
HAL Id: hal-00004034
https://hal.science/hal-00004034

Submitted on 23 Jan 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The maximum saving partition problem
Refael Hassin, Jérôme Monnot

To cite this version:
Refael Hassin, Jérôme Monnot. The maximum saving partition problem. Operations Research Letters,
2005, 33, pp.242-248. �hal-00004034�

https://hal.science/hal-00004034
https://hal.archives-ouvertes.fr


The maximum saving partition problem

Refael Hassin∗ Jérôme Monnot†

Abstract

The input to the maximum saving partition problem consists of a set V =
{1, . . . , n}, weights wi, i ∈ V , a sub-additive set function f , and a family S of feasible
subsets of V . The output is a partition (S1, . . . , Sl) of V such that Si ∈ S, i = 1, . . . , l,

and
∑

j∈V wj −
∑l

i=1
f(Si) is maximized. The problem generalizes the color saving

problem and has many obvious applications. We present a general 1

2
-approximation

algorithm, and improved algorithms for special cases of the function f .

Keywords: Partitioning, color saving, approximation algorithms.

1 Introduction

Consider the following scheduling problem. Jobs (or items) from a given set V have to be
assigned (or packed) to a set of identical machines for processing. Due to various constraints,
the feasible assignments to a single machine, are constrained to a family S of feasible

subsets. S is an independence or hereditary system. This means that if a subset S of
jobs can be assigned to a machine (i.e., S ∈ S), then all the subsets of S are in S. The
cost of assigning a subset S ∈ S to a machine is f(S), and it is a function of individual
job parameters wi i ∈ S. For example, wi may denote the skill level required to process
job i, and f(S) = max{wi|i ∈ S} is the skill level required to process the subset S on a
single machine. The problem is to partition V into feasible subsets so that the total cost is
minimized.

In an interesting special case, the feasible subsets are defined solely by pairwise compat-
ibility relations. These relations can be defined by a graph, where an edge indicates that its
two ends are not compatible. The feasible sets are then the independent sets of the graph.
In this case, our problem is a node coloring problem, in which the cost of a legal coloring is
the sum of costs of its color classes as prescribed by f . Even this special case is very hard
to solve or even to approximate since it generalizes the node coloring problem where
f(S) = 1 for every S ∈ S.

The coloring case with f(S) = max{wi|i ∈ S} has been studied in [5], where it is proved
that this problem is NP -hard even in bipartite and other restricted families of graphs.
Other types of weighted coloring and partitioning problems are studied for instance in
[1, 3, 4, 13].

∗Department of Statistics and Operations Research, Tel-Aviv University, Tel Aviv 69978, Israel. E-mail:

hassin@post.tau.ac.il
†LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, F-75775 Paris Cedex

16, France. E-mail: monnot@lamsade.dauphine.fr

1



It is natural to assume that f is sub-additive, that is, for any two disjoint subsets S
and T , f(S ∪T ) ≤ f(S)+ f(T ). Moreover, we assume that f({i}) = wi and thus, the worst
possible solution, that assigns each job to a distinct machine, costs wor =

∑

i∈V wi.

In this paper we are mainly interested in a maximization version of the problem, the
maximum saving partition problem, where the goal is to maximize the saving obtained
by a solution relative to the worst case of performing each job individually on a separate
machine. Formally, an instance of the maximum saving partition problem is given by
an independence system (V,F) and a non-negative sub-additive function f from 2V . An
independence system is a pair (V,F) where V is a ground set and F is a collection of subsets
of V which are said to be independent satisfying the condition that is if S ∈ F and S′ ⊆ S,
then S′ ∈ F . Trivially, any singleton of V is independent. The goal is to find a partition
S = (S1, . . . , Sk) of V with Si ∈ F such that

∑

v∈V w({v}) −
∑k

i=1 w(Si) is maximum. An
interesting case of this problem, called color saving problem, is when the solutions are
node colorings. In particular when f(S) = 1,∀S 6= ∅, an optimal cost is |V |−χ(G), i.e., the
number of colors saved by an optimal coloring. For this special case of the color saving

problem with a single weight there are approximation algorithms that guarantee at least
1
2 [7], 2

3 [11], 3
4 [9, 14] and 289

360 [8] of the maximum possible saving. It has been observed
in [10] that the same bounds also apply to the more general problem of packing sets in an
independent system. (Only [14] specifically uses the structure of the node coloring problem
in a graph.) A notable example of such a problem is bin packing, however, it is shown in
[6], that this problem has an approximation scheme with respect to the saving criterion.

