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Vlasov-Poisson-Fokker-Planck system

Frédéric Hérau ∗

Université de Reims
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Abstract: We consider the non-linear VPFP system with a coulombian repul-
sive interaction potential and a generic confining potential in space dimension
d ≥ 3. Using spectral and kinetic methods we prove the existence and unique-
ness of a mild solution with bounds uniform in time in weighted spaces, and
for small total charge we find an explicit exponential rate of convergence to-
ward the equilibrium in terms of the Witten Laplacian associated to the linear
equation.

Résumé: On considère le système de Vlasov-Poisson-Fokker-Planck avec un
potentiel Coulombien répulsif et un potentiel confinant générique en dimension
d ≥ 3. Avec des méthodes spectrales et cinétiques on prouve l’existence et
l’unicité d’une solution douce dans des espaces à poids, bornée uniformément
en temps, et pour petite charge totale on trouve un taux de retour exponentiel
explicite vers l’équilibre en fonction du Laplacien de Witten associé à l’équation
linéaire.
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1 Introduction and results

In this article, we consider the Vlasov-Poisson-Fokker-Planck (VPFP) system in R
2d
x,v for

d ≥ 3 which reads after scaling





∂tf + v.∂xf − (E(t, x) + ∂xVe).∂vf + −γ∂v. (∂v + v) f = 0

E = ∂xVnl = − ωκ

|Sd−1|
x

|x|d ∗x ρ(t, x) where ρ(t, x) =

∫
f(t, x, v)dv

f |t=0 = f0, ω = +1

(1)

where Ve is a given external confining potential, γ and κ are positive physical constants,
and f is the normalized distribution function. In this system the interaction potential
∂xVnl is created by the particules themselves via the Laplace equation −∆Vnl = ωκρ and
we suppose that we are in the coulombian interaction case ω = +1. This equation models
a plasma with repulsive interaction (in the case ω = −1 it models either stellar systems or
plasmas with attractive interaction). Because of the Coulombian force, it is non linear. We
postpone to the end of this article some information about the derivation and the scaling
leading to equation (1). Let us just say that γ has to be understood as a friction-diffusion
coefficient (fixed once and for all), and κ as the total charge of the particles, which is
supposed to vary in a fixed interval of type [0,M [ of R

+.

The aim of this article is to study the long time behavior of this equation, and give a
proof of exponential convergence to the equilibrium at least in the case of small charge.
Because of the friction-diffusion term and the external potential, this will require a com-
plete study of the VPFP system in adequate spaces Bp built from the standard Lp spaces
after conjugaison with a fractional power of the so-called Maxwellian. On the other hand
the friction term together with some confining properties of the external potential will
introduce some compacity in this equation as in the linear case ([21] [22]) leading to
the exponential decay. A general idea of this paper is to consider the VPFP system as
an hypoelliptic parabolic problem rather than an hyperbolic problem perturbed with a
Brownian motion.

Concerning the problem of existence of global solutions of this problem without exter-
nal potential, we mention the works of Degond [7] who studied the existence and uniqueness
of global strong solutions in dimension 1 and 2, and the global existence of solutions in
the sense that E bounded locally in time was proven by Bouchut [3]. Existence of classical
solutions was studied by Victory and O’Dowyer [28], Rein and Weckler [32] and Ono and
Strauss [29]. To our knowledge no result of existence with a generic confining potential is
available.
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For the stationary solutions in the repulsive case, we mention the works of Dressler
[12][13], of Gogny and Lions [19], of Bouchut [2], Dolbeault [10] and Glassey, Schaeffer
and Zheng [18]. Together with the large time behavior it was studied by Carillo Soler and
Vasquez [5], Bouchut and Dolbeault [4], Soler [34] and Dolbeault [11] for the convergence to
the equilibrium. In the linear case we quote Villani and Desvillettes [8] for the convergence
in t−N for all N with the use of entropy-dissipating methods, the work of Talay [36] for
exponential decay with probalistic method, and Hérau and Nier [21] and Hérau-Stolk-
Sjöstrand [22] for explicit exponential decay using hypoelliptic tools close to the ones in
this paper. Let us also mention the work of Kagei [25] using invariant manifolds methods
in the case without external potential.

Considering the short time linear diffusion estimates for hypoelliptic operators, which
are in the core of the study here, we mention the cases Ve = 0 known since [23] (see also the
computations in the case Ve = x2 in [25]) where the Green function is explicit. Numerous
non-linear result already quoted use this fact. For generic hypoelliptic operators, this
was studied by many authors in the selfadjoint case, in the spirit of the sum of squares
of vector fields theorem with underlying Lie group structure. We refer to the very well
written book [6] and references therein for this subject and point out that it is linked with
the subelliptic estimates for semi-groups of operators. The author was unable to find any
general result concerning the non-selfadjoint case, and the estimate given in Proposition
2.8 in this article seems to be new. Concerning the general study of globally hypoelliptic
linear operators we also mention the recent works of Hérau and Nier, [21], by Helffer and
Nier [20], Eckmann and Hairer [15], Hérau, Sjöstrand and Stolk [22], Bismut and Lebeau
[1]

Let us now precise our notations and hypothesis. We make the following hypothesis
on the external potential Ve. Concerning the increase of the derivatives of Ve, they are
slightly different from the ones studied in [21] in the linear case:

(H1) e−Ve ∈ S(Rd
x), with Ve ≥ 0 and V ′′

e ∈W∞,∞(dx). (2)

Note that the assumption 0 ≤ Ve can be relaxed by adding to Ve any sufficiently
large constant and assuming that it is bounded from below. Let us also note that these
assumptions easily imply that Ve ∈ C∞(dx) and limx−→∞ Ve(x) = +∞. We introduce now
the so-called Maxwellian of the linear problem, i.e. the L1-normalized steady solution of
(1) when there is no nonlinear coupling

Me(x, v) =
e−(v2/2+Ve(x))

∫
e−(v2/2+Ve(x))dxdv

. (3)

To this function we associate a family of weighted spaces : for p ∈ [1,+∞], we denote

Bp
e =

{
f ∈ D′ s. t. f/Me ∈ Lp(Medxdv)

}

with the natural norm defined by

‖f‖p
Bp
e

=

∫
(f/Me)

p Medxdv, for p ∈ [1,∞[,

‖f‖B∞
e

= ‖f/Me‖L∞ .
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Let us note that B2
e is the space used in [HN02] and that B1

e = L1. In particular in B2
e the

Maxwellian Me is the normalized fondamental state of the linear Fokker Planck operator

Ke = v.∂x − ∂xVe.∂v − γ∂v. (∂v + v) . (4)

We now precise the concept of solutions we shall examine. For 0 ≤ T ≤ ∞ we call mild
solutions of equation 1 the functions in C([0, T [,B2

e ) such that ‖E‖L∞([0,T [×Rd)<∞ and

f(t) = e−tKef0 +

∫ t

0
e−(t−s)KeE(s)∂vf(s). (5)

(they are sometimes called strong solutions in the literature, for example in [3]). Note that
a function in C([0, T [,B2

e ) is also in C([0, T [, L2). Of course since one is interested in the
long time behavior we shall study the case T = ∞ and in this case the solution is called a
uniform mild solution. Of course a uniform solution is global in time, but the point is that
bounds are uniform with respect to the time t. For technical reasons we are also interested
in strong solutions, i.e. mild solutions such that equation (1) is satisfied as an equation
with each term in some Lq([0, T [,Bp

e ) for p, q ≥ 1, and in particular almost everywhere.
Again we notice that each member is also in some Lq([0, T [, Lp), and by uniform strong
solution we mean T = ∞.

We first state a result about the existence and uniqueness of a uniform mild solution
of equation (1). We denote by ρ0 the initial macroscopic density ρ0(x) =

∫
f0(x, v)dv. In

order to study the long time behavior later we give uniform-in-time bounds on Vnl given
by

Vnl(t, x) =
κ

(d− 2)|Sd−1|
x2

|x|d ∗x ρ(t, x). (6)

Theorem 1.1 Suppose Ve satisfies (H1) and that 0 ≤ f0 is such that f0 ∈ B∞
e and

∇f0 ∈ B2
e . Then the V PFP problem (1) has a unique uniform mild solution f . Besides

we have f ∈ L∞([0,∞[,B∞
e ) and Vnl, ∂xVnl ∈ L∞([0,∞[,W 1,∞(dx)) i.e. Vnl(t) and its

first derivative in x are in L∞(dx) uniformly in time. They satisfy the following

‖f(t)‖B∞
e

+ ‖Vnl(t)‖∞ + ‖∂xVnl(t)‖∞ ≤ C(f0)

for all t ≥ 0 where C(f0) can be explicitly bounded in terms of the physical constants and
‖f0‖B∞

e
.

In this theorem the assumption ∇f0 ∈ B2
e is essentially technical. Indeed we shall need

to work with strong approximate solutions rather than weak ones in some parts of the
proof.

As usual the existence part of this Theorem is closely related to the proof of L∞ bounds
for the derivative of Vnl. Anyway because of the presence of a generic confining potential
we can not use the method using the explicit Green function (see [3]) and we have to give
a new proof of it. The following proposition has to be considered as an intermediate result
in the proof of Theorem 1.1.

Proposition 1.2 Consider the solution given by theorem 1.1. We introduce the local-in-
time Maxwellian

Mt(t, x, v) =
e−(v2/2+Ve(x)+Vnl(t,x))

∫
e−(v2/2+Ve(x)+Vnl(t,x))dxdv
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and the associated spaces Bp
t = {f ∈ D′ s. t. f/Mt ∈ Lp(Mtdxdv)}. Then we have the

following contraction property

‖f(t)‖B∞
t

≤ ‖f0‖B∞

0
<∞. (7)

Note that the contraction property is similar to the linear case. We shall precise below the
meaning of the initial condition ‖f0‖B∞

0
<∞. Since f is a distribution, a basic conserved

quantity is ∫∫
f(t, x, v)dxdv = 1 =

∫∫
f0(x, v)dxdv.

To prepare dealing with the trend to the equilibrium we now introduce the so-called
Poisson-Emden equation: It is the equation satisfied by the potential related to steady
states of equation (1)

−∆V∞ = κ
e−(Ve+V∞)

∫
e−(Ve+V∞)dx

. (8)

where we suppose that V∞ is the Green solution. Observe that since the right member is

supposed to be in L1, the solution if it exists is in the Marcinkiewicz space L
d

d−2
,∞. Under

our conditions on Ve (in fact e−Ve ∈ L1 is sufficient) a result of Dolbeault [11] says that
this solution exists and is unique in this space. We now state a Proposition about the
regularity properties of the solution of the Poisson-Emden equation when Ve satisfies the
additional assumptions (H1).

Proposition 1.3 Suppose Ve satisfies (H1). Then the unique solution V∞ of the Poisson-
Emden equation (8) is in W∞,∞, with semi-norms uniformly bounded w.r.t. κ varying in
a fixed compact set.

Let us now define the Fokker Planck operator corresponding to the stationnary state
of the Vlasov-Poisson-Fokker Planck equation

K∞ = v∂x − ∂x(Ve + V∞)∂v − γ∂v(∂v + v). (9)

As before we define the Maxwellian associated to this operator

M∞(x, v) =
e−(v2/2+Ve(x)+V∞(x))

∫
e−(v2/2+Ve(x)+V∞(x))dxdv

which is in L1 with norm one thanks to proposition 1.3, and the associated spaces
Bp
∞ = {f ∈ D′ s. t. f/M∞ ∈ Lp(M∞dxdv)}. The equilibrium associated to the limit

linear Fokker-Planck operator with initial data f0 is then given by

f∞ = M∞.

Applying a result of Dolbeault [11] to the solution f(t) given by theorem 1.1, we get
that f(t, .) −→ f∞ in L1. In fact the Lebesgue dominated convergence Theorem and the
uniform bounds for f directly imply that f(t, .) −→ f∞ in Bp

e for 1 ≤ p < ∞. Let us
also observe that from Proposition 1.2 we get that ‖f∞‖B∞

∞

≤ ‖f0‖B∞

0
. We want now to

precise the convergence, at least for small charge κ.
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In order to study the long time behavior of the system (1) we introduce an additional
hypothesis on Ve. We first define an intermediate operator called the Witten Laplacian
naturally associated to to the linear Fokker-Planck operator K∞

Λ2
∞ = −γ∂v(∂v + v) − γ∂x(∂x + ∂xVe + ∂xV∞)

The closure of this operator defined in B2
∞ has 0 as single eigenvalue associated with the

eigenfunction M∞. We shall assume the following:

(H2)

{
Operator Λ2

∞ has a spectral gap in B2
∞

with first non-zero eigenvalue denoted α∞.

Now we can state the result about the convergence to equilibrium. We phrase it in the
norms ‖.‖Bp

∞
associated to the equilibrium (recall that these norms are equivalent to the

‖.‖Bp
e

since V∞ ∈ L∞).

Theorem 1.4 Suppose that conditions (H1) and (H2) are fullfilled. Then for any constant
C0 ≥ 1 there exists a constant c0 > 0 such that we have the following:
For any given initial data f0 ∈ B∞

e with ∇f0 ∈ B2
e satisfying ‖f0‖B∞

e
≤ C0 and for any

0 ≤ κ ≤ c0α∞ the solution given by Theorem 1.1 satisfies for all t ≥ 0

‖f(t, ·) − f∞‖B2
∞

≤ 6 ‖f0 − f∞‖B2
∞

e−
α∞

2A∞
t.

Here A∞ is an explicit constant depending only on the second order derivatives of Ve +V∞
and c0 is uniform in κ varying in a fixed compact set.

Let us make some comments about this results. F,irst hypothesis (H2) may seem
complicated, nevertheless in the particular case when ∂xVe −→ ∞ like |x|η for η > 0, it
is a consequence of the study in [21]. Anyway one could suspect that a necessary and
sufficient condition for (H2) is that the operator Λ2

e = −γ∂v(∂v + v)− γ∂x(∂x + ∂xVe) has
the same property. We don’t go further in this direction.

A second remark is that one could hope for a better result not involving the small-
ness of the charge κ but rather the smallness of the difference between the initial datum
and the equilibrium ‖f0 − f∞‖B∞

0
. The author did not succeed yet in showing such a

stronger result. To the aim of the author this is perhaps due to the fact that in a sense
we neglected the hyperbolic properties of the transport and only took into account the
isotropic hypoelliptic properties of the whole operator: Even if the classical trajectories,
i.e. the ones not perturbed by the Brownian motion are confined, they are not constant.
This is a general consequence of considering in our method the VPFP system as an hy-
poelliptic parabolic problem rather than a perturbed hyperbolic one. Let us mention that
in a sense the method employed in e.g. [3] for the global existence takes into account
the two properties. Concerning a general initial datum, one could also suspect that for
bad prepared initial data (i.e. such that the linearized Fokker-Planck operator at time
t = 0 has a very small spectral gap) the decay is not significantly exponential, as shown
by the study of metastable states in [21]. In fact one may conjecture that the decay is

given by something like e−(
∫ t
0

α(s)ds)/A(t) where α(s) is the lowest non-zero eigenvalue of
−γ∂v(∂v + v) − γ∂x(∂x + ∂xVe + ∂xVnl(t)) and A(t) is uniformly bounded but this result
was out of reach of the author.

As a corollary of Theorem 1.4 we also get the following result concerning the decay of
the relative entropy.
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Corollary 1.5 Consider the solution given by Theorem 1.1 under the hypothesis of The-
orem 1.4. Then (with the notations of Theorem 1.4 and in particular for κ ≤ c0α∞) we
have

0 ≤ H(f, f∞)(t)
def
=

∫∫
f(t) ln

(
f(t)

f∞

)
dxdv ≤ C ′

0 ‖f0 − f∞‖B2
∞
e−

α∞

2A∞
t.

where C ′
0 only depends on C0 and is uniform in κ varying in a fixed compact set.

The plan of the article is the following. In Section 2, we deal with the linear Fokker-
Planck operator. We introduce the functional frame involving the Bp spaces which play
the role of the Lp scale, and give some results about the existence and uniqueness without
E. To prepare the study with E we next give a short-time diffusion estimate for a generic
Fokker-Planck operatorK of type

∥∥(−∂v + v)e−tK
∥∥ ≤ C(1+t−1/2), in the space B2. There

is a similar gain as in the explicit case when the Green function is known (see e.g. [3])
and obtained through hypoelliptic techniques. It will play a crucial role in the following
and in particular close to the equilibrium, where the potential in K∞ is not known. Then
we study the existence and uniqueness of mild and strong solutions when the potential
E(t, x) is given.

In section 3, we study the full VPFP equation. First, we study an approximate problem
where the potential is mollified by an approximation of identity ζε and we get results of
existence in this case. Second, we get the equivalent of Proposition 1.2, i.e. the non-linear
contraction property for the approximate problem, using maximum principle arguments.
In the next subsection we use properties of the local-in-time relative entropy and the free
energy to get uniform bounds both in time and ε, in particular for the potential but also
for the solution itself. This allows us to prove Theorem 1.1 in the last subsection.

