ3 = {1, 4};

η0 = {0, 4}, η1 = {1, 4}, η2 = {2}, η3 = {3, 4};

ζ0 = {0, 4}, ζ1 = {1}, ζ2 = {3}, ζ3 = {2, 4}.

Furthermore, we shall denote by 0 (resp., 1) the smallest (resp., largest)
element of U . Note that the following equalities hold:

1 =
∨

( ξi | i < 4 ) =
∨

( ηi | i < 4 ) =
∨

( ζi | i < 4 ).

We shall now define certain subsemilattices of U .
(ii) We define T0 to be the {∨, 0}-subsemilattice of U generated by { ξj | j <

4 }. Similarly, define T1 to be the {∨, 0}-subsemilattice of U generated by
{ ηj | j < 4 }, and T2 to be the {∨, 0}-subsemilattice of U generated by
{ ζj | j < 4 }.

(iii) Finally, for all i < 3, let Si be the {∨, 0}-subsemilattice of U generated by
{αi, βi}, where we put

α0 = {0, 1, 4}, β0 = {2, 3, 4};

α1 = {0, 3, 4}, β1 = {1, 2, 4};

α2 = {0, 2, 4}, β2 = {1, 3, 4}.

Note, in particular, that 1 is the largest element of Si and of Ti, for all i <
3. Furthermore, note that the definitions of the αi and βi stated in (iii) imply
immediately that the following arrays
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(3.1)

α2 β2

α1 ξ0 ξ1

β1 ξ2 ξ3

α2 β2

α0 η0 η1

β0 η2 η3

α1 β1

α0 ζ0 ζ1

β0 ζ2 ζ3

are refinement matrices, that is, in each of the three arrays, the first element of
each row is the join of the other two, and similarly for the columns. For example,
α0 = ζ0 ∨ ζ1 = η0 ∨ η1, β1 = ξ2 ∨ ξ3 = ζ1 ∨ ζ3, etc..

At the bottom of the construction, we put the two element {∨, 0}-semilattice,
2 = 〈{0, 1},∨, 0〉. We can see right away that if i 6= j are elements of 3 = {0, 1, 2},
then 2 ⊆ Si ⊆ Tj ⊆ U . Thus the semilattices 2, Si, Ti (i < 3), and U can be
arranged in a commutative diagram, as shows Figure 1, where the arrows represent
the inclusion maps. Note that all the maps in Figure 1 are embeddings of {∨, 0}-
semilattices.

2

S0 S1 S2

T2 T1 T0

U

6
@

@@I
�

���

6
�

���
@

@@I
�

��� 6
@

@@I

�
��� 6

@
@@I

Figure 1. Semilattice diagram

The proof of the following lemma is trivial.

Lemma 3.1. The quadruples 〈ξ0, ξ1, ξ2, ξ3〉 (resp., 〈η0, η1, η2, η3〉, 〈ζ0, ζ1, ζ2, ζ3〉)
are free. Therefore, the following isomorphisms hold:

(i) T0
∼= T1

∼= T2
∼= 24.

(ii) S0
∼= S1

∼= S2
∼= 22.

In particular, the Si and the Ti, i < 3, are finite Boolean semilattices.

Lemma 3.2. η1 � ξ1 ∨ ζ1.

Proof. Note that 4 ∈ η1, but that 4 /∈ ξ1 ∨ ζ1. �

4. Non-existence of a lifting with permutable congruences

We shall prove in this section our first negative lifting result:

Theorem 4.1. There is no lifting, with respect to the Conc functor, in the category
of lattices, of the diagram Dc, such that the lattices corresponding to Si, i < 3, have
permutable congruences.

Proof. Suppose otherwise. Let us consider a lifting, with respect to the Conc func-
tor, of Dc, by a lattice diagram as in Figure 2.

Moreover, suppose that K0, K1, and K2 have permutable congruences. We shall
obtain a contradiction.
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K

K0 K1 K2

L2 L1 L0

P

f0 f1 f2

g02 g01

g12 g10
g21 g20

h0h1h2

6

@
@

@
@@I

�
�

�
���

6

�
�

�
���

@
@

@
@@I

�
�

�
��� 6

@
@

@
@@I

�
�

�
��� 6

@
@

@
@@I

Figure 2. Lattice diagram

As on Figure 2, denote by fi : K → Ki, gij : Ki → Lj and hj : Lj → P the
lattice homomorphisms from the lattice diagram of Figure 2, for all i, j < 3 such
that i 6= j. Furthermore, let gi : Ki → P be the homomorphism defined by gi =
hj ◦ gij , for all j < 3 such that i 6= j. For each lattice L of Figure 2, let µL
be the isomorphism from Conc L onto the corresponding semilattice of Figure 1,
such that the isomorphisms µK : ConcK → 2, µKi

: ConcKi → Si (for i < 3),
µLj

: Conc Lj → Tj (for j < 3), µP : Conc P → U witness the isomorphism of Dc

and the image by the Conc functor of the diagram of Figure 2. For each of those
lattices L, put ΦL(x, y) = µL

(

ΘL(x, y)
)

(so, an element of µL
[

Conc L
]

), for all x,
y ∈ L. For example, if x, y ∈ K0, then ΦK0

(x, y) belongs to S0.
Since ConcK ∼= 2, there are elements 0K and 1K of K such that 0K < 1K (they

are not necessarily the least and the largest element of K, even if the latter exist),
and then the equality ΦK(0K , 1K) = 1 holds. Furthermore, put 0Ki

= fi(0K) and
1Ki

= fi(1K), for all i < 3. Note, in particular, that the following equalities hold:

ΦKi
(0Ki

, 1Ki
) = ΦK(0K , 1K) = 1.

Further, put 0Lj
= gij(0Ki

) and 1Lj
= gij(1Ki

), for all j < 3 such that i 6= j; this
definition is consistent, for example, the value of 0Lj

= gij(0Ki
) does not depend of

the choice of i, because of the commutativity of the diagram of Figure 2. Finally,
put 0P = hj(0Lj

) and 1P = hj(1Lj
); again, this does not depend of j.