Some approximation results are given in [5] for the coloring version of the problem with
f(S) = max{wi|i ∈ S}, and in particular a 1

2 -approximation in general graphs. We will
generalize and strengthened this result by obtaining the same bound for general indepen-
dence systems and a variety of optimization criteria, and by improving the bound when
there are only two different weights in the input.

We now present some notation: The input to the maximum saving partition prob-

lem consists of the family S of feasible subsets of V = {1, . . . , n}, element weights wi,
i ∈ V , and the sub-additive function f . The output is a partition (S1, . . . , Sl) of V such
that Si ∈ S, i = 1, . . . , l, and

∑

j∈V wj −
∑l

i=1 f(Si) is maximized. We note by OPT an
optimal solution and by opt its cost. Similarly, we note by APX the approximate solution
and by apx its cost. We use opt(V ′) to note the maximum savings in the problem induced
by the subsets V ′ ⊆ V , and thus opt = opt(V ). Similarly, we use apx(V ′) and apx to denote
the savings obtained by our algorithm. A wi-item is an item of weight wi, and a k-set is a
set of size k. When an algorithm adds a subset S to the solution, this also means that the
problem is reduced to the one induced by V \ S, that is, the items of S are removed from
V and subsets intersecting S are removed from S.

We first describe a matching based algorithm and prove that it guarantees a 1
2 ap-

proximation for several interesting function f . We then describe improved approximations.
Finally, we prove some hardness results. An open question is how to use the improved
results for color saving with a single weight obtained by Halldórsson [9], Duh and Fürer
[8], or Tzeng and King [14] to improve the performance of our algorithms.

2 1
2-approximation

Algorithm optimal 2-packing:

2



1 Consider the collection of feasible 2-sets S2. For each set S = {i, j} ∈ S2 define
d(S) = wi + wj − f(S).

2 Compute a maximum weight matching M in S2 using the weights d, and add these
sets to APX.

3 For every element add to APX a singleton set.

Theorem 2.1 opt ≤ 2apx for each of the following set functions:

Min: f(S) = min{wi : i ∈ S}.
Max: f(S) = max{wi : i ∈ S}.
Mean: f(S) = 1

|S|
∑

i∈S wi.

Suppose that S = {1, . . . , l}, w1 ≥ · · · ≥ wl, and 0 ≤ α < 1 is a given constant.

Max-Convex: f(S) = αw1 + (1 − α)w2.
Ext-Convex: f(S) = αw1 + (1 − α)wl.

Proof: Consider a subset S0 = {v1, . . . , vl} ∈ OPT . We will show that S0 contains a
matching M with at least half its saving, and then the claim will follow by summation over
the sets in OPT . W.l.o.g., suppose that S0 = {1, . . . , l} and w1 ≥ · · · ≥ wl. If l is even take
M to be {1, 2}, {3, 4}, . . . , {l−1, l}. If l is odd take M to be {1, 2}, {3, 4}, . . . , {l−2, l−1}, {l}.
In each case,

∑

S∈M

f(S) ≤
1

2

[

∑

i∈V

wi + f(S0)

]

,

and therefore

apx(S0) =
∑

i∈V

wi −
∑

S∈M

f(S) ≥
1

2

[

∑

i∈V

wi − f(S0)

]

.

Note that for each of the functions f in Theorem 2.1, if the maximum size of a subset
in the input is at most 2, then the algorithm is optimal. On the other hand, even when
wi = 1, ∀i, there exist instances yielding the ratio 1

2 for each of the functions f .

In some cases, we have another algorithm with better time complexity O(n log n).

Algorithm First Fit 2-packing:

1 Sort the items in decreasing order of weight.

2 Pack the first item with the first next item that accepts it, if such an item exists.
Otherwise, form a singleton set with the first item.

Theorem 2.2 Algorithm First Fit 2-packing returns a 1
2 -approximation for the functions

Min, Max, Max-Convex, and Ext-Convex.

