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ON THE NUMBER OF JOIN-IRREDUCIBLES IN A

CONGRUENCE REPRESENTATION OF A FINITE

DISTRIBUTIVE LATTICE

G. GRÄTZER AND F. WEHRUNG

Abstract. For a finite lattice L, let EL denote the reflexive and transitive
closure of the join-dependency relation on L, defined on the set J(L) of all
join-irreducible elements of L. We characterize the relations of the form EL,
as follows:

Theorem. Let E be a quasi-ordering on a finite set P . Then the following

conditions are equivalent:

(i) There exists a finite lattice L such that 〈J(L), EL〉 is isomorphic to the

quasi-ordered set 〈P, E〉.
(ii) |{x ∈ P | p E x }| 6= 2, for any p ∈ P .

For a finite lattice L, let je(L) = | J(L)| − | J(Con L)|, where Con L is the
congruence lattice of L. It is well-known that the inequality je(L) ≥ 0 holds.
For a finite distributive lattice D, let us define the join-excess function:

JE(D) = min(je(L) | Con L ∼= D).

We provide a formula for computing the join-excess function of a finite dis-
tributive lattice D. This formula implies that JE(D) ≤ (2/3)| J(D)|, for any
finite distributive lattice D; the constant 2/3 is best possible.

A special case of this formula gives a characterization of congruence lattices

of finite lower bounded lattices.

Introduction

In [4], the first author and E.T. Schmidt proved the following result:

Representation by finite sectionally complemented lattices. For every fi-

nite distributive lattice D, there exists a finite, sectionally complemented lattice L
such that the congruence lattice ConL of L is isomorphic to D. Furthermore, if

n denotes the number of join-irreducible elements of D and if n > 0, then L has

fewer than 2n join-irreducible elements.

On the other hand, it follows from classical results of lattice theory, see Theo-
rem 1.2, that for any finite lattice L, if J(L) denotes the set of all join-irreducible
elements of L, then the inequality

| J(L)| ≥ | J(Con L)|

holds. So if we define je(L) = | J(L)| − | J(Con L)|, then je(L) ≥ 0 and je(L) is
one measure of the efficiency of the representation of D = ConL as a congruence
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2 G. GRÄTZER AND F. WEHRUNG

lattice. Define

JE(D) = min(je(L) | ConL ∼= D).

Then from this point of view, the best representation of a finite distributive lattice D
as a congruence lattice of a finite lattice L is obtained when je(L) = JE(ConL).

If D is a finite distributive lattice with n join-irreducible elements and if n > 0,
then the least number JE(D) satisfies the inequality

0 ≤ JE(D) < n. (1)

In this paper, we shall give a formula that computes JE(D) from D, see Theo-
rems 5.2 and 5.3. We would like to emphasize that our formula does not estimate
JE(D) but gives the exact value. However, it implies the better estimate

0 ≤ JE(D) ≤
2

3
n,

and the constant 2/3 in this estimate is best possible (see Corollary 5.4).
The formula that computes JE(D) from D is extremely “fast” (in linear time)

and it only involves properties of the “upper layer” of J(D)—more precisely, the
maximal elements of J(D) and the elements that they cover.

The basic new concept is a spike. A spike of a finite poset P is a pair 〈p, q〉 of
elements of P such that q is maximal and q is the unique element of P that covers p.

As a corollary, we obtain a characterization of those D that are isomorphic to
ConL for some finite lattice L that is lower bounded in the sense of R. N. McKen-
zie [8] (see also R. Freese, J. Ježek, and J. B. Nation [3]), or equivalently, amenable

in the sense of our papers [6, 7], see Section 5.
This characterization is more conveniently expressed in terms of the poset P =

J(D) of all join-irreducible elements of D:

P has no spikes. (2)

See Corollary 5.5.
We obtain these results by studying the join-dependency relation, δL, on a finite

lattice L, or, rather, its reflexive, transitive closure, that we denote by EL. It is
well-known that EL determines the congruence structure of L, see Theorem 1.2.
Our main result, Theorem 3.1, describes when a binary relation on a finite set is
isomorphic to EL on J(L), for some finite lattice L. This description is very similar
to condition (2).

Another consequence of Theorem 3.1 is the characterization, for a finite lattice L,
of the canonical surjective map from J(L) onto J(ConL), see Theorem 4.1.

