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Short and long time behavior of the Fokker-Planck equation

in a confining potential and applications

Frédéric Hérau ∗

Université de Reims

January 30, 2006

Abstract: We consider the linear Fokker-Planck equation in a confining po-
tential in space dimension d ≥ 3. Using spectral methods, we prove bounds on
the derivatives of the solution for short and long time, and give some applica-
tions.

Résumé: On considère l’équation de Fokker-Planck avec un potentiel confi-
nant en dimension d ≥ 3. Avec des méthodes spectrales on donne des bornes
sur les dérivées de la solution en temps petit et grand, et quelques applications.

1 Introduction and results

In this article, we consider the linear Fokker-Planck equation in R
2d
x,v for d ≥ 3 which reads

after scaling

{
∂tf + v.∂xf − ∂xV.∂vf − γ∂v. (∂v + v) f = 0,

f |t=0 = f0,
(1)

where V is a given external confining potential, γ is a positive physical constant, and f is
the distribution function of the particules. This equation is a linear model for plasmas or
stellar systems, and γ has to be understood as a friction-diffusion coefficient. The aim of
this article is to study the short and long time behavior of the solution of this equation,
without the help of the explicit Green function, which is known only in very special cases
(i.e. V quadratic), and give an application to a mollified Vlasov-Poisson-Fokker-Planck
equation.

Let us now precise our notations and hypothesis. For the potential V , we suppose the
following:

(H1) e−V ∈ S(Rd
x), with V ≥ 0 and V ′′ ∈W∞,∞.

Note that the assumption 0 ≤ V can be relaxed by assuming that V is bounded from below
and adding to it a sufficiently large constant. Let us also note that these assumptions
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easily imply that V ∈ C∞(Rd
x) and limx−→∞ V (x) = +∞. We introduce now the so-called

Maxwellian, which is the unique L1-normalized steady solution of equation (1):

M(x, v) =
e−(v2/2+V (x))

∫
e−(v2/2+V (x))dxdv

. (2)

To this function we associate a weighted space here called B2 built from the standard L2

space after conjugation with a half power of the Maxwellian:

B2 def
= M1/2L2 =

{
f ∈ D′ s. t. f/M ∈ L2(Mdxdv)

}
(3)

with the natural norm defined by

‖f‖2
B2 =

∫
(f/M)2 Mdxdv.

This space is standard (e.g. [15],[14]) for the study of the Fokker Planck operator

K = v.∂x − ∂xV.∂v − γ∂v. (∂v + v) . (4)

for which M is the unique fundamental state. It is shown in [14] that K is maximal
accretive with M1/2S as a core. It is also shown in [15] that the associated semi-group
has smoothing properties under slightly weaker hypotheses. Anyway a number of results
from there are still true (see Section 2 here and in particular Remark 2.3). The first
Theorem concerns accurate estimates about the short time behavior of the associated
semi-group:

Theorem 1.1 There exists a constant C such that for all t > 0, we have the following:
i) (−∂v + v)e−tK is bounded by C(1 + t−1/2) and
ii) (−∂x + ∂xV )e−tK is bounded by C(1 + t−3/2),
as bounded operators on B2. Here C depends only on ‖V ′′‖L∞ (and γ).

In order to study the long time behavior of the system (1) we introduce an additional
hypothesis on V . We first define an intermediate operator called the Witten Laplacian
(on 0-forms) naturally associated to the linear Fokker-Planck operator K

Λ2 = −γ∂v(∂v + v) − γ∂x(∂x + ∂xV ). (5)

The closure of this operator defined in B2 has also 0 as single eigenvalue for the eigen-
function M. We shall assume the following:

(H2)

{
Operator Λ2 has a spectral gap in B2

with first non-zero eigenvalue denoted α.

This hypothesis may seem complicated, but in the particular case when ∂xV −→ ∞ it
is immediate since then Λ2 is with compact resolvent. Under this hypothesis, we have the
following result about the (short and) long time behavior of the solution of the Fokker-
Planck equation:
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Theorem 1.2 Suppose conditions (H1) and (H2) are fulfilled. Then there exists constants
C and A depending only on ‖V ′′‖L∞ (and γ) such that if f(t) is the solution of (1) for an
L1-normalized initial datum f0 ∈ B2, we have
i) ‖f(t) −M‖B2 ≤ 3e−αt/A ‖f0 −M‖B2 ,
ii) ‖(−∂v + v)f(t)‖B2 ≤ C(1 + t−1/2)e−αt/A ‖f0‖B2 ,
iii) ‖(−∂x + ∂xV )f(t)‖B2 ≤ C(1 + t−3/2)e−αt/A ‖f0‖B2 .

We give now an application to a non-linear problem. We want to study the following
mollified Vlasov-Poisson-Fokker-Planck equation





∂tf + v.∂xf − (E + ∂xV ).∂vf − γ∂v. (∂v + v) f = 0

E(t, x)
def
= ∂xVnl(t, x) = −ζ ∗ κ

|Sd−1|
x

|x|d ∗x ρ(t, x) where ρ(t, x) =

∫
f(t, x, v)dv

f |t=0 = f0

(6)
where ζ ∈ S (depending only on x). Here κ ∈ R has to be understood as the total charge
of the system. In the usual VPFP equation there is no convolution with ζ, but we were
not able to reach similar result in this case. The unique steady state of this equation is
given by

M∞(x, v) =
e−(v2/2+V (x)+V∞(x))

∫
e−(v2/2+V (x)+V∞(x))dxdv

,

where V∞ is a solution of the following Poisson-Emden type equation

−∆V∞ = κζ ∗x
e−(V +V∞)

∫
e−(V (x)+V∞(x))dx

. (7)

It is easy to see that under hypothesis (H1) this equation has a unique (Green) solution
V∞ ∈ W∞,∞ thanks to the ellipticity properties of the Laplacian. We immediately check
that the associated total potential V + V∞ satisfies hypothesis (H1), and that M∞ ∈ S.

We define also the associated spaces B2
∞ = M1/2

∞ L2 and we impose in addition that
V +V∞ satisfies an hypothesis of type (H2): As in (5) we define the corresponding Witten
Laplacian

Λ2
∞ = −γ∂v(∂v + v) − γ∂x(∂x + ∂xV + ∂xV∞)

which closure in B2
∞ has 0 as single eigenvalue associated with the eigenfunction M∞. We

shall assume the following:

(H2bis)

{
Operator Λ2

∞ has a spectral gap in B2
∞

with first non-zero eigenvalue denoted α∞.

Now we state a result about the existence, the uniqueness and convergence to equilibrium
or the solution of (6). We call here solution on [0, T [ a function f ∈ C([0, T [,B2

∞) such
that ‖E‖L∞([0,T [×Rd) <∞ and

f(t) = e−tKf0 +

∫ t

0
e−(t−s)KE(s)∂vf(s)ds.