For all i < 3, the equality ΦKi
(0Ki

, 1Ki
) = 1 = αi ∨ βi holds, and Ki has

permutable congruences, thus there exists xi ∈ Ki such that ΦKi
(0Ki

, xi) ≤ αi
and ΦKi

(xi, 1Ki
) ≤ βi. By replacing xi by (xi ∨ 0Ki

) ∧ 1Ki
, one can suppose

that 0Ki
≤ xi ≤ 1Ki

. If xi = 0Ki
, then ΦKi

(0Ki
, 1Ki

) ≤ βi, that is, 1 ≤ βi, a
contradiction. Thus, 0Ki

< xi, thus ΦKi
(0Ki

, xi) > 0. Since ΦKi
(0Ki

, xi) ≤ αi and
since Si = {0, αi, βi,1}, and by symmetry, we obtain the following:

(4.1) ΦKi
(0Ki

, xi) = αi and ΦKi
(xi, 1Ki

) = βi.

By applying to the elements 0Ki
, xi, and 1Ki

the homomorphisms gij for i 6= j,
we obtain sublattices of the Lj which can be described by Figure 3. We use here
the following notation: for j < 3, j′, and j′′ are the two elements of 3\{j}, ordered
in such a way that j′ < j′′.
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e

e

e e

e

e

0Lj

uj ∧ vj

uj = gj′j(xj′ ) vj = gj′′j(xj′′ )

uj ∨ vj

1Lj

@
@

�
�

�
�

@
@

Figure 3. A sublattice of Lj , for j < 3

We put uj = gj′j(xj′ ) and vj = gj′′j(xj′′ ), for all j < 3. Note, in particular,
that, by (4.1), the following equalities hold:

ΦLj
(0Lj

, uj) = ΦKj′
(0Kj′

, xj′ ) = αj′ ,

ΦLj
(uj , 1Lj

) = ΦKj′
(xj′ , 1Kj′

) = βj′ .

Similarly, the following equalities hold:

ΦLj
(0Lj

, vj) = ΦKj′′
(0Kj′′

, xj′′ ) = αj′′ ,

ΦLj
(vj , 1Lj

) = ΦKj′′
(xj′′ , 1Kj′′

) = βj′′ .

Therefore, by applying ΦLj
to the edges of the graph representing Figure 3, we

obtain, for all j < 3, the following refinement matrix (in Tj):

(4.2)

αj′′ βj′′

αj′ ΦLj
(0Lj

, uj ∧ vj) ΦLj
(uj ∧ vj , uj)

βj′ ΦLj
(uj ∧ vj , vj) ΦLj

(uj ∨ vj , 1Lj
)

Since the entries of this matrix lie in Tj , and, in the distributive lattice Tj , the
following equalities

αj′ ∧ βj′ = αj′′ ∧ βj′′ = 0

hold, the only possibility is the one given by the refinement matrices (3.1). In
particular, we obtain the following relations:

(4.3) ΦL0
(u0∧v0, u0) = ξ1, ΦL1

(u1∧v1, u1) = η1, and ΦL2
(u2∧v2, u2) = ζ1.

Finally, note that the equality

(4.4) ΦLj
(x, y) = ΦP (hj(x), hj(y))

holds for all j < 3 and for all x, y ∈ Lj. Furthermore, the equality hj(uj) =
hjgj′j(xj′ ) = gj′(xj′ ) holds, and, similarly, hj(vj) = hjgj′j(xj′ ) = gj′′(xj′′ ). Thus,
by applying (4.4) to (4.3), we obtain the following equalities:

ξ1 = ΦP (g1(x1) ∧ g2(x2), g1(x1)),

η1 = ΦP (g0(x0) ∧ g2(x2), g0(x0)),

ζ1 = ΦP (g0(x0) ∧ g1(x1), g0(x0)).

In particular, η1 ≤ ξ1 ∨ ζ1. But this contradicts Lemma 3.2. �
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Remark. The proof above shows, in fact, a stronger result: namely, Theorem 4.1
can be generalized to any diagram of semilattices obtained from Dc by replacing U
by any larger distributive semilattice. To paraphrase this, the problem for lifting
Figure 1 lies in the fact that the top lattice in Figure 2 would have a too small
congruence lattice.

5. Duality of complete lattices; case of Dc

We shall introduce in this section some material that will eventually lead to the
existence of a lifting of Dc, with respect to the Conc functor, by a diagram of finite
lattices, see Theorem 6.3.

5.1. Duality of complete lattices. The facts presented in this section are stan-
dard, although we do not know of any reference where they are recorded. All the
proofs are straightforward, so we omit them.

If A and B are complete lattices, a map f : A→ B is a complete join-homomor-
phism, if the equality

f
(

∨

X
)

=
∨

f [X ]

holds, for every subset X of A. Note that this implies, in particular, that f(0A) =
0B. One defines, similarly, complete meet-homomorphisms. We shall denote by C∨

(resp., C∧) the category of complete lattices with complete join-homomorphisms
(resp., complete meet-homomorphisms).

Definition 5.1. Let A and B be complete lattices. Two maps f : A → B and
g : B → A are dual, if the equivalence

f(a) ≤ b if and only if a ≤ g(b),

holds, for all 〈a, b〉 ∈ A×B.

Lemma 5.2. Let A and B be complete lattices.

(i) If f : A→ B and g : B → A are dual, then f is a complete join-homomor-
phism and g is a complete meet-homomorphism.

(ii) Let f : A → B be a complete join-homomorphism. Then there exists a
unique map g : B → A such that f and g are dual.

(iii) Let g : B → A be a complete meet-homomorphism. Then there exists a
unique map f : A→ B such that f and g are dual.

In case (ii), for all b ∈ B, g(b) is defined as the largest a ∈ A such that f(a) ≤ b.
We let g denote f∗. Similarly, in case (iii), f(a) is defined as the least b ∈ B such
that a ≤ g(b), and we let f denote g†.

The basic categorical properties of the duality thus described may be recorded
in the following lemma.

Lemma 5.3.

(i) The correspondence f 7→ f∗ defines a contravariant functor from C∨ to
C∧.

