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FORCING EXTENSIONS OF PARTIAL LATTICES

FRIEDRICH WEHRUNG

Abstract. We prove the following result:
Let K be a lattice, let D be a distributive lattice with zero, and let

ϕ : Conc K → D be a {∨, 0}-homomorphism, where Conc K denotes the {∨, 0}-
semilattice of all finitely generated congruences of K. Then there are a lat-

tice L, a lattice homomorphism f : K → L, and an isomorphism α : Conc L →
D such that α ◦ Conc f = ϕ.

Furthermore, L and f satisfy many additional properties, for example:
(i) L is relatively complemented.
(ii) L has definable principal congruences.
(iii) If the range of ϕ is cofinal in D, then the convex sublattice of L generated

by f [K] equals L.
We mention the following corollaries, that extend many results obtained in

the last decades in that area:
— Every lattice K such that Conc K is a lattice admits a congruence-pre-

serving extension into a relatively complemented lattice.

— Every {∨, 0}-direct limit of a countable sequence of distributive lattices

with zero is isomorphic to the semilattice of compact congruences of a

relatively complemented lattice with zero.
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Introduction

Background. The Congruence Lattice Problem (CLP), formulated by R.P. Dil-
worth in the forties, asks whether every distributive {∨, 0}-semilattice is isomorphic
to the semilattice Conc L of all compact congruences of a lattice L. Despite con-
siderable work in this area, this problem is still open, see [11] for a survey.

In [20], E.T. Schmidt presents an important sufficient condition, for a distribu-
tive {∨, 0}-semilattice S, to be isomorphic to the congruence lattice of a lattice.
This condition reads “S is the image of a generalized Boolean lattice under a ‘dis-
tributive’ {∨, 0}-homomorphism”. As an important consequence, Schmidt proves
the following result:

Theorem 1 (Schmidt, see [21]). Let S be a distributive lattice with zero. Then
there exists a lattice L such that Conc L ∼= S.

This result is improved in [19], where P. Pudlák proves that one can take L
a direct limit of finite atomistic lattices. Although we will not use this fact, we
observe that A.P. Huhn proved in [13, 14] that Schmidt’s condition is also satisfied
by every distributive {∨, 0}-semilattice S such that |S| ≤ ℵ1.

The basic statement of CLP can be modified by keeping among the assumptions
the distributive {∨, 0}-semilattice S, but by adding to them a diagram D of lattices
and a morphism (in the categorical sense) from the image of D under the Conc

functor to S. (See the end of Section 1 for a precise definition of this functor.) The
new problem asks whether one can lift the corresponding diagram Conc D → S by
a diagram D → L, for some lattice L (that may be restricted to a given class of
lattices) and lattice homomorphisms. We cite a few examples:
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Theorem 2 (Grätzer and Schmidt, see [10]). Let K be a lattice. If the lattice
ConK of all congruences of K is finite, then K embeds congruence-preservingly
into a sectionally complemented lattice.

(A lattice L with zero is sectionally complemented, if for all a ≤ b in L, there
exists x ∈ L such that a ∧ x = 0 and a ∨ x = b.)

Theorem 2 does not extend to the case where ConK is infinite: by M. Ploščica,
J. Tůma, and F. Wehrung [17], the free lattice FL(ω2) on ℵ2 generators does not
have a congruence-preserving, sectionally complemented extension. In fact, it is
proved in J. Tůma and F. Wehrung [24] that FL(ω2) does not embed congruence-
preservingly into a lattice with permutable congruences.

Theorem 3 (Grätzer, Lakser, and Wehrung, see [8]; see also Tůma [23]). Let S
be a finite distributive {∨, 0}-semilattice, let D be a diagram of lattices and lattice
homomorphisms consisting of lattices K0, K1, and K2, and lattice homomorphisms
fl : K0 → Kl, for l ∈ {1, 2}. Then any morphism from Conc D to S can be lifted,
with respect to the Conc functor, by a commutative square of lattices and lattice
homomorphisms that extends D.

The three-dimensional version of Theorem 3, obtained by replacing the truncated
square diagram D by a truncated cube diagram, does not hold, see J. Tůma and
F. Wehrung [24]. On the other hand, the one-dimensional version of Theorem 3
holds, see Theorem 2 in G. Grätzer, H. Lakser, and E.T. Schmidt [6], or Theorem 4
in G. Grätzer, H. Lakser, and E.T. Schmidt [7].

As a consequence of Theorem 2, we mention the result that every distributive
{∨, 0}-semilattice of cardinality at most ℵ1 is isomorphic to the semilattice of com-
pact congruences of a relatively complemented lattice with zero, see [8]. Hence,
lifting results of finite character make it possible to prove representation results of
infinite character. The proofs of Theorems 2 and 3 do not extend to infinite S—in
fact, we do have a counterexample for the analogue of Theorem 3 for countable S.

In this paper, we prove positive lifting results for infinite S, similar to Theorems
2 and 3. The only additional assumption is that S is a lattice, just as in [21].

Our first, most general theorem is the following.

Theorem A. Let D be a distributive lattice with zero, let P be a partial lattice,
let ϕ : Conc P → D be a {∨, 0}-homomorphism. If ϕ is ‘balanced’, then it extends
to a {∨, 0}-homomorphism ψ : Conc L→ D, for a certain lattice L generated, as a
lattice, by P .

We refer to Section 13 for a precise statement of Theorem A. At this point, we
observe two facts:

— There are, scattered in the literature, quite a number of nonequivalent def-
initions of a partial lattice. For example, our definition (see Definition 1.1)
is tailored to provide, for a partial lattice P , an embedding from ConP into
Con FL(P ), where FL(P ) denotes the free lattice on P . It is not equivalent
to the definition presented in [5].

— The condition that ϕ be ‘balanced’ (see Definition 13.3) is quite compli-
cated, which explains to a large extent the size of this paper.

Intuitively, the condition that ϕ be balanced means that the computation of
finitely generated ideals and filters, as well as finite intersections and joins of these,
in every quotient of P by a prime ideal G of D, can be captured by finite amounts
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of information, and this uniformly on G. This condition is so difficult to formulate
that it appears at first sight as quite unpractical.

However, it is satisfied in two important cases, namely: either P is a lattice
(and then the statement of Theorem A trivializes, as it should), or P is finite
with nonempty domains for the meet and the join, see Proposition 12.7. Although
this observation is quite easy, the next one is far less trivial. It shows that a large
amount of amalgams of balanced partial lattices and homomorphisms are balanced,
see Proposition 18.5.

Theorem B. Let D be a distributive lattice with zero. Let K be a finite lattice,
let P and Q be partial lattices each of them is either a finite partial lattice or a
lattice, let f : K → P and g : K → Q be homomorphisms of partial lattices, let
µ : Conc P → D and ν : ConcQ→ D such that µ◦Conc f = ν ◦Conc g. Then there
exist a lattice L, homomorphisms of partial lattices f : P → L and g : Q → L, and
a {∨, 0}-homomorphism ϕ : Conc L → D such that f ◦ f = g ◦ g, µ = ϕ ◦ Conc f ,
and ν = ϕ ◦ Conc g. Furthermore, the construction can be done in such a way that
the following additional properties hold:

(i) L is generated, as a lattice, by f [P ] ∪ g[Q].
(ii) The map ϕ isolates 0.

(We say that a map ϕ isolates 0, if ϕ(θ) = 0 iff θ = 0, for all θ in the domain
of ϕ.)

Unlike what happens with Theorem A, stating Theorem B does not require any
complicated machinery—it is an immediately usable tool.

We can now state our one-dimensional lifting result:

Theorem C. Let K be a lattice, let D be a distributive lattice with zero, and let
ϕ : ConcK → D be a {∨, 0}-homomorphism. There are a relatively complemented
lattice L of cardinality |K|+ |D|+ ℵ0, a lattice homomorphism f : K → L, and an
isomorphism α : Conc L→ D such that the following assertions hold:

(i) ϕ = α ◦ Conc f .
(ii) The range of f is coinitial (resp., cofinal) in L.
(iii) If the range of ϕ is cofinal in D, then the range of f is internal in L.