We call it a global solution if it is a solution for all T > 0.
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Theorem 1.3 Suppose that conditions (H1) is satisfied. Then equation (6) has a unique
global solution for a given L1-normalized initial datum f0 ∈ B2

∞.

Besides if in addition (H2bis) is fulfilled, then there exist constants A∞ and C∞ only
depending on second order derivatives of V + V∞ and γ (and uniform in κ varying in a
fixed compact set) such that for any κ ≤ α∞/C∞

‖f(t, ·) −M∞‖B2
∞

≤ 6 ‖f0 −M∞‖B2
∞
e−

α∞

2A∞
t.

As a corollary of Theorem 1.3 we also get the following result concerning the decay of
the relative entropy.

Corollary 1.4 Consider the solution given by Theorem 1.3. Then (with the notations of
Theorem 1.3 and in particular for κ ≤ α∞/C∞) we have

0 ≤ H(f(t),M∞)
def
=

∫∫
f(t) ln

(
f(t)

M∞

)
dxdv ≤ C ′

∞ ‖f0‖B2
∞

‖f0 −M∞‖B2
∞

e−
α∞

2A∞
t.

where C ′
∞ only depends on second order derivatives of V + V∞ and γ (and is uniform in

κ varying in a fixed compact set).

Considering the short time linear diffusion estimates for hypoelliptic operators, we
mention the cases V = 0 known since [17] (see also the computations in the case V = x2

in [18]) where the Green function is explicit. Numerous non-linear result already quoted
use this fact. For generic hypoelliptic operators, this was studied by many authors in the
selfadjoint case, in the spirit of the study of sum of squares of vector fields theorem with
underlying Lie group structure. We refer to the book [5] and references therein for this
subject and point out that it is linked with the subelliptic estimates for semi-groups of
operators. The author was unable to find any general result concerning the non-selfadjoint
case (type II operators), and the estimates given in Proposition 1.1 in this article seem to
be new. Concerning the general study of the semi-group of globally hypoelliptic operators
we also mention the recent works [15],[14], [10], [16] and [1]

Concerning the long time behavior of Fokker-Planck type operators, we mention [25]
for the exponential decay with probalistic method, and [15] for the explicit exponential
decay using hypoelliptic tools developed first in [11], [9]. Recent results about more general
kinetic equations on the Torus can be found in works by Guo (e.g [13]). We quote [7] for
the convergence in t−N for all N with the use of entropy-dissipating methods, and [16] for
explicit exponential decay using hypoelliptic tools close to the ones in this paper. Let us
also mention the work [18] where invariant manifolds methods are used in the case without
external potential.

The systematic use of crossed derivatives in order to get short-time, long-time and
derivative estimates follows from [15] and was also developed in [26]-[19]. These studies,
concerning type II operators follow common ideas and features sometimes called hypoco-
ercivity.

For the Vlasov-Poisson-Fokker-Planck equation there is a huge literature on the subject
(e.g. [6], [2], [20], [23] and [21]). Essentially when d = 3 these results use the explicit Green
function and Lp estimates available in this case. The case of a general confining potential
was not studied and in fact Lp diffusion estimates on the semi-group seem to be hard to
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get in this case. This is the reason why we only deal with a mollified equation in the last
part of this paper. For the trend to the equilibrium, we quote [4], [3], [24] and [8].

The plan of the article is the following. In Section 2, we give some results of functional
analysis to be used later, essentially taken from [15]-[14]. In Section 3 we prove Theorem
1.1 about the short-time diffusion estimate for a general Fokker-Planck operator K. There
is a similar gain as in the explicit case when the Green function is known (see e.g. [2])
and obtained through hypoelliptic techniques. It will play a crucial role in the study
of the mollified VPFP equation and in particular close to the equilibrium, where the
potential in V + V∞ is not known. In Section 4 We give a new proof of the exponential
time decay toward the equilibrium, based on an abstract Hilbert lemma given in the first
subsection there. In the last section we apply the linear results first in the case when an
additional external field is added. Then we deal with the Mollified VPFP equation and
prove Theorem 1.3 and Corollary 1.4.

Contents

1 Introduction and results 1

2 Functional analysis 5

3 Short time behavior 7

4 Exponential time decay 11
4.1 An abstract Hilbert result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 The case of the Fokker-Planck operator . . . . . . . . . . . . . . . . . . . . 12

5 Applications 15
5.1 Strong solutions for a given interaction potential . . . . . . . . . . . . . . . 15
5.2 A mollified Vlasov-Poisson-Fokker-Planck system . . . . . . . . . . . . . . . 16
5.3 Exponential time decay for small nonlinear coupling . . . . . . . . . . . . . 17

Acknowledgement: The author wants to thank C. Villani and F. Nier for useful discus-
sions, and D. Serre for pointing out a mistake in a first version of this paper

2 Functional analysis

We work here with a potential V independent of time and satisfying conditions (H1). We
denote by B2 the space defined in (3), and recall that it is an Hilbert with respect to the
scalar product

〈f, g〉 =

∫∫
fgM−1dxdv =

∫∫
f

M
g

MMdxdv, (8)

for adequate f and g. Recall that the spaces C∞
0 and M1/2S are dense in the B2

We now state some results about the linear Fokker-Planck operator, say in L1. First
the Hamiltonian vector field of v2/2 + V (x) is denoted by

X0 = v∂x − ∂xV (x)∂v ,
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and it is easy to check that it is formally skew-adjoint with respect to the scalar product
(8) since X0 commutes with the multiplication with M. We also introduce the differential
((d,1)-matricial) operators

a = γ1/2(∂x + ∂xV (x)), b = γ1/2(∂v + v). (9)

For the scalar product defined in (8), their formal adjoint are the following (1, d)-matricial
operators

a∗ = −γ1/2∂x, b∗ = −γ1/2∂v . (10)

With these notations the Fokker-Planck operator and its adjoint with respect to the scalar
product (8) read

K = X0 + b∗b, K∗ = −X0 + b∗b.

Recall also the definition of Witten Laplacian (on 0-forms) in velocity and spatial coordi-
nates

Λ2 = a∗a+ b∗b,

which is the naturally associated formally self-adjoint operator. All these operators are
linked thanks to the following remarkable algebraic properties:

a = [b,X0], b = −HessV [a,X0].

We want to study the linear Cauchy problem,

∂tf +Kf = 0, f |t=0 = f0

in B2. We first quote some results from [14] and [15].

Proposition 2.1 ([14]-[15]) Operators K and K∗ defined as the closure of (2) with do-
main C∞

0 are maximal accretive. They define semi-groups of contraction and positivity
preserving denoted e−tK (resp. e−tK∗

) .