3



Proof: For Min: We say that a wi-item i is saved by a solution if it is packed into at set
that contains a wj-item, j > i . We observe that if i is saved by OPT and not by First

Fit 2-packing then the latter has saved another (unique) item ji with greater weight.

For Max, we will prove the result by induction on |V |. Let S be the first set found
by the algorithm. If S = {1}, then the result is clearly true. Assume that S = {1, i}. By
construction of algorithm, OPT cannot pack an item j for j < i with 1. Thus, opt(V \S) ≥
opt − 2wi. Indeed, let S∗

j1
and S∗

j2
be the sets of an optimal solution S∗ containing items

1 and i respectively (maybe j1 = j2). Now, consider the solution of V \ S given by the
restriction of S∗ to V \S. For the set S∗

jp
\S with p = 1, 2, we save an item rp (maybe this

item does not exist in S∗
jp

, and in the case, we assume that we have added a fictive item
with weight 0) satisfying wrp

≤ wi.

Finally, we deduce

apx = wi + apx(V \ S) ≥ wi +
1

2
(opt − 2wi) ≥

1

2
opt.

For Max-Convex and for Ext-Convex, the previous property of OPT gives opt(V \
S) ≥ opt − 2(1 − α)w1 − 2αwi. Thus, using inductive hypothesis we deduce for the two
functions

apx ≥ (1 − α)w1 + αwi +
1

2
opt(V \ S) ≥

1

2
opt

Remark 2.3 For the function Mean, Algorithm First Fit 2-packing does not guarantee
the ratio 1

2 . For instance, consider color saving with Mean and G consists of the bipartite
graph where the left set is L = {v1, v4, v5} and the right set is R = {v2, v3} and only edges
(v1, v3) is missing. The weights are given by w1 = w2 = K and w3 = w4 = w5 = 1. We
have apx = K+3

2 given by {v1, v3}, {v2} and {v4, v5} whereas opt = 7K+11
6 given by the

bipartition L = {v1, v4, v5} and R = {v2, v3}. Thus, we obtain that apx
opt

approaches 3
7 as K

goes to infinity.

Remark 2.4 If we modify Algorithm First Fit 2-packing to accept more than two el-
ements in a set when possible, then we may not achieve the ratio 1

2 . For instance, if we
consider color saving with Min and G consists of 2 triangles {v1, v2, v3}, {v2, v3, v6} and
2 edges (v4, v6) (v5, v6) with w1 = w2 = w3 = 3 and w4 = w5 = w6 = 1, then apx = 4
given by {v1, v4, v5}, {v2}, {v3} and {v6}, whereas opt = 9 given by {v1, v6}, {v2, v4} and
{v3, v5}.

On the other hand, if we consider function Max, then the modified Algorithm First

Fit 2-packing which accepts a maximal number of items for each subset is also a 1
2 -

approximation, even in the unweighted version. This bound is attainable, as it can be seen
from the following example. Consider color saving and G consists of a chain of four
nodes (v1, v4, v3, v2) and w1 = w2 = w3 = w4 = 1; then apx = 1 given by {v1, v2}, {v3} and
{v4}, whereas opt = 2 given by {v1, v3} and {v2, v4}.

3 Generic algorithm

This algorithm is a generalization of Hassin and Lahav’s algorithm [11] and it will be used
in Sections 4, 5 and 6.

4



Algorithm 1:

1 While there exists a 3-set add it to the solution;

2 Apply Algorithm optimal 2-packing.

4 Min criterion: approximation results

We now describe an improved algorithm that guarantees a better than 1
2 approximation

factor for the Min criterion.

Suppose that there are r different values of weights and they are sorted in decreasing
order w1 > · · · > wr, and assume wi+1 = αiwi with 0 < αi < 1.

Algorithm 2:

1 For i = 1 to r do

1.1 While there exists a feasible 3-set S, |S| = 3 and S contains at least two wi-items,
add it to the solution;

1.2 Consider the family Si
2 of feasible 2-sets containing at least one wi-item. Solve

a maximum matching M in Si
2. Add to the solution the sets resulting from the

matching and add to the solution a singleton for every wi-item.

Theorem 4.1 Algorithm 2 is a β-approximation, where β = min{2
3 , 1

1+α
} and α = maxi αi.