In section 4, we study the Poisson-Emden equation, and in particular its subsolutions.
It gives information on the meaning of the initial conditions, the regularity of the potential
through the evolution as well as the equilibrium state. All this is gathered in Proposition
1.3 above.

In section 5 we study more carefully the convergence to the equilibrium. In the first
subsection we complete the study of a generic Fokker-Planck operator, by showing a long
time diffusion estimate of type

∥∥(−∂v + v)e−tK
∥∥ ≤ C(1 + t−1/2)e−αt/A where α is the

spectral gap of the associated Witten Laplacian. This estimate is then used in a Duhamel
formula of type (5) to get the exponential decay for small charge.

In the appendix we first recall some facts about the physical meaning of equation 1.
Next we give some proofs or sketch of proof related to section 2. In the last part we give a
short functional proof of the explicit exponential decay in the linear case, slightly different
from the ones given in ([21] [22]).
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2 Linear setting

2.1 Weighted spaces and linear functional analysis

In this section we work in a linear context with a generic potential independent of time V
satisfying conditions (H1).

{
V ∈ C∞, V ′′ ∈ L∞

e−V ∈ L1(Rn), V ≥ 0.
(10)

It is associated to a generic Maxwellian

M(x, v) =
e−(v2/2+V (x))

∫
e−(v2/2+V (x))dxdv

. (11)

and to a family of weighted spaces defined for p ∈ [1,+∞] by

Bp =
{
f ∈ D′ s.t. f/M ∈ Lp(Mdxdv)

}

with the natural norm defined by

‖f‖Bp =

(∫
(f/M)p Mdxdv

)1/p

, for p ∈ [1,∞[

‖f‖B∞ = ‖f/M‖L∞ .

. (12)

We define the dual of any space B ⊂ L1 with respect to the measure M−1dxdv. This
means that

〈f, g〉B,B′ =

∫
fgM−1dxdv =

∫
f

M
g

MMdxdv (13)

for adequate f and g. The Bp spaces satisfy the following properties:

Proposition 2.1 Let p ∈ [1,∞]. Then
i) Bp is a Banach space for the norm defined in (12).
ii) B2 is a Hilbert space for the scalar product induce by the norm.
iii) For all 1 ≤ p ≤ q ≤ ∞, we have Bq →֒ Bp with injection of norm 1 i.e.

‖.‖B1 ≤ ‖.‖Bp ≤ ‖.‖Bq ≤ ‖.‖B∞ .

iv) For the duality product defined in (13) and p <∞ we have (Bp)′ = Bp′.
v) We have the following interpolation equality for p ≤ q ≤ r and 1/q = θ/p+ (1 − θ)/r

Bq = [Bp, Br]θ, ‖.‖Bq ≤ ‖.‖θ
Bp ‖.‖1−θ

Br (14)

vi) The spaces C∞
0 and M1/p′S are dense in the Bp’s for p ∈ [1 + ∞[.

Proof. Points i) and ii) are immediate consequences of the change of function u =
f/M1/p′ for 1/p + 1/p′ = 1, and the corresponding properties in Lebesgue spaces. For
point iii), we prove that for p, q ∈ [1,∞] such that p ≤ q,

ML∞ = B∞ ⊂ Bq ⊂ Bp ⊂ B1 = L1 ⊂ S′.
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and that the injection is continuous with norm 1. This is a straightforward computation
since for f ∈ Bp and by Hölder inequality we have

‖f‖Bp =

(∫
(f/M)p Mdxdv

)1/p

≤ ‖(f/M)p‖1/p

Lq/p(Mdx)
‖1‖1/p

L(q/p)′ (Mdx)
= ‖(f/M)q‖Lq(Mdx) × 1

≤ ‖f‖Bq

since for all p ∈ [1,∞[, ‖M‖Bp = ‖1‖Lp(Mdx) =
∫
Mdxdv = 1 and ‖M‖B∞ = ‖1‖L∞ = 1.

Points iv), v) and vi) are also clear from the standard results in Lebesgue spaces. 2

For further use we also state some properties of the so-called relative entropy, defined
for a L1-normalized function f ≥ 0 by

H(f |M)
def
=

∫
f ln

(
f

M

)
dxdv. (15)

Proposition 2.2 Let p > 1 and 0 ≤ f ∈ Bp normalized in L1 = B1. Then the relative
entropy is well defined by (15) and satisfies the following

0 ≤ H(f |M) ≤ cp ‖f‖p
Bp

where cp > 0 and cp = 1 when p ≥ 2.

Proof. For the left-hand side it is sufficient to observe that for a given f ∈ Bp and from
proposition 2.1, the function

[1, p[∋ q 7−→ ‖f‖q
Bq

is increasing and differentiable, with derivative at point q = 1 equal to H(f |M):

d

dq

(∫ (
f

M

)q

Mdxdv

)∣∣∣∣
q=1

=

∫
f

M ln

(
f

M

)
Mdxdv.

This gives the result. For the right-hand side we notice that for x ≥ 0 we have x ln(x) ≤
cpx

p with cp = 1 if p ≥ 2 and the proof is complete. 2

We now state some results about the linear Fokker-Planck operator, say in L1. First
the Hamiltonian vector field of v2/2 + V (x) is denoted by

X0 = v∂x − ∂xV (x)∂v ,

and it is easy to check that it is formally skew-adjoint with respect to the duality product
(13) since X0 commutes with the multiplication with M. We also introduce the differential
((d,1)-matricial) operators

a = γ1/2(∂x + ∂xV (x)), b = γ1/2(∂v + v) (16)

For the duality product defined in (13), their formal adjoint are the following (1, d)-
matricial operators

a∗ = −γ1/2∂x, b∗ = −γ1/2∂v . (17)

9



with these notations we can write the Fokker-Planck operator

K = X0 + b∗b, (18)

and its formal adjoint taken with respect to the duality product (13) is

K∗ = −X0 + b∗b. (19)

We also introduce the Witten laplacian

Λ2 = a∗a+ b∗b,

which is the naturally associated formally self-adjoint operator with respect to the duality
product (13). All these operators are linked thanks to the following remarkable algebraic
properties:

a = [b,X0], b = −HessV [a,X0].

Remark 2.3 Let us see what form is taken by the operator K in the usual flat Lp spaces.
If we pose u = (f/M)M1/p = (f/M1/p′) for p ∈ [1,∞], (1/p + 1/p′ = 1), we notice that

f ∈ Bp ⇔ u ∈ Lp.

With u as a variable function the Cauchy problem for the Fokker-Planck equation reads




∂tu+Kpu = 0

u|t=0 = u0 ∈ Lp

Kp = v∂x − ∂xV ∂v + γ(−∂v + v/p′)(∂v + v/p).

In particular in the flat Hilbert space L2, K2 is the following formal differential operator :

K2 = v∂x −DxV ∂v + γ(−∂v + v/2)(∂v + v/2).

We note that K2 is exactly of the form K2 = X0 + b∗2b2 where b2 = γ1/2(∂v + v/2) is the
annihilation operator, and b∗2 = γ1/2(−∂v + v/2) is the creation one in the v variables. Of
course the diffusion-friction term b∗2b2 is exactly an harmonic oscillator. In the original
spaces Bp the term b∗b will often be referred to as an harmonic oscillator in v. 2

We want now to study the following linear Cauchy problem,

∂tf +Kf = 0, ft=0 = f0 (20)

in the Bp spaces. We first quote some results from [20] and [21] in B2 and give an easy
consequence in B∞.

Proposition 2.4 We have the following:
i) ([20]) For p = 2, operators K (resp. K∗) defined as the closure of (18) (resp. (19)) with
domain C∞

0 are maximal accretive. It defines a semi-group of contraction and positivity
preserving denoted e−tK (resp. e−tK∗

) .
ii) The Cauchy problem ∂tf +Kf = 0 is well posed in B∞ and the solution satisfies the
contraction and positivity preserving properties, i.e. f(t) ≥ 0 and ‖f(t)‖B∞ ≤ ‖f0‖B∞

(id. for K∗).
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Proof. We study the case of K since for K∗ the arguments are the same. The first point
i) is only a traduction in terms of the Bp spaces of the result in [20]-[21]. For point ii) we
observe that B∞ ⊂ B2 therefore the only possible solution is the one given in B2 and it is
non-negative if f0 is. We first have to prove that f(t) stays in B∞. Of course it is a direct
consequence of the maximum principle since for f0 ∈ B∞ we have f0 ∈ B2 and there exists
a constant C such that −CM ≤ f0 ≤ CM a.e. and therefore −CM ≤ f(t) ≤ CM for all
t ≥ 0. Since M satisfies ∂tM +KM = 0, it is sufficient to take C = ‖f0‖B∞ and we get
the result. 2

Remark 2.5 Of course it would be more convenient to have that e−tK is maximal
accretive in the Bp’s. We don’t go further in this direction, but make some remarks
about it in the case p ∈ [2,∞[. For any f ∈ Bp ∩ S, we can define the dual function
f ′ = sign(f)(|f |/M)p−1 ∈ Bp′ which satisfies

〈
f, f ′

〉
= ‖f‖2

Bp
=
∥∥f ′
∥∥

Bp′
.

We can observe then

〈
Kf, f ′

〉
=

∫∫
Kff ′dxdv =

∫∫ ( |bf |
M

)2( |f |
M

)p−2

Mdx ≥ 0.

Then the study could perhaps be carried on following standard arguments (see for example
[31] section 7 in the elliptic case).

Remark 2.6 We also do not develop the following ideas in this article: Let G be a con-
vex function on R (with perhaps some additional properties of smoothness), then one can
prove that if f is a solution in an adequate space of ∂tf + Kf = 0 then the function
u = MG(f/M) is a subsolution, i.e. ∂tu +Ku ≤ 0. Then from the maximum principle
(again with some care about the spaces used) we can get that for u0 ∈ L1(Mdxdv) we have
u ∈ L1(Mdxdv) and ‖u‖ ≤ ‖u0‖ in this space. This could be applied to G(s) = s ln(s) (on
R

+) for non-negative functions and give that the relative entropy is uniformly bounded.
This has to be compared to similar results in [4] for example (without M). In fact the Bp

space follow the same property with G = sp, and the case G = s gives the conservation
of the mass. This gives an infinite number of bounded energy functionals for the Linear
Fokker-Planck operator. Note also that it can be used to prove results using renormalized
techniques but with the renormalized function MG(f/M) instead of G(f). 2

2.2 Short time diffusion estimates in B
2

In this section we continue the study of a generic linear Fokker-Planck operator with
potential V independent of time satisfying hypothesis (H1). Now we give some long-time
and short-time diffusion estimates which will play a crucial role in the study of the non-
linear problem. In the following K is the closure in B2 of the linear Fokker-Planck with
domain C∞

0 , and we recall it is maximal accretive with semi-group denoted e−tK .
We shall need the following chain of Sobolev spaces based on B2. In the spirit of [21]

we denote
Λ2

a = 1 + a∗a, Λ2
b = 1 + b∗b

11



where a and b were defined in (16-17). Λ2
a and Λ2

b are to be understood as (unbounded)
operators acting after conjugating in the flat space L2 with the change of function u =
f/M1/2. Note that they also are maximal accretive and denote by the same letter their
closure in B2 (see the reference already quoted for example). In this sense b∗b is an
harmonic oscillator and a∗a is the Witten Laplacian associated to V . We introduce the
natural chain of Sobolev space for k, l ∈ R

H
l,k =

{
f ∈ M1/2S ′ s.t. Λk

aΛ
l
bf ∈ B2

}
. (21)

for which l ≤ l′ and k ≤ k′ imply H
l,k →֒ H

l′,k′

and H
0,0 = B2. We first write a result

from [21]-[20] about the parabolic (smoothing) properties of operator K in B2.

Proposition 2.7 ([21]-[20]) For all t > 0, e−tK maps M1/2S ′ to M1/2S. Besides for
a given k ≥ 0 there is constants Ck,k and Nk such that for any initial data f0 ∈ H

k,k we
have

‖f(t)‖
Hk,k ≤ Ck,k

(
tNk + t−Nk

)
‖f0‖H−k,−k . (22)

Besides the same result holds for K∗.

The purpose of the following Proposition is to ameliorate the estimate for small t in
(22), at least in the case k = 1, and with explicit bounds. It is based on the construction
of a particular Lyapounov functional A(t) taking into account the hypoelliptic properties
of K.

Proposition 2.8 There exists a constant C2 such that for all t > 0, we have the following:
i) e−tKb∗ is bounded by C2(1 + t−1/2) and
ii) e−tKa∗ is bounded by C2(1 + t−3/2),
as bounded operators on B2. Here C2 depends only on ‖V ′′‖L∞ (and γ). Besides we

have the same bounds as i) for the operators b♮e−tK♯
and e−tK♯

b♮ and as ii) for operators

a♮e−tK♯
and e−tK♯

a♮, where ♯ and ♮ are either nothing or ∗.

Proof. We shall in a moment prove the results for ae−tK and be−tK . Taking these
bounds for given we note that they imply similar bounds for their adjoints e−tK∗

b∗ and
e−tK∗

a∗ since B2′ = B2. The proof is exactly the same for be−tK∗

and ae−tK∗

since the
sign in front of X0 has no importance in the proof. Taking the adjoints again give the
result for e−tKb∗ and e−tKa∗.

Now for the bound on b∗e−tK we simply have to note that for f0 ∈ B2 given and
f(t) = e−tKf0 we have

‖b∗f(t)‖2 = (bb∗f(t), f(t)) = (b∗bf(t), f(t)) + d ‖f(t)‖2 = ‖bf(t)‖2 + d ‖f(t)‖2

and we get the result. For a∗e−tK we similarly write

‖a∗f(t)‖2 = (aa∗f(t), f(t)) = (a∗af(t), f(t)) + (∆Vef(t), f(t)) ≤ ‖af(t)‖2 + Ce ‖f(t)‖2

since Ve is with second derivatives bounded. This gives the result. For the other terms, we
repeat the procedure followed in preceding paragraph and the proof of the last assertion
in Proposition 2.8 is complete.
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Let us come back now to the bounds on ae−tK and be−tK . We note that the operators
are well defined since e−tK is defined from M1/2S′ to M1/2S. For the proof we shall
need a series of results. The first thing we do it to change the function f by the standard
conjugation tool: We pose

u = f/M1/2, u0 = f0/M1/2

and f is a solution of ∂tf +Kf = 0, f |t=0 = f0 in B2 if and only if

∂tu+K2u = 0, u|t=0 = u0

in the flat Hilbert space L2, where K2 denotes the maximal extension in L2 of the following
differential operator originally defined on C∞

0 :

K2 = v∂x − ∂xV ∂v + γ(∂v + v/2)(∂v + v/2).

We note that K2 is exactly of the form K2 = X0 + b∗2b2. Actually this is immediate to
check that in D′ we have

b2u = (bf)/M1/2.

In order to prove lemma 2.8, we work in L2 with the new formulation via u, K2 of the
Cauchy problem. and we omit the subscript 2, since there is no possible confusion since
the unknown function is now u instead of f . The norm is the standard one associated
with the L2 space. We recall that for u0 ∈ S ′, and for all t > 0, u(t) ∈ S from Proposition
2.7. We choose u0 ∈ S and we pose for t ≥ 0,

A(t) = t3 ‖au‖2 + Et2Re (au, bu) +Dt ‖bu‖2 +C ‖u‖2 .

A is a C0(R+,R) ∩ C1(R+∗,R) function, and we can compute its time derivative.

Derivative of ‖u‖2: We have

∂t ‖u‖2 = −2Re (Ku, u) = −2 ‖bu‖2 . (23)

Derivative of t ‖bu‖2: We write

∂tt ‖bu‖2 = ‖bu‖2 + t∂t(b
∗bu, u). (24)

Let us compute separately the second derivative. We have

∂t(b
∗bu, u) = −Re (b∗bKu, u) − Re (b∗bu,Ku)

= −2 ‖b∗bu‖2 − Re (b∗bX0u, u) + Re (X0b
∗bu, u)

= −2 ‖b∗bu‖2 − Re ([b∗b,X0] u, u) .

using that a = [b,X0], we get

∂t(b
∗bu, u) = −2 ‖b∗bu‖2 − Re (b∗au, u) − Re (a∗bu, u)

= −2 ‖b∗bu‖2 − 2Re (au, bu).
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As a consequence we can write that

∂t(t ‖bu‖2) = ‖bu‖2 − 2t ‖b∗bu‖2 − 2Re t(au, bu). (25)

Derivative of t2Re (au, bu): We write

∂tt
2Re (au, bu) = 2tRe (au, bu) + t2∂tRe (au, bu). (26)

Let us compute again separately the second derivative :

∂tRe (au, bu) = −Re (aKu, bu) − Re (au, bKu)

= −Re (ab∗bu, bu) − Re (au, bb∗bu) − Re (aX0u, bu) − Re (au, bX0u).