We shall also need the following chain of Sobolev spaces based on B2. In the spirit of [15]
we denote

Λ2
a = 1 + a∗a, Λ2

b = 1 + b∗b,

where a and b were defined in (9-10). Operators Λ2, Λ2
a and Λ2

b are maximal accretive with
M1/2S as a core and we denote by the same letter their closure in B2 (see the reference
already quoted for instance). In this sense b∗b is an harmonic oscillator and a∗a is the
Witten Laplacian associated to V . We introduce the natural chain of Sobolev space for
k, l ∈ R

H
l,k =

{
f ∈ M1/2S ′ s.t. Λk

aΛ
l
bf ∈ B2

}
, (11)

for which l ≤ l′ and k ≤ k′ imply H
l,k →֒ H

l′,k′

and H
0,0 = B2. We first write a result

which proof is essentially contained in [15]-[14] about the parabolic (smoothing) properties
of operator K in B2.

Proposition 2.2 ([15]-[14]) For all t > 0 and k ∈ R, e−tK maps M1/2
H

−k,−k to
M1/2

H
k,k. Besides for a given k ≥ 0 there is constants Ck,k and Nk such that for any

initial data f0 ∈ H
k,k we have

‖f(t)‖
Hk,k ≤ Ck,k

(
tNk + t−Nk

)
‖f0‖H−k,−k .

Besides the same result holds for K∗.
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Remark 2.3 The proof of this result is included in [15]. Let us just notice some differences.
Here there is no growing assumptions for ∂xV , anyway the definition of the commutators
and the pseudodifferential calculus are still valid with based metric g0 = dx2 +dξ2 +dη2 +
dv2 where (ξ, η) are the dual variables of (x, v). On the contrary some assertions about
compactness (of the resolvent of K, Λ2 ...) are not true anymore. It corresponds in [15,
Appendix A] to the case n = 1/2. In particular ∩k∈RH

k,k 6= S and e−tK does not anymore
send M1/2S ′ to M1/2S. Anyway the proofs of the other result there remain true under
the hypothesis (H1) here.

3 Short time behavior

The purpose of the following Section is to prove Theorem 1.1 about the short time behavior
of the semi-group associated to K. In particular we want to ameliorate the estimate for
small t in (2.2), at least in the case k = 1, and with explicit bounds. It is based on the
construction of a particular Lyapounov functional A(t) taking into account the hypoelliptic
properties of K. In fact Theorem 1.1 is included in the following Proposition:

Proposition 3.1 There exists a constant C2 such that for all t > 0, we have the following:
i) e−tKb∗ is bounded by C2(1 + t−1/2) and
ii) e−tKa∗ is bounded by C2(1 + t−3/2),
as bounded operators on B2. Here C2 depends only on ‖V ′′‖L∞ (and γ). Besides we have

the same bounds as in i) for the operators b♮e−tK♯
and e−tK♯

b♮ and as in ii) for operators

a♮e−tK♯
and e−tK♯

a♮, where ♯ and ♮ are either nothing or ∗.

Proof. We shall in a moment prove the results for ae−tK and be−tK . Taking these
bounds for given we note that they imply similar bounds for their adjoints e−tK∗

b∗ and
e−tK∗

a∗ since B2′ = B2. The proof is exactly the same for be−tK∗

and ae−tK∗

since the
sign in front of X0 has essentially no importance in the proof. Taking the adjoints again
give the result for e−tKb∗ and e−tKa∗.

Now for the bound on b∗e−tK we simply have to note that for f0 ∈ B2 given and
f(t) = e−tKf0 we have

‖b∗f(t)‖2 = (bb∗f(t), f(t)) = (b∗bf(t), f(t)) + d ‖f(t)‖2 = ‖bf(t)‖2 + d ‖f(t)‖2

and we get the result. For a∗e−tK we similarly write

‖a∗f(t)‖2 = (aa∗f(t), f(t)) = (a∗af(t), f(t)) + (∆V f(t), f(t)) ≤ ‖af(t)‖2 + C ‖f(t)‖2

since V is with second derivatives bounded. This gives the result. For the other terms, we
repeat the procedure followed in preceding paragraph and the proof of the last assertion
in Proposition 3.1 is complete.

Let us come back now to the bounds on ae−tK and be−tK . We note that the operators
are well defined since e−tK is defined from M1/2

H
−k,−k to M1/2

H
k,k. For the proof we

shall need a series of results.

The first thing we do it to change the function f by the standard conjugation tool:
We pose

u = f/M1/2, u0 = f0/M1/2. (12)
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After this conjugation, operator K is replaced by the following

K = v∂x − ∂xV ∂v + γ(−∂v + v/2)(∂v + v/2). (13)

acting on u, and defined in the flat space L2. We recall also that the Witten Laplacian in
both variables v and x reads after conjugating

Λ2 = γ(−∂x + ∂xV/2).(∂x + ∂xV/2) + γ(−∂v + v/2)(∂v + v/2), (14)

and that operators a, b and their adjoints are now

a = γ1/2(∂x + ∂xV/2), a∗ = γ1/2(−∂x + ∂xV/2),

and b = γ1/2(∂v + v/2), b∗ = γ1/2(−∂v + v/2).
(15)

Operator X0 = v∂x − ∂xV ∂v is unchanged and we have again

K = X0 + b∗b, Λ2 = a∗a+ b∗b. (16)

For all this conjugated operators we keep the same notations as for the unconjugated ones.
No confusion is possible since they act in L2 on the conjugated function u instead of f .
The norm is the standard one associated with the L2 space.

We work now in the L2 setting we just defined. We recall that for any l ∈ R and
u0 ∈ ΛlL2, Proposition 2.2 implies that for all t > 0 and k ∈ R, u(t) ∈ ΛkL2. We now
choose u0 such that Λ2u0 ∈ L2 and we pose for t ≥ 0,

A(t) = t3 ‖au‖2 + Et2Re (au, bu) +Dt ‖bu‖2 +C ‖u‖2 .

A is a C0(R+,R) ∩ C1(R+∗,R) function, and we can compute its time derivative for t > 0.

Derivative of ‖u‖2: We have

∂t ‖u‖2 = −2Re (Ku, u) = −2 ‖bu‖2 . (17)

Derivative of t ‖bu‖2: We write

∂tt ‖bu‖2 = ‖bu‖2 + t∂t(b
∗bu, u).

Let us compute separately the second derivative. We have

∂t(b
∗bu, u) = −Re (b∗bKu, u) − Re (b∗bu,Ku)

= −2 ‖b∗bu‖2 − Re (b∗bX0u, u) + Re (X0b
∗bu, u)

= −2 ‖b∗bu‖2 − Re ([b∗b,X0] u, u) .

using that a = [b,X0], we get

∂t(b
∗bu, u) = −2 ‖b∗bu‖2 − Re (b∗au, u) − Re (a∗bu, u)

= −2 ‖b∗bu‖2 − 2Re (au, bu).