Proof: The proof is by induction on |V |. Consider i ∈ {1 . . . , r} and let S be a 3-set chosen
in Step 1.1. Observe that by construction, there is no wj-item with j < i. By the induction
hypothesis,

apx ≥ 2wi + βopt(V \ S) ≥ 2wi + β(opt − 3wi) ≥ βopt.

Algorithm 2 obtains a maximum saving from wi-items, but an optimal solution may do
better with respect to the x-items with x ∈ {wi+1, . . . , wr}. Let S be the item set of the
matching M and the free wi-items found in Step 1.2. Denote by l the number of sets in the
matching. We have by induction:

apx = lwi + apx(V \ S) ≥ lwi + βopt(V \ S).

On the other hand, we observe that

opt ≤ l(wi + wi+1) + opt(V \ S).

We now explain this inequality. When adding items to a given set, each added item may
add to opt at most the weight of one item (either itself - if its weight is not the minimum in

5



its set, or the weight of another item that this item replaces as the minimum weight item
in a set). In our case, the saving per added item can be wj with j > i or wi. However, the
maximum saving due to weights wi is gained by our algorithm in Step 1.2, and it is exactly
lwi. Hence, no higher saving of wi weights is possible, and the maximum saving for the
optimum is due to weights wi+1 and therefore opt − opt(V \ S) ≤ lwi + lwi+1.

Combining the two inequalities with αi ≤ α, we obtain

apx

opt
≥

lwi + βopt(V \ S)

l(wi + wi+1) + opt(V \ S)
≥ min

{

wi

wi + wi+1
, β

}

≥ min

{

1

1 + α
, β

}

= β.

If the weights are in {1, . . . , B} with B ≥ 2 then α ≤ B−1
B

and Algorithm 2 returns at
least a B

2B−1 -approximation.

Now, we analyze algorithm 1 from Section 3 for the Min criterion.

Theorem 4.2 Algorithm 1 is a γ-approximation, where γ = 2
3α1α2 · · ·αr.

Proof: In its first step, Algorithm 1 inserts into the solution 3-sets. Let S be such a set,
then opt(V \ S) ≥ opt − 3w1 and thus

apx ≥ 2wr + apx(V \ S) ≥ 2wr + γ(opt − 3w1) = (2α1α2 · · ·αrw1 − 3γw1) + γopt = γopt.

In the second stage, since there are no 3-sets, Algorithm 1 applies optimal 2-packing and
produces an optimal solution in the remaining instance.

Let δ be the value of α that solves 1
1+α

= 2
3(α1α2 · · ·αr). If α = maxi αi ≤ δ then we

apply Algorithm 2. Otherwise, we apply Algorithm 1. The resulting bound is 2
3 for α ≤ 1

2 ,
1

1+α
for 1

2 ≤ α ≤ δ, and 2
3(α1α2 · · ·αr) for α ≥ δ. It obtains the lowest value when α = δ.

Consider now the bi-valued case; we have δ =
√

7−1
2 ≈ 0.823, and when α = δ the

resulting bound is γ =
√

7−1
3 ≈ 0.548.

Corollary 4.3 There is a
√

7−1
3 -approximation for Min criterion when wi ∈ {s, b}.

5 Max criterion: approximation results

We now describe an improved algorithm that guarantees a better than 1
2 approximation

factor for the Max criterion.

As previously, suppose that there are r different values of weights w1 > · · · > wr, and
assume wi+1 = αiwi with 0 < αi < 1.

Algorithm 3:

1 For i = 1 to r do

1.1 While there exists a feasible 3-set S which only contains wj-items with j ≤ i,
add it to the solution;

6



1.2 Consider the family Si
2 of feasible 2-sets that contain only wj-items with j ≤ i.

Solve a maximum matching M in Si
2 and add to the solution the sets resulting

from the matching;

2 For every item, add to the solution a singleton set.

Theorem 5.1 Algorithm 3 returns a β-approximation, where β = min{2
3 , 1

1+α
} with α =

maxi αi.

Proof: The proof is by induction on |V |. Consider i ∈ {1, . . . , r}, and let S be a 3-set
chosen in Step 1.1. Observe that S contains at most one wj-item with j < i. Thus,
opt(V \ S) ≥ opt − 3wi and

apx ≥ 2wi + β(opt − 3wi) ≥ βopt.