We can commute the field X0 in the last two terms and we get

∂tRe (au, bu) = − Re (ab∗bu, bu) − Re (au, bb∗bu) − Re ([a,X0]u, bu) − Re (au, [b,X0]u)

+ Re (X0au, bu) + Re (au,X0bu)︸ ︷︷ ︸
=0 sinceX0 is skewadjoint

.

Now use the facts that [b,X0] = a and −HessV b = [a,X0]. This yields

∂tRe (au, bu) = − Re (bau, bbu) − Re (b∗au, b∗bu) + (HessV bu, bu) − ‖au‖2

and using (26) we get

∂t

(
t2Re (au, bu)

)
=2tRe (au, bu) − t2 ‖au‖2 + t2(HessV bu, bu)

− t2Re (bau, bbu) − t2Re (b∗au, b∗bu).

Using eventually the fact that b∗b = bb∗ − γd yields

∂t

(
t2Re (au, bu)

)
=2tRe (au, bu) − t2 ‖au‖2 + t2(HessV bu, bu)

− 2t2Re (bau, bbu) − t2γdRe (au, bu).
(27)

Derivative of t3 ‖au‖2: We write

∂tt
3 ‖au‖2 = 3t2 ‖au‖2 + t3∂t ‖au‖2 . (28)

We study separately the second term:

∂tRe (au, au) = −Re (aKu, au) − Re (au, aKu)

= −Re (ab∗bu, au) − Re (au, ab∗bu) − Re (aX0u, au) − Re (au, aX0u).

We shall again commute the field X0 in the last terms

∂tRe (au, au) = − 2 ‖bau‖2 − 2Re (au, aX0u)

= − 2 ‖bau‖2 − Re ([a,X0]u, au) + Re (X0au, au)︸ ︷︷ ︸
=0 sinceX0 is skewadjoint
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Now since −HessV b = [a,X0]. We get

∂tRe (au, au) = − 2 ‖bau‖2 + 2Re (HessV bu, au).

From (28) we can therefore write

∂tt
3 ‖au‖2 = 3t2 ‖au‖2 − 2t3 ‖bau‖2 + 2t3Re (HessV bu, au). (29)

Derivative of A: We put together the results of (23-25-27-29) and we get the following
formula for the derivative of A, where we have put the similar terms on the same lines :

∂tA(t) =

−2C ‖bu‖2 − 2tD ‖b∗bu‖ − t2E ‖au‖2 − 2t3 ‖bau‖2
1

+D ‖bu‖2 + t2ERe (HessV bu, bu) 2

+2tDRe (au, bu) + 2tERe (au, bu) + 2tERe (HessV bu, au) − t2DγdRe (au, bu) 3

+3t2 ‖au‖2
4

−2Et2Re (bau, bbu). 5

We bound now each terms on the lines 2 - 5 by terms appearing in 1 . We suppose that
t ∈]0, 1]. Now since the Hessian of V is bounded by a constant, say CV , we have

2 ≤ (D + ECV ) ‖bu‖2 ≪ 2C ‖bu‖2 if D,E ≪ C. (30)

For the term 3 , we write for η > 0,

3 ≤ (2D + 2E + 2ECV +Dγn)t ‖au‖ ‖bu‖

≤ ηt2 ‖au‖2 +
Cte(D,E, γd)

η
‖bu‖2 .

We therefore get that for a given E, we have to choose η sufficiently small and then C big
enough to get

3 ≪ Et2 ‖au‖2 + 2C ‖bu‖2 . (31)

Now we treat the term 4 : this is easy since we only need to take E ≫ 3 in order to get

4 ≪ −3t2 ‖au‖2 . (32)

For the last term 5 we write :

5 = −2Et2Re (bau, bbu) ≤ 2Et2 ‖bau‖ ‖bbu‖

≤ E(η′t3 ‖bau‖2 +
t

η′
‖bbu‖)

≤ Eη′t3 ‖bau‖2 +
Et

η′
‖b∗bu‖ ,

where in the last estimate we use the fact that for w ∈ S, we have ‖bw‖ ≤ ‖b∗w‖. Now for
a given E we have to choose first η′ small enough, and then D sufficiently large to write

5 ≪ 2tD ‖b∗bu‖2 + 2t3 ‖bau‖2 . (33)
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Synthesis We checked that each line 2 - 5 can separately be bounded by a term appearing
in 1 . In order to get the fact that t 7→ A(t) is decreasing, we choose the constants as
follows : first E so that (32), and then η, η′, C and D such that (33) and (31). Eventually
increasing C so that (30) holds yields the result. In particular since A(t) is right-continuous
in 0 we get that for all t ∈ [0, 1]

A(t) = t3 ‖au‖2 + Et2Re (au, bu) +Dt ‖bu‖2 + C ‖u‖2 ≤ C ‖u0‖2 .

In particular we have for t ∈ [0, 1],

‖au(t)‖ ≤ C1/2t−3/2 ‖u0‖ , ‖bu(t)‖ ≤ (C/D)1/2t−1/2 ‖u0‖ . (34)

This is the short time (t ∈]0, 1]) estimate of Lemma 2.8 for u0 ∈ S. For t ≥ 1 we simply
write that

∥∥be−tKu0

∥∥ =
∥∥∥be−K/2e−(t−1/2)Ku0

∥∥∥ ≤ C2

∥∥∥e−(t−1/2)Ku0

∥∥∥ ≤ C2 ‖u0‖ ,

where we used first the short time estimate (with t = 1/2) and then the fact that K is
maximal accretive. The result for u0 ∈ B2 follows then from the continuity properties in
Proposition 22. 2

Remark 2.9 We could give a similar result in B4/3, provided one has proven that e−tK

is a smoothing semi-group of contraction in this space: In this case There exists C4/3 such

that
∥∥e−tKb∗

∥∥
B4/3 ≤ C4/3t

−1/2 and
∥∥e−tKa∗

∥∥
B4/3 ≤ C4/3t

−3/2. They come from the study

in B4 (1/4 + 3/4 = 1) of the adjoints be−tK and ae−tK . As a consequence it is possible
by interpolation to get a similar result in Bp for p ∈ [4/3, 2]. The method in nearly the
same but with a much more complicated Lyapounov function A(t). The computations
are tricky and the functional framework is not sufficient here to be able to use later this
result. Anyway we shall only use the B2 bounds.

Remark 2.10 In the particular cases of Ve = x2 or more generally quadratic, one can
compute explicitly the Green function of e−tK using the method of characteristics (see e.g.
[23], [25], [3]). Our result in then in accordance with them, although the knowledge of
the Green function allows to work on all the spaces (of type Lp) and not only in L2 (B2)
types. In fact this result has to be compared with a huge literature about the study of
the Green functions of hypoelliptic operators, and the ellipses in the (x, v)-space of radius
t1/2 in the velocity direction and t3/2 in the spatial direction are naturally introduced, as
the balls for the so-called Carnot-Carathéodory distance (see e.g. [6], [17]). Anyway the
author did not find any result like the one in Proposition 2.8. In fact the results quoted
are deeply linked to the Lie-group structure of the square of vector fields and we work here
with first order differential operators b and a. In particular the invariance with respect
to the translations associated to the left-invariant vector fields is crucial to obtain global
bounds on the green function. In our case we did not understand completely the geometry
associated to our framework. To finish the last obstruction is that in a very large number
of known results the hypoelliptic operators studied are formally selfadjoint, i.e. with no
transport term.
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2.3 Strong solutions for a given interaction potential

In this section we work again in a linear setting and study the following Fokker-Planck
equation {

∂tf + v.∂xf − (E + ∂xV ).∂vf − γ∂v. (∂v + v) f = U,

f |t=0 = f0,
(35)

where E(t, x) is a given time-dependant potential satisfying E ∈ L∞([0, T [×R
d) and V

is again a generic potential satisfying hypothesis (H1). We shall prove existence and
uniqueness in the space H

l,k based on B2 and defined in (21). In the following Propositions
we will assume the following

(H3)





V satisfies (H1),

E ∈ L∞([0, T [×R
d),

f0 ∈ B2(R2n),

U ∈ L2
(
[0, T [,H0,−1(Rd

x × R
d
v)
)
.

The first Proposition gives existence and uniqueness of a unique mild solution of the
system (35).

Proposition 2.11 Under hypotheses (H3) there exists a unique mild solution solution of
(35), where by definition a mild solution is a solution f ∈ C([0, T [, B2) satisfying

f(t) = e−tKf0 +

∫ t

0
e−(t−s)KE(s)∂vf(s) +

∫ t

0
e−(t−s)KU(s)ds.

Proof. This is obtained via a standard fixed point theorem in L∞([0, T [, B2). We only
sketch the proof. To simplify the notations we suppose γ = 1 which implies ∂v = −b∗. Let
F be the following operator from L∞([0, T [, B2) into itself given by

F (f) = e−tKf0 +

∫ t

0
e−(t−s)KE(s)∂vf(s) +

∫ t

0
e−(t−s)KU(s)

= e−tKf0 −
∫ t

0
e−(t−s)Kb∗E(s)f(s) +

∫ t

0
e−(t−s)K(1 + b∗b)Λ−1

b Λ−1
b U(s).

(36)

According to the diffusion estimates given in Proposition 2.8 and using the fact the bΛ−1
b

is bounded by 1 as an operator in B2, we get that for all 0 < t < T
∥∥e−tK(1 + b∗b)Λ−1

b

∥∥
B2 ≤ Ct−1/2.

We therefore get for f ∈ B2, F (f) ∈ B2 and for all t > 0,

‖F (f)‖L∞([0,t[,B2) ≤ Ct1/2 ‖f‖L∞([0,t[,B2) .

Using a standard fixed point theorem we get that f is the unique limit of the following
iteration scheme

∂tf
n+1 +Kfn+1 + Eb∗fn = U, f0 = f0, (37)

and the continuity is clear from formula (36). 2

Now we state an other Proposition essentially saying that the mild solution of (35) is
the only weak solution.
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Proposition 2.12 Under conditions (H3) the following statements are equivalent:
i) f is a weak solution in L2([0, T ], B2);
ii) f is a weak solution in the class Y defined by

Y =
{
f ′ ∈ L2

(
[0, T [,H0,1

)
s.t. ∂tf

′ +X0f
′ ∈ L2

(
[0, T [,H0,−1

)}
;

iii) f is the mild solution.

Proof. The existence and uniqueness of a weak solution in Y is proven in the appendix
(Proposition A.1).It is nearly a paraphrasing of the one given by Degond in the appendix of
[7] using a theorem of Lions [26]. Since a mild solution is also a weak solution we therefore
get that they coincide, which proves the equivalence of ii) and iii). Since ii) clearly implies
i) we only have to prove that every weak solution f of (35) is in Y. We follow again the
proof of Degond [7]. Since f ∈ L2([0, T ], B2) we get that Eb∗f ∈ L2

(
[0, T [,H0,−1

)
, so that

f is a weak solution of the equation

∂tf +Kf = g, f |t=0 = f0,

where g = U − Eb∗f ∈ L2
(
[0, T [,H0,−1

)
. But Proposition A.1 provides a unique solution

f̃ ∈ Y of this equation, and we only have to prove that f = f̃ . The function ϕ = f − f̃ is
then a weak solution of the Fokker-Planck equation

∂tϕ+Kϕ = 0, ϕ|t=0 = 0.

This implies ϕ = 0 from the study of the semi-group associated to K made in the preced-
ing sections (see [21]). This completes the proof. 2

Now we recall some basic properties of the solutions of (35).

Proposition 2.13 Suppose that conditions (H3) are fulfilled. Then the mild solution f
of (35) satisfies

i) f0 ≥ 0 and U ≥ 0 −→ f ≥ 0,

ii) ‖f(t)‖L1 ≤ ‖f0‖L1 +
∫ t
0 ‖U(s)‖L1 ds provided U ∈ L1([0, T [×R

2d).

Proof . Again we postpone the proof of this result to this appendix, since this is
essentially a reformulation of the ones given in Degond [7]. However we can make some
comments. For the statement ii), we can notice that the embedding B2 →֒ L1 implies
that for all t ≥ 0, f(t) ∈ L1. For the second assertion we can remark that the maximum
principle is not a priori true, opposite to the case without friction studied in [7]. Indeed
the expected inequality would be for adequate f0 and U

<< ‖f(t)‖B∞ ≤ ‖f0‖B∞ +

∫ t

0
‖U(s)‖B∞ ds. >>

But with the change of unknown w = f/M we see that equation (35) reads

∂tw + v.∂xw − ∂xV.∂vw − E∂vw + vEw + γ(−∂v + v)∂vw = U/M,
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so that the term vEw destroys the maximum principle properties. In fact this principle
will be true in a modified and time-dependant Bp space and will come from the inter-
action potential in the non-linear context. This is essentially the sense of formula (7) in
Proposition 1.2. 2

To end this section we give now conditions insuring the existence of a strong solution
of (35). In our terminology, a strong solution is a mild solution such that equation (35) is
satisfied almost everywhere (i.e. each term in (35) is measurable).

Proposition 2.14 Suppose that conditions (H3) are fulfilled and that in addition we have

D∗f0
def
= (a∗f0, b

∗f0) ∈ B2, ∇E ∈ L∞([0, T [×R
d).

Then the mild solution of (35) given by proposition 2.11 is a strong solution. Besides we
have

D∗f ∈ C([0, T [, B2), X0f ∈ C([0, T [, Bp) ∀p ∈ [1, 2[,

and b∗bf ∈ L2([0, T [, Bp), ∂tf ∈ L2([0, T [, Bp) ∀p ∈ [1, 2[.

and for almost every t ∈ [0, T [ equation ∂tf +Kf +Eb∗f = U is satisfies in the Bp sense
for 1 < p ≤ 2.

Proof. Let us first study the derivatives of f in the terminology adapted to our problem.
We introduce

D∗f =

(
a∗f
b∗f

)
,

where we recall that a∗f and b∗f are d-dimensional vectors. Then the system satisfied by
D∗f is 




∂tD
∗f +X0D

∗f + Eb∗D∗f + b∗bD∗f

= [X0,D
∗]f + [Eb∗,D∗]f + [b∗b,D∗]f

D∗f(0) = D∗f0 ∈ B2.

(38)

We note that easy computations give

[X0,D
∗]f =

(
0 HessV
−Id 0

)
D∗f, [Eb∗,D∗]f =

(
0 ∇Eb∗
0 0

)
D∗g,

and [b∗b,D∗]g =

(
0 0
0 −Id

)
D∗g,

where ∇E is a d× d matrix satisfying

‖∇E‖L∞ ≤ C0.

Therefore D∗f satisfies the following system of equations in the distributional sense

∂tg +Kg + Eb∗g +A(x)g = 0, g|t=0 = D∗f0, (39)

where A(t, x) ∈ L∞(Rt × R
d
x) is the following matrix

A(t, x) = −
(

0 HessV + ∇E
−Id −Id

)
.
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A slight modification of Theorem A.1 for systems and perturbed by a bounded operator
therefore gives that there exists a unique weak solution g ∈ Y of (39). Assuming for a while
that D∗f ∈ L∞([0, T [, B2) (see remark 2.15 below), we get that g = D∗f , and therefore
applying proposition 2.12 (again slightly modified for the system and with an additional
bounded term) we get that D∗f ∈ Y. This gives

Λbb
∗f ∈ L2([0, T [, B2) =⇒ b∗bf ∈ L2([0, T [, B2) (40)

and in particular b∗bf is in B2 for almost every t ∈ [0, T [. For the other terms we simply
write that for 1 ≤ p < 2,

b∗f ∈ C([0, T [, B2) =⇒ ∂xV b
∗f ∈ C([0, T [, Bp).

Indeed for fixed t and using Hölder inequality for 1/p + 1/p′ = 1, 1/2 + 1/p∗ = 1/p we
have

‖∂xV b
∗f(t)‖Bp =

∥∥∥∥
∂xV b

∗f

M1/p′

∥∥∥∥
Lp

=

∥∥∥∥M
1/2−1/p′∂xV

b∗f

M1/2

∥∥∥∥
Lp

≤
∥∥∥M1/2−1/p′∂xV

∥∥∥
Lp∗

∥∥∥∥
b∗f

M1/2

∥∥∥∥
L2

≤ C0 ‖b∗f‖B2 .