In all these results the finite lattice L we construct is atomistic, that is, every
element is a (finite) supremum of atoms. This is not surprising, in view of the result
of M. Tischendorf [9]: Every finite lattice K has a finite, atomistic, congruence-
preserving extension L; in addition, 〈J(K), EK〉 ∼= 〈J(L), EL〉.

By G. Grätzer and E. T. Schmidt [5], every finite lattice has a finite, sectionally

complemented, congruence-preserving extension. However, in our results L cannot
be taken as sectionally complemented. In Example 5.6, we describe a finite dis-
tributive lattice D that can be represented as ConL for L finite, lower bounded,
atomistic, but which cannot be represented as ConL for L finite, lower bounded,
sectionally complemented.
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1. Basic concepts

Let L be a finite lattice. We denote by J(L) the set of all join-irreducible elements
of L. For p ∈ L, we denote by p∗ the unique element of L covered by p. The join-

dependency relation, δL, is the binary relation defined on J(L) by

p δL q iff p 6= q, and there exists x ∈ L such that p ≤ q ∨ x and p � q∗ ∨ x.

In particular, note that p δL q implies that p � q.
A useful alternative description of the join-dependency relation on J(L) arises

from minimal pairs. Let L be a finite lattice. For J , I ⊆ L, we say that I dominates

J , in notation, J ≪ I, iff for all x ∈ J , there exists y ∈ I such that x ≤ y. As in
H. S. Gaskill [1], and H. S. Gaskill, G. Grätzer, and C. R. Platt [2], a minimal pair
of a finite lattice L is a pair 〈p, I〉, where p ∈ J(L), I ⊆ J(L), p /∈ I, p ≤

∨
I, and,

for every subset J of J(L) such that J ≪ I, the inequality p ≤
∨

J implies that
I ⊆ J . Observe that if 〈p, I〉 is a minimal pair, then I has at least two elements.

Lemma 1.1. Let L be a finite lattice. For all p, q ∈ J(L), the following are

equivalent:

(i) p δL q.
(ii) There exists I ⊆ J(L) such that 〈p, I〉 is a minimal pair of L and q ∈ I.

See, for example, Lemma 2.31 in R. Freese, J. Ježek, and J. B. Nation [3].
We shall denote by ⊳L (resp., EL) the transitive closure (resp., reflexive transi-

tive closure) of the relation δL. By definition, EL is a quasi-ordering on J(L), that
is, it is reflexive and transitive. Moreover, we will denote by ≍L the equivalence
relation associated with EL; so, for p, q ∈ J(L),

p ≍L q iff p EL q EL p.

We refer to Theorem 2.30 and Lemma 2.36 in R. Freese, J. Ježek, and J.B. Nation [3]
for a proof of the following result:

Theorem 1.2. Let L be a finite lattice. For all p ∈ J(L), let Θ(p) be the congruence

of L generated by the pair 〈p∗, p〉. Then the following statements hold:

(i) Θ is a map from J(L) onto J(Con L).
(ii) For all p, q ∈ J(L), Θ(p) ⊆ Θ(q) iff p EL q.

We shall use the following notation. If ⊳ is a binary relation on a set P , then
we define the upper ⊳-segment of p as

[p]⊳ = { x ∈ P | p ⊳ x },

for any p ∈ P .

2. The relations δ, ⊳, E on a finite lattice

The elementary properties of EL will be described in Proposition 2.2; to prepare
for it, we first prove a simple lemma:

Lemma 2.1. Let L be a finite lattice. For all p ∈ J(L), if p ⊳L p, then there exists

x ∈ J(L) such that x 6= p and p ⊳L x ⊳L p.

Proof. By the definition of δL, one cannot have p δL p. Therefore, by the definition
of ⊳L, there is a positive integer n and there are elements x0, . . . , xn ∈ J(L) such
that

p = x0 δL x1 δL · · · δL xn = p.
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Then x1 6= p, and p ⊳L x1 ⊳L p, so that x = x1 satisfies the required conditions. �

As a consequence, each of the relations ⊳L and EL can be defined in terms of
the other:

Proposition 2.2. Let L be a finite lattice. For all p, q ∈ J(L), the following

statements hold:

(i) p EL q iff p ⊳L q or p = q.
(ii) p ⊳L q iff one of the two following conditions hold:

(a) p EL q and p 6= q.
(b) | [p]≍L | ≥ 2 and p = q.

Proof.

(i) is trivial.
Now we prove (ii). Let us assume first that p ⊳L q. If p 6= q, then (a) holds.