As a consequence we can write that

∂t(t ‖bu‖2) = ‖bu‖2 − 2t ‖b∗bu‖2 − 2Re t(au, bu). (18)
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Derivative of t2Re (au, bu): We write

∂tt
2Re (au, bu) = 2tRe (au, bu) + t2∂tRe (au, bu). (19)

Let us compute again separately the second derivative :

∂tRe (au, bu) = −Re (aKu, bu) − Re (au, bKu)

= −Re (ab∗bu, bu) − Re (au, bb∗bu) − Re (aX0u, bu) − Re (au, bX0u).

We can commute the field X0 in the last two terms and we get

∂tRe (au, bu) = − Re (ab∗bu, bu) − Re (au, bb∗bu) − Re ([a,X0]u, bu) − Re (au, [b,X0]u)

+ Re (X0au, bu) + Re (au,X0bu)︸ ︷︷ ︸
=0 sinceX0 is skewadjoint

.

Now use the facts that [b,X0] = a and −HessV b = [a,X0]. This yields

∂tRe (au, bu) = − Re (bau, bbu) − Re (b∗au, b∗bu) + (HessV bu, bu) − ‖au‖2

and using (19) we get

∂t

(
t2Re (au, bu)

)
=2tRe (au, bu) − t2 ‖au‖2 + t2(HessV bu, bu)

− t2Re (bau, bbu) − t2Re (b∗au, b∗bu).

Using eventually the fact that b∗b = bb∗ − γd yields

∂t

(
t2Re (au, bu)

)
=2tRe (au, bu) − t2 ‖au‖2 + t2(HessV bu, bu)

− 2t2Re (bau, bbu) − t2γdRe (au, bu).
(20)

Derivative of t3 ‖au‖2: We write

∂tt
3 ‖au‖2 = 3t2 ‖au‖2 + t3∂t ‖au‖2 . (21)

We study separately the second term:

∂tRe (au, au) = −Re (aKu, au) − Re (au, aKu)

= −Re (ab∗bu, au) − Re (au, ab∗bu) − Re (aX0u, au) − Re (au, aX0u).

We shall again commute the field X0 in the last terms

∂tRe (au, au) = − 2 ‖bau‖2 − 2Re (au, aX0u)

= − 2 ‖bau‖2 − Re ([a,X0]u, au) + Re (X0au, au)︸ ︷︷ ︸
=0 sinceX0 is skewadjoint

Now since −HessV b = [a,X0]. We get

∂tRe (au, au) = − 2 ‖bau‖2 + 2Re (HessV bu, au).

From (21) we can therefore write

∂tt
3 ‖au‖2 = 3t2 ‖au‖2 − 2t3 ‖bau‖2 + 2t3Re (HessV bu, au). (22)
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Derivative of A: We put together the results of (17-18-20-22) and we get the following
formula for the derivative of A, where we have put the similar terms on the same lines :

∂tA(t) =

−2C ‖bu‖2 − 2tD ‖b∗bu‖ − t2E ‖au‖2 − 2t3 ‖bau‖2
1

+D ‖bu‖2 + t2ERe (HessV bu, bu) 2

+2tDRe (au, bu) + 2tERe (au, bu) + 2tERe (HessV bu, au) − t2DγdRe (au, bu) 3

+3t2 ‖au‖2
4

−2Et2Re (bau, bbu). 5

We bound now each terms on the lines 2 - 5 by terms appearing in 1 . We suppose that
t ∈]0, 1]. Now since the Hessian of V is bounded by a constant, say CV , we have

2 ≤ (D + ECV ) ‖bu‖2 ≪ 2C ‖bu‖2 if D,E ≪ C. (23)

For the term 3 , we write for η > 0,

3 ≤ (2D + 2E + 2ECV +Dγn)t ‖au‖ ‖bu‖

≤ ηt2 ‖au‖2 +
Cte(D,E, γd)

η
‖bu‖2 .

We therefore get that for a given E, we have to choose η sufficiently small and then C big
enough to get

3 ≪ Et2 ‖au‖2 + 2C ‖bu‖2 . (24)

Now we treat the term 4 : this is easy since we only need to take E ≫ 3 in order to get

4 ≪ −3t2 ‖au‖2 . (25)

For the last term 5 we write :

5 = −2Et2Re (bau, bbu) ≤ 2Et2 ‖bau‖ ‖bbu‖

≤ E(η′t3 ‖bau‖2 +
t

η′
‖bbu‖)

≤ Eη′t3 ‖bau‖2 +
Et

η′
‖b∗bu‖ ,

where in the last estimate we use the fact that for w s.t. Λbw ∈ L2, we have ‖bw‖ ≤ ‖b∗w‖.
Now for a given E we have to choose first η′ small enough, and then D sufficiently large
to write

5 ≪ 2tD ‖b∗bu‖2 + 2t3 ‖bau‖2 . (26)

Synthesis We checked that each line 2 - 5 can separately be bounded by a term appearing
in 1 . In order to get the fact that t 7→ A(t) is decreasing, we choose the constants as
follows : first E so that (25), and then η, η′, C and D such that (26) and (24). Eventually
increasing C so that (23) holds yields the result. In particular since A(t) is right-continuous
in 0 we get that for all t ∈ [0, 1]

A(t) = t3 ‖au‖2 + Et2Re (au, bu) +Dt ‖bu‖2 + C ‖u‖2 ≤ C ‖u0‖2 .

10



In particular we have for t ∈ [0, 1],

‖au(t)‖ ≤ C1/2t−3/2 ‖u0‖ , ‖bu(t)‖ ≤ (C/D)1/2t−1/2 ‖u0‖ .

This is the short time estimate (t ∈]0, 1]) in Proposition 3.1 for Λ2u0 ∈ L2. For t ≥ 1 we
simply write that

∥∥be−tKu0

∥∥ =
∥∥∥be−K/2e−(t−1/2)Ku0

∥∥∥ ≤ C2

∥∥∥e−(t−1/2)Ku0

∥∥∥ ≤ C2 ‖u0‖ ,

where we used first the short time estimate (with t = 1/2) and then the fact that K is
maximal accretive. The result for u0 ∈ L2 follows then by density. 2

4 Exponential time decay

4.1 An abstract Hilbert result

Let us first state a general lemma about semi-group of operators. Let K be the infinitesimal
generator of a semi-group of contraction on a Hilbert space H (in particular D(K) = H).
We want to extend the following basic result :

If ∃α > 0 such that α ‖ϕ‖2 ≤ Re (Kϕ,ϕ) for all ϕ ∈ D(K)
then ∀ϕ0 ∈ H, t ≥ 0 we have

∥∥e−tKϕ0

∥∥ ≤ e−αt ‖ϕ0‖,

Of course the converse is true applying the Lummer Phillips theorem to the operator
K − αId (see for example [22]). We want to extend the right sense.