(ii) The correspondence g 7→ g† defines a contravariant functor from C∧ to
C∨.

(iii) If f is a complete join-homomorphism, then (f∗)† = f .
(iv) If g is a complete meet-homomorphism, then (g†)∗ = g.
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Of particular importance is the effect of the duality on complete join-homo-
morphism of the form Con f : ConK → ConL, where f : K → L is a lattice
homomorphism. We denote by Res f : ConL → ConK the “restriction” map,
defined by

(Res f)(β) = { 〈x, y〉 ∈ K ×K | 〈f(x), f(y)〉 ∈ β },

for all β ∈ ConL. If f is the inclusion mapping from a lattice K into a lattice L, we
shall just denote (Res f)(β) by β↾K , and we shall call it the restriction of β to K.

Lemma 5.4. Let K and L be lattices, let f : K → L be a lattice homomorphism.
Then Con f and Res f are dual.

For a lattice L, we denote by ιL the largest congruence of L.

Lemma 5.5. Let K and L be lattices, let f : K → L be a lattice homomorphism, let
β ∈ ConL. We define ψ as the restriction of Res f to the interval [β, ιL] of ConL,
and we put α = ψ(β). Furthermore, we denote by f ′ : K/α → L/β the canonical
lattice homomorphism, and we put ψ′ = Res f ′. Let ε : [β, ιL] → Con(L/β) and
η : [α, ιK ] → Con(K/α) be the canonical isomorphisms. Then the following diagram
commutes:

Con(L/β)
ψ′

−−−−→ Con(K/α)

ε

x





x





η

[β, ιL] −−−−→
ψ

[α, ιK ]

5.2. The dual of Dc. We describe in this section the duals of the semilattice
mappings of the semilattice diagram Dc. Note that we consider join- or meet-ho-
momorphisms between finite lattices, so these homomorphisms are always complete.
The inclusion mappings in Dc are {∨, 0}-homomorphisms, but they are not always
meet-homomorphisms. Since the duals of these inclusion mappings are meet-homo-
morphisms, we only need to specify their values at the meet-irreducible elements
(that is, the coatoms) of the Boolean semilattices belonging to Dc.

The coatoms of U are the subsets k̄ = 5 \ {k}, for all k < 5. Now, the Boolean
subsemilattice T0 of U is generated by the atoms ξ0 = {0, 4}, ξ1 = {3}, ξ2 = {2},
ξ3 = {1, 4}. Each coatom of T0 is also a coatom of U . So the coatoms of T0 are

ξ̄0 = ξ1 ∨ ξ2 ∨ ξ3 = {1, 2, 3, 4} = 0̄, ξ̄1 = 3̄, ξ̄2 = 2̄, ξ̄3 = 1̄.

We obtain, similarly, the coatoms of T1, respectively T2:

η̄0 = 0̄, η̄1 = 1̄, η̄2 = 2̄, η̄3 = 3̄,

ζ̄0 = 0̄, ζ̄1 = 1̄, ζ̄2 = 3̄, ζ̄3 = 2̄.

The atoms of the Boolean semilattices Si, for i < 3, are also their coatoms, so we
still denote them by αi, βi, for i < 3. The bottom lattice, 2, has a unique coatom,
namely, 0.



16 J. TŮMA AND F. WEHRUNG

Next, we describe the mappings ψj,i : Tj → Si that are the duals of the inclusion
maps Si →֒ Tj, for i 6= j. Easy computations yield the following:

(5.1)

ψ0,2(1̄) = ψ0,2(3̄) = α2, ψ0,2(0̄) = ψ0,2(2̄) = β2,

ψ0,1(1̄) = ψ0,1(2̄) = α1, ψ0,1(0̄) = ψ0,1(3̄) = β1,

ψ1,2(1̄) = ψ1,2(3̄) = α2, ψ1,2(0̄) = ψ1,2(2̄) = β2,

ψ1,0(2̄) = ψ1,0(3̄) = α0, ψ1,0(0̄) = ψ1,0(1̄) = β0,

ψ2,1(1̄) = ψ2,1(2̄) = α1, ψ2,1(0̄) = ψ2,1(3̄) = β1,

ψ2,0(2̄) = ψ2,0(3̄) = α0, ψ2,0(0̄) = ψ2,0(1̄) = β0.

The computations of the values are always based on the fact that each of the
(co)atoms αi, βi, for i < 3, omits exactly two elements of the set {0, 1, 2, 3} and
hence it lies under exactly two coatoms of each semilattice Tj , for j < 3.

Next we describe the mappings ψj : U → Tj , for j < 3, the duals of the inclusion
mappings Tj →֒ U . It is easy to describe the values of ψj at the coatoms 0̄, 1̄, 2̄,
3̄ ∈ U , since each of them is also a coatom of Tj , thus

ψj(0̄) = 0̄, ψj(1̄) = 1̄, ψj(2̄) = 2̄, ψj(3̄) = 3̄,

for all j < 3. The values ψj(4̄) are crucial. So ψ0(4̄) is the largest element of T0

not containing 4 as an element, hence

ψ0(4̄) = ξ1 ∨ ξ2 = {2, 3} = 0̄ ∧ 1̄,

where the meet is computed in T0, of course. Similarly, we obtain that

ψ1(4̄) = {2} = 0̄ ∧ 1̄ ∧ 3̄,

ψ2(4̄) = {1, 3} = 0̄ ∧ 2̄.

Thus we also get ψj,iψj(4̄) = αi ∧ βi = 0, for all i 6= j. Moreover, for any other
coatom k̄, k < 4, we get that ψj,iψj(k̄) is the unique of the (co)atoms αi, βi not
containing k as an element. It is computed by the same formulas as those in (5.1).

The dual of any inclusion mapping 2 →֒ X , where X is any one of the Boolean
lattices U , Tj, Si, maps every coatom of X to the unique coatom of 2, namely to 0.

6. A lifting of Dc

We shall construct in this section a lifting of Dc, based on the computations of
Section 5.2. The computations in this section are relatively tedious; however, in
our opinion, they carry the hope of being generalizable to further situations, like
being able to lift arbitrary 2n-diagrams of finite distributive {∨, 0}-semilattices.
This purpose in mind, we found it useful to give the computations in some detail.