Now assume that p = q. By Lemma 2.1, there exists x 6= p in J(L) such that
p ⊳L x ⊳L p. In particular, x belongs to [p]≍L , so that | [p]≍L | ≥ 2. Thus (b)
holds.

Conversely, (a) trivially implies that p ⊳L q. Assume (b). Since |[p]≍L | ≥ 2, there
exists x 6= p such that p ≍L x. Necessarily, p ⊳L x ⊳L p, so that p ⊳L p = q. �

Proposition 2.3. Let L be a finite lattice. Then | [p]EL | 6= 2, for any p ∈ J(L).

Proof. Assume that [p]EL has exactly two elements. In particular, there exists
q0 6= p such that p EL q0. Therefore, p ⊳L q0, so there exists q such that p δL q
and q EL q0. Since p δL q, there exists, by Lemma 1.1, a subset I of J(L) such
that 〈p, I〉 is a minimal pair of L and q ∈ I. In particular, |I| ≥ 2, so I contains
some x 6= q. Since x ∈ I, x is also distinct from p. Therefore, {p, q, x} ⊆ [p]EL , a
contradiction. �

3. Finite atomistic lattices from the E relation

For a finite atomistic lattice L, let At(L) denote the set of atoms of L. Of course,
At(L) = J(L).

If E is a quasi-ordering on a set P , we denote by ⊳
6=

the binary relation on P
defined by

p ⊳
6=

q iff p E q and p 6= q.

The main goal of this section is to prove the following converse of Proposition 2.3:

Theorem 3.1. Let P be a finite set, let E be a quasi-ordering on P . Then the

following conditions are equivalent:

(i) There exists a finite atomistic lattice L such that

〈P, E, ⊳
6=
〉 ∼= 〈At(L), EL, δL〉.

(ii) There exists a finite lattice L such that

〈P, E〉 ∼= 〈J(L), EL〉.

(iii) | [p]E | 6= 2, for all p ∈ P .

Proof.

(i)⇒(ii) is trivial.
(ii)⇒(iii) follows from Proposition 2.3.
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We prove, finally, the direction (iii)⇒(i). So we are given 〈P, E〉 satisfying that
| [p]E | 6= 2, for any p ∈ P . Let us say that a subset X of P is closed, if for all
x, y ∈ X such that x 6= y and

p E x, y implies that p ∈ X, (3)

for all p ∈ P , where p E x, y stands for p E x and p E y. Furthermore, we denote
by L the set of all closed subsets of P .

It is obvious that any intersection of closed subsets of P is closed, and that both
∅ and P are closed. Thus, L is a closure system in the powerset lattice of P .
In particular, L, partially ordered by containment, is a lattice. Furthermore, by
the definition of a closed subset of P , it is obvious that the singleton ε(p) = {p}
is closed, for all p ∈ P . Hence, the lattice L is atomistic, and the atoms of L
are exactly the singletons of elements of P . In particular, ε is a bijection from
P onto J(L). We shall now prove that ε is an isomorphism from 〈P, E, ⊳

6=
〉 onto

〈J(L), EL, δL〉.
For all X ⊆ P , we shall denote by X the closure of X in L, that is, the least

element of L that contains X . A priori, the closure of X is computed by iteration
of the rule (3). Our next claim will show that only one step is required:

Claim 1. For every subset X of P , the closure of X can be computed by the

following formula:

X = X ∪ { p ∈ P | p E x, y, for some x, y in X such that x 6= y }. (4)

Proof. Let X ′ denote the right side of (4). It is obvious that X ′ contains X and
that every closed subset of P containing X contains X ′. Thus it suffices to prove
that X ′ is closed. So let p ∈ P and x, y ∈ X ′ such that x 6= y and p E x, y;
we prove that p ∈ X ′. If both x and y already belong to X , then this is obvious
by the definition of X ′. Otherwise, without loss of generality, we can assume that
x ∈ X ′ − X ; thus, by the definition of X ′, there are x0, x1 ∈ X such that x0 6= x1

and x E x0, x1. Since p E x, it follows that p E x0, x1; whence p ∈ X ′. �

We conclude the proof of Theorem 3.1 with three more claims:

Claim 2. The minimal pairs of L are exactly the pairs of the form

〈ε(p), {ε(x), ε(y)}〉,

where p, x, y ∈ P , p ⊳
6=

x, y, and x 6= y.