We observe that for a distributive semi lattice D with zero, Theorem C charac-
terizes D being a lattice, see [25].

Here, we say that a subset X of a lattice L is coinitial (cofinal, internal, resp.)
if the upper subset (lower subset, convex subset, resp.) generated by X equals L.

The information that L be relatively complemented in the statement of Theo-
rem C reflects only part of the truth. It turns out that L satisfies certain strong
closure conditions—we say that 〈L,α〉 is internally saturated, see Definition 19.2.
This statement implies the following properties of L, see Proposition 20.8 for details:

(i) L is relatively complemented.
(ii) L has definable principal congruences. More precisely, there exists a posi-

tive existential formula Φ(x, y, u, v) of the language of lattice theory such
that for every internally saturated 〈L,α〉 and all a, b, c, d ∈ L,

ΘL(a, b) ⊆ ΘL(c, d) iff L satisfies Φ(a, b, c, d).

A similar result is easily seen to hold for statements of the form ΘL(a, b) ⊆∨
i<n ΘL(ci, di).
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Then Theorems B and C together imply easily the following two-dimensional
lifting result, that widely extends the main result of G. Grätzer, H. Lakser, and F.
Wehrung [8]:

Theorem D. Let K, P , Q, f , g, µ, ν satisfy the assumptions of Theorem B. Then
there are a relatively complemented lattice L of cardinality |P |+ |Q|+ |D|+ℵ0, ho-
momorphisms of partial lattices f : P → L and g : Q → L, and an isomorphism
ϕ : Conc L→ D such that f ◦ f = g ◦ g, µ = ϕ ◦ Conc f , and ν = ϕ ◦ Conc g. Fur-
thermore, the construction can be done in such a way that the following additional
properties hold:

(i) The subset f [P ] ∪ g[Q] generates L as an ideal (resp., filter).
(ii) If the subsemilattice of D generated by µ[Conc P ] ∪ ν[ConcQ] is cofinal

in D, then f [P ] ∪ g[Q] generates L as a convex sublattice.

Furthermore, once Theorem C is proved, easy corollaries follow. For example,

Corollary 21.1. Every lattice K such that ConcK is a lattice has an internal,
congruence-preserving embedding into a relatively complemented lattice.

Corollary 21.3. Every {∨, 0}-semilattice that is a direct limit of a countable se-
quence of distributive lattices with zero is isomorphic to the semilattice of compact
congruences of a relatively complemented lattice with zero

Methods. Our methods of proof, especially for Theorems A and B, are radically
different from the usual ‘finite’ methods, for example, those used in the proofs
of Theorems 2 and 3. In some sense, we take the most naive possible approach
of the problem. We are given a partial lattice P , a distributive lattice D with
zero, a homomorphism ϕ : Conc P → D, and we wish to “extend P to a relatively
complemented lattice L, and make ϕ an isomorphism”, as in the statement of
Theorem A. So we “add new joins and meets” in order to make P a total lattice
(we use Theorem A), we “add relative complements” in order to make P relatively
complemented (see Lemma 20.1), we “force projectivity of intervals” in order to
make ϕ an embedding (see Lemmas 20.3–20.6), and we “add new intervals” in
order to make ϕ surjective (see Lemma 20.7). Of course, the main problem is then
to confine the range of ϕ within D.

In this sense, this approach is related to G. Grätzer and E.T. Schmidt’s [9]
proof of the representation problem of congruence lattices of algebras, see also P.
Pudlák [18] and Section 2.3 in E.T. Schmidt [22]: given an algebraic (not necessarily
distributive) lattice A, a partial algebra U is constructed such that ConU ∼= A, then
U is extended to a total algebra with the same congruence lattice.

However, there is an important difference between this approach and ours,
namely: in Grätzer and Schmidt’s proof, infinitely many new operations need to be
incorporated to the signature of the algebra. This restriction is absolutely unavoid-
able, as proves W. Lampe’s result (a stronger version was proved independently by
R. Freese and W. Taylor) that certain algebraic lattices require many operations
to be represented, see R. Freese, W. Lampe, and W. Taylor [4], or Section 2.4 in
E.T. Schmidt [22]. In the present paper, we are restricted to the language of lattice
theory 〈∨,∧〉. This may partly explain our restriction to algebraic lattices which
are ideal lattices of distributive lattices. That the latter restriction is necessary is
established in the forthcoming paper J. Tůma and F. Wehrung [25].
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To get around this difficulty, we borrow the notations and methods of the theory
of forcing and Boolean-valued models. Although it has been recognized that the
latter are, in universal algebra, a more convenient framework than the usual sheaf
representation results, see, for example, Chapter IV in S. Burris and H.P. Sankap-
panavar [1], one can probably not say that they are, at the present time, tools of
common use in lattice theory. For this reason, our presentation will assume no fa-
miliarity with Boolean-valued models. We refer the reader, for example, to T. Jech
[16] for a presentation of this topic.

The basic idea of the present paper is, actually, quite simple. For a partial lat-
tice P , we consider the standard construction of the free lattice FL(P ) on P . More
specifically, FL(P ) is constructed as the set of words on P , using the binary oper-
ations ∨ and ∧. The ordering on FL(P ) is defined inductively, see Definition 2.6.
This can be done by assigning to every statement of the form ẋ ≤ ẏ, where ẋ and
ẏ are words on P , a ‘truth value’ ‖ẋ ≤ ẏ‖, equal either to 0 (false) or 1 (true). So
‖ẋ ≤ ẏ‖ equals 1 if ẋ ≤ ẏ, 0 otherwise. So, for example, rule (ii) of Definition 2.6
may be stated as

‖ẋ0 ∨ ẋ1 ≤ ẏ0 ∧ ẏ1‖ =
∧

i,j<2

‖ẋi ≤ ẏj‖ . (0.1)

If the truth values of statements are no longer confined to {0, 1} but, rather, to
elements of a given distributive lattice D (which has to be thought as the dual
lattice of the lattice D of the statements of Theorems A and B), (0.1) becomes
part of the inductive definition of a map that with every pair 〈ẋ, ẏ〉 of words on P
associates the ‘truth value’ ‖ẋ ≤ ẏ‖ ∈ D, that we shall still call “Boolean value”
(after all, D embeds into a Boolean algebra).

In this way, it seems at first sight a trivial task to extend Definition 2.6 to a D-
valued context. However, the major obstacle remains of the computation of ‖ẋ ≤ ẏ‖
at the bottom level, that is, for ẋ and ẏ finite meets or joins of elements of P . This
situation is not unlike what happens in set theory, where the main problem in
defining Boolean values in the Scott-Solovay Boolean universe is to define them
on the atomic formulas, see [15]. In fact, the method used in [26] reflects more
closely what is done in the present paper, namely, the domain of the Boolean value
function is extended from a set of ‘urelements’ to the universe of set theory that
they generate.

The condition that 〈P, ϕ〉 be balanced is designed to ensure that these Boolean
values belong to D, while they would typically, in the general case, belong to the
completion of the universal Boolean algebra of D.

The reader may feel at this point a slight uneasiness, because the distributive
lattice D in which the Boolean values live is related to the dual of Conc P , rather
than to Conc P itself. It seems, indeed, pointless to dualize D, prove a large amount
of results on the dual, and then dualize again to recover D. Why bother doing
this? The alternative would be to stick with the original D, and so, to interpret
the Boolean values by ‖ẋ ≤ ẋ‖ = 0 (instead of 1, ‘true’), and ‖ẋ ≤ ż‖ ≤ ‖ẋ ≤ ẏ‖ ∨
‖ẏ ≤ ż‖ (instead of the dual, see Definition 4.1(ii)). Furthermore, one would have
to interpret the propositional connective ‘and’ by the join ∨, and ‘or’ by the meet
∧, and so on. This is definitely unattractive to the reader familiar with Boolean
models. Of course, the last decisive argument for one way or the other is merely
related to a matter of taste.