It is also important to note that the lattices that constitute our lifting do not
have permutable congruences—they cannot, by Theorem 4.1.

For a variety V of lattices and a set X , we denote by FV(X) the free lattice
in V generated by X . If Y ⊆ X , then FV(Y ) is a sublattice of FV(X). In fact,
FV(Y ) is a retract of FV(X). Indeed, let f be any map from X to FV(Y ) such that
f↾Y = idY . We still denote by f the unique lattice homomorphism from FV(X)
to FV(Y ) that extends f . If j denotes the inclusion map from FV(Y ) into FV(X),
then f ◦ j = idFV(Y ), which proves our claim. In particular, the equality

(Con f) ◦ (Con j) = idCon FV(Y )
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holds, thus Con j is one-to-one, which means that j has the congruence extension
property.

We shall fix in this section a seven-element set,

X = {a, b, c, d, e, u, v},

and we define subsets Y , Yi, Xi (for i < 3) of X by

X0 = {a, b, c, e}, X1 = {a, b, c, d}, X2 = {a, b, d, e}

Y0 = {a, b, d}, Y1 = {a, b, e}, Y2 = {a, b, c},

Y = {a, b}.

Let S be the lattice diagrammed on Figure 4.

e

e e e e

e

e

p′

q

r′pr

0S

1S

HHHH
����

@
@

�
�

�
�

@
@
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�

�
�

@
@

@
@

Figure 4. The lattice S

Note, in particular, that S is a finite, simple, non-modular lattice. In fact, the
argument could be carried out for any simple, bounded, non-modular lattice instead
of S. We denote by V the variety generated by S.

We define lattices Ak, for k < 5, as follows:

A0 = A1 = A2 = A3 = 2, A4 = S.

Note that all the Ak-s are simple lattices of V. Next, we define maps fk : X → Ak,
for k < 5, as follows. For k < 4, the fk-s are uniquely determined by

(6.1)

f0(a) = f0(e) < f0(b) = f0(c) = f0(d) = f0(u) = f0(v),

f1(a) = f1(c) < f1(b) = f1(d) = f1(e) = f1(u) = f1(v),

f2(a) = f2(d) < f2(b) = f2(c) = f2(e) = f2(u) = f2(v),

f3(a) = f3(c) = f3(d) = f3(e) < f3(b) = f3(u) = f3(v),

while f4 is determined by

(6.2)
f4(a) = 0S , f4(b) = 1S, f4(c) = p,

f4(d) = q, f4(e) = r, f4(u) = p′, f4(v) = r′.

Note that fk[X ] generates Ak, for all k < 5. Since Ak belongs to V, fk induces a
unique surjective lattice homomorphism from FV(X) onto Ak, that we still denote
by fk.

We put ̺k = ker fk, the kernel of fk, for all k < 5. Since Ak is a simple lattice,
̺k is a coatom of ConFV(X). Furthermore, for i 6= j, fi and fj define distinct
partitions of X , thus ̺i 6= ̺j . We define a congruence Θ of FV(X) and a lattice P ,
by

(6.3) Θ =
∧

( ̺k | k < 5 ), P = FV(X)/Θ.

The congruence lattice of P can be easily computed by using the following folklore
lemma:
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Lemma 6.1. Let D be a distributive lattice with unit, let n ∈ ω, let ai, for i < n,
be mutually distinct coatoms of D. We put a =

∧

( ai | i < n ). Then the interval
[a, 1] of D is isomorphic to 2n.

By using Lemma 6.1 for D = Con FV(X), n = 5, and ak = ̺k, for k < 5,
we obtain that the upper interval [Θ, ιFV(X)] of ConFV(X) is isomorphic to 25.

Thus, ConP ∼= 25. The coatoms of ConP are the congruences ̺k/Θ, for k < 5.
Therefore, we have obtained:

Lemma 6.2. ConP ∼= 25, and the elements ̺k/Θ, for k < 5, are the distinct
coatoms of ConP .

We now construct a commutative cube of lattices, as on Figure 2. For i < 3,
we denote by Θi (resp., Θ′

i) the restriction of Θ to FV(Xi) (resp., to FV(Yi)).
Furthermore, we denote by Φ the restriction of Θ to FV(Y ). We define lattices K,
Ki, and Li, for i < 3, by

K = FV(Y )/Φ, Ki = FV(Yi)/Θ
′
i, Li = FV(Xi)/Θi.

Since the relations

Y ⊆ Yi ⊆ Xj ⊆ X

hold for all i 6= j in {0, 1, 2}, there are induced lattice embeddings fi : K →֒ Ki,
gi,j : Ki →֒ Lj , and hj : Lj →֒ P , for all i 6= j in {0, 1, 2}. It is obvious that these
maps form a commutative diagram as on Figure 2. We denote by L this diagram.
The rest of this section is devoted to the proof of the following result:

Theorem 6.3. The image of the diagram L under the Con functor is isomorphic
to Dc.

In order to prove Theorem 6.3, if is sufficient, by Section 5.1, to prove that the
image under the Res functor of the diagram L is isomorphic to the dual diagram
of Dc, described by the maps ψj : U → Tj, ψj,i : Tj → Si, and ϕi : Si → 2, for i 6= j
in {0, 1, 2}. Such an isomorphism of diagrams would consist of a family of eight
isomorphisms, respectively from ConP onto U , from ConLi onto Ti, from ConKi

onto Si (for i < 3), and from ConK onto 2, satisfying a certain set of twelve
commutation relations, each of them to be verified on the corresponding set of at
most five meet-irreducible elements. Instead of writing down those cumbersome
relations, it is convenient to observe that the dual of Dc may be described by the
following data:

(i) U is Boolean, and it has the coatoms k̄, for k < 5.
(ii) ψi(k̄) = k̄, a coatom of Tj , for all i < 3 and all k < 4.
(iii) ψ0(4̄) = 0̄ ∧ 1̄, ψ1(4̄) = 0̄ ∧ 1̄ ∧ 3̄, ψ2(4̄) = 0̄ ∧ 2̄.
(iv) T0, T1, and T2 are Boolean, and they have the coatoms k̄, for k < 4.
(v) The equations (5.1).
(vi) Si is Boolean, and αi, βi are the coatoms of Si, for all i < 3.
(vii) For i < 3, ϕi is the map that sends 1 to 1, and all the other elements to

0.