Lemma 4.1 Let K be the infinitesimal generator of a semigroup of contraction on a
Hilbert space H and suppose that there exist a constant α > 0 and a bounded operator
L with norm bounded by C ≥ 1 such that

∀ϕ ∈ D(K), α ‖ϕ‖2 ≤ Re (Kϕ,ϕ) + Re (Kϕ, (L + L∗)ϕ) (27)

then for all ϕ0 ∈ H and t ≥ 0 we have

∥∥e−tKu0

∥∥ ≤ 3e−
αt
3C ‖ϕ0‖

Proof. We write for ϕ0 ∈ D(K), ϕ(t) = e−tKϕ0 ∈ D(K). Using (27) and since K is
accretive we get

3C
α

3C
‖ϕ‖2 ≤ 4CRe (Kϕ,ϕ) + Re (Kϕ, (L + L∗)ϕ)

and since |Re (Lϕ,ϕ)| ≤ C ‖ϕ‖2 we have

α

3C

(
2C ‖ϕ‖2 + Re (Lϕ,ϕ)

)
≤ 4CRe (Kϕ,ϕ) + Re (Kϕ, (L + L∗)ϕ).

Now ∂t ‖ϕ‖2 = −2Re (Kϕ,ϕ) and ∂tRe (Lϕ,ϕ) = −Re (Kϕ, (L + L∗)ϕ) therefore

α

3C

(
2C ‖ϕ‖2 + Re (Lϕ,ϕ)

)
+
∂

∂t

(
2C ‖ϕ‖2 + Re (Lϕ,ϕ)

)
≤ 0.

11



Integrating between 0 and t gives

2C ‖ϕ‖2 + Re (Lϕ,ϕ) ≤ e−
αt
3C

(
2C ‖ϕ0‖2 + Re (Lϕ0, ϕ0)

)
.

Using twice the fact that ‖L‖ is bounded by C we get

C ‖ϕ‖2 ≤ 3Ce−
αt
3C ‖ϕ0‖2 .

This gives (4.1) since ‖ϕ‖ ≤ ‖ϕ0‖ and the proof is complete. 2

4.2 The case of the Fokker-Planck operator

We want now to apply the preceding abstract result to the linear Fokker-Planck equation
and prove Theorem 1.2. A part of the proof is very close to the one given in [15] and in
particular uses Kohn’s type arguments about hypoellipticity developed there. We work
from now on with a potential V satisfying both conditions of type (H1) and (H2).

We shall work in the following in the orthogonal in the B2 sense of the Maxwellian.
For the following we call

B2
⊥ = M⊥ ∩B2 =

{
f ∈ B2 s.t.

∫
fdxdv = 0

}
,

endowed with the norm of B2, where ⊥ stands for the orthogonal with respect to the scalar
product in B2 (recall that B2′ was identified with B2 according to the measure M−1dxdv
in (8)).

We note that B2
⊥ is stable for K. Indeed for all f ∈ B2

⊥, we have

< Kf,M >=

∫
KfMM−1dx =

∫
f(K∗M)M−1 = 0.

Since K restricted to B2 generates a semi-group of contraction, we have the same property
in B2

⊥. Anyway restricted to B2
⊥ the semi-group has a much better property at infinity:

Proposition 4.2 Suppose V satisfy hypothesis (H1) and (H2) . Then there exists a con-
stant A depending only on ‖V ′′‖L∞ such that for all t ≥ 0

∥∥e−tK
∥∥
B2

⊥

≤ 3e−αt/A

where α was defined in (H2) . The same bound occurs for K∗.

Proof. Again we work in L2 after conjugation by the square root of the Maxwellian,
and the new unknown function is u. We therefore keep for the proof of the Proposition the
notations K, a, b, X0 and Λ2 introduced in (12–16). Note that after the conjugation, the
space B2 becomes the orthogonal of the square root of the Maxwellian and we denote it
by H = (M1/2)⊥. We note that H is stable for both K and Λ2 and that M1/2 is a single
eigenfunction for K and Λ2 with eigenvalue 0. We also introduce the following operator
on (the flat space ) L2:

Λ2
δ

def
= δ2 + a∗a+ b∗b.
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where δ2 ≤ γ is to be fixed later.

Let’s take u ∈ S. We first quote the result of Proposition 2.5 (case ε = 0 there) in
[15], which is true under our assumptions on V .

‖u‖2 ≤ Re (Ku, (L+ L∗) u) − 2Re (b∗bu, Lu) − Re (A∗bu, u)

+ (1 + γ)δ−1 ‖bu‖ ‖u‖ + δ2(Λ−2
δ u, u),

(28)

where L = Λ−2
δ a∗b and A∗ =

[
Λ−2

δ a∗,X0

]
. From Proposition 5.4 in [15] we have an explicit

bound for the bounded operator A∗, and this is also easy to get bounds for L and aΛ−2
δ b∗,

‖A∗‖ ≤ CV δ
−1, ‖L‖ ≤

√
2dγδ−1,

∥∥aΛ−2
δ b∗

∥∥ ≤ 1.

(For the second one we simply observe that if aj , bj denote the components of a and b we

have ‖b∗au‖ ≤ ∑
j

∥∥∥b∗jaju
∥∥∥ and

∥∥∥b∗jaju
∥∥∥

2
= (bjb

∗
ju, a

∗
jaju) = (b∗jbju, a

∗
jaju) + γ(a∗jaju, u)

and since δ2 ≤ Λ2
δ we get

∥∥∥b∗jaju
∥∥∥

2
≤ 2γδ−2

∥∥Λ2
δu

∥∥2
therefore ‖b∗au‖2 ≤ 2dγδ−2

∥∥Λ2
δu

∥∥2

and
∥∥b∗aΛ−2u

∥∥2 ≤ 2dγδ−2 ‖u‖2. Taking the adjoint and the square root gives the result.)

We can then write from (28) that

‖u‖2 ≤ Re (Ku, (L+ L∗)u) + 2|
(
aΛ−2

δ b∗bu, bu
)
| + |Re (A∗bu, u)|

+ (1 + γ)δ−1 ‖bu‖ ‖u‖ + δ2(Λ−2
δ u, u)

≤Re (Ku, (L+ L∗)u) + 2 ‖bu‖2 + CV δ
−1 ‖bu‖ ‖u‖

+ (1 + γ)δ−1 ‖bu‖ ‖u‖ + δ2(Λ−2
δ u, u).

Using first the inequality |xy| ≤ x2 + 4−1y2 and then the fact that Re (Ku, u) = ‖bu‖2 we
get

‖u‖2 ≤Re (Ku, (L+ L∗) u) + C ′
V δ

−2 ‖bu‖2 +
1

4
‖u‖2 + δ2(Λ−2

δ u, u)

≤Re (Ku, (L+ L∗) u) + C ′
V δ

−2Re (Ku, u) +
1

4
‖u‖2 + δ2(Λ−2

δ u, u).