We now give a short summary of the paper, part by part.
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Part 1 introduces partial lattices and their congruences, and also the free lattice
on a partial lattice. A noticeable difference between our definition of a congruence
and the usual definition of a congruence is that our congruences are not symmetric
in general. The reason for this is very simple, namely, if f : P → Q is a homo-
morphism of partial lattices, then its kernel, instead of being defined as usual as
the set of all pairs 〈x, y〉 such that f(x) = f(y), is defined here as the set of all
〈x, y〉 such that f(x) ≤ f(y). Of course, for (total) lattices, the two resulting defini-
tions of a congruence are essentially equivalent—in particular, they give isomorphic
congruence lattices.

In Section 3, we interpret the classical operation of ‘pasting’ two partial lattices
above a lattice as a pushout in the category of partial lattices and homomorphisms
of partial lattices. Although the description of the pushout, Proposition 3.4, is
fairly straightforward, it paves the way for its D-valued analogue, Proposition 15.4.

Part 2 begins with the simple definitions, in Section 4, of a D-valued poset or of
a D-valued partial lattice. The purpose of Section 6 is to introduce the important
definition of a sample, that makes it possible, via additional assumptions, to extend
to the D-valued world the classical notions of ideal and filter of a partial lattice P ,
see Section 2.1. The corresponding D-valued notions, instead of corresponding to
subsets of P , correspond to functions from P to D.

However, the objects we wish to solve problems about are not D-valued partial
lattices, but plain partial lattices. Thus we present in Part 3 a class of structures
that live simultaneously in both worlds, the D-comeasured partial lattices, to which
we translate the results of Part 2. In order to extend to a lattice the Boolean values
defined on the original partial lattice, we introduce the definition of a balanced
D-comeasured partial lattice, see Definition 13.3. Then we prove, in Sections 16
and 17, that all our finiteness conditions (they add up to the condition of being
balanced) are preserved under amalgamation above a finite lattice.

Now that all this hard technical work is completed, we start applying it in Part 4.
Most arguments used in this part are based on simple amalgamation constructions
of partial lattices above finite lattices, that all yield, by our previous work, balanced
D-comeasured partial lattices.

Notation and terminology

For a set X , we denote by [X ]<ω (resp., [X ]<ω
∗ ) the set of all finite (resp.,

nonempty finite) subsets of X .
We put 2 = {0, 1}, endowed with its canonical structure of lattice. For a non-

negative integer n, we identify n with {0, 1, . . . , n− 1}.
Let P be a preordered set. For subsets X , Y of P , let X ≤ Y be the statement

∀x ∈ X , ∀y ∈ Y , x ≤ y. We shall write a ≤ X (resp., X ≤ a) instead of {a} ≤ X
(resp., X ≤ {a}). A subset X of P is a lower subset (resp., upper subset) of P if
for all x ≤ y in P , y ∈ X (resp. x ∈ X) implies that x ∈ X (resp., y ∈ X). We say
that X is a convex subset of P , if a ≤ x ≤ b and {a, b} ⊆ X implies that x ∈ X ,
for all a, b, x ∈ P .

If X ⊆ P , we denote by ↓X (resp., ↑X) the lower subset (resp., upper subset)
of P generated by X . For a ∈ P , we put ↓a = ↓{a} and ↑a = ↑{a}.

For a ∈ P and X ⊆ P , let a = supX be the statement

X ≤ a and ∀x, X ≤ x⇒ a ≤ x.
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The statement a = inf X is defined dually. Note that if a = supX , then a′ = supX
for all a′ equivalent to a with respect to the preordering ≤ (that is, a ≤ a′ ≤ a).

For a preordering α of a set P and for x, y ∈ P , the statement 〈x, y〉 ∈ α will
often be abbreviated x ≤α y.

For a lattice L, Ld denotes the dual lattice of L.

Part 1. Partial lattices

1. Partial prelattices and partial lattices

Definition 1.1. A partial prelattice is a structure 〈P,≤,
∨
,
∧
〉, where P is a non-

empty set, ≤ is a preordering on P , and
∨

,
∧

are partial functions from [P ]<ω
∗ to

P satisfying the following properties:

(i) a =
∨
X implies that a = supX , for all a ∈ P and all X ∈ [P ]<ω

∗ .
(ii) a =

∧
X implies that a = inf X , for all a ∈ P and all X ∈ [P ]<ω

∗ .

We say that P is a partial lattice, if ≤ is antisymmetric.
A congruence of P is a preordering � of P containing ≤ such that 〈P,�,

∨
,
∧
〉

is a partial prelattice.
If P and Q are partial prelattices, a homomorphism of partial prelattices from

P to Q is an order-preserving map f : P → Q such that a =
∨
X (resp., a =

∧
X)

implies that f(a) =
∨
f [X ] (resp., f(a) =

∧
f [X ]), for all a ∈ P and all X ∈ [P ]<ω

∗ .
We say that a homomorphism f is an embedding, if f(a) ≤ f(b) implies that a ≤ b,
for all a, b ∈ P .

We shall naturally identify lattices with partial lattices P such that
∨

and
∧

are defined everywhere on [P ]<ω
∗ .

Remark 1.2. For an embedding f : P → Q of partial lattices, we do not require
that

∨
f [X ] be defined implies that

∨
X is defined (and dually), for X ∈ [P ]<ω

∗ .

Proposition 1.3. Let P be a partial prelattice. Then the set ConP of all con-
gruences of P is a closure system in the powerset lattice of P × P , closed under
directed unions. In particular, it is an algebraic lattice.

We denote by Conc P the {∨, 0}-semilattice of all compact congruences of P ,
by 0P the least congruence of P (that is, 0P is the preordering of P ), and by 1P

the largest (coarse) congruence of P . The map P 7→ Conc P can be extended in
a natural way in a functor, as follows. For a homomorphism f : P → Q of partial
lattices, we define a {∨, 0}-homomorphism Conc f : Conc P → ConcQ as the map
that with every congruence α of P associates the congruence of Q generated by all
pairs 〈f(x), f(y)〉, for 〈x, y〉 ∈ α.

If P is a lattice, then ConP is distributive, but this may not hold for a general
partial lattice P .

For a, b ∈ P , we denote by Θ+
P (a, b) the least congruence θ of P such that a ≤θ b,

and we put ΘP (a, b) = Θ+
P (a, b) ∨ Θ+

P (b, a), the least congruence θ of P such that

a ≡θ b. Of course, the congruences of the form Θ+
P (a, b) are generators of the

join-semilattice Conc P .

2. The free lattice on a partial lattice

We present in this section an explicit construction, due to R.A. Dean [2], of the
free lattice on a partial lattice, see also [3, Page 249]. For the needs of this paper,
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the definitions are slightly modified (in particular, the relation � defined below,
see Definition 2.6), but it is easy to verify that they are, in fact, equivalent to the
original ones.

Throughout this section, we shall fix a partial lattice P .

2.1. Ideals, filters.

Definition 2.1. An ideal of P is a lower subset I of P such that X ⊆ I and
a =

∨
X imply that a ∈ I, for all X ∈ [P ]<ω

∗ and all a ∈ P . Dually, a filter of P
is an upper subset F of P such that X ⊆ F and a =

∧
X imply that a ∈ I, for all

X ∈ [P ]<ω
∗ and all a ∈ P .

We observe that both ∅ and P are simultaneously an ideal and a filter of P .
For a ∈ P , ↓a is an ideal of P (principal ideal), while ↑a is a filter of P (principal
filter). In case P is a lattice (that is,

∨
and

∧
are everywhere defined), the ideals

of the form ↓a are the only nonempty finitely generated ideals of P .

Lemma 2.2. The set I(P ) (resp., F(P )) of all ideals (resp., filters) of P is a
closure system in the powerset lattice P(P ) of P , closed under directed unions.
Hence, both I(P ) and F(P ) are algebraic lattices.

2.2. Description of the free lattice on P .

Notation 2.3. For a set Ω, let W(Ω) denote the set of terms on Ω and the two
binary operations ∨ and ∧.