(41)

We follow exactly the same procedure for the other term and we get

‖va∗f(t)‖Bp ≤ C1

∥∥∥M1/2−1/p′v
∥∥∥

Lp∗

∥∥∥∥
a∗f

M1/2

∥∥∥∥
L2

≤ C1 ‖a∗f‖B2 . (42)

From (41-42) we deduce

X0f ∈ C([0, T [, Bp). (43)

For the term involving the time dependant potential we simply write that

‖Eb∗f‖B2 ≤ ‖E‖L∞(dx) ‖b∗f‖B2 . (44)

Putting together the results (40-41-42-43-44) and using the original equation (35) give
that for almost every t ∈ [0, T [ we have ∂tf ∈ L2[0, T [, Bp) for 1 ≤ p < 2. In particular
for almost every t ∈ [0, T [ equation (35) is satisfied as an equation in Bp. As a corollary
equation (35) is satisfies almost everywhere in (t, x, v) and f is a strong solution. 2

Remark 2.15 We won’t give the proof here of the fact that D∗f ∈ B2. This can be
achieved after some work using the algebraic properties of type a = [b,X0] and that
bu ∈ L2([0, T [, B2). Anyway we want to emphasize the following fact concerning the hy-
poelliptic properties of equation (35). Indeed we only know that the derivatives D∗f
satisfy (39) but only in C([0, T [,H−1,−1) and the existence of a unique mild solution
g ∈ C([0, T [, B2) does not imply a priori that D∗f = g, since there may be other solutions
of (39) in C([0, T [,H−1,−1). For this to be true, one requires the global hypoellipticity
properties of the system (39). 2
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3 Non-linear setting

3.1 Approximate solution

In this section we study the following approximate problem





∂tfε + v.∂xfε − (Eε + ∂xVe).∂vfε − γ∂v. (∂v + v) fε = 0,

Eε(t, x)
def
= ∂xVnlε(t, x) = −ζε ∗

κ

|Sd−1|
x

|x|d ∗x ρε(t, x)

where ρε(t, x) =

∫
fε(t, x, v)dv,

fε|t=0 = f0,

(45)

where ζε is a standard approximation of identity in x with compact support. We shall
prove the following Proposition where we recall that the space of adapted derivatives H

1,1

was defined in (21).

Proposition 3.1 Suppose the Ve satisfies hypothesis (H1) and that f0 ∈ H
1,1
x,v. Then for

all T > 0, the approximate problem (45) admits a unique strong solution in C([0, T [,H1,1)
satisfying

‖fε‖B2
e
≤ C

(
T, ε ‖f0‖B2

e

)
.

Proof. We omit in the following the subscript ε in fε, ρε and Eε and suppose γ = 1
(∂v = −b∗). The existence is given by a fixed point theorem. We study the following
family of linear problems where f0 is fixed and on an interval of time [0, T ] for T finite
and fixed.




∂tf
n+1 + v.∂xf

n+1 − (En + ∂xVe).∂vf
n+1 − γ∂v. (∂v + v) fn+1 = 0,

En = ∂xV
n
nl(t, x) = −ζε ∗

κ

|Sd−1|
x

|x|d ρ
n(t, y)dy

with ρn(t, x) =

∫
fn(t, x, v)dv,

f |t=0 = f0 and f0 = f0.

(46)

In the following we call CT any constant independent of n (but depending on T , ε).
Proposition 2.11 yields that for each n ≥ 0 this problem admits a mild solution fn+1 since

‖En‖L∞(dtdx) ≤ Cε ‖ρn‖L1 = Cε,

where we used proposition 2.13 for the last inequality. This solution is given by

fn+1(t) = e−tKf0 −
∫ t

0
e−(t−s)Kb∗Enfn+1(s), ds

and we observe using a Gronwall inequality and the diffusion estimate from Proposition
2.8 that there exists a constant CT independent of n such that ‖fn‖B2 ≤ CT . Now for all
0 ≤ t ≤ T ,

∥∥fn+1 − fn
∥∥

B2 ≤
∥∥∥∥
∫ t

0
e−(t−s)Kb∗En(fn+1(s) − fn(s))ds

∥∥∥∥
B2

+

∥∥∥∥
∫ t

0
e−(t−s)Kb∗fn(En(s) − En−1(s))ds

∥∥∥∥
B2

≤ C ′
T

√
t(
∥∥fn+1 − fn

∥∥
B2 −

∥∥fn − fn−1
∥∥

B2),
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since
∥∥En(s) − En−1(s)

∥∥
L∞ ≤ CT

∥∥fn − fn−1
∥∥

B2 . A standard fixed point theorem give
that on any interval [0, cT [∈ [0, T [ the scheme converges in L∞([0, cT [, B2) where cT is
independent of n. We can apply the same procedure on any interval of type [t, t+cT [⊂ [0, T [
for t arbitrary and we get that fn converges (strongly) in L∞([0, T [, B2) toward a function
f , and that this is also the case for En toward E in L∞([0, T [, L∞) where E is given by

E = −ζε ∗
κ

|Sd−1|
x

|x|d ∗x

∫
f(t, x, v)dv.

The function f is therefore a mild solution of the problem ∂tf+Kf+Eb∗f = 0, f |t=0 = f0.
Since by Proposition 2.11 the solution is unique we get the result. 2

Under hypothesis on the derivatives on the initial data f0 we also get:

Proposition 3.2 Consider the solution given by Proposition 3.1 under conditions (H1).
Then if f0 ∈ H

1,1
x,v this solution is a strong one and we have

D∗f ∈ C([0, T [, B2), X0f ∈ C([0, T [, Bp) ∀p ∈ [1, 2[,

and b∗bf ∈ L2([0, T [, B2), ∂tf ∈ L2([0, T [, Bp) ∀p ∈ [1, 2[,
(47)

so that equation ∂tf +Kf +Eb∗f = 0 is satisfies in the L2([0, T [, Bp) sense for 1 ≤ p < 2
and in particular a.e.. Besides The interaction potential

Vnlε = ζε ∗
κ

(d− 2)|Sd−1|
x2

|x|d ∗
∫
fεdv

satisfies

0 ≤ Vnlε(t) and Vnlε, ∂xVnlε, ∂
2
xVnlε, ∂tVnlε ∈ C([0, T [, L∞),

with bounds dependent of ε and the initial data.

Proof . Again we omit the subscripts e and ε. This is direct consequence of the
linear study of the preceding section. We first note that the estimates on the derivatives
in x of Vnlε are clear from the convolution. In particular we get that ∇E = ∂2

xVnlε ∈
L∞([0, T [×R

d). This implies the first part thanks to Proposition 2.14. Let us now study
the bound on ∂tVnl. We recall that equation

∂tf +Kf + Eb∗f = 0

is satisfies in the L2([0, T [, Bp) sense. This implies that we can differentiate under the
integral sign in the definition of Vnl (take the derivative in the sense of distribution and
check that we only deal with integrable functions): For almost every t ∈ [0, T [, x ∈ R

d,

∂tVnl(t) = ∂t

(
ζε ∗

κ

(d− 2)|Sd−1|
x2

|x|d ∗
∫
f(t)dv

)

= ζε ∗
κ

(d− 2)|Sd−1|
x2

|x|d ∗
∫
∂tf(t)dv

= ζε ∗
κ

(d− 2)|Sd−1|
x2

|x|d ∗
∫

(−Kf(t))dv,
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since Kf(t) ∈ Bp for almost every t and 1 ≤ p < 2. Notice that X0f can be replaced by
v∂xf in the last integral and that b∗bf disappears. We get

∂tVnl(t) = −ζε ∗
κ

(d− 2)|Sd−1|
x2

|x|d ∗
∫
∂xvf(t)dv

= ζε ∗
κ

|Sd−1|
x

|x|d ∗
∫
vf(t)dv.

(48)

Since f ∈ C([0, T [, B2), this yields ∂tVnl ∈ C([0, T [, L∞) (with certainly some kind of decay
in x not used here). 2

3.2 Local Maxwellian and behavior in associated B
p spaces

In this section we consider the solutions fε of the approximate problem in Bp
e for p ≥ 2 and

an initial data f0 ∈ Bp
e . We introduce the local-in-time Maxwellian using the approximate

interaction potential Vnlε. It is defined for all t ≥ 0 by

Mε(t, x, v) = e−(v2/2+Vnlε(t,x)+Ve(x)+µε(t)),

where µ(t) is defined so that Mε is L1 normalized,

eµε(t) =

∫
e−(v2/2+Vnlε(t,x)+Ve(x))dxdv. (49)

Of course this definition makes sense since Vnlε ∈ C([0,∞[, L∞(dx)). Let us also define the
(time-dependent) associated εBp

t spaces

εBp
t =

{
f ∈ D′ s.t. f/Mε(t) ∈ Lp(Mε(t)dxdv)

}

as in the preceding sections. Since we also have also ∂xVnlε(t) ∈ C([0,∞[, L∞(dx)), we note
that for all fixed t ≥ 0, Mε is L1-normalized eigenfunction associated to the eigenvalue 0
of the following Fokker-Planck operator in εB2

Kε(t) = v.∂x − (∂xVnlε(t) + ∂xVe).∂v − γ∂v. (∂v + v) .

The aim of this section is to prove the following Proposition, which shows that the
evolution equation ∂t +Kε(t) has a similar contraction property in εB∞

t to the linear one.
Let us precise the underlying idea: we proved in Proposition 2.4 that the linear problem
∂tf + Kef = 0 was well posed in B∞

e where Ke = X0 + b∗b. This means exactly that
posing w(t) = f(t)/Me, we have |w(t)| ≤ ‖w(0)‖L∞ . The spirit is the nonlinear context
is to follow exactly the same idea but with the adapted local Maxwellian Mε(t) instead
of Me. This will be extended later to ε = 0.

Proposition 3.3 Let fε be the solution given by proposition 3.1. Then we have
i) f0 ∈ εB∞

0 i.e. f0 ∈ Mε(0)L
∞;

ii) for all t ≥ 0, ‖fε(t)‖εB∞
t

≤ ‖f0‖εB∞

0

Proof. For fixed t ≥ 0 the fact that Vnlε(t) ∈ L∞(dx) implies that the spaces εB∞
t and

Be are norm equivalent (with equivalence constants a priori dependant of ε and t). This
proves in particular point i).
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For the proof of point ii), we shall need a series of results. From now on we omit the
dependance in ε. We first work in the flat space L∞ by changing the function f :

w(t) = f(t)/M(t), w0 = f0/M(0).

Then w satisfies the following integro-differential system





∂tw + v.∂xw − ∂x(Vnl + Ve).∂vf +A(f)M−1 + γ(−∂v + v)∂vw = 0,

∂xVnl(t, x) = −ζε ∗x
κ

|Sd−1|
x

|x|d ∗x ρ(t, x)

with ρ(t, x) =

∫
f(t, x, v)dv and f = Mw,

w|t=0 = w0,

(50)

where the term A(f) comes from the time derivative of the Maxwellian and is given by

A(f) = (∂tVnl(t) + ∂tµ(t))f(t). (51)

From equation (48) we get that

∂tVnl = ζε ∗
κ

|Sd−1|
x

|x|d ∗
∫
vf(t)dv = −ζε ∗ κ∆−1∂x

∫
vgdv.

Let us define the following operator for g ∈ Bp
e and p > 1:

B(g) = −ζε ∗ κ∆−1∂x

∫
vgdv.

Then we have ∂tVnl = B(f) and we notice that

∂tµ(t) = −
∫∫

B(f)M(t)dxdv.

We can therefore write

A(f) =

(
B(f)−

∫∫
B(f)M(t)dxdv

)
f.

In order to prove Theorem 3.3 we shall need a series of results. First we know that for
f0 ∈ Bp

e the approximate solution f is in Bp
e . Let us call it f1 and define the associated

functions and quantities

Vnl1, M1, E1 = ∂xVnl1 and µ1.

We suppose form now on that they are given. We shall later use an annex operator:

Lemma 3.4 Let 2 ≤ q ≤ p ≤ ∞. For any fixed t ≥ 0, the operator defined by

g 7−→ A1(g) =

(
B(g) −

∫
eµ1(t)B(g)M1(t)dxdv

)
f1

is bounded from Bq
e to Bp

e . Besides its Kernel contains all even functions in the variable v
in Bq

e .
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Notice that in the case p = ∞ it implies that the operator

w 7−→ A1(g)M−1, for g = Mw

is bounded from L∞ to L∞.

Proof. For the first part it is sufficient to show the for g ∈ Bq
e we have B(g) ∈ L∞.

This is immediate from the definition of B. For the second part we observe that for even
g such that vg ∈ L1 we have

∫
vgdv = 0. This gives the result. 2

We now freeze some parts of equation (50) using f1. We get that w = f/M is then a
solution of the following linear equation:





∂tw + v.∂xw − ∂x(Vnl1 + Ve).∂vw +A1(g)M−1
1 + γ(−∂v + v)∂vw = 0

where g = M1w

w|t=0 = w0

(52)

We shall prove the following Proposition about this equation. From now on w is an
unknown function a priori in L1

loc(R
+, L∞(dxdv)).

Proposition 3.5 Let p = ∞ and consider the associated solution f1 of the approximate
problem (45). Then the problem (52) is well-posed in L∞(R+ ×R

2d), positivity-preserving
and has the contraction property in L∞ (i.e. for a given initial data w0 ∈ L∞ we have
‖w(t)‖L∞ ≤ ‖w0‖L∞).

Proof. We stick to the proof given for the similar operators in Section 2.3 and Appendix
A.2 and suppose without restriction that γ = 1. In order to prove that the problem is
well-posed we go back again to the Bp

e spaces by posing

h = Mew, h0 = Mew0,

with a given initial data h0 a priori in L1. We recall that Me is independent of time.
With this unknown function the problem (52) reads





∂th+ v.∂xh− (E1 + ∂xVe).∂vh− γ∂v(∂v + v)h

− v(∂xVnl1)h+A1

(M1

Me
h

)Me

M1
= 0

h|t=0 = h0

which reads since b = ∂v + v



∂th+Keh− E1bh+A1

(M1

Me
h

)Me

M1
= 0

h|t=0 = h0

(53)

This is a Fokker-Planck operator as studied in Section 2.3. The difference is that the
term −E∂vf = Eb∗f there is here replaced by E1b, and that we have an additional term
A1 (M1/Meh)Me/M1. Anyway this doesn’t change at all the existence and uniqueness
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study: Indeed the second term is related a bounded operator on B2
e to B2

e from Lemma
3.4 and since Me/M1 is locally in time in L∞(dxdv). As for the first one only have to use
the diffusion estimate e−tKeb instead of e−tKeb∗ from Proposition 2.8 in the proofs. We
get that the Cauchy problem (53) admits a unique weak solution, which coincides with
the unique mild solution in C(R+,B2

e ). Exactly in the same way we also obtain that it is
positivity preserving.

Now the main difference is that we don’t have anymore the L1 = B1
e property as in

Proposition 2.13. Instead we have the one in B∞
e : We notice that h = Me is a stationary

solution of (53) since

∂tMe = 0, bMe = 0, KeMe = 0

and A1

(M1

Me
Me

)Me

M1
= A1 (M1)

Me

M1
= 0,

(54)

where the last equality is due to the fact that M1 is even in the variable v and Lemma
3.4. Let us now assume that the initial data h0 satisfies

|h0| ≤ CMe (55)

for a given C, in particular for C0 = ‖h0‖B∞
e

. Then from the positivity preserving we get
that for all t ≥ 0 the solution h(t) satisfies the same property

|h(t)| ≤ C0Me. (56)

This gives that h ∈ L∞(R+,B∞
e ). Since B∞

e ⊂ B2
e we get that this solution is the only one

in L∞(R+,B∞
e ) and that for all t ≥ 0

‖h(t)‖B∞
e

≤ ‖h0‖B∞
e
. (57)

Let us come back to the initial problem (52) for the function w. Estimate (57) means
exactly that there exists a unique solution w in L∞(R+ × R

2d), therefore the Cauchy
problem is well-posed in this space. Eventually we get also from (57) that for all t ≥ 0,

‖w(t)‖L∞ ≤ ‖w0‖L∞ .

This is the contraction property announced in Proposition 3.5, and completes the proof
of this Proposition. 2

End of the proof of Proposition 3.3.

Let us now come back to the non-linear original approximate problem (45). Since we
know that wε = fε/Mε is a solution of it with initial Cauchy data wε(0) = f0/Mε(0), it is
also a solution of linear problem (52) since wε(0) ∈ L∞. Therefore it satisfies the property

‖wε(t)‖L∞ ≤ ‖wε(0)‖L∞ .

This reads in terms of fε:
‖fε(t)‖εB∞

t
≤ ‖f0‖εB∞

0
.

and completes the proof of the Proposition. 2
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3.3 Free energy and relative entropy

We continue in this section the study of the solution fε of the approximate problem (45)
with Cauchy data f0 ∈ Be. Let us first introduce the associated relative entropy:

H(fε|Mε)
def
=

∫∫
fε ln

fε

Mε
dxdv (58)

which is of course dependant of time, where we recall that Mε is defined by

Mε(t, x, v) = e−(v2/2+Vnlε(t,x)+Ve(x)+µε(t)). (59)

Lemma 3.6 We have the following:
i) There exist constants C0 and C ′

0 uniform in ε such that C0Me ≤ Mε(0) ≤ C ′
0Me.

ii) There exist a constant C1 uniform in ε and t ≥ 0 such that the relative entropy is
uniformly bounded by C1.
In both assertions the constants depend only on ‖f0‖B∞

e
and are uniform w.r.t. κ varying

in a fixed compact set.