(29)

Now we suppose that u ∈ H therefore δ2(Λ−2
δ u, u) ≤ δ2

α+δ2 ‖u‖2 and we choose δ2 = α

(which is lower than γ because of the harmonic part of Λ2
0). This gives

δ2(Λ−2
δ u, u) ≤ 1

2
‖u‖2

and putting this in (29) we get

1

4
‖u‖2 ≤Re (Ku, (L+ L∗)u) + C ′

V δ
−2Re (Ku, u).

As a consequence

α

4C ′
V

‖u‖2 ≤Re
(
Ku,

(
L̃+ L̃∗

)
u
)

+ Re (Ku, u)
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where L̃ = δ2

C′

V
L satisfies

∥∥∥L̃
∥∥∥ ≤

√
2dγδ−1δ2/C ′

V ≤ 1 since δ
√

2dγ ≤
√

2dγ ≤ C ′
V . The

result of the lemma is then a direct consequence of Lemma 4.1. Taking A = 12C ′
V com-

pletes the proof of the Proposition. 2

Remark 4.3 We can point out that the gain with respect to the estimate in [15] is first
that the constant in front of the exponential is universal (= 3) and in particular does
not depend on V or α. It makes sense in the study of the Vlasov-Poisson-Fokker-Planck
system with small data in Section 4 since this constant has to be compared with the size
of the initial data. The second remark is that no assumption about the increasing of ∂xV
is made, and we can understand this fact by saying that the existence of a spectral gap for
the Witten Laplacian implies a (generalized) spectral gap for the Fokker-Planck operator,
without assumptions on the remaining part of the spectrum (implied for example by the
compacity of the resolvent). 2

Remark 4.4 Note to the end that in the preceding study is also valid even for V ′′ not in
L∞ since the only real needed assumption is that the constant CV in (4.2) is not infinite
(see [15] for its expression). Anyway in this case one has to be careful when defining the
commutators, and some additional assumptions on V may be needed. 2

Putting together Propositions 4.2 and 3.1 we can complete the proof of Theorem 1.2.
In fact it is included in the following Proposition

Proposition 4.5 Suppose V satisfy hypothesis (H1) and (H2) . Then there exists con-
stants C and A such that for all t > 0,
i) be−tK , e−tKb∗, be−tK∗

and e−tK∗

b∗ are bounded by C(1 + t−1/2)e−αt/A

ii) ae−tK , e−tKa∗, ae−tK∗

and e−tK∗

a∗ are bounded by C(1 + t−3/2)e−αt/A

as bounded operators in B2, where C and A depends only on ‖V ′′‖L∞.

Proof of Proposition 4.5 and Theorem 1.2. We simply use the following fact :
For a given f0 ∈ M1/2S ⊂ B2, we have

(b∗f0,M)B2 = (f0, bM)B2 = 0.

i.e. b∗f0 is orthogonal to the square root of the Maxwellian. Of course it is also the case
for e−Kb∗f0 since

(e−Kb∗f0,M)B2 = (b∗f0, e
−K∗M)B2 = (b∗f0,M)B2 = 0.

Now for t ≥ 1 we can apply Proposition 4.2 and we get following bound :

∥∥e−tKb∗f0

∥∥ =
∥∥∥e−(t−1)Ke−Kb∗f0

∥∥∥ ≤ Ce−α(t−1)/A
∥∥e−Kb∗f0

∥∥

≤ 3eγ/Ae−αt
∥∥e−Kb∗f0

∥∥ ,
(30)

since α ≤ γ because of the harmonic part of Λ2. Now from Proposition 3.1 applied with
t = 1 we get ∥∥e−Kb∗f0

∥∥
B2 ≤ C ′(1 + t−1/2) ‖f0‖B2 .
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This inequality together with (30) give the bound

∥∥e−tKb∗f0

∥∥
B2 ≤ C2(1 + t−1/2)e−αt/A ‖f0‖B2

for an initial data f0 ∈ M1/2S. It can be clearly extended to f0 ∈ B2 by density. The
proof of the estimates about e−tKa∗ can be done exactly in the same way. The assertions
concerning K∗ are immediate since the structure of the operator is the same. Eventually
the ones concerning ae−tK and be−tK are immediate using the adjoint of the preceding
ones. The proof of Proposition 4.5 is complete. 2

Remark 4.6 In the particular case of V = x2 or more generally for quadratic external
potentials, one can compute explicitly the Green function of e−tK using the method of
characteristics (see e.g. [18]). Anyway if it gives after some work the short time behavior,
the exponential decay of e−tKb∗ is not clear on the formulas. In fact the short time decays
in theorems (3.1) can be viewed as consequences of the Lie group structure of the operator
(if one assimilates b∗ and b) whereas the long time behavior is deeply linked with the
spectral properties of K.

5 Applications

5.1 Strong solutions for a given interaction potential

In this section we work again in a linear setting and study the following Fokker-Planck
equation {

∂tf + v.∂xf − (E + ∂xV ).∂vf − γ∂v. (∂v + v) f = U

f |t=0 = f0,
(31)

where E(t, x) is a given time-dependant potential satisfying E ∈ L∞([0, T [×R
d) and V

is again a potential satisfying hypothesis (H1). We shall prove existence and uniqueness
in the space H

l,k based on B2 and defined in (11). In the following Propositions we will
assume the following

(H3)





V satisfies (H1),

E ∈ L∞([0, T [×R
d),

f0 ∈ B2(R2n),

U ∈ L2
(
[0, T [,H0,−1(Rd

x × R
d
v)

)
.

The first Proposition gives existence and uniqueness of a unique mild solution of the
system (31).

Proposition 5.1 Under hypotheses (H3) there exists a unique mild solution solution of
(31), where by definition a mild solution is a solution f ∈ C([0, T [, B2) satisfying

f(t) = e−tKf0 +

∫ t

0
e−(t−s)KE(s)∂vf(s) +

∫ t

0
e−(t−s)KU(s)ds.
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Proof. This is obtained via a standard fixed point theorem in L∞([0, T [, B2). We only
sketch the proof. To simplify the notations we suppose γ = 1 which implies ∂v = −b∗. Let
F be the following operator from L∞([0, T [, B2) into itself given by

F (f) = e−tKf0 +

∫ t

0
e−(t−s)KE(s)∂vf(s) +

∫ t

0
e−(t−s)KU(s)

= e−tKf0 −
∫ t

0
e−(t−s)Kb∗E(s)f(s) +

∫ t

0
e−(t−s)K(1 + b∗b)Λ−1

b Λ−1
b U(s).

(32)

According to the diffusion estimates given in Proposition 3.1 and using the fact the bΛ−1
b

is bounded by 1 as an operator in B2, we get that for all 0 < t < T

∥∥e−tK(1 + b∗b)Λ−1
b

∥∥
B2 ≤ Ct−1/2.

We therefore get for f ∈ B2, F (f) ∈ B2 and for all t > 0,

‖F (f)‖L∞([0,t[,B2) ≤ Ct1/2 ‖f‖L∞([0,t[,B2) .