So, the elements of W(Ω) are formal “polynomials” on the elements of Ω, such
as ((a ∨ b) ∨ c) ∧ (d ∨ e), where a, b, c, d, e ∈ Ω, etc.. The height of an element ẋ
of W(Ω) is defined inductively by ht(a) = 0 for a ∈ Ω, and ht(ẋ ∧ ẏ) = ht(ẋ ∨ ẏ) =
ht(ẋ) + ht(ẏ) + 1.

We shall now specialize to the case where Ω is the underlying set of the partial
lattice P . (In Section 11, the notation W(P ) will be used for structures P that are
not necessarily partial lattices.)

Definition 2.4. For ẋ ∈ W(P ), we define, by induction on the height ht(ẋ) of ẋ,
an ideal ẋ− of P and a filter ẋ+ of P as follows:

(i) ẋ− = ↓a and ẋ+ = ↑a, if ẋ = a ∈ P .
(ii) If ẋ = ẋ0 ∨ ẋ1, we put ẋ− = ẋ−0 ∨ ẋ−1 (the join being computed in I(P )),

and ẋ+ = ẋ+
0 ∩ ẋ+

1 .
(iii) If ẋ = ẋ0 ∧ ẋ1, we put ẋ− = ẋ−0 ∩ ẋ−1 , and ẋ+ = ẋ+

0 ∨ ẋ+
1 (the join being

computed in F(P )).

Definition 2.5. For ẋ, ẏ ∈ W(P ), we define ẋ≪ ẏ to hold, if ẋ+ ∩ ẏ− 6= ∅.

Definition 2.6. We define inductively a binary relation � on W(P ), as follows:

(i) ẋ � ẏ iff ẋ≪ ẏ, for all ẋ, ẏ ∈ W(P ) such that ẋ ∈ P or ẏ ∈ P .
(ii) ẋ0 ∨ ẋ1 � ẏ0 ∧ ẏ1 iff ẋi � ẏj, for all i, j < 2.
(iii) ẋ0 ∨ ẋ1 � ẏ0 ∨ ẏ1 iff ẋi � ẏ0 ∨ ẏ1, for all i < 2.
(iv) ẋ0 ∧ ẋ1 � ẏ0 ∧ ẏ1 iff ẋ0 ∧ ẋ1 � ẏj , for all j < 2.
(v) ẋ0 ∧ ẋ1 � ẏ0 ∨ ẏ1 iff either ẋ0 ∧ ẋ1 ≪ ẏ0 ∨ ẏ1 or ẋi � ẏj , for some i, j < 2.

The relevant observations can be summarized in the following form:

Lemma 2.7. Let a, b ∈ P and let ẋ, ẏ, ż ∈ W(P ). Then the following assertions
hold:
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(i) a ∈ ẋ− and b ∈ ẋ+ imply that a ≤ b;
(ii) a ∈ ẋ− and ẋ � ẏ imply that a ∈ ẏ−;
(iii) a ∈ ẏ+ and ẋ � ẏ imply that a ∈ ẋ+;
(iv) ẋ≪ ẏ implies that ẋ � ẏ;
(v) ẋ � ẋ;
(vi) ẋ � ẏ and ẏ � ż imply that ẋ � ż.

Let ≡ denote the equivalence relation associated with the preordering �. We
define FL(P ) = 〈W(P ),�〉/≡. Let jP : P → FL(P ), the natural map, be defined
by jP (a) = a/≡, for all a ∈ P .

Proposition 2.8. The poset FL(P ) is a lattice and jP is an embedding of partial
lattices. Furthermore, jP is universal among all the homomorphisms of partial
lattices from P to a lattice.

So we identify FL(P ) (together with the natural map jP ) with the free lattice
on the partial lattice P , that is, the lattice defined by generators ǎ (a ∈ P ) and
relations ǎ = x̌0 ∨ · · · ∨ x̌n−1 (resp., ǎ = x̌0 ∧ · · · ∧ x̌n−1) if a =

∨
{x0, . . . , xn−1}

(resp., a =
∧
{x0, . . . , xn−1}) in P .

2.3. Generation of ideals and filters. In any lattice, the finitely generated ideals
are exactly the principal ideals, and similarly for filters. In general partial lattices,
the situation is much more complicated. The somewhat more precise description
of ideals and filters that we shall give in this section will be used later in Section 7.

Definition 2.9. Let X and U be subsets of P . For n < ω, we define, by induction
on n, a subset Idn(X,U) of P , as follows:

(i) Id0(X,U) = ↓X .
(ii) Idn+1(X,U) is the union of Idn(X,U) and the lower subset of P generated

by all elements of the form
∨
Z, where ∅ ⊂ Z ⊆ U ∩ Idn(X,U) and

∨
Z

is defined (⊂ denotes proper inclusion).

Dually, we define, by induction on n, a subset Filn(X,U) of P , as follows:

(i) Fil0(X,U) = ↑X .
(ii) Filn+1(X,U) is the union of Filn(X,U) and the upper subset of P gener-

ated by all elements of the form
∧
Z, where ∅ ⊂ Z ⊆ U ∩ Filn(X,U) and∧

Z is defined.

We observe, in particular, that
⋃

n<ω Idn(X,P ) is the ideal Id(X) of P generated
by X . The subsets Idn(X,U), for finite U , can be viewed as “finitely generated
approximations” of Id(X). Similar considerations hold for Filn(X,U) and Fil(X) =⋃

n<ω Filn(X,P ).

3. Amalgamation of partial lattices above a lattice

Most of the results of this section are folklore, we recall them here for convenience.

Definition 3.1. A V-formation of partial lattices is a structure 〈K,P,Q, f, g〉
subject to the following conditions:

(V1) K, P , Q are partial lattices.
(V2) f : K →֒ P and g : K →֒ Q are embeddings of partial lattices.

A V-formation 〈K,P,Q, f, g〉 is standard, if the following conditions hold:

(SV1) K is a lattice.
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(SV2) K = P ∩Q (set-theoretically), and f and g are, respectively, the inclusion
map from K into P and the inclusion map from K into Q.

Of course, we identify a V-formation 〈K,P,Q, f, g〉 with the diagram of partial
lattices that consists of two arrows from K, one of them f : K → P , the other
g : K → Q.

Furthermore, the homomorphisms in standard V-formations are understood (they
are the inclusion maps), so, in that case, we shall write 〈K,P,Q〉 instead of 〈K,P,Q, f, g〉.

The following lemma is a set-theoretical triviality:

Lemma 3.2. Every V-formation 〈K,P,Q, f, g〉 of partial lattices, with K a lattice,
is isomorphic to a standard V-formation.

Definition 3.3. Let D = 〈K,P,Q, f, g〉 be a V-formation of partial lattices. An
amalgam of D is a triple 〈R, f ′, g′〉, where R is a partial lattice and f ′ : P →֒ R,
g′ : Q →֒ R are embeddings of partial lattices such that f ′ ◦ f = g′ ◦ g.

As usual in category-theoretical terminology, we say that a pushout of D is any
initial object in the category of amalgams of D with their homomorphisms (not
only embeddings). Of course, if the pushout of D exists, then it is unique up to
isomorphism.

We shall be concerned about not only the existence but also the description of
pushouts in a very precise context:

Proposition 3.4. Let D = 〈K,P,Q, f, g〉 be a V-formation of partial lattices, with
K a lattice. Then D has a pushout. Furthermore, assume that D is a standard
V-formation. Then the pushout 〈R, f ′, g′〉 of D can be described by the following
data:

(a) R = P ∪ Q, endowed with the partial ordering ≤ consisting of all pairs
〈x, y〉 of elements of R satisfying the following conditions:
(a1) x, y ∈ P and x ≤P y.
(a2) x, y ∈ Q and x ≤Q y.
(a3) x ∈ P , y ∈ Q, and there exists z ∈ K such that x ≤P z and z ≤Q y.
(a4) x ∈ Q, y ∈ P , and there exists z ∈ K such that x ≤Q z and z ≤P y.