Proof. Let p, x, y be given as above. The join ε(x) ∨ ε(y) of ε(x) and ε(y) in L is
closed and contains {x, y}, and so it contains p, by the definition of a closed subset
of P . Hence, ε(p) ≤ ε(x) ∨ ε(y). Since p /∈ {x, y}, it follows that ε(p) is contained
neither in ε(x) nor in ε(y). Now ε(x) and ε(y) are atoms of L, so 〈ε(p), {ε(x), ε(y)}〉
is a minimal pair of L.

Conversely, a minimal pair of L has the form 〈ε(p), ε[I]〉, where p ∈ P , I ⊆ P ,
p /∈ I, and p ∈

∨
ε[I]. The last condition means that p belongs to the closure of I,

thus, by Claim 1 and by p /∈ I, there are x, y ∈ I such that x 6= y and p E x, y.
Let J = {x, y}. Then ε(p) ≤

∨
ε[J ] and J ⊆ I. Since 〈ε(p), ε[I]〉 is a minimal pair,

we conclude that I = J = {x, y}. �

Claim 3. For any p, q ∈ P ,

ε(p) δL ε(q) iff p ⊳
6=

q.
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Proof. The fact that

ε(p) δL ε(q) implies that p ⊳
6=

q

follows immediately from Claim 2.
Conversely, assume that p ⊳

6=
q. In particular, X = [p]E contains {p, q}, thus,

since p 6= q and |X | 6= 2, there exists x ∈ P − {p, q} in [p]E. By Claim 2,
〈ε(p), {ε(q), ε(x)}〉 is a minimal pair of L; whence ε(p) δL ε(q). �

Claim 4. For any p, q ∈ P ,

ε(p) EL ε(q) iff p E q.

Proof. The fact that

ε(p) EL ε(q) implies that p E q

follows immediately from Claim 3 and the fact that the atoms of L are the ε(p), for
p ∈ P . Conversely, suppose that p E q. If p 6= q, then, by Claim 3, ε(p)δLε(q), thus,
a fortiori, ε(p) EL ε(q). If p = q, then ε(p) = ε(q), thus, a fortiori, ε(p) EL ε(q). �

This last claim concludes the proof of Theorem 3.1. �

4. Partitions of a finite set

If L is a finite lattice, then the kernel of the canonical map Θ: J(L) ։ J(Con L),
namely, ≍L (see Theorem 1.2), defines a partition of J(L). The following result
describes exactly what kind of partition this can be.

Theorem 4.1. Let P be a finite set, let ≍ be an equivalence relation on P . Then

the following conditions are equivalent:

(i) There exists a finite atomistic lattice L such that 〈P,≍〉 ∼= 〈J(L),≍L〉.
(ii) There exists a finite lattice L such that 〈P,≍〉 ∼= 〈J(L),≍L〉.
(iii) There exists p ∈ P such that |[p]≍| 6= 2.

Proof.

(i)⇒(ii) is trivial.
(ii)⇒(iii). Let L be a finite lattice. We prove that 〈J(L),≍L〉 satisfies the

condition of (iii). Suppose, to the contrary, that all ≍L-equivalence classes have
exactly two elements. Let p ∈ J(L) be EL-maximal, in the sense that p EL x
implies p ≍L x, for all x ∈ J(L). Then [p]EL = {p, p′} for the other element p′ of
[p]≍L , which contradicts Proposition 2.3.

(iii)⇒(i). Let 〈P,≍〉 satisfy (iii). Let a ∈ P such that |[a]≍| 6= 2. For p, q ∈ P ,
we say that p E q holds, if either p ≍ q, or |[p]≍| = 2 and q ≍ a. It is straightforward
to verify the following statements:

(a) E is a quasi-ordering on P .
(b) p ≍ q iff p E q E p, for any p, q ∈ P .
(c) |[p]E| 6= 2, for any p ∈ P .

Therefore, by Theorem 3.1, there exists a finite atomistic lattice L such that
〈J(L), EL〉 ∼= 〈P, E〉. By (b) above, 〈J(L),≍L〉 ∼= 〈P,≍〉. �
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5. The minimal number of join-irreducibles

Let D be a finite distributive lattice. In this section, we shall compute the
minimal number of join-irreducible elements in a finite lattice L such that ConL
is isomorphic to D. If P is the poset of join-irreducible elements of D, then D is
isomorphic to H(P ), the poset of hereditary subsets of P , which makes it possible
to formulate the problem in terms of the finite poset P . We shall first assign to P
a natural number α(P ).