Proof. Let us first proof point ii). We observe that

‖Vnlε(0)‖L∞(dx) =

∥∥∥∥ζε ∗x
κ

(d− 2)|Sd−1|
x2

xd
∗x ρ0

∥∥∥∥
L∞(dx)

≤ C1

∥∥∥∥
x2

xd
∗x ρ0

∥∥∥∥
L∞(dx)

≤ C2

∥∥∥∥
x2

xd
∗x e

−V e

∥∥∥∥
L∞(dx)

,

(60)

and the last member is a constant. This gives the uniform bound on Vnlε(0). We imme-
diately get a uniform bound for µε(0) using its expression in (49) and therefore point i).
For point ii) we write from Proposition 2.2 and Proposition 2.1 that for all t ≥ 0,

0 ≤ H(fε(t)|Mε(t)) ≤ ‖fε(t)‖2
εB2

t
≤ ‖fε‖2

εB∞
t
.

On the other hand we know from Proposition 3.3 that for all t ≥ 0,

‖fε‖εB∞
t

≤ ‖f0‖εB∞

0
.

Using point i) then gives the result and the proof is complete. 2

Let us now have a look to a particular Lyapounov function called the free energy.

Lemma 3.7 The free energy defined for all t ≥ 0 by

F (fε)(t) =

∫∫ (
v2/2 + Ve +

1

2
Vnlε(t) + ln(fε(t))

)
fε(t)dxdv

is C(R+,R), decreasing and uniformly bounded (w.r.t. both t and ε and also κ in a fixed
bounded set) with bound depending only on ‖f0‖B∞

e
.
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Proof. First we recall that under our conditions fε is a strong solutions of equation (45)
from Proposition 47. In particular each term of the equation belongs for almost every t
to Bp for 1 ≤ p < 2. It is then easy to see that it is also the case for each following terms

v2∂tfε, v3∂xfε, ∂v(∂v + v)fε, etc...

and the following computations are valid, in particular we may differentiate under the
integral sign and F (fε) is derivable in t a.e. In this context we mimic the proofs given in
[4]. We observe that replacing dfε/dt by its expression in the equation leads to

d

dt

∫∫
v2

2
fεdxdv

=

∫∫
v2

2
(−v∂xfε + ∂xVe∂vfε + ∂xVnlε∂vfε + γ∂v(∂v + v)fε) dxdv

= −
∫∫

v∂xVefεdxdv −
∫∫

v∂xVnlεfεdxdv − γ

∫∫
v2fεdxdv + γd,

(61)

where for the last term we used the fact that fε is L1 normalized. On the other hand we
also have

d

dt

∫∫
Vefεdxdv =

∫∫
Vedfε/dtdxdv = −

∫∫
Vev∂xfεdxdv =

∫∫
∂xVevfεdxdv. (62)

The computation of the following derivative is also standard and could be obtained by
renormalization techniques as in [4]:

d

dt

∫∫
fε ln(fε)dxdv = dγ − 4γ

∫∫
(∂v

√
fε)

2dxdv. (63)

Eventually let us estimate the time derivative of the term involving Vnlε. We denote in
the following

Vnl =
κ

(d− 2)|Sd−1|
x2

xd
∗x ρε,

so that Vnlε = ζε ∗x Vnl and −∆Vnl = κρε. We can write

d

dt

∫∫
1

2
Vnlεfεdxdv =

d

dt

1

2

∫
Vnlερεdx

=
1

2

∫
dVnlε

dt
ρεdx+

1

2

∫
Vnlε

dρε

dt
dx

=
1

2

∫ (
dVnl

dt
∗x ζε

)
ρεdx+

1

2

∫
Vnlε

dρε

dt
dx

=
1

2

∫
dVnl

dt
(ρε ∗x ζε)dx+

1

2

∫
Vnlε

dρε

dt
dx

=
1

2

∫
dVnl

dt

(
−1

κ
∆Vnlε

)
dx+

1

2

∫
Vnlε

dρε

dt
dx

=
1

2

∫ (
−1

κ

d∆Vnl

dt

)
Vnlεdx+

1

2

∫
Vnlε

dρε

dt
dx

=
1

2

∫
Vnlε

dρε

dt
dx+

1

2

∫
Vnlε

dρε

dt
dx =

∫
Vnlε

dρε

dt
dx.
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Using the expression ρε =
∫
fεdv we get

d

dt

∫∫
1

2
Vnlεfεdxdv =

∫
Vnlε

dρε

dt
dx

=

∫∫ (
d

dt
fε

)
Vnlεdxdv

= −
∫∫

(v∂xfε)Vnlεdxdv =

∫∫
v(∂xVnlε)fεdxdv.

(64)

Let us put together estimates (61-64). We get as in [4]:

d

dt
F (fε) = −γ

∫∫
(2∂v

√
fε + v

√
fε)

2 ≤ 0.

Therefore for all t ≥ 0 we obtain F (fε)(t) ≤ F (fε)(0). Using the bound in (60) for Vnlε(0)
we get that F (fε)(t) has a uniform upper bound with bound as announced in the Lemma.

Using exactly the same tools as in [4, (2.38-2.58)], we get that since Ve ≥ 0, Vnlε ≥ 0,
the free energy is also bounded from below independently of t, ε, κ (in a fixed compact
set of R

+) with bounds only dependent on Ve. The proof of Lemma 3.7 is complete. 2

Remark 3.8 Let us just say a word about the method in [4]. We want first to stress
the importance of the result [4, (2.38)] about the negative part of ln(fε)fε: Let us define
ln−(fε) = sup(− ln(fε), 0), then

∀K > 0, ln−(fε)fε ≤ fε +
1

K
(v2/2 + Ve(x))fε

+
(
1 + (v2/2 + Ve(x))/K

)
e−1e−(v2/2+Ve(x))/K .

(65)

Taking K = 1/2 in this inequality implies

0 ≤
∫∫

ln+(fε(t))fε(t)dxdv + (1/2)

∫∫
(v2/2 + Ve)fε(t)dxdv

≤ F (fε)(t) + C ≤ F (fε)(0) + C.

(66)

Here C only dependent on the physical constants and Ve. The lower bound for F (fε)(t)
follows and an upper bound for each term in (66) also. Eventually we get an upper bound
for
∫∫

ln−(fε(t))fε(t)dxdv using (65) and then one for each term appearing in the defini-
tion of F (fε)(t). 2

As a crucial Corollary we get the following result about uniform bounds for quantities
associated with the approximate solution fε.

Corollary 3.9 The following quantities are bounded uniformly in t ≥ 0, ε and κ varying
in a fixed compact set:

∫∫
v2

2
fε(t)dxdv,

∫∫
fε(t) ln−(fε(t))dxdv,

∫
fε(t) ln(fε(t))dxdv,

∫∫
Vefε(t)dxdv,

∫∫
Vnlε(t)fε(t)dxdv, and µε(t).

Besides their bounds depend only on ‖f0‖B∞
e

.
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Proof. For the five first quantities this is the result of the preceding study. Let us have
a look at the last one. We know the the relative entropy is uniformly bounded, and using
(58-59) we can write it as

H(fε|Mε) =

∫∫
fε ln

fε

Mε
dxdv

=

∫∫
(
v2

2
fε + Vefε + Vnlεfε + fε ln(fε))dxdv + µε,

(67)

since
∫∫

fε = 1. Since the first integral and the relative entropy are uniformly bounded,
we get the same result for µε. 2

3.4 Global existence, uniqueness and uniform bounds

The aim of this section is to prove Theorem 1.1 and Proposition 1.2. Let us consider the
approximate problem (45). From the definition of Me and Corollary 3.9, we have

Proposition 3.10 There exists constants Cu, C
′
u, C

′′
u and C ′′′

u uniform in time and ε
(and κ varying in a fixed compact set) such that

0 ≤ Mε(t) ≤ CuMe, 0 ≤ fε(t) ≤ C ′
uMe, 0 ≤ ρε(t) ≤ C ′′

ue
−Ve

and ‖Vnlε(t)‖L∞(dx) + ‖∂xVnlε(t)‖L∞(dx) ≤ C ′′′
u .

Besides the constants depend only on ‖f0‖B∞
e

.

Proof. For the first bound this is enough to write that

Mε(t) = ceMee
−Vnlε(t)e−µε(t) ≤ cee

‖µε‖L∞
t Me,

by noticing that Vnlε ≥ 0. The uniform bound on µε given in Corollary 3.9 gives the result.
For the second bound we first write that from Proposition 3.3 we have

0 ≤ fε(t) ≤ ‖f0‖εB∞

0
Mε(t).

Using first the upper bound on Mε(t) and then the lower bound on Mε(0) in point i)
of Proposition 3.6 give the result. The estimate on ρε is then a direct consequence of an
integration in the variable v.

For the L∞ estimates on Vnlε and its derivative, we first recall recall the definition

Vnlε(t) = ζε ∗x
κ

(d− 2)|Sd−1|
x2

|x|d ∗x ρε(t).

We immediately get the bound for Vnlε thanks to the upper bound for ρε:

‖Vnlε(t)‖L∞(dx) ≤
∥∥∥∥

κ

(d− 2)|Sd−1|
x2

|x|d ∗x ρε(t)

∥∥∥∥
L∞(dx)

≤ C ′′
u

κ

(d− 2)|Sd−1|

∥∥∥∥
x2

|x|d ∗x e
−Ve

∥∥∥∥
L∞(dx)

= C ′′′
u .
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For the bound on ∂xVnlε we follow exactly the same procedure using the fact that

∂xVnlε = −ζε ∗ x
κ

|Sd−1|
x

|x|d ∗x ρε

and with an other C ′′′
u . This completes the proof of Proposition 3.10. 2

We can now study the full Vlasov-Poisson-Fokker-Planck operator and complete the
proof of the existence and uniqueness stated in the introduction.

Proof of Theorem 1.1 and Proposition 1.2. We take a sequence (εn) to be chosen
later and we pose for each n

fn = fεn, ρn = ρεn , Vnln = Vnlεn, ζn = ζεn ,

where fεn is the strong solution given by Proposition 3.1. We study the following iteration
scheme for n ≥ 1





∂tfn + v.∂xfn − (En + ∂xVe).∂vfn − γ∂v(∂v + v)fn = 0

En = ∂xVnln(t, x) = −ζn ∗ κ

|Sd−1|
x

|x|d ∗x ρn(t, x)

with ρn(t, x) =

∫
fn(t, x, v)dv

fn|t=0 = f0.

(68)

We now verify that for εn well chosen, the scheme converges in L∞([0, T [,B2
e ) for an

arbitrary T toward a unique solution f which is a mild solution of (1). Using the dispersion
estimates from Proposition 2.8 we have for all 0 ≤ t ≤ T

‖fn+1(t) − fn(t)‖B2 ≤CT

√
t ‖En+1fn+1 − Enfn‖L∞([0,t[,B2

e)

≤ CT

√
t sup

[0,t]

(
‖En+1(fn+1 − fn)‖B2

e

+ ‖fn(ζn+1 − ζn) ∗ ϕ ∗ ρn+1‖B2
e

+ ‖fnζn ∗ ϕ ∗ (ρn+1 − ρn)‖B2
e

)

= CT

√
t(A1 +A2 +A3),

(69)

where ϕ(x) = x/|x|d. For the first term we have

A1 ≤ ‖En+1‖L∞ ‖fn+1 − fn‖L∞([0,t[,B2
e)

≤ Cu ‖fn+1 − fn‖L∞([0,t[,B2
e) ,

(70)

where Cu does not depend on T , ε thanks to the uniform estimate given in Proposition
3.10. For the second one we shall use the Hardy-Littlewood Sobolev inequality. For all t,
and writing fn instead of fn(t) we have

A2 =
∥∥∥((ζn+1 − ζn) ∗ ϕ ∗ ρn+1) fn/M1/2

e

∥∥∥
L2

≤
∥∥∥M1/d′−1/2

e ((ζn+1 − ζn) ∗ ϕ ∗ ρn+1) fn/M1/d′
e

∥∥∥
L2

≤
∥∥∥M1/d∗

e (ϕ ∗ (ζn+1 − ζn) ∗ ρn+1) fn/M1/d′
e

∥∥∥
L2
,

(71)
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where 1/d + 1/d′ = 1 and 1/d∗ + 1/d = 1/2 (for example d∗ = 6 for d = 3). Now from
Hölder inequality we get

A2 ≤
∥∥∥M1/d∗

e (ϕ ∗ (ζn+1 − ζn)ρn+1)
∥∥∥

Ld∗
‖fn‖Bd

≤ Cu ‖(ϕ ∗ (ζn+1 − ζn)ρn+1)‖Ld∗(dx)

(72)

since ‖fn‖Bd is uniformly bounded with respect to t and ε and M1/d∗
e ∈ L∞(Rd

x, L
d∗(Rd

v)).
Now we can apply the Hardy-Littelwood Sobolev inequality which gives

A2 ≤ C ′
u ‖((ζn+1 − ζn)ρn+1)‖L2 . (73)

For this we used the fact that ϕ(x) = |x|−n/a for a = d/(d − 1) and the result followed
from 1/2 + 1/a = 1 + 1/d∗(see for example [24, Theorem 4.5.3]). Now ζn is an approxi-
mation of identity therefore we can choose the sequence εn such that for all g ∈ L2(dx),
‖(ζn+1 − ζn)g‖L2(dx) ≤ 2−n ‖g‖L2(dx). It gives in our case

A2 ≤ C ′
u2−n ‖ρn+1‖L2 ≤ C ′′

u2−n

for a uniform in time C ′′
u and the last inequality comes from Proposition 3.10.

For the last term A3 we follow similar computations. We write that for t fixed (and
omitted) we have

A3 = ‖fnζn ∗ ϕ ∗ (ρn+1 − ρn)‖B2
e
≤
∥∥∥M1/d∗

e ζn ∗ ϕ ∗ (ρn+1 − ρn)
∥∥∥

Ld∗
‖fn‖Bd

e
(74)

following similar computations to the ones in (72). This gives

A3 ≤ Cu ‖ζn ∗ ϕ ∗ (ρn+1 − ρn)‖Ld∗(dx) ≤ C ′
u ‖ϕ ∗ (ρn+1 − ρn)‖Ld∗(dx)

≤ C ′
u ‖ρn+1 − ρn‖L2(dx)

(75)

from the Hardy-Littlewood-Sobolev inequality. We get

A3 ≤
∥∥∥∥
∫

(fn+1 − fn)/M)Mdv

∥∥∥∥
L2(dx)

≤
∥∥∥∥∥

(∫ (
(fn+1 − fn)/M)2Mdv

)1/2
(∫

Mdv

)1/2
)∥∥∥∥∥

L2(dx)

(76)

using the Cauchy-Schwartz inequality. We have therefore

A3 ≤ C ′′
u ‖fn+1 − fn‖B2

e
. (77)

Putting the estimates about A1 A2 and A3 together yields

‖fn+1(t) − fn(t)‖B2
e
≤ CT

√
t sup

[0,t]
(‖fn+1(s) − fn(s)‖B2

e
+ 2−n). (78)

For t small we get the strong convergence of the scheme defined in (68) in L∞([0, t],B2
e ).

Standard iterating tools give then strong convergence of the scheme in L∞([0, T [,B2
e ) to a

limit f . By dominated convergence using the uniform bounds of Proposition 3.10, we also
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get that En and Vnln converge to E and Vnl respectively in L∞([0, T [×R
d
x) where E = ∂xVnl

was defined in equation (1) and Vnl in (6). From Proposition 2.11, f ∈ C([0, T [,B2
e ) is the

unique mild solution of (1). Since T is arbitrary f is a global mild solution (not yet
uniform).

Now using Propositions 3.3 and 3.10 and the Lebesgue dominated convergence Theo-
rem yields for all t ≥ 0

‖f(t)‖B∞
t

≤ ‖f0‖B∞

0
.

Here the Bp
t spaces were defined in Proposition 1.2 and this gives the proof of this Proposi-

tion. Of course passing to the limit also in Proposition 3.10 gives that f is a uniform mild
solution with the associated uniform bounds for Vnl and ∂xVnl. The proofs of Theorem 1.1
and Proposition 1.2 are complete. 2

4 Poisson-Emden equation and equilibrium state

The aim of this subsection is to prove Proposition 1.3 about the potential V∞ associated
to the stationary solutions of the Vlasov-Poisson-Fokker-Planck equation. Recall that the
equation satisfied by V∞ is

−∆V∞ = κ
e−(Ve+V∞)

∫
e−(Ve+V∞)dx

, (79)

where we recall that κ is varying in a fixed compact set of R
+ of type [0,M ]. Since we are

in the repulsive interaction case the existence and uniqueness of a (Green) solution of this
equation is given by a result of Dolbeault [11] under a light hypothesis on the external
potential. We first quote his result:

Proposition 4.1 ([11]) Let Ue ∈ L∞
loc

(RN ), N ≥ 3 and M > 0. A necessary and suffi-

cient condition for the existence of a solution U ∈ L
N

N−2
,∞ of the Poisson-Emden equation

−∆U = M
e−(Ue+U)

∫
e−(Ue+U)dx

(80)

is e−Ue ∈ L1. The solution if it exists is unique.