Suppose that the matching M found in Step 1.2 has l sets. Since α ≥ αi, we have:

apx ≥ lwi + β(opt − lwi − lwi+1) = βopt + lwi(1 − β − αiβ) ≥ βopt.

The reason again is that the matching gives the maximum possible saving of wi-items,
so opt may only save more wi+1-values.

For Step 2, the proof is trivial since only 1-sets remain.

If the weights are in {1, . . . , B} with B ≥ 2 we deduce that Algorithm 3 returns at least
a B

2B−1 -approximation.

Theorem 5.2 Algorithm 1 is a γ-approximation where γ = 2α1α2···αr

1+2α1α2···αr
.

Proof: The proof is by induction on |V |. First, assume that S = {i, j, k} with wi ≤ wj ≤
wk. By the definition of Max, we have opt(V \ S) ≥ opt − wi − wj − w1 since wk ≤ w1.
Thus,

apx ≥ wi + wj + γ(opt − wi − wj − w1) ≥ γopt.

since wi ≥ wr, wj ≥ wr.

Now, if there are no 3-sets, then it is easy to see that Algorithm optimal 2-packing

gives an optimal solution.

Let δ be the value of α that solves 1
1+α

= 2α1α2···αr

1+2α1α2···αr
. If α ≤ δ then we apply Algorithm

3. Otherwise, we apply Algorithm 1. The resulting bound is 2
3 for α ≤ 1

2 , 1
1+α

for 1
2 ≤ α ≤ δ,

and 2α1α2···αr

1+2α1α2···αr
for α ≥ δ.

When r = 2, we have the bound
√

2√
2+1

≈ 0.585.

Corollary 5.3 There is a
√

2√
2+1

-approximation for Max criterion when wi ∈ {s, b}.

7



6 Mean criterion: approximation results

Theorem 6.1 Algorithm 1 is a γ-approximation where γ = 4α1α2···αr

3(1+α1α2···αr) .

Proof: The proof is by induction on |V |. First, assume that S = {i1, i2, i3}. By the

definition of Mean, we have opt(V \ S) ≥ opt − 3
2w1 −

wi1
+wi2

+wi3

2 . Indeed, let S∗
j be the

set of an optimal solution containing item ij for j = 1, 2, 3 in the present instance. We

have opt ≤ opt(V \S)+
∑3

j=1(
|S∗

j
|−1

|S∗
j
| wij +

w(S∗
j
\{ij})

|S∗
j
|(|S∗

j
|−1)) where for any set S, w(S) =

∑

l∈S wl.

Finally, since w(S∗
j \ {ij}) ≤ (|S∗

j | − 1))w1 the result is deduced

Thus, we obtain:

apx ≥
2

3
(wi1 + wi2 + wi3) + γ

(

opt −
3

2
w1 −

wi1 + wi2 + wi3

2

)

≥ γopt.

Now, if there is no 3-set, then it is easy to see that Algorithm optimal 2-packing gives
an optimal solution.

7 Min criterion: hardness results

Now, we study the version where S is the set of independent sets in a graph and the
criterion Min. We call this version the weighted node coloring problem with Min-
criterion. Here, we are interested in the standard version of coloring, not in color saving.
So, when wi = 1, ∀i = 1, . . . , n, we exactly obtain the coloring problem. We show that
even this restricted version is hard for approximation in bipartite graphs with weights 1
and 3. On the other hand, when wv ∈ {1, 2}, the weighted node coloring problem

with Min-criterion is polynomial in bipartite graphs and an optimum solution is just given
by a 2-coloring. Remark that these results also hold for the color saving problem with
Min-criterion.

Theorem 7.1 The weighted node coloring problem with Min-criterion is Strongly

NP -hard even in bipartite graphs and the function w only takes values 1 and 3.

Proof: We apply a reduction from 1-PrExt in bipartite graphs. This latter problem is
defined by: given a bipartite graph G = (V,E) where V = L∪R and L = {v1, v2, v3}, does
there exist a 3-coloring (S1, S2, S3) of G such that vi ∈ Si for i = 1, 2, 3. This problem was
shown to be NP -complete in [2]. Consider an instance of 1-PrExt. We build an instance
I = (G′, p) of the weighted node coloring problem: We add two nodes v′1 and v′2 in
R and link v′1 to v2, v3 and v′2 to v1 and v3. Note that G′ is still bipartite. Finally, we set
wv1

= wv2
= wv3

= 1 and wv = 3 for the other nodes of G′.