(b) For a ∈ R and X ∈ [R]<ω
∗ , a =

∨
X holds in R iff either X ∪ {a} ⊆ P

and a =
∨
X in P or X ∪ {a} ⊆ Q and a =

∨
X in Q.

(b*) For a ∈ R and X ∈ [R]<ω
∗ , a =

∧
X holds in R iff either X ∪ {a} ⊆ P

and a =
∧
X in P or X ∪ {a} ⊆ Q and a =

∧
X in Q.

(c) f ′ (resp., g′) is the inclusion map from P into R (resp., from Q into R).

Note. It is easy to prove that any diagram of partial lattices admits a colimit.
In particular, pushouts always exist. However, we are, in Proposition 3.4, more
interested in the description of the pushout.

Proof. The fact that the binary relation ≤ defined above on R is a partial ordering
is folklore (and easy to verify).

Now we prove that R is a partial lattice. We first observe that since K is a
partial sublattice of both P and Q, the partial operations

∨
and

∧
on R described

in (b) and (b*) above are, indeed, partial functions.
Let 〈a,X〉 ∈ R× [R]<ω

∗ such that a =
∨
X in R, we prove that a = supX in R.

By the definition of
∨

in R, a =
∨
X holds either in P or in Q, so, without loss of
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generality, X ∪ {a} ⊆ P and a =
∨
X in P . Since P is a partial lattice, it follows

that

a = supX in P. (3.1)

From X ≤P a follows that X ≤ a. Now let b ∈ R such that X ≤ b, we prove that
a ≤ b. If b ∈ P , then X ≤P b, thus, by (3.1), a ≤P b, so a ≤ b.

Now suppose that b ∈ Q. For all x ∈ X , x ≤ b with x ∈ P and b ∈ Q, thus there
exists x∗ ∈ K such that

x ≤P x∗ (3.2)

x∗ ≤Q b. (3.3)

Since K is a lattice, c =
∨

x∈X x∗ is defined in K. Since K is a partial sublattice
of Q, the equality c =

∨
x∈X x∗ also holds in Q. Thus, by (3.3), we obtain the

inequality

c ≤Q b. (3.4)

Furthermore, for x ∈ X , x∗ ≤K c, thus x∗ ≤P c, hence, by (3.2), x ≤P c. This
holds for all x ∈ X , thus, by (3.1), we obtain the inequality

a ≤P c. (3.5)

Hence, by (3.5) and (3.4), a ≤ b. Therefore, a = supX in R.
The proof for

∧
and inf is similar.

Finally, the proof that 〈R, f ′, g′〉 is a pushout of D is straightforward. �

Notation 3.5. In the context of Proposition 3.4, in the case of a standard V-
formation 〈K,P,Q〉, we shall write R = P ∐K Q.

Part 2. D-valued posets and partial lattices

4. D-valued posets

We shall fix in this section a distributive lattice D with unit (largest element) 1.
The following definition is similar to the classical definition of a Boolean-valued

model, see, for example, [16].

Definition 4.1. A D-valued poset is a nonempty set P , together with a map
P × P → D, 〈a, b〉 7→ ‖a ≤ b‖, that satisfies the following properties:

(i) ‖a ≤ a‖ = 1, for all a ∈ P .
(ii) ‖a ≤ b‖ ∧ ‖b ≤ c‖ ≤ ‖a ≤ c‖, for all a, b, c ∈ P .

If P is a D-valued poset, then we define ‖a = b‖ = ‖a ≤ b‖ ∧ ‖b ≤ a‖, for all a,
b ∈ P . Furthermore, for a ∈ P and nonempty, finite subsets X and Y of P , we put

‖a ∈ Y ‖ =
∨

y∈Y

‖a = y‖ ,

‖X ⊆ Y ‖ =
∧

x∈X

‖x ∈ Y ‖ .

and we put ‖X = Y ‖ = ‖X ⊆ Y ‖ ∧ ‖Y ⊆ X‖.
We observe that a D-valued poset is not given with a partial ordering on P—

there is no such thing as “the binary relation ≤ on P”. Instead, ‖a ≤ b‖ denotes
an element of D, as opposed to a statement.
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Example 4.2. Let 〈P,≤〉 be a poset. Then P can be canonically endowed with a
structure of 2-valued poset, by putting ‖a ≤ b‖ = 1 if a ≤ b, 0 otherwise.

Hence, the rule ‖a ≤ b‖∧ ‖b ≤ c‖ ≤ ‖a ≤ c‖ may be interpreted as the D-valued
version of the transitivity of the partial ordering.

We record below some basic facts about Boolean values. For the remainder of
this section, we fix a D-valued poset P . In fact, many of the results below hold for
D-valued models of equality (a set P with a map 〈x, y〉 7→ ‖x = y‖), with the same
proofs.

Lemma 4.3. The following assertions hold:

(i) ‖x = y‖ ∧ ‖y ∈ Z‖ ≤ ‖x ∈ Z‖, for all x, y ∈ P and all Z ∈ [P ]<ω
∗ .

(ii) ‖x ∈ Y ‖ ∧ ‖Y ⊆ Z‖ ≤ ‖x ∈ Z‖, for all x ∈ P and all Y , Z ∈ [P ]<ω
∗ .

(iii) ‖X ⊆ Y ‖ ∧ ‖Y ⊆ Z‖ ≤ ‖X ⊆ Z‖, for all X, Y , Z ∈ [P ]<ω
∗ .

(iv) ‖X = Y ‖ ∧ ‖Y = Z‖ ≤ ‖X = Z‖, for all X, Y , Z ∈ [P ]<ω
∗ .

Proof. (i) We compute:

‖x = y‖ ∧ ‖y ∈ Z‖ =
∨

z∈Z

‖x = y‖ ∧ ‖y = z‖ ≤
∨

z∈Z

‖x = z‖ = ‖x ∈ Z‖ .

(ii) We compute, by using (i):

‖x ∈ Y ‖∧‖Y ⊆ Z‖ ≤
∨

y∈Y

‖x = y‖∧‖Y ⊆ Z‖ ≤
∨

y∈Y

‖x = y‖∧‖y ∈ Z‖ ≤ ‖x ∈ Z‖ .

(iii) We compute, by using (ii):

‖X ⊆ Y ‖ ∧ ‖Y ⊆ Z‖ =
∧

x∈X

‖x ∈ Y ‖ ∧ ‖Y ⊆ Z‖ ≤
∧

x∈X

‖x ∈ Z‖ = ‖X ⊆ Z‖ .

(iv) is an obvious consequence of (iii). �

Lemma 4.4. Let a ∈ P , let X, Y ∈ [P ]<ω
∗ , let ϕ(z, a) be one of the formulas z ≤ a

or a ≤ z. Then the following inequalities hold:

(i) ‖X ⊆ Y ‖ ∧
∧

y∈Y ‖ϕ(y, a)‖ ≤ ‖X ⊆ Y ‖ ∧
∧

x∈X ‖ϕ(x, a)‖.

(ii) ‖X = Y ‖ ∧
∧

y∈Y ‖ϕ(y, a)‖ = ‖X = Y ‖ ∧
∧

x∈X ‖ϕ(x, a)‖.

Proof. (i) Put γ = ‖X ⊆ Y ‖ ∧
∧

y∈Y ‖ϕ(y, a)‖. For x ∈ X ,

γ ≤ ‖X ⊆ Y ‖ ≤ ‖x ∈ Y ‖ =
∨

y∈Y

‖x = y‖ ,

so, to prove (i), it is sufficient to prove that γ ∧ ‖x = y‖ ≤ ‖ϕ(x, a)‖, for all y ∈ Y .
But this follows from the fact that γ ∧ ‖x = y‖ ≤ ‖x = y‖ ∧ ‖ϕ(y, a)‖ and the
definition of a D-valued poset.