Now the main hypothesis (2) on the exterior potential Ve implies that e−Ve ∈ L1 and
as a consequence we can apply this Proposition to U = V∞, Ue = Ve, M = κ, N = d and

we get a unique solution in L
d

d−2
,∞. Anyway the regularity of V∞ is improved under the

assumption e−Ve ∈ S:

Proof of Proposition 1.3. In order to prove that V∞ ∈ W∞,∞, it is sufficient to
prove that the (Green) solution U of the following Poisson-Emden-type equation

−∆U = Ce−(Ve+U) (81)

is in W∞,∞. We first note that U is given by

U =
C

(d− 2)|Sd−1|
x2

|x|d ∗ e−(Ve+U).
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Since U ≥ 0 we get that 0 ≤ U ≤ CUe, where Ue is the Green solution of −∆Ue = e−Ve :

Ue =
1

(d− 2)|Sd−1|
x2

|x|d ∗ e−Ve .

From Hardy-Littlewood Sobolev inequalities, we have Ue ∈ Lp for d/(d − 2) < p ≤ ∞.
Therefore this is also the case for U . Since we directly have that −∆U ∈ Lp for all p, we
get that

−∆U + U ∈ Lp, d/(d − 2) < p <∞
and this gives U ∈W 2,p by elliptic regularity in R

d (see for example [35], [38]).
Now shall use a bootstrap argument to prove that U ∈W∞,∞. Let d/(d− 2) < p <∞

be fixed in the following. We notice that 0 ≤ U ≤ U1 gives U ∈ L∞, and as a consequence
we get for all i, j,

∂ij(e
−U ) = ((∂ijU) + (∂iU)(∂jU) e−U ∈ Lp

since on the one hand −∆U ∈ Lp and on the other hand

∀k, ∂kU ∈ L2p =⇒ (∂iU)(∂jU) ∈ Lp. (82)

In a direct way we also get ∂ke
−U ∈ Lp. Recall that for the function itself we only have

e−U ∈ L∞. We get therefore

(−∆ + 1)2U = −∆Ce−(Ve+U) + 2Ce−(Ve+U) + U ∈ Lp.

Since e−V e ∈W 2,p and using the same trick as in (82), this gives U ∈W 4,p for the arbitrary
fixed d/(d − 2) < p <∞. By a boostrap argument using the same method we get in fact

U ∈W 2k,p,

for all k ∈ N and therefore
U ∈ ∩k∈NW

2k,p ⊂W∞,∞.

Applying this to V∞ gives V∞ ∈ W∞,∞. The uniformity w.r.t. κ is also clear and the
proof of Proposition 1.3 is complete. 2

Remark 4.2 Let us have a look at the equilibrium state and the convergence of the
solution of equation (1). From the preceding study we get that the equilibrium is unique
and given by

f∞ =
e−(Ve+V∞+v2/2)

∫
e−(Ve+V∞+v2/2)dx

.

The stationary Vlasov-Poisson-Fokker-Planck equation then reads

K∞f∞ = 0 where K∞ = v∂x − ∂x(Ve + V∞)∂v − γ∂v(∂v + v). (83)

Now we want to apply the result of Dolbeault [11] about the convergence in L1 of solutions.
Since the solution given by Theorem 1.1 is in particular in C(R+, L1) and that (t, x) 7→
∇Vnl(t, x) is in L∞

loc(R
+, L∞), his Theorem applies and we get that

f(t, .) −→ f∞ in the L1 sense.
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Now from the uniform bound 0 ≤ f(t) ≤ CuMe and applying the Lebesgue dominated
convergence Theorem we easily get that

f(t, .) −→ f∞ in Bp

for 1 ≤ p <∞ as already mentioned in the introduction 2

Remark 4.3 To end this section we notice that since V∞ ∈ W∞,∞ we get that the po-
tential at infinity Ve + V∞ satisfies the same hypothesis of Ve alone. As a consequence it
will be possible to apply to K∞ all the properties obtained for any generic Fokker-Planck
operator K associated to a generic potential V satisfying conditions of type (H1). This
will be crucial in the next section, in which we study the exponential convergence to the
equilibrium. A second remark is that the total potential at equilibrium is not explicit.
In particular the Green function for the equation ∂tf +K∞f is not known. This justify
a posteriori the abstract study (anyway with explicit constants) performed in the linear
sections. In the next one we first go on with the study of a generic linear Fokker-Planck
operator by studying the long time behavior and the exponential time decay. 2

5 Exponential time decay

5.1 Exponential linear diffusion estimates

In this section we go back for a while to the study of the linear Fokker planck operator by
proving the exponential decay and related long time diffusion estimates. We work from
now on with a generic potential V satisfying both conditions of type (H1) and (H2):

(Hgeneric)





e−V ∈ S(Rd
x), with V ≥ 0 and V ′′ ∈W∞,∞(dx),

and Operator Λ2 has a spectral gap in B2

with first non-zero eigenvalue denoted α.

(84)

Here Λ2 is the closed operator in B2 defined by

Λ2 = −γ∂v(∂v + v) − γ∂x(∂x + ∂xV ),

for which M defined in (11) is a single eigenfunction in B2 associated to the eigenvalue
0, and Bp was defined as in (11-12). Recall also the definition of the linear Fokker-Planck
operator

K = v∂x − ∂xV ∂v − γ∂v(∂v + v).

We shall work in the following in the orthogonal in the B2 sense of the Maxwellian. We
call

B2
⊥ = M⊥ ∩B2 =

{
f ∈ B2 s.t.

∫∫
fdxdv = 0

}
,
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endowed with the norm of B2, where ⊥ stands for the orthogonal with respect to the scalar
product in B2 (recall that B2′ was identified with B2 according to the measure M−1dxdv
in (13)).

Remark 5.1 Note that in the flat space L2 for the function u = f/M1/2 the meaning of
the definition is (u,M1/2)L2 = 0. 2

We note that B2
⊥ is stable for K. Indeed for all f ∈ B2

⊥, we have

< Kf,M >=

∫∫
KfMM−1dxdv =

∫∫
f(K∗M)M−1dxdv = 0.

Since K restricted to B2 generates a semi-group of contraction, we have the same property
in B2

⊥. Anyway restricted to B2
⊥ the semi-group has a much better property at infinity:

Proposition 5.2 Suppose V satisfy hypothesis (Hgeneric). Then there exists a constant
A depending only on ‖V ′′‖L∞ such that for all t ≥ 0

∥∥e−tK
∥∥
B2
⊥

≤ 3e−αt/A.

Remark 5.3 The new fact here is the we don’t need growing assumptions on ∂xV as in
[21] which led to the compactness of the resolvent of K and that we have an explicit factor
3 in front of the exponential. Anyway the beginning of the proof is similar to the one
of [21], also not using a Dunford-Schwartz integral argument. Therefore we postpone the
proof and some remarks to the appendix, subsection A.3. 2

Putting together Propositions 5.2 and 2.8 we get

Proposition 5.4 Suppose V satisfy hypothesis (Hgeneric). Then there exists constants
C2 and A such that for all t > 0,
i) e−tKb∗ is bounded by C2(1 + t−1/2)e−αt/A,
ii) e−tKa∗ is bounded by C2(1 + t−3/2)e−αt/A,
as bounded operators in B2, where C2 and A depends only on ‖V ′′‖L∞.

Proof. We simply use the following fact: For a given f0 ∈ M1/2S ⊂ B2, we have

(b∗f0,M)B2 = (f0, bM)B2 = 0.

i.e. b∗f0 is orthogonal to the Maxwellian. Of course it is also the case for e−Kb∗f0 since

(e−Kb∗f0,M)B2 = (b∗f0, e
−K∗M)B2 = (b∗f0,M)B2 = 0.

Now for t ≥ 1 we can apply Proposition 5.2 and we get following bound:

∥∥e−tKb∗f0

∥∥ =
∥∥∥e−(t−1)Ke−Kb∗f0

∥∥∥ ≤ Ce−α(t−1)/A
∥∥e−Kb∗f0

∥∥

≤ 3eγ/Ae−αt
∥∥e−Kb∗f0

∥∥ .
(85)
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(Here we used that α ≤ γ because of the harmonic part of Λ2). Now from Proposition 2.8
applied with t = 1 we get

∥∥e−Kb∗f0

∥∥
B2 ≤ C ′(1 + t−1/2) ‖f0‖B2 .

This inequality together with (85) give the bound
∥∥e−tKb∗f0

∥∥ ≤ C2(1 + t−1/2)e−αt/A ‖f0‖B2

for an initial data f0 ∈ M1/2S. It can be clearly extended to f0 ∈ B2 using Proposition
2.7. The proof of the estimates about e−tKa∗ can be done exactly in the same way. The
proof of Proposition 5.4 is complete. 2

Remark 5.5 Following remark 2.5 we see that we could extend the result of Proposition
5.2 to any Bp spaces for 2 ≤ p < ∞ provided one has proven that e−tK defines a semi-
group on Bp. By interpolation we would get the exponential decay e−tα/(p−1)A in what
has to be called Bp

⊥. By duality this would give also the result in the Bp’s for 1 < p ≤ 2.
One can suppose also that a polynomial decay is perhaps true in L lnL type spaces by
real interpolation.

Remark 5.6 As already noted in Remark 2.10, in the particular case of Ve = x2 or more
generally for quadratic external potentials, one can compute explicitly the Green function
of e−tK using the method of characteristics (see e.g. [25]). Anyway if it gives after some
work the short time behavior, the exponential decay of e−tKb∗ is not clear on the formulas.
In fact the short time decays in Theorem 2.8 can be viewed as consequences of the Lie
group structure of the operator (if one identifies b∗ and b) whereas the long time behavior
is deeply linked with the spectral properties of K. Note eventually that the operator K
may not be compact. In fact the needed property used is the sort of spectral gap induced
by the compactness properties of the harmonic oscillator (only in the v variables) coupled
with the confining ones of the transport X0.

5.2 Exponential time decay for small data

The aim of this section is to prove Theorem 1.4 and Corollary 1.5 about the exponential
decay for small charge. Let us now define as in the Introduction the following Fokker-
Planck operator corresponding to the stationnary Vlasov-Poisson-Fokker Planck equation

K∞ = v∂x − ∂x(Ve + V∞)∂v − γ∂v(∂v + v). (86)

Since V∞ ∈W∞,∞ and using hypothesis (H1)-(H2) we get that the associated total poten-
tial Ve + V∞ satisfies hypothesis (Hgeneric) of the preceding subsection. The Maxwellian
associated to this operator is

M∞(x, v) =
e−(v2/2+Ve(x)+V∞(x))

∫
e−(v2/2+Ve(x)+V∞(x))dxdv

(87)

and is in S ⊂ L1 with norm 1 thanks to Proposition 1.3. We define also the associated
spaces Bp

∞ = {f ∈ D′ s. t. f/M∞ ∈ Lp(M∞dxdv)}. We recall that α∞ is the smallest
positive real part of the eigenvalues of the corresponding Witten Laplacian

Λ2
∞ = −γ∂v(∂v + v) − γ∂x(∂x + ∂x(Ve + V∞)) (88)
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in B2
∞. We denote by the same symbols Λ2

∞ and K∞ the closure from C∞
0 of the corre-

sponding operators in B2
∞, and recall that they are maximal accretive from Proposition

2.4.
Since Ve+V∞ satisfy the hypothesis (H1) and (H2) we can apply all the results obtained

for a generic potential V . In particular we follow subsection 5.1 by defining in our context
the following space

B2
∞,⊥ = M⊥ ∩ B2

∞ =

{
f ∈ B2

∞ s.t.

∫∫
fdxdv = 0

}
,

endowed with the norm of B2
∞, where ⊥ stands for the orthogonal with respect to the

scalar product. We note that B2
∞,⊥ is stable for K∞. The following proposition is a direct

consequence of Propositions 5.4 and 5.2 for V = Ve + V∞:

Proposition 5.7 There exists constants C∞ and A∞ such that for all t > 0,
i) e−tK∞b∗ is bounded by C∞(1 + t−1/2)e−α∞t/A∞ on B2

∞,
ii) e−tK∞a∗ is bounded by C∞(1 + t−3/2)e−α∞t/A∞ on B2

∞,
iii) e−tK∞ is bounded by 3e−α∞t/A∞ on B2

∞,⊥,
where C∞ and A∞ depend only ‖(Ve + V∞)′′‖L∞ and the physical constants (uniformly in
κ varying in a fixed compact set).

We work now in the Hilbert space B2
∞ which we recall is norm-equivalent to B2

e using
the bounds in Proposition 1.3. We again suppose without restriction that γ = 1 so that
b∗ = −∂v. For t, x ∈ R

+ × R
d we denote

Vdiff(t, x) = Vnl(t, x) − V∞(x).

We can write the Cauchy problem associated to the VPFP system as follows
{
∂tf +K∞f = −b∗∂xVdifff,

f |t=0 = f0.

Using the a priori bounds for the solution f given by Theorem 1.1 we know that f satisfies
the following Duhamel formula written in terms of K∞ in B2

∞

f(t, x, v) = e−tK∞f0(x, v) −
∫ t

0
e−(t−s)K∞b∗∂xVdiff(s, x)f(s, x, v)ds, (89)

From Proposition 1.3 and Theorem 1.1 we know that ∂xVdiff ∈ L∞(Rt × R
d
x). We denote

in the following

ϕ(x) = − 1

|Sd−1|
x

|x|d ,

so that ∂xVdiff reads

∂xVdiff(t, x) = ∂xVnl(t, x) − ∂xV∞(x) = κϕ(x) ∗x (ρ(t, x) − ρ∞(x)), (90)

where ρ∞(t, x) =
∫
f∞(t, x, v)dv. The projection f∞ in the Hilbert space B2

∞ of the
Cauchy data f0 on the fundamental space Span(M∞) is then

f∞ = (f0,M∞)B2
∞
M∞ =

(∫∫
f0M∞M−1

∞ dxdv

)
M∞ = M∞. (91)
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Recall that we already know that f(t) −→ f∞ when t −→ ∞ in Bp
e and therefore in Bp

∞

for 1 ≤ p <∞ since the two spaces are norm equivalent.

Remark 5.8 For a sake of comprehension, let us see this fact in the flat space L2 by

using the corresponding functions u = f/M1/2
∞ , u0 = f0/M1/2

∞ , u∞ = f∞/M1/2
∞ . The

fundamental space is with this notations Span(M1/2
∞ ) and we have

u∞ = (u0,M1/2
∞ )M1/2

∞ =

(∫∫
u0M1/2

∞ dxdv

)
M1/2

∞ =

(∫
f0

)
M1/2

∞ = M1/2
∞ .

We recover formula (91). 2

Let us denote by g(t, x, v) = f(t, x, v) − f∞(x, v). Since f∞ ∈ Ker(K∞) we have

e−tK∞f∞ = f∞.

The Duhamel formula (89) therefore reads




g(t) = e−tK∞g0 +

∫ t

0
e−(t−s)K∞b∗∂xVdiff(s)f(s)ds

where ∂xVdiff(t, x) = κ

∫
ϕ(x− y)g(t, y, v)dydv.

(92)

Now we take the B2
∞ norm in these equations. We first note that g0 ∈ B2

∞,⊥ which
gives from Proposition 5.7 that for all t ≥ 0,

∥∥e−tK∞g0
∥∥
B2
∞

≤ 3e−α∞t/A∞ ‖g0‖B2
∞

. (93)

We also have to estimate the term in the integral in (92) i.e. for all t, s with 0 ≤ s < t,
∥∥∥e−(t−s)K∞b∗∂xVdiff(s)

∥∥∥
B2
∞

.

To this purpose we shall use the Hardy-Littlewood-Sobolev inequality in a very similar
way as in section 3.4. We first prove the following result:

Lemma 5.9 Let us denote d∗ the real in ]1,∞[ such that 1/d+1/d∗ = 1/2 (i.e. d∗ = 6 for
d = 3). Then for all α ≥ 0 we have ‖Mα

∞∂xVdiff(t, .)‖Ln∗ ≤ C1κ ‖g‖B2
∞

with C1 uniform
in κ varying in a fixed compact set.

Proof. We write first that since M∞ ∈ S(R2d) we have

‖Mα
∞∂xVdiff(t, .)‖Ld∗(dxdv) ≤ C ‖∂xVdiff(t, .)‖Ld∗ (dx) ,

with C uniform in κ varying in a fixed compact set. Applying first the Hardy-Littlewood-
Sobolev inequality and then the Cauchy-Schwartz inequality give

‖∂xVdiff(t, .)‖Ld∗ ≤ cCdκ

∥∥∥∥
∫
gdv

∥∥∥∥
L2(dx)

≤ cCdκ

∥∥∥∥
∫

(g/M∞)M∞dv

∥∥∥∥
L2(dx)

≤ cCdκ

∥∥∥∥∥

(∫
(g/M∞)2 M∞dv

)1/2(∫
M∞dv

)1/2
∥∥∥∥∥

L2(dx)

≤ cCdκ ‖M∞‖1/2

L∞(Rd
x,L1(dv))

‖g‖B2
∞

.