Using a standard fixed point theorem we get that f is the unique limit of the following
iteration scheme

∂tf
n+1 +Kfn+1 + Eb∗fn = U, f0 = f0,

and the continuity is clear from formula (32). 2

5.2 A mollified Vlasov-Poisson-Fokker-Planck system

In this section we study the following non-linear problem, to be understood as a modified
Vlasov-Poisson-Fokker-Planck system, where the non-linear coupling is mollified:





∂tf + v.∂xf − (E + ∂xV ).∂vf − γ∂v. (∂v + v) f = 0,

E(t, x)
def
= ∂xVnl(t, x) = −ζ ∗ κ

|Sd−1|
x

|x|d ∗x ρ(t, x) where ρ(t, x) =

∫
f(t, x, v)dv,

f |t=0 = f0,
(33)

where ζ ∈ S (depending only on x). We shall write in the following

ϕ = −ζ ∗ 1

|Sd−1|
x

|x|d (34)

so that the field reads E = κϕ ∗ ρ. In fact the following result and the ones in the next
section work as well for any ϕ ∈ L∞. We shall prove the following Proposition.

Proposition 5.2 Suppose that V satisfies hypothesis (H1) and that f0 ∈ B2. Then for
all T > 0, the approximate problem (33) admits a unique strong solution in C([0, T [, B2).

Proof. We suppose γ = 1 (∂v = −b∗) in the proof for convenience. The existence is
given by a fixed point theorem. We study the following family of linear problems where
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f0 is fixed and on an interval of time [0, T ] for T finite and fixed.





∂tf
n+1 + v.∂xf

n+1 − (En + ∂xV ).∂vf
n+1 − γ∂v . (∂v + v) fn+1 = 0,

En = ∂xV
n
nl = κϕ ∗x ρ

n with ρn(t, x) =

∫
fn(t, x, v)dv,

f |t=0 = f0 and f0 = f0.

In the following we call C any constant independent of n (but perhaps depending on T ).
Proposition 5.1 yields that for each n ≥ 0 this problem admits a mild solution fn+1 since

‖En‖L∞(dtdx) ≤ ‖ϕ‖L∞ ‖ρn‖L1(dx) = ‖ϕ‖L∞ = C,

from Young inequality. This solution is given by

fn+1(t) = e−tKf0 −
∫ t

0
e−(t−s)Kb∗Enfn+1(s)ds, ds

and we observe using a Gronwall inequality and the diffusion estimate from Proposition
3.1 that there exists a constant C independent of n such that ‖fn‖B2 ≤ CT . Now for all
0 ≤ t ≤ T

∥∥fn+1 − fn
∥∥

B2 ≤
∥∥∥∥
∫ t

0
e−(t−s)Kb∗En(fn+1(s) − fn(s))ds

∥∥∥∥
B2

+

∥∥∥∥
∫ t

0
e−(t−s)Kb∗fn(En(s) − En−1(s))ds

∥∥∥∥
B2

≤ C ′
T

√
t(

∥∥fn+1 − fn
∥∥

B2 −
∥∥fn − fn−1

∥∥
B2)

since

∥∥En(s) − En−1(s)
∥∥

L∞ ≤ ‖ϕ‖L∞

∥∥fn − fn−1
∥∥

L1 ≤ ‖ϕ‖L∞

∥∥fn − fn−1
∥∥

B2 .

Now a standard fixed point theorem give that on any interval [0, cT [∈ [0, T [ the scheme
converges in L∞([0, cT [, B2) where cT is independent of n. We can apply the same proce-
dure on any interval of type [t, t+ cT [⊂ [0, T [ for t arbitrary and we get that fn converges
(strongly) in L∞([0, T [, B2) toward a function f , and that this is also the case for En

toward E in L∞([0, T [, L∞) where E is given by

E = κϕ ∗x

∫
f(t, x, v)dv.

The function f is therefore a mild solution of the problem ∂tf+Kf+Eb∗f = 0, f |t=0 = f0.
Since by Proposition 5.1 the solution is unique we get the result. 2

5.3 Exponential time decay for small nonlinear coupling

In this subsection we continue the study of the mollified Vlasov-Poisson-Fokker-Planck
equation defined in (33). The aim of this section is to prove Theorem 1.3 and Corollary 1.4
about the exponential decay for small charge. Let us now define as in the Introduction the
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Fokker-Planck operator corresponding to the stationnary Vlasov-Poisson-Fokker Planck
equation

K∞ = v∂x − ∂x(V + V∞)∂v − γ∂v(∂v + v).

We know that V∞ ∈W∞,∞ so that total potential V + V∞ satisfies Hypothesis (H1), and
we suppose that it also satisfies Hypothesis (H2bis). The Maxwellian associated to this
operator is

M∞(x, v) =
e−(v2/2+V (x)+V∞(x))

∫
e−(v2/2+V (x)+V∞(x))dxdv

and is in S ⊂ L1 with norm 1 in L1. We define also the associated spaces B2
∞ ={

f ∈ D′ s. t. f/M∞ ∈ L2(M∞dxdv)
}
. Since V + V∞ satisfy the hypothesis (H1) and

(H2bis) we can apply all the results obtained for a generic potential V . We recall that α∞

is the smallest positive real part of the eigenvalues of the corresponding Witten Laplacian

Λ2
∞ = −γ∂v(∂v + v) − γ∂x(∂x + ∂x(V + V∞))

in B2
∞. We denote by the same symbols Λ2

∞ and K∞ the closure from C∞
0 of the corre-

sponding operators in B2
∞, and recall that they are maximal accretive from Proposition

2.1. We then follow Subsection 4.2 by defining in our context the following space

B2
∞,⊥ = M⊥ ∩ B2

∞ =

{
f ∈ B2

∞ s.t.

∫
fdxdv = 0

}
,

endowed with the norm of B2
∞, where ⊥ stands for the orthogonal with respect to the

scalar product. We note that B2
∞,⊥ is stable for K∞. The following proposition is a direct

consequence of Propositions 4.5 and 4.2 for V + V∞:

Proposition 5.3 There exists constants C∞ and A∞ such that for all t > 0,
i) e−tK∞b∗ is bounded by C∞(1 + t−1/2)e−α∞t/A∞ on B2

∞

ii) e−tK∞a∗ is bounded by C∞(1 + t−3/2)e−α∞t/A∞ on B2
∞

iii) e−tK∞ is bounded by 3e−α∞t/A∞ on B2
∞,⊥

where C∞ and A∞ depend only ‖(Ve + V∞)′′‖L∞ and the physical constants (uniformly in
κ varying in a fixed compact set).

We work now in the Hilbert space B2
∞ which we recall is norm-equivalent to B2 since

V∞ ∈W∞,∞. For convenience we again suppose γ = 1. For t, x ∈ R
+ × R

d we denote

Vdiff(t, x) = Vnl(t, x) − V∞(x).