Let us first highlight which elements of ConP , ConLj, and ConKi, will play
the role of the k̄, for k < 5, and the αi, βi, for i < 3.

We have already seen in Lemma 6.2 that the coatoms of ConP are the ̺k/Θ,
for k < 5. Let ̺k/Θ correspond to k̄, for k < 5.
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Now the candidates for the coatoms of Lj, for j < 3. Let fj,k : FV(Xj) → Ak be
the restriction of fk to FV(Xj), for k < 5. We put ̺j,k = ker fj,k. So ̺j,k is the
restriction of ̺k to FV(Xj).

Lemma 6.4. Let j < 3. Then ConLj ∼= 24, and the elements ̺j,k/Θj, for k < 4,
are the distinct coatoms of ConLj. Furthermore, the following equalities hold:

(6.4)

̺0,4 = ̺0,0 ∧ ̺0,1,

̺1,4 = ̺1,0 ∧ ̺1,1 ∧ ̺1,3,

̺2,4 = ̺2,0 ∧ ̺2,2.

Proof. Let us first verify this for L0. We recall that X0 = {a, b, c, e}. We compute
the values of the maps f0,k on the elements of X0, by just looking at (6.1) and (6.2)
and removing all the elements of X \X0:

(6.5)

f0,0(a) = f0,0(e) < f0,0(b) = f0,0(c),

f0,1(a) = f0,1(c) < f0,1(b) = f0,1(e),

f0,2(a) < f0,2(b) = f0,2(c) = f0,2(e),

f0,3(a) = f0,3(c) = f0,3(e) < f0,3(b),

while f0,4 is determined by

(6.6) f0,4(a) = 0S , f0,4(b) = 1S, f0,4(c) = p, f0,4(e) = r.

Since f0,k[X0] generates the range of f0,k, the range of f0,k equals 2, if k < 4,
and A0,4 = {0S, 1S , p, r}, a two-atom Boolean lattice, if k = 4. In particular, for
k < 4, ̺0,k is a coatom of Con FV(X0). These congruences are mutually distinct,
because, by (6.5), they induce different partitions of X0. Furthermore, we consider
the natural projections ξ0, ξ1 from A0,4 to 2, defined by ξ0(r) = ξ1(p) = 0 and
ξ0(p) = ξ1(r) = 1. By checking on the elements of X0, we obtain easily that
f0,0 = ξ0 ◦ f0,4 and f0,1 = ξ1 ◦ f0,4. Since the map x 7→ 〈ξ0(x), ξ1(x)〉 from A0,4 to
22 is a lattice embedding, the equation ̺0,4 = ̺0,0 ∧ ̺0,1 follows.

We do the same for L1. We recall that X1 = {a, b, c, d}. As in the previous
paragraph, we compute the values of the maps f1,k on the elements of X1:

(6.7)

f1,0(a) < f1,0(b) = f1,0(c) = f1,0(d),

f1,1(a) = f1,1(c) < f1,1(b) = f1,1(d),

f1,2(a) = f1,2(d) < f1,2(b) = f1,2(c),

f1,3(a) = f1,3(c) = f1,3(d) < f1,3(b),

while f1,4 is determined by

(6.8) f1,4(a) = 0S, f1,4(b) = 1S, f1,4(c) = p, f1,4(d) = q.

So the range of f1,k equals 2, if k < 4, and A1,4 = {0S , 1S, p, q}, a four-element
chain, if k = 4. In particular, for k < 4, ̺1,k is a coatom of Con FV(X1). These
congruences are mutually distinct. Furthermore, we consider the natural projec-
tions η0, η1, and η2 from A1,4 to 2, defined by η0(p) = 1, η1(p) = 0, η1(q) = 1,
and η2(p) = η2(q) = 0, η2(1) = 1. By checking on the elements of X1, we ob-
tain easily that f1,0 = η0 ◦ f1,4, f1,1 = η1 ◦ f1,4, and f1,3 = η2 ◦ f1,4. Since the
map x 7→ 〈η0(x), η1(x), η2(x)〉 from A1,4 to 23 is a lattice embedding, the equation
̺1,4 = ̺1,0 ∧ ̺1,1 ∧ ̺1,3 follows.
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We do it finally for L2. We recall that X2 = {a, b, d, e}. We compute the values
of the maps f2,k on the elements of X2:

(6.9)

f2,0(a) = f2,0(e) < f2,0(b) = f2,0(d),

f2,1(a) < f2,1(b) = f2,1(d) = f2,1(e),

f2,2(a) = f2,2(d) < f2,2(b) = f2,2(e),

f2,3(a) = f2,3(d) = f2,3(e) < f2,3(b),

while f1,4 is determined by

(6.10) f2,4(a) = 0S, f2,4(b) = 1S, f2,4(d) = q, f2,4(e) = r.

So the range of f2,k equals 2, if k < 4, and A2,4 = {0S, 1S , q, r}, a two-atom
Boolean lattice, if k = 4. In particular, for k < 4, ̺2,k is a coatom of ConFV(X2).
These congruences are mutually distinct. Furthermore, we consider the natural
projections ζ0 and ζ1 from A2,4 to 2, defined by ζ0(r) = ζ1(q) = 0, and ζ0(q) =
ζ1(r) = 1. By checking on the elements of X2, we obtain easily that f2,0 = ζ0 ◦ f2,4
and f2,2 = ζ1 ◦ f2,4. Since the map x 7→ 〈ζ0(x), ζ1(x)〉 from A2,4 to 22 is a lattice
embedding, the equation ̺2,4 = ̺2,0 ∧ ̺2,2 follows.