(ii) follows immediately from (i). �

Lemma 4.5. Let X, Y ∈ [P ]<ω
∗ . Then the following equality holds:

‖X ⊆ Y ‖ =
∨

∅⊂Z⊆Y

‖X = Z‖ .
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Proof. For ∅ ⊂ Z ⊆ Y , the inequality ‖X = Z‖ ≤ ‖X ⊆ Y ‖ is clear. Conversely,
we compute:

‖X ⊆ Y ‖ =
∧

x∈X

∨

y∈Y

‖x = y‖

=
∨

ν : X→Y

∧

x∈X

‖x = ν(x)‖ ,

so, to conclude the proof, it suffices to prove that for every map ν : X → Y , there
exists Z such that ∅ ⊂ Z ⊆ Y and

∧

x∈X

‖x = ν(x)‖ ≤ ‖X = Z‖ . (4.1)

We define Z as the range of ν. So,
∧

x∈X

‖x = ν(x)‖ ≤
∧

x∈X

‖x ∈ Z‖ = ‖X ⊆ Z‖ .

Furthermore, if z ∈ Z, so, z = ν(x∗) for some x∗ ∈ X , then
∧

x∈X

‖x = ν(x)‖ ≤ ‖x∗ = ν(x∗)‖ ≤ ‖z ∈ X‖ ,

thus
∧

x∈X ‖x = ν(x)‖ ≤ ‖Z ⊆ X‖, so, finally, (4.1) holds. This concludes the
proof. �

Every D-valued poset P can be “localized” at every prime filter of D, in a
classical fashion that we shall recall here. Let G be any filter of D, that is, a
nonempty upper subset of D closed under finite meet. We define binary relations,
≤G and ≡G, on P , by the rule

a ≤G b⇐⇒ ‖a ≤ b‖ ∈ G,

a ≡G b⇐⇒ ‖a = b‖ ∈ G,

for all a, b ∈ P . It is easy to verify that the relation ≤G is a preordering on P ,
and that ≡G is the associated equivalence relation. Hence, the quotient structure
P/G = 〈P,≤G〉/≡G may be endowed with a partial ordering, defined by the rule

a/G ≤ b/G ⇐⇒ a ≤G b,

for all a, b ∈ P , where we write, of course, a/G = a/≡G
.

The abundance of prime filters may be recorded in the following classical result,
that we shall use most of the time without mentioning:

Lemma 4.6. Let a, b ∈ D. Then a ≤ b iff a ∈ G implies that b ∈ G for all prime
filters G of D.

As a rule, handling D-valued posets is very similar to handling Boolean-valued
posets. We point out two important differences with the classical context:

— The “value set” D is no longer a complete Boolean algebra as it is usually
the case in the theory of Boolean-valued models. It is only a distributive
lattice, not even necessarily complete.

— No analogue of “fullness”, as it is ordinarily defined for Boolean models,
will be assumed or even considered throughout this paper.
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5. D-valued partial lattices

Definition 5.1. A D-valued partial lattice is a D-valued poset P , endowed with
two maps from P × [P ]<ω

∗ → D, denoted respectively by 〈a,X〉 7→ ‖a =
∨
X‖ and

〈a,X〉 7→ ‖a =
∧
X‖, such that for all a, b ∈ P and all X , Y ∈ [P ]<ω

∗ , the following
equalities hold:

(1) ‖a =
∨
X‖ ∧ ‖a ≤ b‖ = ‖a =

∨
X‖ ∧

∧
x∈X ‖x ≤ b‖;

(1*) ‖a =
∧
X‖ ∧ ‖b ≤ a‖ = ‖a =

∧
X‖ ∧

∧
x∈X ‖b ≤ x‖;

(2) ‖a =
∨
X‖ ∧ ‖X = Y ‖ ≤ ‖a =

∨
Y ‖;

(2*) ‖a =
∧
X‖ ∧ ‖X = Y ‖ ≤ ‖a =

∧
Y ‖.

(3) ‖a =
∨
X‖ ∧ ‖a = b‖ ≤ ‖b =

∨
X‖;

(3*) ‖a =
∧
X‖ ∧ ‖a = b‖ ≤ ‖b =

∧
X‖.

Example 5.2. Every partial lattice P can be viewed as a 2-valued poset, as in
Example 4.2. This structure can be extended to a structure of 2-valued partial
lattice, by putting

∥∥∥a =
∨
X
∥∥∥ = 1 if a =

∨
X, 0 otherwise,

and similarly for
∧

.

For the remainder of this section, we shall fix a D-valued partial lattice P .

Lemma 5.3. Let a, b ∈ P and let X ∈ [P ]<ω
∗ . Then the following assertions hold:

(i) ‖a =
∨
X‖ ∧ ‖b =

∨
X‖ ≤ ‖a = b‖;

(ii) ‖a =
∧
X‖ ∧ ‖b =

∧
X‖ ≤ ‖a = b‖.

Proof. We only prove (i). Put γ = ‖a =
∨
X‖∧‖b =

∨
X‖. By (1) of Definition 5.1,

∥∥∥b =
∨
X
∥∥∥ ∧

∧

x∈X

‖x ≤ b‖ =
∥∥∥b =

∨
X
∥∥∥ ∧ ‖b ≤ b‖ =

∥∥∥b =
∨
X
∥∥∥ ,

thus γ ≤ ‖b =
∨
X‖ ≤

∧
x∈X ‖x ≤ b‖. Furthermore,

γ ∧ ‖a ≤ b‖ = γ ∧
∧

x∈X

‖x ≤ b‖ (by (1) of Definition 5.1)

= γ (by the above paragraph),

so γ ≤ ‖a ≤ b‖. Symmetrically, γ ≤ ‖b ≤ a‖, so the conclusion follows. �

If G is a filter of D, we have seen that we can define a quotient poset P/G. We
shall now show how to extend the structure of P/G to a structure of partial lattice.

Definition 5.4. Let X ∈ [P/G]<ω
∗ and let a ∈ P/G. We define a =

∨
X (resp.,

a =
∧

X) to hold, if there are a ∈ P and X ∈ [P ]<ω
∗ such that a = a/G, X = X/G,

and ‖a =
∨
X‖ ∈ G (resp., ‖a =

∧
X‖ ∈ G).

As an immediate consequence of Definition 5.1(2,2*,3,3*), we obtain the following
lemma:

Lemma 5.5. Let a ∈ P , let X ∈ [P ]<ω
∗ . Then a/G =

∨
X/G (resp., a/G =

∧
X/G)

iff ‖a =
∨
X‖ ∈ G (resp., ‖a =

∧
X‖ ∈ G).

Proposition 5.6. The poset P/G, endowed with
∨

and
∧

of Definition 5.4, is a
partial lattice.
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Proof. We first have to prove that
∨

and
∧

are functions. We do it for
∨

. So let
X ∈ [P/G]<ω

∗ and let a, b ∈ P/G such that a =
∨

X and b =
∨

X. Let a, b ∈ P
and let X ∈ [P ]<ω

∗ such that a = a/G, b = b/G, and X = X/G. By Lemma 5.5,
both ‖a =

∨
X‖ and ‖b =

∨
X‖ belong to G, hence, by Lemma 5.3, ‖a = b‖ ∈ G,

so a = b. Hence
∨

is a function on P/G. The same argument applies to
∧

.
To conclude the proof, it is sufficient to prove that for a ∈ P/G and X ∈

[P/G]<ω
∗ , a =

∨
X implies that a = supX (for the partial ordering of P/G), and

similarly for
∧

. We present the proof for
∨

. Let a ∈ P and X ∈ [P ]<ω
∗ such that

a = a/G and X = X/G. By Lemma 5.5, ‖a =
∨
X‖ ∈ G. For x ∈ X , it follows

from Definition 5.1(1) that
∥∥∥a =

∨
X
∥∥∥ =

∥∥∥a =
∨
X
∥∥∥ ∧ ‖a ≤ a‖ ≤

∥∥∥a =
∨
X
∥∥∥ ∧ ‖x ≤ a‖ ≤ ‖x ≤ a‖ ,

so ‖x ≤ a‖ ∈ G, that is, x/G ≤ a/G = a. So, X ≤ a. Now let b ∈ P/G such
that X ≤ b. Pick b ∈ b. For x ∈ X , x/G ≤ b = b/G, so ‖x ≤ b‖ ∈ G; hence∧

x∈X ‖x ≤ b‖ ∈ G. By Definition 5.1(1),
∥∥∥a =

∨
X
∥∥∥ ∧ ‖a ≤ b‖ =

∥∥∥a =
∨
X
∥∥∥ ∧

∧

x∈X

‖x ≤ b‖ ∈ G,

hence ‖a ≤ b‖ ∈ G, that is, a ≤ b. So we have proved that a = supX. �

6. Join-samples and meet-samples

Let D be a distributive lattice with unit, let P be a D-valued partial lattice.
We introduce one of the most important definitions of the whole paper:

Definition 6.1. Let X be a nonempty finite subset of P . A join-sample (resp.,
meet-sample) of X is a nonempty finite subset U of P such that

∥∥∥x =
∨
X
∥∥∥ ≤

∨

u∈U

∥∥∥u =
∨
X
∥∥∥ , for all x ∈ P

(
resp.,

∥∥∥x =
∧
X
∥∥∥ ≤

∨

u∈U

∥∥∥u =
∧
X
∥∥∥ , for all x ∈ P

)
.

Definition 6.2. A D-valued partial lattice P is finitely join-sampled (resp., finitely
meet-sampled), if every nonempty finite subset of P has a join-sample (resp., a meet-
sample). We say that P is finitely sampled, if it is both finitely join-sampled and
finitely meet-sampled.

Of course, if U is a join-sample of X and V is a meet-sample of X , then U ∪ V
(or anything larger) is both a join-sample and a meet-sample of X .

Lemma 6.3. Let X, U , V ∈ [P ]<ω
∗ .

(i) If U and V are join-samples of X, then the equality
∨

u∈U

‖a ≤ u‖ ∧
∥∥∥u =

∨
X
∥∥∥ =

∨

v∈V

‖a ≤ v‖ ∧
∥∥∥v =

∨
X
∥∥∥

holds, for all a ∈ P .
(ii) If U and V are meet-samples of X, then the equality

∨

u∈U

‖u ≤ a‖ ∧
∥∥∥u =

∧
X
∥∥∥ =

∨

v∈V

‖v ≤ a‖ ∧
∥∥∥v =

∧
X
∥∥∥

holds, for all a ∈ P .
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Proof. We provide a proof for (i); (ii) is dual. For u ∈ U ,

‖a ≤ u‖ ∧
∥∥∥u =

∨
X
∥∥∥ =

∨

v∈V

(
‖a ≤ u‖ ∧

∥∥∥u =
∨
X
∥∥∥ ∧

∥∥∥v =
∨
X
∥∥∥
)

(because V is a join-sample of X)

≤
∨

v∈V

(
‖a ≤ u‖ ∧ ‖u = v‖ ∧

∥∥∥v =
∨
X
∥∥∥
)

(by Lemma 5.3)

≤
∨

v∈V

‖a ≤ v‖ ∧
∥∥∥v =

∨
X
∥∥∥ .

hence
∨

u∈U ‖a ≤ u‖ ∧ ‖u =
∨
X‖ ≤

∨
v∈V ‖a ≤ v‖ ∧ ‖v =

∨
X‖. The proof of the

converse inequality is similar. �

Lemma 6.3 makes it possible to define, for all a ∈ P and all X ∈ [P ]<ω
∗ ,

∥∥∥a ≤
∨
X
∥∥∥ =

∨

u∈U

‖a ≤ u‖ ∧
∥∥∥u =

∨
X
∥∥∥ , for every join-sample U of X,

∥∥∥
∧
X ≤ a

∥∥∥ =
∨

u∈U

‖u ≤ a‖ ∧
∥∥∥u =

∧
X
∥∥∥ , for every meet-sample U of X.

We recall that a filter G of D is prime, if x ∨ y ∈ G implies that x ∈ G or y ∈ G,
for all x, y ∈ D.

Lemma 6.4 (The Basic Truth Lemma). Assume that P is finitely sampled. Let
ϕ(z, Z) be one of the following formulas:

• z =
∨
Z;

• z ≤
∨
Z;

• z =
∧
Z;

•
∧
Z ≤ z.

Let a ∈ P , let X ∈ [P ]<ω
∗ , let G be a prime filter of D. Then the following

equivalence holds:

P/G satisfies ϕ(a/G, X/G) iff ‖ϕ(a,X)‖ ∈ G.

Proof. By duality, it is sufficient to prove the result in case ϕ(z, Z) is either z =
∨
Z

or z ≤
∨
Z. The first case follows from Lemma 5.5. So, suppose that ϕ(z, Z) is

z ≤
∨
Z.

Let U be a join-sample of X . Suppose first that a/G ≤
∨
X/G (in P/G). In

particular,
∨

(X/G) is defined, so, by Definition 5.4 and by Lemma 5.5, there exists
a′ ∈ P such that ∥∥∥a′ =

∨
X
∥∥∥ ∈ G, (6.1)

‖a ≤ a′‖ ∈ G. (6.2)

Since U is a join-sample of X , ‖a′ =
∨
X‖ ≤

∨
u∈U ‖u =

∨
X‖, thus, since G is

prime and U is finite, there exists, by (6.1), u ∈ U such that
∥∥∥u =

∨
X
∥∥∥ ∈ G. (6.3)
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From (6.1) and Lemma 5.3, it follows that ‖a′ = u‖ ∈ G, thus, by (6.2), ‖a ≤ u‖ ∈
G. Hence, by (6.3), ‖a ≤

∨
X‖ ∈ G.

Conversely, suppose that ‖a ≤
∨
X‖ ∈ G. Since U is finite and G is prime, there

exists u ∈ U such that ‖a ≤ u‖ ∈ G and ‖u =
∨
X‖ ∈ G. Hence, by Lemma 5.5,

a/G ≤ u/G and u/G =
∨
X/G, so a/G ≤

∨
X/G. �

Further analogues of Lemma 6.4 will be met in 7.5, 7.8, 9.4, 11.7, 11.8, 14.1.

7. Ideal and filter samples

In this section, we fix a distributive lattice D with unit and a D-valued partial
lattice P .

Definition 7.1. Let X ∈ [P ]<ω
∗ . An (Id∩)-sample of X is an element U of [P ]<ω

∗

such that
∧

x∈X

‖a ≤ x‖ =
∨

u∈U

(
‖a ≤ u‖ ∧

∧

x∈X

‖u ≤ x‖

)
(7.1)

holds for all a ∈ P .
Dually, a (Fil∩)-sample of X is an element U of [P ]<ω

∗ such that

∧

x∈X

‖x ≤ a‖ =
∨

u∈U

(
‖u ≤ a‖ ∧

∧

x∈X

‖x ≤ u‖

)
(7.2)

holds for all a ∈ P .

We observe that the ≥ half of both equalities (7.1) and (7.2) always holds, thus
it is sufficient to verify the ≤ half. As a consequence of this, we observe that every
finite subset of P that contains an (Id∩)-sample of X is an (Id∩)-sample of X .

Definition 7.2. We say that P has (Id∩) (resp., (Fil∩)), if every pair of elements
of P has an (Id∩)-sample (resp., a (Fil∩)-sample).

We state without proof the following easy result, that will not be used later:

Proposition 7.3. If P has (Id∩) (resp., (Fil∩)), then every nonempty finite subset
of P has an (Id∩)-sample (resp., a (Fil∩)-sample).

The last two finiteness properties about P that we shall consider are harder to
define. To prepare for this task, we first define new D-valued functions on P .

Definition 7.4. Suppose that P is finitely join-sampled. For a ∈ P , for nonempty,
finite subsets X and U of P , and for n < ω, we define an element ‖a ∈ Idn(X,U)‖
of D, by induction on n, as follows:

(i) ‖a ∈ Id0(X,U)‖ = ‖a ∈ ↓X‖ =
∨

x∈X ‖a ≤ x‖.
(ii) The induction step:

‖a ∈ Idn+1(X,U)‖ = ‖a ∈ Idn(X,U)‖ ∨
∨

∅⊂Z⊆U

∥∥∥a ≤
∨
Z
∥∥∥ ∧ ‖Z ⊆ Idn(X,U)‖ ,

where we put ‖Z ⊆ Idn(X,U)‖ =
∧

z∈Z ‖z ∈ Idn(X,U)‖.