Definition 5.1. Let P be a poset. A spike of P is a pair 〈p, q〉 of elements of P
such that q is maximal and q is the unique element of P that covers p. We define

∂P = { q ∈ P | 〈p, q〉 is a spike of P, for some p ∈ P };

∂uP = { q ∈ P | 〈p, q〉 is a spike of P, for a unique p ∈ P };

∂mP = ∂P − ∂uP ;

α(P ) = |∂uP | + 2|∂mP |.

In particular, we say that P is spike-free, if there are no spikes in P . Note that
P is spike-free iff α(P ) = 0. Equivalently, | [p]≤ | 6= 2, for any p ∈ P ; note at this
point the similarity with the condition in Proposition 2.3.

Theorem 5.2. Let L be a finite lattice. Then the following inequality holds:

| J(L)| ≥ | J(Con L)| + α(J(ConL)).

Proof. Let P = J(L) and P = J(ConL). For any p ∈ P , as in the statement of
Theorem 1.2, denote by Θ(p) the principal congruence of L generated by the pair
〈p∗, p〉.

Claim 1. Let 〈p, q〉 be a spike of P . Then either |Θ−1{p}| ≥ 2 or |Θ−1{q}| ≥ 3.

Proof. Assume that the conclusion of the claim does not hold. Then Θ−1{p} is
a singleton, say, {p}, and Θ−1{q} = {q, q′}, for some q, q′ ∈ P . If q = q′, then
[p]EL = {p, q} has exactly two elements, a contradiction by Proposition 2.3. So
q 6= q′. Since Θ(q) = Θ(q′) = q, the set [q]EL = {q, q′} has, again, exactly two
elements, a contradiction by Proposition 2.3. �

For all q ∈ ∂P , we define X(q) ⊆ P , by

X(q) = {q} ∪ { p ∈ P | 〈p, q〉 is a spike of P }.

By the definition of a spike, the sets X(q), for q ∈ P , are mutually disjoint. Fur-
thermore, it follows immediately from Claim 1 that for all q ∈ P , the following
statements hold:

|Θ−1[X(q)] | ≥ |X(q)| + 1, for q ∈ ∂uP ;

|Θ−1[X(q)] | ≥ |X(q)| + 2, for q ∈ ∂mP .

Let X =
⋃

(X(q) | q ∈ P ); then

|Θ−1[X ] | ≥ |X | + α(P ).

Since the map Θ is surjective,

|P | ≥ |P | + α(P ),

which is the desired conclusion. �
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The converse of Theorem 5.2 is provided by the following result, which proves
that the bound α(J(Con L)) is best possible:

Theorem 5.3. Let P be a finite poset. Then there exists a finite atomistic lattice

L such that Con L ∼= H(P ) and | J(L)| = |P | + α(P ).

Proof. Define P1 ⊆ P as follows:

P1 = { p ∈ P | 〈p, q〉 is a spike, for some q ∈ ∂uP }.

Note that for p ∈ P1, there exists a unique q ∈ ∂uP that covers p. In particular,
|P1| = |∂uP |.

Then we define a finite set Q, by

Q = (P − (P1 ∪ ∂mP )) ∪ (P1 × 2) ∪ (∂mP × 3)

(a disjoint union), where we identify 2 with {0, 1} and 3 with {0, 1, 2}. Note that

|Q| = |P | + |P1| + 2|∂mP | = |P | + α(P ).

Let π : Q ։ P be the natural projection, that is, π(x) = x, if x ∈ P − (P1 ∪ ∂mP ),
and π(〈x, i〉) = x, if 〈x, i〉 ∈ P × 3. We define a quasi-ordering E on Q, by

p E q iff π(p) ≤ π(q).

We now verify that E satisfies the assumption (iii) of Theorem 3.1. So let p ∈ Q; we
shall prove that [p]E does not have exactly two elements. Let us assume otherwise,
that is, let

[p]E = {p, q}, for some q ∈ Q − {p}. (5)

We separate three cases.

Case 1. p = 〈x, i〉, where x ∈ P1 and i < 2.

By the definition of P1, there exists y ∈ ∂uP such that 〈x, y〉 is a spike of P . Note
that y belongs to P − (P1 ∪ ∂mP ), thus to Q, so that y belongs to [p]E. Therefore,

[p]E contains {〈x, 0〉, 〈x, 1〉, y},

which contradicts (5).