In particular, it follows from (6.3), (6.4) that the equation

Θj =
∧

( ̺j,k | k < 4 )

holds for all j < 3. Thus the ̺j,k/Θj, for k < 4, are exactly the coatoms of Lj . �

At this point, we have verified (i)–(iv) of the data that describe the dual of Dc:

(i) ConP is Boolean, and it has the coatoms ˜̺k = ̺k/Θ, for k < 5.
(ii) We put ˜̺j,k = (Reshj)(˜̺k), for all j < 3 and all k < 4. By Lemma 5.5,

˜̺j,k = ̺j,k/Θj. If k < 4, then ˜̺j,k is a coatom of ConLj .
(iii) The following equations hold:

(6.11)

(Resh0)(˜̺4) = ˜̺0,4 = ˜̺0,0 ∧ ˜̺0,1,

(Resh1)(˜̺4) = ˜̺1,4 = ˜̺1,0 ∧ ˜̺1,1 ∧ ˜̺1,3,

(Resh2)(˜̺4) = ˜̺2,4 = ˜̺2,0 ∧ ˜̺2,2.

(iv) By Lemma 6.4, ConLj is Boolean, for j < 3, and its coatoms are the
˜̺j,k-s, for k < 4.

We proceed through the verification of (v)–(vii). The analogues of αi, βi have
not been defined yet. We do this now.

For i < 3 and k < 5, we denote by f ′
i,k the restriction of fk to FV(Yi), and by ̺′i,k

the kernel of f ′
i,k. If j 6= i in {0, 1, 2}, then ̺′i,k is the restriction of ̺j,k to FV(Xi).

In particular, by the equations (6.4) in Lemma 6.4, ̺′i,4 is the meet of elements of
the form ̺′i,k, for k < 4. Thus, in order to determine the meet-irreducible elements

of ConKi, it is sufficient to compute ̺′i,k, for k < 4. We follow a similar, though
slightly simpler, pattern as in the proof of Lemma 6.4.
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We first compute f ′
0,k, for k < 4, at the elements of Y0 = {a, b, d}, by using (6.1).

We obtain the following:

(6.12)

f ′
0,0(a) < f ′

0,0(b) = f ′
0,0(d),

f ′
0,1(a) < f ′

0,1(b) = f ′
0,1(d),

f ′
0,2(a) = f ′

0,2(d) < f ′
0,2(b),

f ′
0,3(a) = f ′

0,3(d) < f ′
0,3(b).

In particular, f ′
0,0 = f ′

0,1 and f ′
0,2 = f ′

0,3. So we put ᾱ0 = ̺′0,2 = ̺′0,3, and

β̄0 = ̺′0,0 = ̺′0,1. We note that ᾱ0 6= β̄0, and that the range of f ′
0,k is isomorphic

to 2, for k < 4. So, ᾱ0 and β̄0 are distinct coatoms of ConFV(Y0). By (6.3), they
meet to Θ′

0. Hence, ConK0
∼= 22, and the coatoms of ConK0 are α̃0 = ᾱ0/Θ

′
0 and

β̃0 = β̄0/Θ
′
0.

Similarly, we compute f ′
1,k, for k < 4, at the elements of Y1 = {a, b, e}. We

obtain the following:

(6.13)

f ′
1,0(a) = f ′

1,0(e) < f ′
1,0(b),

f ′
1,1(a) < f ′

1,1(b) = f ′
1,1(e),

f ′
1,2(a) < f ′

1,2(b) = f ′
1,2(e),

f ′
1,3(a) = f ′

1,3(e) < f ′
1,3(b).

In particular, f ′
1,0 = f ′

1,3 and f ′
1,1 = f ′

1,2. So we put ᾱ1 = ̺′1,1 = ̺′1,2, and

β̄1 = ̺′1,0 = ̺′1,3. We note that ᾱ1 6= β̄1, and that the range of f ′
1,k is isomorphic

to 2, for k < 4. So, ᾱ1 and β̄1 are distinct coatoms of Con FV(Y1). They meet
to Θ′

1. Hence, ConK1
∼= 22, and the coatoms of ConK1 are α̃1 = ᾱ1/Θ

′
1 and

β̃1 = β̄1/Θ
′
1.

Finally, we compute f ′
2,k, for k < 4, at the elements of Y2 = {a, b, c}. We obtain

the following:

(6.14)

f ′
2,0(a) < f ′

2,0(b) = f ′
2,0(c),

f ′
2,1(a) = f ′

2,1(c) < f ′
2,1(b),

f ′
2,2(a) < f ′

2,2(b) = f ′
2,2(c),

f ′
2,3(a) = f ′

2,3(c) < f ′
2,3(b).

In particular, f ′
2,0 = f ′

2,2 and f ′
2,1 = f ′

2,3. So we put ᾱ2 = ̺′2,1 = ̺′2,3, and

β̄2 = ̺′2,0 = ̺′2,2. We note that ᾱ2 6= β̄2, and that the range of f ′
2,k is isomorphic

to 2, for k < 4. So, ᾱ2 and β̄2 are distinct coatoms of Con FV(Y2). They meet
to Θ′

2. Hence, ConK2
∼= 22, and the coatoms of ConK2 are α̃2 = ᾱ2/Θ

′
2 and

β̃2 = β̄2/Θ
′
2.

This takes care of (vi) of the data describing the dual of Dc: by (6.12)–(6.14),

ConKi is Boolean and has distinct coatoms α̃i, β̃i, for all i < 3.
Now we verify (v). We just do the typical case from ConL0 to ConK2, the other

five proceeding in a similar fashion. The computation is, actually, easy:

(Res g2,0)(˜̺0,0) = ̺′2,0/Θ
′
2 = β̃2,

(Res g2,0)(˜̺0,1) = ̺′2,1/Θ
′
2 = α̃2,

(Res g2,0)(˜̺0,2) = ̺′2,2/Θ
′
2 = β̃2,

(Res g2,0)(˜̺0,3) = ̺′2,3/Θ
′
2 = α̃2.
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Hence, Res g2,0 acts on ˜̺0,k as the map ψ0,2 acts on k̄, for k < 4. Similarly, we can
prove that for i 6= j in {0, 1, 2}, Res gj,i acts on ˜̺i,k, for k < 4, as the map ψi,j acts
on k̄, for k < 4.