We can write the Cauchy problem associated to the VPFP system as follows

{
∂tf +K∞f = −b∗∂xVdifff,

f |t=0 = f0.

Using the a priori bounds for the solution f given by Proposition 5.2, the unique solution
satisfies the following Duhamel formula written in terms of K∞ in B2

∞:

f(t, x, v) = e−tK∞f0(x, v) −
∫ t

0
e−(t−s)K∞b∗∂xVdiff(s, x)f(s, x, v)ds. (35)
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We know that ∂xVdiff ∈ L∞(Rt × R
d
x) and we recall that ϕ(x) = −ζ ∗ 1

|Sd−1|
x

|x|d
, so that

∂xVdiff reads

∂xVdiff(t, x) = ∂xVnl(t, x) − ∂xV∞(x) = κϕ(x) ∗x (ρ(t, x) − ρ∞(x))

where ρ∞(t, x) =
∫
f∞(t, x, v)dv with f∞ = M∞. This is clear that f∞ = M∞ is the

projection in the Hilbert space B2
∞ of the Cauchy data f0 on the fundamental space

Span(M∞) since

f∞ = (f0,M∞)B2
∞
M∞ =

(∫∫
f0M∞M−1

∞ dxdv

)
M∞ = M∞.

Let us denote by g(t, x, v) = f(t, x, v) − f∞(x, v). Since f∞ ∈ Ker(K∞) we have

e−tK∞f∞ = f∞.

The Duhamel formula (35) therefore reads

g(t) = e−tK∞g0 +

∫ t

0
e−(t−s)K∞b∗∂xVdiff(s)f(s)ds

and we have ∂xVdiff(t, x) = κϕ ∗x

∫
g(t, x, v)dv. In fact we shall use the following represen-

tation

g(t) = e−tK∞g0 +

∫ t

0
e−(t−s)K∞b∗∂xVdiff(s)(g(s) + f∞)ds (36)

Now we take the B2
∞ norm in this formula. We first note that g0 ∈ B2

∞,⊥ which gives
from Proposition 5.3 that for all t ≥ 0,

∥∥e−tK∞g0
∥∥
B2
∞

≤ 3e−α∞t/A∞ ‖g0‖B2
∞

(37)

In order to estimate the integrals in (36), we first estimate the L∞(dx) norm of ∂xVdiff(s)
for all s ∈ (0, t). In the following ‖ϕ‖ stands for ‖ϕ‖L∞ . First we note that

‖∂xVdiff(s)‖L∞(dx) ≤ κ ‖ϕ‖
∥∥∥∥
∫
g(s)dv

∥∥∥∥
L1(dx)

= κ ‖ϕ‖ ‖g(s)‖L1(dxdv) ≤ κ ‖ϕ‖ ‖g(s)‖B2
∞

which gives

‖∂xVdiff(s)f∞(s)‖B2
∞

≤ ‖∂xVdiff(t)‖L∞ ‖f∞‖B2
∞

≤ κ ‖ϕ‖ ‖g(s)‖B2
∞

(38)

Now we estimate the norm of ∂xVdiff(s) in an another way

‖∂xVdiff(s)‖L∞ ≤ κ ‖ϕ‖ ‖g(s)‖L1(dxdv) ≤ κ ‖ϕ‖ (‖f(s)‖L1(dxdv) + ‖f∞‖L1(dxdv)) ≤ 2κ ‖ϕ‖

since f and f∞ are L1 normalized. This gives

‖∂xVdiff(s)g(s)‖B2
∞

≤ ‖∂xVdiff(s)‖L∞ ‖g(s)‖B2
∞

≤ 2κ ‖ϕ‖ ‖g‖B2
∞
. (39)

Putting together (38-39) we get

‖∂xVdiff(s)(g(s) + f∞)‖B2
∞

≤ 3κ ‖ϕ‖ ‖g‖B2
∞
.
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Now applying Proposition 5.3 to the operator K∞ with the associated rate α∞. We can
write for t− s > 0

∥∥∥e−(t−s)K∞b∗∂xVdiff(s)(g(s) + f∞)
∥∥∥
B2
∞

≤ C2(1 + (t− s)−1/2)e−α∞(t−s)/A∞ ‖∂xVdiff(s)(g(s) + f∞)‖B2
∞

≤ κC(1 + (t− s)−1/2)e−α∞(t−s)/A∞ ‖g‖B2
∞

(40)

Putting (37-40) in the Duhamel Formula (36) and calling from now on C any constant
depending on ‖ϕ‖ and the derivatives of V + V∞, we get

‖g(t)‖B2
∞

≤3e−α∞t/A∞ ‖g0‖B2
∞

+Cκ

∫ t

0
(1 + (t− s)−1/2)e−α∞(t−s)/A∞ ‖g(s)‖B2

∞

ds

Let us define for t ≥ 0, ψ(t) = eα∞t/(2A∞) ‖g(t)‖B2
∞

. We get for t ≥ 0,

ψ(t) ≤ 3ψ(0) + Cκ

∫ t

0
(1 + (t− s)−1/2)e−α∞(t−s)/(2A∞)ψ(s)ds.

With an other constant C we get

ψ(t) ≤ 3ψ(0) + (Cκ/α∞) sup
s∈[0,t]

ψ(s).

Note here that contrary to A∞ the constant α∞ cannot be absorbed in the constant C
since not controlled by semi-norms of (Ve + V∞)′′. Under the following assumption

Cκ/α∞ ≤ 1/2

we get that for all t ≥ 0, sups∈[0,t] ψ(s) ≤ 6ψ(0). This reads in terms of g:

‖g(t)‖B2
∞

≤ 6 ‖g(0)‖B2
∞
e−α∞t/(2A∞),

and the proof of Theorem 1.3 is complete. 2

Proof of Corollary 1.4. First recall that 0 ≤ H(f(t)|M∞) since f and M∞ are
L1-normalized. Using the inequality ln(s) ≤ s− 1 we get

H(f(t)|M∞) =

∫∫
f(t)

M∞
ln

(
f(t)

M∞

)
M∞dxdv

≤
∫∫

f(t)

M∞

(
f(t) −M∞

M∞

)
M∞dxdv

≤ ‖f(t)‖B2
∞

‖f(t) −M∞‖B2
∞

Now applying Theorem 1.3 we first notice that

‖f(t)‖B2
∞

≤ ‖g(t)‖B2
∞

+ ‖f∞‖B2
∞

≤ 7 ‖f0‖B2
∞

since ‖f∞‖B2
∞

= 1 ≤ ‖f0‖B2
∞

. Using again Theorem 1.3 yields

H(f(t)|f∞) ≤ C ‖f0‖B2
∞
‖f0 − f∞‖B2

∞
e−α∞t/2A∞ .

The proof of Corollary 1.4 is complete. 2
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