Case 2. p = 〈x, i〉, where x ∈ ∂mP and i < 3.

Then [p]E equals {〈x, 0〉, 〈x, 1〉, 〈x, 2〉}, which contradicts (5) again.

Case 3. p ∈ P − (P1 ∪ ∂mP ).

If p is maximal in P , then π(q) = π(p) = p belongs to P − (P1 ∪ ∂mP ), thus
q belongs to P − (P1 ∪ ∂mP ), so that p = q, which contradicts (5). Hence p is
not maximal in P . If p is not the bottom element of a spike in P , then there are
distinct x, y in P such that p < x, y. If x′, y′ ∈ Q are such that π(x′) = x and
π(y′) = y, then [p]E contains the three-element set {p, x′, y′}, which contradicts (5).
So there exists r ∈ P such that 〈p, r〉 is a spike of P . Since p does not belong to P1,
r belongs to ∂mP . Hence [p]E contains the four-element set {p, 〈r, 0〉, 〈r, 1〉, 〈r, 2〉},
which contradicts (5).

By Theorem 3.1, there exists a finite atomistic lattice L such that 〈J(L), EL〉 ∼=
〈Q, E〉. In particular,

| J(L)| = |Q| = |P | + α(P ).

Furthermore, J(ConL) is isomorphic to the quotient of 〈J(L), EL〉 by the equiva-
lence relation associated with EL, thus to the quotient of 〈Q, E〉 by the equivalence
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relation associated with E. Since the latter is exactly the kernel of π, the corre-
sponding quotient is isomorphic to 〈P,≤〉. Hence

J(Con L) ∼= P

(as posets), from which it follows that ConL ∼= H(P ). �

As an immediate consequence of Theorem 5.3, we obtain the following result:

Corollary 5.4. Let D be a finite distributive lattice. Then there exists a finite

atomistic lattice L such that Con L ∼= D and

| J(D)| ≤ | J(L)| ≤
5

3
| J(D)|. (6)

Furthermore, the constant 5/3 in the inequality (6) is best possible.

Proof. Put P = J(D). By Theorem 5.3, to establish the inequality (6), it suffices
to establish the inequality

α(P ) ≤
2

3
|P |. (7)

We put

X(q) = {q} ∪ { p ∈ P | 〈p, q〉 is a spike of P }, for all q ∈ ∂P,

Pu =
⋃

(X(q) | q ∈ ∂uP ),

Pm =
⋃

(X(q) | q ∈ ∂mP ).

As in the proof of Theorem 5.2, we note that the sets X(q), for q ∈ ∂P , are mutually
disjoint. Furthermore, for q ∈ ∂uP , |X(q)| = 2, while for q ∈ ∂mP , |X(q)| ≥ 3. It
follows that |Pu| = 2|∂uP | and |Pm| ≥ 3|∂mP |. Therefore,

α(P ) = |∂uP | + 2|∂mP |

≤
1

2
|Pu| +

2

3
|Pm|

≤
2

3
|P |,

which completes the proof of (7).
The upper bound 5

3
| J(D)| in the inequality (6) is reached by defining P as the

three-element set {u, v, 1}, endowed with the ordering defined by u, v < 1. For this
example, α(P ) = 2 = 2

3
|P |. �

Corollary 5.5. Let P be a finite poset. Then the following are equivalent:

(i) There exists a finite, atomistic, lower bounded lattice L such that

Con L ∼= H(P ).

(ii) There exists a finite lower bounded lattice L such that

Con L ∼= H(P ).

(iii) P is spike-free.

Note Lower bounded finite lattices were introduced in R. N. McKenzie [8], see
also R. Freese, J. Ježek, and J.B. Nation [3]. A finite lattice A is lower bounded
iff A has no δA-cycle. An equivalent condition is that A be amenable: The tensor
product A⊗L is a lattice, for every lattice L with 0; see G. Grätzer and F. Wehrung
[6, 7].
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Proof.

(i)⇒(ii) is trivial.
If L is lower bounded, then | J(L)| = | J(Con L)|, see Lemma 2.40 in [3], thus,

by Theorem 5.2, α(J(ConL)) = 0, that is, J(ConL) is spike-free. This proves that
(ii)⇒(iii).