The verification of (vi) is easy. Since fk(a) < fk(b) for all k < 5, the restriction
mapping from every interval [Θ′

i, ιFV(Yi)], for i < 3, maps every coatom to the only
coatom of 2, namely, 0. Thus Res fi lifts the dual ϕi of the inclusion mapping
2 →֒ Si.

This completes the proof of Theorem 6.3. Note that since S is a finite lattice,
the variety V is locally finite, so all lattices FV(X), FV(Xi), FV(Yi), and FV(Y ),
for i < 3, are finite. Hence, a fortiori, all lattices P , Li, Ki, and K, for i < 3, are
finite. This proves that the diagram Dc has a lifting by finite lattices and lattice
homomorphisms. It is, in fact, easy to prove that Ki, for i < 3, is a three-element
chain. In particular, Ki has almost permutable congruences.

7. A cube of finite Boolean semilattices without a lifting by

lattices with almost permutable congruences

We construct in this section an extension, Dac, of the semilattice cube Dc de-
scribed in Section 3, that cannot be lifted by lattices with almost permutable con-
gruences. This gives a combinatorial analogue of Corollary 1.6.

The finite semilattices in the cube will again be subsemilattices of a Boolean
lattice, this time on 8 elements. So U is, this time, the semilattice of all subsets of
the set 8 = {0, 1, 2, 3, 4, 5, 6, 7}. We define elements ξi, ηi, ζi, for i ∈ {0, 1, 2, 3}, as
follows:

ξ0 = {0, 4, 7}, ξ1 = {3, 5, 6}, ξ2 = {2, 5, 6}, ξ3 = {1, 4, 7};

η0 = {0, 4, 5, 7}, η1 = {1, 4, 6, 7}, η2 = {2, 5, 6, 7}, η3 = {3, 4, 5, 6};

ζ0 = {0, 4, 6}, ζ1 = {1, 5, 7}, ζ2 = {3, 5, 7}, ζ3 = {2, 4, 6}.

We denote by T0 the {∨, 0}-subsemilattice generated by { ξj | j < 4 }. Because of
the elements 0, 1, 2, 3, T0 is isomorphic to the Boolean semilattice of all subsets
of a four-element set. Similarly, the {∨, 0}-subsemilattice T1 of U generated by
{ ηj | j < 4 } is also isomorphic to the semilattice of all subsets of a four-element
set. Similarly, the {∨, 0}-subsemilattice T2 of U generated by { ζj | j < 4 } is
isomorphic to both T0 and T1.

Further, we denote by αi, βi, i < 3, the following subsets of {0, 1, 2, 3, 4, 5, 6, 7}:

α0 = {0, 1, 4, 5, 6, 7}, β0 = {2, 3, 4, 5, 6, 7};

α1 = {0, 3, 4, 5, 6, 7}, β1 = {1, 2, 4, 5, 6, 7};

α2 = {0, 2, 4, 5, 6, 7}, β2 = {1, 3, 4, 5, 6, 7}.

If Si, for i < 3, denotes the {∨, 0}-subsemilattice of U generated by αi, βi, then
each semilattice Si is isomorphic to 22. Moreover, Si ⊆ Tj if i 6= j. The bottom
semilattice of the cube is 2 = {∅, 8}.

We denote by Dac this new diagram of finite Boolean {∨, 0}-semilattices. It has
the same shape as Dc, but has new values for the Si, Tj, and U .

Theorem 7.1. There exists no lifting, with respect to the Conc functor, in the
category of lattices, of the diagram Dac, such that the lattices corresponding to Si,
for i < 3, have almost permutable congruences.
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Outline of proof. We merely outline the proof here, by indicating the modifications
that have to be performed on the proof of Theorem 4.1. Lemma 3.2 has to be
strengthened into the following:

Claim 1. The following relations hold:

η1 � ξ1 ∨ ζ1; η2 � ξ0 ∨ ζ3; η3 � ξ3 ∨ ζ2; η0 � ξ2 ∨ ζ0.

Proof of Claim. These relations follow, respectively, from the relations

4 ∈ η1 \ (ξ1 ∨ ζ1); 5 ∈ η2 \ (ξ0 ∨ ζ3); 6 ∈ η3 \ (ξ3 ∨ ζ2); 7 ∈ η0 \ (ξ2 ∨ ζ0).

� Claim 1.

The proof of Theorem 7.1 proceeds then as follows. We choose the elements 0K ,
1K ∈ K, 0Ki

= fi(0K), 1Ki
= fi(1K), 0Lj

= gij(0Ki
), for i 6= j, i, j < 3, and 0P ,

1P ∈ P in the same way.
Now, because each Si has almost permutable congruences, there are elements

xi ∈ Si such that 0Ki
< xi < 1Ki

and

ΦKi
(0Ki

, xi) ∈ {αi, βi}, ΦKi
(xi, 1Ki

) ∈ {αi, βi}

and ΦKi
(0Ki

, xi) 6= ΦKi
(xi, 1Ki

).
The rest consists of considering various combinations for the elements ΦKi

(0Ki
, xi)

and ΦKi
(xi, 1Ki

). The proof of Theorem 4.1 works in the case ΦKi
(0Ki

, xi) = αi for
i < 3, and also in the case ΦKi

(0Ki
, xi) = βi, ΦKi

(xi, 1Ki
) = αi. In the latter case

we only need to dualize the original proof, which leads to the same contradiction.
The next case, ΦK0

(0K0
, x0) = β0, ΦK1

(0K1
, x1) = α1, and ΦK2

(0K2
, x2) = β2

consists of exchanging α0 and β0, α2 and β2 in the original proof. This case leads to
the inequality η2 ≤ ξ0 ∨ ζ3 which contradicts the second case of Claim 1. The case
ΦK0

(0K0
, x0) = α0, ΦK1

(0K1
, x1) = β1, ΦK2

(0K2
, x2) = α2 is dual to the former

one and leads to the same contradiction.
The case ΦK0

(0K0
, x0) = β0, ΦK1

(0K1
, x1) = β1, and ΦK2

(0K2
, x2) = α2 leads

to the inequality η3 ≤ ξ3 ∨ ζ2, contradicting the third case of Claim 1. The case
ΦK0

(0K0
, x0) = α0, ΦK1

(0K1
, x1) = α1, and ΦK2

(0K2
, x2) = β2 is dual.