(94)
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For this we used the fact that |ϕ(x)| = c|x|−d/a for a = d/(d−1) and 1/2+1/a = 1+1/d∗. 2

Let us now recall that 1/d+1/d′ = 1 and 1/d+1/d∗ = 1/2 which implies in particular
that d′ < 2. We have for all s ≥ 0,

‖∂xVdiff(s)f(s)‖B2
∞

=
∥∥∥∂xVdiff(t, .)f/M1/2

∞

∥∥∥
L2

=
∥∥∥M1/d′−1/2

∞ ∂xVdiff(t, .)f/M1/d′

∞

∥∥∥
L2

=
∥∥∥M1/d∗

∞ ∂xVdiff(t, .)f/M1/d′

∞

∥∥∥
L2

(95)

since 1/d′ − 1/2 = 1/d∗. Now Hölder’s inequality gives

‖∂xVdiff(s)f(s)‖B2
∞

≤ C
∥∥∥M1/d∗

∞ ∂xVdiff(t, .)
∥∥∥

Ln∗

∥∥∥f/M1/d′

∞

∥∥∥
Ld

≤ ‖Mα
∞∂xVdiff(t, .)‖Ld∗ ‖f‖Bd

∞

(96)

for α = 1/d∗ and since d/d′ = d− 1. We now use Lemma 5.9 and we get

‖∂xVdiff(s)f(s)‖B2
∞

≤ Cκ ‖g‖B2
∞
‖f‖Bd

∞
.

Now from Theorem 1.1, Proposition 2.1 and Proposition 1.3 we now that there exist
constants C0 C

′
0 depending only on ‖f0‖B∞

e
such that for all s ≥ 0

‖f(s)‖Bd
∞

≤ ‖f(s)‖B∞
∞

≤ C ′
0 ‖f(s)‖B∞

s
≤ C ′

0 ‖f0‖B∞

0
≤ C0

uniformly in time and κ varying in a fixed compact set. As a consequence we get

‖∂xVdiff(s)f(s)‖B2
∞

≤ CC0κ ‖g‖B2
∞
.

Now apply Proposition 5.7 to the operator K∞ with the associated rate α∞. We can write
for t− s > 0

∥∥∥e−(t−s)K∞b∗∂xVdiff(s)f(s)
∥∥∥
B2
∞

≤ C2(1 + (t− s)−1/2)e−α∞(t−s)/A∞ ‖∂xVdiff(s)f(s)‖B2
∞

≤ κC2CC0(1 + (t− s)−1/2)e−α∞(t−s)/A∞ ‖g‖B2
∞

(97)

Putting (93-97) in the Duhamel Formula (92) and calling from now on C any generic
constant depending on the size of ‖f0‖B2

e
, we get

‖g(t)‖B2
∞

≤3e−α∞t/A∞ ‖g0‖B2
∞

+ Cκ

∫ t

0
(1 + (t− s)−1/2)e−α∞(t−s)/A∞ ‖g(s)‖B2

∞

ds.
(98)

Therefore we get

‖g(t)‖B2
∞

≤3e−α∞t/A∞ ‖g0‖B2
∞

+ Cκ

∫ t

0
(1 + (t− s)−1/2)e−α∞(t−s)/A∞ ‖g(s)‖B2

∞

ds.
(99)

40



Let us define for t ≥ 0, ψ(t) = eα∞t/(2A∞) ‖g(t)‖B2
∞

. We get for t ≥ 0,

ψ(t) ≤ 3ψ(0) + Cκ

∫ t

0
(1 + (t− s)−1/2)e−α∞(t−s)/(2A∞)ψ(s)ds.

Of course because of the order of magnitude of the second constant we are not able to
prove that ψ(t) here is bounded in the full generality. Nevertheless we can write from the
preceding formula and with an other C that

ψ(t) ≤ 3ψ(0) + (Cκ/α∞) sup
s∈[0,t]

ψ(s)ds.

Note here that contrary to A∞ the constant α∞ cannot be absorbed in the constant C
since not controlled by an upper bound of ‖f0‖B∞

e
or semi-norms of (Ve + V∞)′′. Under

the following assumption

Cκ/α∞ ≤ 1/2

we get the following result for all t ≥ 0

ψ(t) ≤ 6ψ(0). (100)

This reads

‖g(t)‖B2
∞

≤ 6 ‖g(0)‖B2
∞
e−α∞t/(2A∞)

and the proof of Theorem 1.4 is complete. 2

Let us now prove the corollary about the relative entropy.

Proof of Corollary 1.5. We first recall that from proposition 2.2

0 ≤ H(f(t)|M∞).

Besides from the inequality ln(s) ≤ s− 1 we get

H(f(t)|M∞) =

∫∫
f(t)

M∞
ln

(
f(t)

M∞

)
M∞dxdv

≤
∫∫

f(t)

M∞

(
f(t) −M∞

M∞

)
M∞dxdv

≤ ‖f(t)‖B2
∞

‖f(t) −M∞‖B2
∞

.

(101)

Now applying Theorem 1.4 and using the equivalence of the norms in B2
∞ and B2

e , we get

H(f(t)|f∞) ≤ C ‖f0 − f∞‖B2
∞

e−α∞t/2A∞ .

The proof of Corollary 1.5 is complete. 2
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A Appendix

A.1 Physical interpretation and scaling

In this short section we recall some facts about the physical meaning and the scaling
leading to equation (1). We only study here the case of a repulsive non-linear interaction
(ω = +1 in (1)) which models a plasma but for the the attracting case (ω = −1) the
discussion is the same. We refer to [33] or articles about the VPFP equation for some
parts of the following.

Each particle of the plasma with position x and velocity v satisfies following equation
of motion {

ẋ(t) = v
mv̇(t) = Ff + Fd + Fe + Fnl

where m is the weight of the particle. Let us study this equation of motion.
The force Ff = −mγ0v is a damping force and γ0 is called the friction term and is a

constant of the material.
The force Fd is a diffusion force and models the collision between the particles. the

Fokker-Planck case is characterized by the choice Fd = mΓ(t) where Γ – the force per unit
of mass – is a Gaussian process of covariance

〈
Γ(t),Γ(t′)

〉
=

2γ0

mβ
δ(t− t′).

Here δ is the Dirac function and β = 1/(kT ) where k is the Boltzmann constant and
T the temperature. The choice of a Brownian motion for an approximation of the colli-
sion between particles is an approximation due to the large number of particles. Other
choices are possible and lead to other kinetic equations (e.g. Boltzmann equation, Landau
equation,... with the corresponding collision kernels, see e.g. [37]).

The third force Fe is an external force deriving from an external potential Fe = −∂xVe.
We assume it is a confining one, in the sense that (at least) lim Ve(x) = +∞.

The last force Fnl is the electrostatic force induced by the particles themselves. It
comes from the electrostatic field Fnl = qEinter where q is the charge of each particle and
Einter is a mean field approximation of the electrostatic field created by each particle :

Einter =
Q

|Sd−1|ε0
x

|x|d ∗x ρ(t, x).

In this formula, ρ(t, x) is the spatial distribution (
∫
ρdx = 1) , |Sd| = 4π for d = 3, and Q

is the total charge of the particles. Introducing the following non-linear potential

Vnl(t, x) =
qQ

(d− 2) |Sd|ε0
x2

|x|d ∗x ρ(t, x),

we see that Fnl derives from the potential Vnl i.e. Fnl = −∂xVnl, and that −∆Vnl = qQ
ε0
ρ.

The repulsive case corresponds to qQ > 0 and Vnl is non-negative in this case.

To summarize the (stochastic) equations of motion are

{
ẋ(t) = v,
v̇(t) = −γ0v − 1

m(∂xVe(x) + Vnl(t, x)) + Γ(t).
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The corresponding equation for the distribution function f(t, x, v) (
∫∫

fdxdv = 1) with
initial distribution f0 is then

{
∂tf + v.∂xf − 1

m (∂xVe + ∂xVnl) .∂vf − γ0∂v.
(

1
mβ∂v + v

)
f = 0,

−∆Vnl = qQ
ε0
ρ, ρ =

∫
fdv.

Because of the Coulombian term this equation is non-linear.

We now introduce the scaling leading to equation (1). If we pose

f̃(t, x, v) = β−d/2(mβ)−d/2f

(√
mt,

x√
β
,

v√
mβ

)
, Ṽe(x) = βVe

(
x

β

)
, (102)

then f̃ is L1-normalized and satisfies




∂tf̃ + v.∂xf̃ − 1
m

(
∂xṼe + ∂xṼnl

)
.∂vf̃ − γ0∂v.

(
1

mβ∂v + v
)
f̃ = 0

−∆Ṽnl = qQβd/2

ε0
ρ̃, ρ̃ =

∫
f̃dv.

(103)

Removing the tildes and posing

γ =
√
mγ0, κ =

qQβd/2

ε0

leads to equation (1) (ω = +1)





∂tf + v.∂xf − (∂xVe + ∂xVnl).∂vf − γ∂v. (∂v + v) f = 0,

− ∆Vnl = κρ, with ρ(t, x) =

∫
f(t, x, v)dv,

f |t=0 = f0.

(104)

In this equation Vnl is supposed to be the Green solution of the Laplacian i.e.

Vnl =
κ

(d− 2)|Sd−1|
x2

|x|d ∗x ρ, E
def
= ∂xVnl = − κ

|Sd−1|
x

|x|d ∗x ρ(t, x).

The term Vnl will be referred to as the non linear interaction term.

Now let us make some basic considerations about equation (104). The assumption
κ small in Theorem 1.4 essentially means that we consider a quasi-neutral and repulsive
non-linear interaction, i.e. Q small in the original equation. It can be understood as taking
a certain (large) number of identical particle with total charge Q small. The mean field
approximation allows to consider only the total charge Q. Of course one may think that
for κ large but f0 close to the equilibrium Theorem 1.4 remains true, but the author was
not able to prove this fact.

Let us now study the natural confining properties of the system (104). We take
κ = 0 since essentially the non-linear term is a perturbation of the linear equation
(indeed Vnl is proven to be in the Schwartz space in Proposition 1.3). The combining
effects of the friction force (−γ∂v .v) and the diffusion force (−γ∆v) give the confin-
ing and regularizing properties in the velocity variable. Indeed in the weighted space

43



{
f ∈ L1(dv) s.t. ev

2/4f ∈ L2(dv)
}

the sum −γ∂v. (∂v + v) is nothing but an harmonic

oscillator with the natural associated compactness properties.

On the other hand the transport X0 = v∂x − ∂xVe∂v due to the external potential
(when κ = 0) compels the classical particles to stay in the bounded set p(x, v) = Cte,
since p(x, v) = v2/2 + Ve(x) is the classical hamiltonian and Hp = X0 is the related
hamiltonian field.

The addition of the effects of the friction-diffusion term (in v) and the transport term
(through X0 and in particular transversally to the velocity direction) imply the diffusion
and friction also in the spacial variable x. In particular the particles are confined eventually
in both x and v. This is an interpretation of the globally and isotropic hypoelliptic
properties of the full operator (when κ = 0). Of course the regularizing effects alone
appear, but in this discussion we wanted to emphasize the confining properties of the
isotropic method used here that allow us to consider at the same time the confining (x, v)
and regularizing (∂x, ∂v) properties of the Fokker-Planck operator (see also [21] [16] [15]
[20] [22] ...).

To illustrate this fact we recall a result given in [21] about the rate of convergence
toward the equilibrium in the linear case (κ = 0) when β is fixed. It is given by

α ∼ γ

1 + γ2

for a given Ve. We see that for γ small the transport is preponderant w.r.t. the diffusion-
friction so that the particles can go away for a long time (with also low regularizing effect
in x). For γ large the friction-diffusion effect (in v) is larger and is bad compensated by
the confining properties of the transport. When the two have the same order of magnitude
(γ ∼ 1) the return to equilibrium is in a sense optimal and the full operator has a big
exponential rate of decay α.

A.2 Some variational proofs in the linear context

In this subsection we give some self-contained proofs and results used in subsection 2.3
about the linear Fokker-Planck equation

{
∂tf + v.∂xf − (E + ∂xV ).∂vf − γ∂v. (∂v + v) f = U,

f |t=0 = f0.
(105)

They are deeply inspired by those given by Degond in [7]. In consequence we only give a
sketch of proof for some of them. Let us first recall the assumptions (H3)

(H3)





V satisfies (H1),

E ∈ L∞([0, T ] × R
d),

f0 ∈ B2(R2d),

U ∈ L∞
(
[0, T ],H0,−1(Rd

x × R
d
v)
)
.

We denote in the spirit of [21]

Λ2
a = 1 + a∗a, Λ2

b = 1 + b∗b,
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where a and b were defined in (16-17), and are to be understood according to Remark 2.3.
We introduce also the natural chain of Sobolev space for k, l ∈ R

H
l,k =

{
f ∈ M1/2S ′ s.t. Λk

aΛ
l
bf ∈ B2

}
. (106)

We first state a result on the existence and uniqueness of a weak solution of (105) which
can be rewritten in the following form

{
∂tf +X0f + Eb∗f + b∗bf = U

f |t=0 = f0
(107)

where we recall that X0 = v∂x − ∂xV ∂v (note that X0 = b∗a− a∗b). Then we have

Proposition A.1 Under hypothesis (H3), there exist a unique (weak) solution f of equa-
tion (105) in the class of functions Y defined by

Y =
{
f ∈ L2

(
[0, T [,H0,1

)
s.t. ∂tf +X0f ∈ L2

(
[0, T [,H0,−1

)}
. (108)

We first recall a theorem of Lions [26], already used and quoted in [7].

Theorem A.2 Let F be a Hilbert space with norm ‖.‖F and scalar product (., .). Let Φ a
subspace of F , with a prehilbertian norm ‖.‖Φ such that the injection Φ →֒ F is continuous.
Let E be a linear form E : F × Φ ∋ (u, ϕ) −→ E(f, ϕ) ∈ R such that E(., ϕ) is continuous
on F for any fixed ϕ ∈ Φ and such that |E(ϕ,ϕ)| ≥ α ‖ϕ‖2 for a given α > 0.
Then given a linear form L in Φ′, there exists a solution u in F of the problem: ∀ϕ ∈ Φ,
E(u, ϕ) = L(ϕ).

Proof of Proposition A.1. We follow exactly the proof in [7]. First make the change
of unknown function f̃(t, x, v) = e−λtf(t, x, v) so that f̃ satisfies the equation

{
∂tf̃ +X0f̃ + Eb∗f̃ + b∗bf̃ + λf̃ = Ũ

def
= e−λtU

f̃ |t=0 = f0

(109)

From now on we omit the tildes. Let F be the space

X = L2([0, T [,H0,1) with dual X
′ = L2([0, T [,H0,−1)

with norm

‖f‖
X

=

∫∫∫
(Λbf/M)2Mdxdvdt =

∫∫∫
(f2 + (bf)2)M−1dxdvdt,

and pose Φ = D([0, T [×R
d
x × R

d
v). Φ is equipped with a prehilbertian norm defined for

ϕ ∈ Φ by

‖ϕ‖Φ = ‖ϕ‖
X

+
1

2

∫∫
ϕ(x, v, 0)/M−1dxdv.

We consider the following bilinear form

E(u, ϕ) =

∫∫∫
(f(X0ϕ+ λϕ) + bf(−Eϕ+ γbϕ))M−1dxdvdt
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and the linear form

L(ϕ) = 〈U,ϕ〉(X′,X) +

∫∫
f0(x, v)ϕ(0, x, v)M−1dxdv.

Then Lion’s Theorem applies and we get that variational equation E(f, ϕ) = L(ϕ) ∀ϕ ∈ Φ
admits a solution f ∈ X. In particular f satisfies equation (109) in the sense of distribu-
tions. This gives that

∂tf +X0f = U + Eb∗f − b∗bf − λf ∈ X ′

so that f belongs to Y.

We shall prove in a moment the following result for which the proof is very close to
the one of Lemma A.1 in [7].

Lemma A.3

i) The subset Ỹ of Y defined by the C∞ function of (x, t) in R
d × [0, T ] with value in

H
1
v =

{
ψ s.t.

∫
(Λbψ)2ev

2/2dv < 0
}

which are compactly supported in R
2d× [0, T ] is dense

in Y.

ii) The mapping f ∋ Ỹ 7−→ (u(0, ., .), u(T, ., .)) ∈ B2 can be continuously extended to Y.

iii) If f belongs to Y then f admits (continuous) trace values f(0, x, v) and f(T, x, v) in
B2.

iv) For f and g ∈ Y we have

〈∂tf +X0f, g〉(X′,X) + 〈∂tg +X0g, f〉(X′,X)

=

∫∫
f(T, x, v)g(T, x, v)M−1dxdv −

∫∫
f(0, x, v)g(0, x, v)M−1dxdv.