If P is spike-free, that is, α(P ) = 0, then, by Theorem 5.3, there exists a finite
atomistic lattice L such that | J(L)| = |P | and ConL ∼= H(P ). From the second
equality it follows that J(ConL) ∼= P , whence | J(L) | = | J(Con L) |. Again by
Lemma 2.40 in [3], L is lower bounded. �

The following example shows that in (i) of Corollary 5.5, one cannot replace
“atomistic” by the stronger condition “sectionally complemented”.

Example 5.6. A finite, spike-free poset P such that there exists no finite, lower

bounded, sectionally complemented lattice L such that Con L ∼= H(P ).

Proof. Let P = {p, q, q0, q1}, and let the ordering of P be generated by the pairs
p < q, q < q0, and q < q1. It is obvious that P is spike-free. Assume that P ∼=
ConL for some finite, lower bounded, sectionally complemented lattice L. Note, in
particular, that L is atomistic. Since L is lower bounded and finite, 〈J(L), EL〉 is
isomorphic to 〈P,≤P 〉. Thus, without loss of generality, 〈J(L), EL〉 = 〈P,≤P 〉.

In particular, q ⊳L q0, thus there exists x ∈ P such that q δL x and x EL q0. The
first condition implies that x ∈ {q0, q1}, and the second condition implies then that
x = q0; whence q δL q0. By Lemma 1.1, there exists a subset I of P such that 〈q, I〉
is a minimal pair of L and q0 ∈ I. For all x ∈ I, q EL x and q 6= x, so we obtain
that x ∈ {q0, q1}. Thus I ⊆ {q0, q1}. Since |I| ≥ 2, it follows that I = {q0, q1}. In
particular, we obtain the inequality

q < q0 ∨ q1. (8)

Since p ⊳L q, there exists J ⊆ P such that 〈p, J〉 is a minimal pair of L. From
J ⊆ P − {p}, it follows that p < q ∨ q0 ∨ q1. Thus, by (8), p < q0 ∨ q1 and

q0 ∨ q1 = 1. (9)

Now let x be a complement of q in L. Without loss of generality, q0 6= x.
Furthermore, note that q0 ≤ 1 = x∨ q. Thus x cannot be an atom of L; otherwise,
since q0 6= x, we have q0 δL x, which is impossible. Moreover, x 6= q0 ∨ q1 by (9).
Since x is a join of atoms distinct from q, it follows that x = p∨ qi, for some i < 2.
Therefore,

q1−i ≤ 1 = q ∨ x = p ∨ q ∨ qi.

Since p, q, q0, and q1 are atoms of P , there exists X ⊆ {p, q, qi} such that 〈p, X〉
is a minimal pair of L. So q1−i δL y, for all y ∈ X , thus for some y ∈ {p, q, qi}, a
contradiction. �

6. Open problems

Problem 1. Characterize the relation EL, for a finite sectionally complemented
lattice L.

By Example 5.6, not every relation of the form EK , for K finite and atomistic,
is of the form EL, for L finite and sectionally complemented.
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Problem 2. Let D be a finite distributive lattice. Find a simple way of computing
the least possible value of | J(L)|, for a finite, sectionally complemented lattice L
such that ConL ∼= D.

By Example 5.6, the least possible value of | J(L)|, for a finite, sectionally com-
plemented lattice L such that ConL ∼= D, may be larger than the least possible
value of | J(L)|, for a finite, atomistic lattice L such that ConL ∼= D.

A related question is the following:

Problem 3. Determine the least constant k such that for every finite distributive
lattice D, there exists a finite, sectionally complemented lattice L such that ConL ∼=
D and

| J(L)| ≤ k| J(D)|.

By [4], k is less or equal than 2. The value of the constant defined similarly
for the class of atomistic lattices (or the class of all lattices as well) equals 5/3, by
Corollary 5.4.

Problem 4. Characterize the relation δL for a finite (resp., finite atomistic, finite
sectionally complemented) lattice L.

Problem 5. Let V be a variety of lattices. If D is a finite distributive lattice
representable by a finite lattice in V, compute the least possible value of | J(L)|, for
a finite lattice L in V such that ConL ∼= D.

Problem 6. Let ≍ be an equivalence relation on a finite set P such that |[a]≍| 6= 2,
for some a ∈ P . Does there exists a finite, sectionally complemented lattice L such
that 〈J(L),≍L〉 ∼= 〈P,≍〉?

In the proof of Theorem 4.1, we construct a finite atomistic lattice L such that
〈J(L),≍L〉 ∼= 〈P,≍〉, however, this lattice L may not be sectionally complemented.
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