Finally, the case ΦK0
(0K0

, x0) = α0, ΦK1
(0K1

, x1) = β1, and ΦK2
(0K2

, x2) = β2

leads to the inequality η0 ≤ ξ2 ∨ ζ0, contradicting the last case of Claim 1, while
the remaining case ΦK0

(0K0
, x0) = β0, ΦK1

(0K1
, x1) = α1, ΦK2

(0K2
, x2) = α2 is

dual to the previous one. �

8. No functorial solution of the Congruence Lattice Problem

We shall give in this section a very elementary diagram of finite Boolean semi-
lattices and {∨, 0}-homomorphisms, that cannot be lifted, in an isomorphism-
preserving fashion, by lattices and lattice homomorphisms. This diagram is dis-
played on Figure 5:

2

22 2

6

-

�
�

�
���

ε

π

id

Figure 5. Triangular semilattice diagram
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The semilattice maps ε and π are defined as follows: ε(x) = 〈x, x〉 and π(〈x, y〉) =
x∨y, for all x, y < 2. Thus it is obvious that the diagram of Figure 5 is commutative.

The proof of the following fact is so simple-minded that it hardly deserves to
be called a theorem. However, it implies immediately that the Congruence Lattice
Problem does not have a functorial solution from {∨, 0}-semilattices and {∨, 0}-
homomorphisms, to lattices and lattice homomorphisms, see Corollary 8.2.

Theorem 8.1. There is no lifting, with respect to the Conc functor, in the category
of lattices, of the semilattice diagram displayed on Figure 5, that sends the identity
to an isomorphism.

Proof. Assume, to the contrary, that the diagram can be lifted, by a lattice diagram
of the format displayed on Figure 6, with f surjective.

K0

L K1

6

-

�
�

�
���

e

p

f

Figure 6. Triangular lattice diagram

In particular, p ◦ e = f is surjective, thus p is surjective. On the other hand,
Conc p is isomorphic (as a semilattice homomorphism) to π, and π separates 0,
thus p is one-to-one. Therefore, p is an isomorphism, which is impossible since
π ∼= Conc p and π is not an isomorphism. �

Corollary 8.2. There is no quasi-functor F, from {∨, 0}-semilattices and {∨, 0}-
homomorphisms to lattices and lattice homomorphisms, such that Conc F(S) ∼= S
and Conc F(f) ∼= f , for all finite Boolean semilattices S and T and all {∨, 0}-
homomorphisms f : S → T .

(The definition of a quasi-functor is similar to the definition of a functor, except
that the image of an identity is not required to be an identity.)

Proof. If ν : 2 → 2 is the identity, then ν◦ν = ν. Hence, if f = F(ν), then f ◦f = f .
However, by assumption on F, the relation Conc f ∼= ν holds. Since ν separates
zero, f is one-to-one, thus, since f is idempotent, f = idF(2). By Theorem 8.1, this
is impossible. �

Of course, the map π is not one-to-one, and, in particular, the proof of The-
orem 8.1 does not imply the non-existence of a functor from {∨, 0}-semilattices
with {∨, 0}-embeddings to lattices and lattice homomorphisms, that lifts the Conc

functor. In fact, the diagram of Figure 5 has a lifting by finite lattices and lattice
homomorphisms, as follows. In Figure 6, define K0 = 2, K1 = M3 (the five-element
modular non-distributive lattice), L = 22; let e and f be the {0, 1}-preserving maps,
and let p be any embedding from 22 into M3.

9. Open problems

By a result of P. Pudlák, see Fact 4, page 100 in [10], every distributive {∨, 0}-
semilattice is the direct union of all its finite distributive {∨, 0}-subsemilattices.
Therefore, in view of the negative results of Section 8, a positive solution to the
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following Problem 1 would be about the best possible solution to the Congruence
Lattice Problem:

Problem 1. Does there exist a functor F, from finite distributive {∨, 0}-semilattices
and their embeddings to lattices and their embeddings, such that the functor
Conc ◦F is naturally equivalent to the identity?

A related open problem is the following:

Problem 2. Does every finite diagram (indexed by a poset) of finite distributive
{∨, 0}-semilattices have a lifting, with respect to the Conc functor, by a diagram
of lattices?

We have seen in Section 6 that the diagram Dc can be lifted with respect to the
Conc functor. However, we do not even know the general answer to the following
problem, thus illustrating the level of our ignorance about Problem 2:

Problem 3. Let D be a cube of finite distributive {∨, 0}-semilattices. Is it decid-
able whether D admits a lifting, with respect to the Conc functor, by a cube of
lattices (resp., lattices with permutable congruences)?

We do not even know the answer to Problem 3 in the particular case where
D = Dac.

Problem 4. Which algebraic distributive lattices are isomorphic to ConL, for
some lattice L with permutable congruences?

A first approach to Problem 4 might be provided by E. T. Schmidt’s well-known
sufficient condition, for a given algebraic distributive lattice, to be isomorphic to
the congruence lattice of a lattice, see [11]. By using the amalgamation technique
of [4] in a ring-theoretical context, the second author proved that every distributive
{∨, 0}-semilattice of cardinality at most ℵ1 is isomorphic to Conc L for some sec-
tionally complemented modular L, see [16]. Since every sectionally complemented
lattice has permutable congruences, this provides a strong positive answer to Prob-
lem 4 for algebraic distributive lattices with at most ℵ1 compact elements.

Problem 5. Let V be a non-distributive variety of lattices. Does there exist a
23-diagram D of lattices and lattice embeddings in V such that the image of D

under Conc cannot be lifted by lattices with almost permutable congruences?

As follows from Corollary 2.5, if V is a non-distributive variety of lattices and if
F is a free lattice in V on at least ℵ2 generators, then there exists no lattice L with
almost permutable congruences such that Conc L ∼= Conc F . So, Problem 5 asks
for a combinatorial analogue of Corollary 2.5.
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