(110)

Let us now end the proof of Proposition A.1. Using formula (110) and equation (109)
we get that the solution f of the variational equality E(f, ϕ) = L(ϕ) ∀ϕ ∈ Φ satisfies

∫∫
(f(0, x, v) − f0(x, v))ϕ(0, x, v)M−1dxdv = 0, ∀ϕ ∈ Φ.

Therefore the initial condition is satisfied in B2. Now for uniqueness we apply again
formula (110) which gives

0 = 〈∂tf +X0f, f〉X′,X + (Eb∗f, f)B2 + ‖bf‖B2 + λ ‖u‖B2

≥ 1

2

∫∫
|f(T, x, v)|2M−1 + λ ‖f‖2

B2

≥ λ ‖f‖2
B2

(111)

We have therefore f = 0 and the proof is complete. 2

Proof of Lemma 3.4. The proof is very close to the one of Lemma A.1 in [7].
Nevertheless we shall use the following fact not present there and deeply linked with the
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structure of the Fokker-Planck operator: X0 is the Hamiltonian vector field of v2/2+V (x)
and in particular

X0(v
2/2 + V (x)) = 0. (112)

Let us also recall that from the assumptions V ′′ ∈ L∞ and e−V ∈ L1 we easily get that

lim
x−→∞

V (x) = +∞. (113)

— Proof of i). Let ψ be a C∞ compactly supported function equal to 1 in the ball of
radius 1 in R

2d
x,v. Then according to (113) and for R > 0 the function

ψR(x, v) = ψ

(
v2 + V (x)

R

)

is C∞ compactly supported and for fR
def
= ψRf we have fR 7−→ f in X. Besides we have

∂tfR +X0fR = ψR(∂tf +X0f) + fX0ψR = ψR(∂tf +X0f)

using (112). Therefore
‖(∂t +X0)fR‖X′ ≤ ‖(∂t +X0)f‖X′

and by a standard argument we can approximate f by a sequence of compactly supported
functions w.r.t. (x, v).

Now take f is compactly supported in (x, v). We pose fε = ζε ∗ f where ζε(t, x) is a
standard approximation of identity in (t, x). Then

(∂t +X0)fε = (∂tfε + v∂xfε − ∂xV ∂vfε)

= ζε ∗ (∂tf + v∂xf) + ∂xV ζε ∗ ∂vf

−→ (∂tf + v∂xf − ∂xV ∂vf) in X ′

(114)

since ∂vf ∈ B2 (L2 in fact since the functions are compactly supported, and that on a fixed
compact the norms of L2 andB2 are equivalent) and ∂tf+v∂xf = ∂tf+X0f−∂xV ∂vf ∈ B2

(also L2). This completes the proof of point i).

— Proof of point ii) . From point i) we can write for f ∈ Ỹ compactly supported in
[0, T [×R

2d (the case of compactly supported in ]0, T ] could be treated in the same way,
and the whole result obtained using a partition of unity)

∫∫
|f(0, x, v)|2 M−1dxdv = −

∫ T

0

∂

∂t

(∫∫
|f(t, x, v)|2 M−1dxdv

)
dt

= −2

∫ T

0

(∫∫
∂f

∂t
f(t, x, v)

)
M−1dxdvdt.

(115)

Besides since f ∈ Ỹ is compactly supported, each term of X0f belongs to L2 (i.e.
L2([0, T [, B2)) and we can write for all t ∈ [0, T [

∫∫
(X0f(t))f(t)M−1dxdv = −

∫∫
f(t)(X0f(t))M−1dxdv
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so that
∫∫

(X0f(t))f(t)M−1dxdv = 0. As a consequence

∫∫
|f(0, x, v)|2M−1dxdv = −2

∫∫∫
(∂tf +X0f)fM−1dxdvdt

≤ 2 ‖∂tf +X0f‖X′ ‖f‖X ≤ C ‖f‖
Y
.

(116)

The mapping defined in ii) is therefore continuous, and the proof of point ii) is complete.

— Proof of point iii) . This point is a direct consequence of point ii) by definition of the
extension.

— Proof of point iv) Since Ỹ is dense in Y we directly get the result.

The proof of Lemma 3.4 is now complete. 2

Proposition A.4 Assume that (H3) is fulfilled, then for the solution f provided by propo-
sition A.1 the conditions f0 ≥ 0 and U ≥ 0 imply that f ≥ 0.

Proof. The proof of this Proposition is very close to the one of point i) of Lemma A.3
in [7], but with the adaptations to our functional context. We leave it to the reader. 2

We eventually give the result about the contraction property in L1.

Proposition A.5 We suppose that (H3) is fulfilled and that U ∈ L1([0, T ] × R
2d). Then

the solution f provided by Proposition A.1 belongs to L1([0, T [, L1(R2d)) and satisfies

‖f(t)‖L1 ≤ ‖f0‖L1 +

∫ t

0
‖U(s)‖L1 ds.

Proof. From conditions (H3) we directly have that the initial datum f0 is in L1 thanks
to the embedding B2 →֒ B1 = L1, and therefore that it is also the case for f(t). The re-
sult is a simple adaptation of the one given in [7]. Again we leave the proof to the reader. 2

A.3 A short proof of the exponential linear decay

This section is devoted to a self-contained proof of the exponential time decay for the
linear Fokker-Planck equation, under slightly lower hypothesis than in [21]. Anyway one
part of the proof is very close to the one given there and in particular uses Kohn’s type
arguments about hypoellipticity developed in [21]. We only sketch the proof for this part.

Let us first state a general lemma about semi-group of operators. Let A be the in-
finitesimal generator of a semi-group of contraction on a Hilbert space H (in particular
D(A) = H). We want to extend the following basic result :
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If ∃α > 0 such that α ‖u‖2 ≤ Re (Au, u) for all u ∈ D(A)
then ∀u0 ∈ H, t ≥ 0 we have

∥∥e−tAu0

∥∥ ≤ e−αt ‖u0‖,

Of course the converse is true applying the Lummer Phillips theorem to the operator
A− αId (see for example [31]). We want to extend the right sense.

Lemma A.6 Let A be the infinitesimal generator of a semigroup of contraction on a
Hilbert space H and suppose that there exist a constant α > 0 and a bounded operator L
with norm bounded by CL such that

∀u ∈ D(A), α ‖u‖2 ≤ Re (Au, u) + Re (Au, (L+ L∗)u). (117)

Then for all u0 ∈ H and t ≥ 0 we have

∥∥e−tAu0

∥∥ ≤ 3e
− αt

3CL ‖u0‖ (118)

Proof. We write for u0 ∈ D(A), u(t) = e−tAu0 ∈ D(A). Using (117) and since A is
accretive we get

3CL
α

3CL
‖u‖2 ≤ 4CLRe (Au, u) + Re (Au, (L+ L∗)u)

and since |Re (Lu, u)| ≤ CL ‖u‖2 we have

α

3CL

(
2CL ‖u‖2 + Re (Lu, u)

)
≤ 4CLRe (Au, u) + Re (Au, (L+ L∗)u).

Now ∂t ‖u‖2 = −2Re (Au, u) and ∂tRe (Lu, u) = −Re (Au, (L+ L∗)u) therefore

α

3CL

(
2CL ‖u‖2 + Re (Lu, u)

)
+
∂

∂t

(
2CL ‖u‖2 + Re (Lu, u)

)
≤ 0.

Integrating between 0 and t gives

2CL ‖u‖2 + Re (Lu, u) ≤ e
− αt

3CL

(
2CL ‖u0‖2 + Re (Lu0, u0)

)
.

Using twice the fact that ‖L‖ is bounded by CL we get

CL ‖u‖2 ≤ 3CLe
− αt

3CL ‖u0‖2 .

This gives (118) since ‖u‖ ≤ ‖u0‖, and the proof is complete. 2

We want to apply this lemma to the following Fokker-Planck operator defined in L2

by
K = v∂x − ∂xV ∂v + γ(−∂v + v/2)(Dv + v/2)

where V is a generic potential in C∞ such that V ′′ ∈ L∞. It was proven in [20] that the
closure of K with domain C∞

0 is maximal accretive and we call also K this closure. We
recall also that the Witten Laplacian in both variables v and x

Λ2
0 = γ(−∂x + ∂xV/2).(∂x + ∂xV/2) + γ(−∂v + v/2)(Dv + v/2)
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has the same property. For the following we pose

a = γ1/2(∂x + ∂xV/2), a∗ = γ1/2(−∂x + ∂xV/2),

and b = γ1/2(∂v + v/2), b∗ = γ1/2(−∂v + v/2)

where a and b are to be understood as (d, 1)-matricial operators (so that a∗ and b∗ are
(1, d)-matricial operators). We also define X0 = v∂x − ∂xV ∂v and we have

K = X0 + b∗b, Λ2
0 = a∗a+ b∗b, Λ2 def

= δ + a∗a+ b∗b,

where δ2 ≤ γ to be fixed later. Let M1/2 = C0e
−(v2/4−V (x)/2) be the normalized (square

root of) the Maxwellian and let H = (M1/2)⊥ be the orthogonal of M1/2 in L2 to be
understood as the whole L2 in the case when M1/2 6∈ L2. Then we note that H is stable
for both K and Λ0. We make the following assumption on Λ2

0

(H) α = inf
(
Spect(Λ2

0|H)
)
> 0

Since in the case M1/2 ∈ L2, M1/2 is a single eigenfunction of K and Λ2
0 with eigenvalue 0,

the assumption is equivalent to saying that Λ2
0 has a spectral gap in this case. In the proof

of the following Lemma we use some computations in the spirit of the Kohn’s method for
globally hypoelliptic operators from [21].

Proposition A.7 Under hypothesis (H) there exists C ′′
V depending only on ‖V ′′‖L∞ such

that ∥∥e−tKu0

∥∥ ≤ 3e
− αt

C′′

V ‖u0‖
for all t ≥ 0 and u0 ∈ H = (M1/2)⊥.

Proof . It is sufficient to prove the result for u0 ∈ S. We first quote the result of
Proposition 2.5 (case ε = 0 there) in [21], which is true under our assumptions on V .

‖u‖2 ≤ Re (Ku, (L+ L∗) u) − 2Re (b∗bu, Lu) − Re (A∗bu, u)

+ (1 + γ)δ−1 ‖bu‖ ‖u‖ + δ2(Λ−2u, u)
(119)

where L = Λ−2a∗b and A∗ =
[
Λ−2a∗,X0

]
. From Proposition 5.4 in [21] we have an explicit

bound for the bounded operator A∗, and this is also easy to get bounds for L and aΛ−2b∗,

‖A∗‖ ≤ CV δ
−1, ‖L‖ ≤

√
2dγδ−1,

∥∥aΛ−2b∗
∥∥ ≤ 1. (120)

(For the second one we simply observe that if aj , bj denote the components of a and b we

have ‖b∗au‖ ≤ ∑j

∥∥∥b∗jaju
∥∥∥ and

∥∥∥b∗jaju
∥∥∥

2
= (bjb

∗
ju, a

∗
jaju) = (b∗jbju, a

∗
jaju) + γ(a∗jaju, u)

and since δ2 ≤ Λ2 we get
∥∥∥b∗jaju

∥∥∥
2
≤ 2γδ−2

∥∥Λ2u
∥∥2

therefore ‖b∗au‖2 ≤ 2dγδ−2
∥∥Λ2u

∥∥2

and
∥∥b∗aΛ−2u

∥∥2 ≤ 2dγδ−2 ‖u‖2. Taking the adjoint and the square root gives the result.)
We can then write from (119) that

‖u‖2 ≤ Re (Ku, (L+ L∗)u) + 2|
(
aΛ−2b∗bu, bu

)
| + |Re (A∗bu, u)|

+ (1 + γ)δ−1 ‖bu‖ ‖u‖ + δ2(Λ−2u, u)

≤Re (Ku, (L+ L∗)u) + 2 ‖bu‖2 + CV δ
−1 ‖bu‖ ‖u‖

+ (1 + γ)δ−1 ‖bu‖ ‖u‖ + δ2(Λ−2u, u).
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Using first the inequality |xy| ≤ x2 + 4−1y2 and then the fact that Re (Ku, u) = ‖bu‖2 we
get

‖u‖2 ≤Re (Ku, (L+ L∗)u) + C ′
V δ

−2 ‖bu‖2 +
1

4
‖u‖2 + δ2(Λ−2u, u)

≤Re (Ku, (L+ L∗)u) + C ′
V δ

−2Re (Ku, u) +
1

4
‖u‖2 + δ2(Λ−2u, u).

(121)

Now we suppose that u ∈ H therefore δ2(Λ−2u, u) ≤ δ2

α+δ2 ‖u‖2 and we choose δ2 = α

(which is lower than γ because of the harmonic part of Λ2
0). This gives

δ2(Λ−2u, u) ≤ 1

2
‖u‖2

and putting this in (121) we get

1

4
‖u‖2 ≤Re (Ku, (L+ L∗)u) + C ′

V δ
−2Re (Ku, u). (122)

As a consequence

α

4C ′
V

‖u‖2 ≤Re
(
Ku,

(
L̃+ L̃∗

)
u
)

+ Re (Ku, u) (123)

where L̃ = δ2

C′

V
L satisfies

∥∥∥L̃
∥∥∥ ≤

√
2dγδ−1δ2/C ′

V ≤ 1 since δ
√

2dγ ≤
√

2dγ ≤ C ′
V . The

result of the lemma is then a direct consequence of Lemma A.6. Taking C ′′
V = 12C ′

V

completes the proof of the Proposition. 2

Remark A.8 We can point out that the gain with respect to the estimate in [21] is first
that the constant in front of the exponential is universal (= 3) and in particular does
not depend on V or α. It makes sense in the study of the Vlasov-Poisson-Fokker-Planck
system with small data in Section 5 since this constant has to be compared with the size
of the initial data. The second remark is that no assumption about the increasing of ∂xV
is made, and we can understand this fact by saying that the existence of a spectral gap
for the Witten Laplacian implies in a sense a spectral gap for the Fokker-Planck operator,
without assumptions on the remaining part of the spectrum (implied for example by the
compacity of the resolvent). 2

Remark A.9 Note to the end that in the preceding study is also valid even for V ′′ not in
L∞ since the only real needed assumption is that the constant CV in (120) is not infinite
(see [21] for its expression). 2

To end this section we replace this result in the context of the article:

Proof of proposition 5.2. This is immediate by noticing Proposition 5.2 is just
a rewriting of proposition A.7 in the B2 formulation, i.e. before the conjugation by the
square root of the Maxwellian. 2
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Berlin, 1961.

[27] Nelson E. Dynamical theories of Brownian motion. Princeton University Press,
Princeton, N.J., 1967.

[28] O’Dwyer B.P. and Victory H.P. On classical solutions of Vlasov-Poisson-Fokker-
Planck systems. Indiana Univ. Math. J. 39, (1990), 105–157.

[29] Ono K. and Strauss W. Regular solutions of the Vlasov-Poisson-Fokker-Planck sys-
tem. Dis. Cont. Dyn. Syst. 6 no. 4, (2000), 751–772.

[30] Ono K., Asymptotic behavior for the Vlasov-Poisson-Fokker-Planck System and the
Collision-less Vlasov-Poisson system. Non. Ana. 47, (2001), 2539–2550.

[31] Pazy A. Semigroups of linear operators and applications to partial differential equa-
tions. Springer-Verlag, Berlin, second edition, 1983. Applied Mathematical Sciences.

[32] G. Rein and J. Weckler Generic global classical solutions of the Vlasov-Fokker-Planck-
Poisson system in three dimensions. J. Diff. Eq. 99, (1992), 59–77.

53



[33] Risken H. The Fokker-Planck equation. Springer-Verlag, Berlin, second edition, 1989.
Methods of solution and applications.

[34] Soler J. Asymptotic behavior for the Vlasov-Poisson-Fokker-Planck system. Non. lin.
Ana. th. Meth. Appl., 30 no. 8, proc. 2nd World Congress of Nonlin. Ana, (1997),
5217–5228.

[35] Stein E.M. Singular integrals and differentiability of functions. Princeton University
Press, Princeton, 1970.

[36] Talay D. Approximation of invariant measures of nonlinear Hamiltonian and dissipa-
tive stochastic differential equations. In C. Soize R. Bouc, editor, Progress in Stochas-
tic Structural Dynamics, volume 152 of Publication du L.M.A.-C.N.R.S., (1999), 139–
169.

[37] Villani C. A review of mathematical topics in collisional kinetic theory. Handbook of
Fluid Mechanics S. Friedlander and D. Serre Eds. (2002).

[38] Wong M.W. An introduction to pseudo-differential operators. World Scientific, second
edition, 1999.

54