We prove that there exists an optimum weight coloring C of G′ with opt ≤ 3 if and only
if there exists a 3-coloring (S1, S2, S3) of G with vi ∈ Si, i = 1, 2, 3.

If (S1, S2, S3) with vi ∈ Si, i = 1, 2, 3 is such a 3-coloring of G, then S′
1 = S1 ∪ {v′1},

S′
2 = S2 ∪ {v′2} and S3 is a coloring of G′ with value 3.

Conversely, let C be a coloring of G′ with a cost at most 3. It is easy to observe that this
coloring contains at most three stable sets S1, S2, S3. Assume that v1 is in S1; if v′1 /∈ S1,
then the value of C is at least 4 since v′1 cannot be with v2 and cannot be with v3. Thus
{v1, v

′
1} ⊆ S1 and S1 does not contain v2 and v3. We apply the same argument and deduce

that {v2, v
′
2} ⊆ S2 and thus v3 ∈ S3 which conclude the proof.

8



Corollary 7.2 The weighted node coloring problem with Min-criterion is not 2p(n)-

approximable for any polynomial p unless P = NP .

Proof: We apply the proof of Theorem 7.1 where we only change the value of function
w by: wv1

= wv2
= wv3

= 1 and wv = 3 · 2p(n) for the other nodes of G′. Then, it is
NP -complete to decide between opt ≤ 3 and opt ≥ 3 · 2p(n).

References

[1] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir, “On chromatic
sums and distributed resource allocation,” Information and Computation, 140 (1998)
183–202.

[2] H. L. Bodlaender, K. Jansen and G. J. Woeginger, “Scheduling with incompatible
jobs,” Discrete Applied Mathematics 55 (1994) 219-232.

[3] D. de Werra, M. Demange, J. Monnot and V. Th. Paschos, “A Hypocoloring model
for batch scheduling,” To appear in Discrete Applied Mathematics (2004).

[4] D. de Werra and Y. Gay, “Chromatic scheduling and frequency assignment,” Discrete

Applied Mathematics 49 (1994) 165–174.

[5] M. Demange, D. De Werra, J. Monnot and V. Th. Paschos, “Weighted node coloring:
when stable sets are expensive (Extended abstract),” Proc. of the 28th International

Workshop on Graph-Theoretic Concepts in Computer Science, LNCS 2573, 2002 114-
125.

[6] M. Demange, J. Monnot and V. Th. Paschos, “Bridging gap between standard and
differential polynomial approximation: the case of bin-packing,” Applied Mathematics

Letters 12 (1999) 127-133.

[7] M. Demange, P. Grisoni and V. Th. Paschos, “Approximation results for the graph
coloring problem,” Information Processing Letters 50 (1994) 19-23.

[8] R-c. Duh and M. Fürer, “Approximation of k-set cover by semi-local optimization,”
Proc. of the Twenty Ninth Annual ACM Symposium on Theory of Computing, 1996
256-264.

[9] M. M. Halldórsson, “Approximating k-set cover and complementary graph coloring,”
Proc. of the 5th Conf. on Integer Programming and Combinatorial Optimization, LNCS
1084, 1996 118-131.

[10] R. Hassin and S. Khuller, “Z-approximations,” Journal of Algorithms 41 (2001) 429-
442.

[11] R. Hassin and S. Lahav, “Maximizing the number of unused colors in the vertex col-
oring problem,” Information Processing Letters 52 (1994) 87-90.

[12] K. Jansen, “Approximation results for the optimum cost chromatic partition problem,”
Journal of Algorithms, 34 (2000) 54–89.

9



[13] Z. Tuza, “Graph colorings with local constraints-a survey,” Discussiones Mathematicae

Graph Theory 17 (1997) 161–228.

[14] W-G. Tzeng and G-H. King, “Three-quarter approximation for the number of unused
colors in graph coloring,” Information Sciences 114 (1999) 105-126.

10