Dually, suppose that P is finitely meet-sampled. For a ∈ P , for nonempty, finite
subsets X and U of P , and for n < ω, we define an element ‖a ∈ Idn(X,U)‖ of D,
by induction on n, as follows:

(i*) ‖a ∈ Fil0(X,U)‖ = ‖a ∈ ↑X‖ =
∨

x∈X ‖x ≤ a‖.
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(ii*) The induction step:

‖a ∈ Filn+1(X,U)‖ = ‖a ∈ Filn(X,U)‖ ∨
∨

∅⊂Z⊆U

∥∥∥
∧
Z ≤ a

∥∥∥ ∧ ‖Z ⊆ Filn(X,U)‖ ,

where we put ‖Z ⊆ Filn(X,U)‖ =
∧

z∈Z ‖z ∈ Filn(X,U)‖.

We observe that the condition that P be finitely join- or meet-sampled is nec-
essary in order to define the elements ‖a ∈ Idn(X,U)‖ and ‖a ∈ Filn(X,U)‖, since
the elements ‖a ≤

∨
Z‖ and ‖

∧
Z ≤ a‖ need to be defined. Our next result re-

lates the D-valued Idn and Filn with their corresponding classical versions, see
Definition 2.9.

Lemma 7.5 (Truth Lemma for Idn(X,U) and Filn(X,U)). Let a ∈ P , let X,
U ∈ [P ]<ω

∗ , and let G be a prime filter of D. Then the following assertions hold:

(i) Suppose that P is finitely join-sampled. Then a/G ∈ Idn(X/G,U/G) in
P/G iff ‖a ∈ Idn(X,U)‖ ∈ G, for any n < ω.

(ii) Suppose that P is finitely meet-sampled. Then a/G ∈ Filn(X/G,U/G) in
P/G iff ‖a ∈ Filn(X,U)‖ ∈ G, for any n < ω.

Proof. We provide a proof for (i). We argue by induction on n. The result for
n = 0 follows immediately from the finiteness of X and the fact that G is prime.

Now suppose the statement proved for n, we prove it for n + 1. Suppose first
that ‖a ∈ Idn+1(X,U)‖ ∈ G. Since P(U) is finite and since G is prime, either
‖a ∈ Idn(X,U)‖ ∈ G, or there exists a nonempty finite subset Z of U such that
‖a ≤

∨
Z‖ ∈ G and ‖Z ⊆ Idn(X,U)‖ ∈ G. In the first case, if follows from the

induction hypothesis that a/G ∈ Idn(X/G,U/G) ⊆ Idn+1(X/G,U/G), so we are
done. In the second case, a/G ≤

∨
(Z/G) by Lemma 6.4, Z/G ⊆ Idn(X/G,U/G) by

the induction hypothesis, and ∅ ⊂ Z/G ⊆ U/G, hence, a/G ∈ Idn+1(X/G,U/G).
Conversely, suppose that a/G ∈ Idn+1(X/G,U/G). If a/G ∈ Idn(X/G,U/G),

then, by the induction hypothesis, ‖a ∈ Idn(X,U)‖ ∈ G, hence ‖a ∈ Idn+1(X,U)‖ ∈
G. Otherwise, there exists a nonempty Z ⊆ U/G such that a/G ≤

∨
Z and

Z ⊆ Idn(X/G,U/G). Since ∅ ⊂ Z ⊆ U/G, there exists a nonempty subset Z
of U such that Z = Z/G. So a/G ≤

∨
Z/G, thus, by Lemma 6.4, ‖a ≤

∨
Z‖ ∈

G. Since Z/G = Z ⊆ Idn(X/G,U/G), it follows from the induction hypothe-
sis that ‖Z ⊆ Idn(X,U)‖ ∈ G. Since ∅ ⊂ Z ⊆ U , Z witnesses the fact that
‖a ∈ Idn+1(X,U)‖ ∈ G. �

Definition 7.6. Let X be a nonempty finite subset of P . An (Id∨)-sample (resp.,
(Fil∨)-sample) of X is a nonempty finite subset U of P such that there exists n < ω
such that

‖a ∈ Idn(X,U)‖ = ‖a ∈ Idn+1(X,Y )‖

(resp., ‖a ∈ Filn(X,U)‖ = ‖a ∈ Filn+1(X,Y )‖),

for all a ∈ P and all Y ∈ [P ]<ω
∗ containing U .

We call any such n an ideal index (resp., filter index ) of 〈X,U〉.

If U is an (Id∨)-sample of X , with ideal index n, then it is easy to verify that
‖a ∈ Idk(X,Y )‖ = ‖a ∈ Idn(X,U)‖, for all a ∈ P , all k ≥ n, and all finite Y ⊇ U .
Hence this expression is independent of the chosen sample U and index n, we denote
it by ‖a ∈ Id(X)‖.
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Dually, we define ‖a ∈ Fil(X)‖ as the common value of a ∈ Filn(X,U), for every
(Fil∨)-sample U of X , with filter index n.

Definition 7.7. We say that P has (Id∨) (resp., (Fil∨)), if P is finitely join-
sampled (resp., finitely meet-sampled) and every nonempty finite subset of P has
an (Id∨)-sample (resp., a (Fil∨)-sample).

As an easy consequence of the remarks following Definition 2.9 and of Lemma 7.5,
we obtain the following:

Lemma 7.8 (Truth Lemma for Id(X) and Fil(X)). Let a ∈ P , let X ∈ [P ]<ω
∗ , and

let G be a prime filter of D. Then the following equivalences hold:

(i) Suppose that P has (Id∨). Then

a/G ∈ Id(X/G) in P/G iff ‖a ∈ Id(X)‖ ∈ G.

(ii) Suppose that P has (Fil∨). Then

a/G ∈ Fil(X/G) in P/G iff ‖a ∈ Fil(X)‖ ∈ G.

The definition of (Id∨) and of (Fil∨) forD-valued partial lattice presented in Def-
inition 7.7 is quite unwieldy, because it involves the Boolean values ‖a ∈ Idn(X,U)‖
or ‖a ∈ Filn(X,U)‖ presented in Definition 7.6. However, Lemma 7.5 makes it pos-
sible to find a useful equivalent form:

Lemma 7.9. The finitely join-sampled D-valued partial lattice P has (Id∨) iff for
all X ∈ [P ]<ω

∗ , there are U ∈ [P ]<ω
∗ and n < ω such that

Idn(X/G,U/G) = Idn+1(X/G, Y/G),

for every Y ∈ [P ]<ω
∗ containing U and every prime filter G of D. The dual state-

ment holds, about (Fil∨) and Filn, for finitely meet-sampled P .

8. Affine lower and upper functions; ideal and filter functions

Let D be a distributive lattice with unit. The D-valued analogue of the notions
of a lower set and an upper set are provided by the following definition.

Definition 8.1. Let P be a D-valued poset. A map f : P → D is a lower function,
if f(y) ∧ ‖x ≤ y‖ ≤ f(x), for all x, y ∈ P . Dually, f is an upper function, if
f(x) ∧ ‖x ≤ y‖ ≤ f(y), for all x, y ∈ P .

For example, if P is a poset, viewed, as in Example 4.2, with its canonical
structure of 2-valued poset, then the lower (resp., upper) functions on P are exactly
the characteristic functions of the lower (resp., upper) subsets of P .

It is obvious that for a ∈ P , the map x 7→ ‖x ≤ a‖ (resp., x 7→ ‖a ≤ x‖) is a lower
function (resp., upper function) on P—we shall call these functions principal lower
functions (resp., principal upper functions). Furthermore, any constant function is
both a lower function and an upper function, and any finite meet or join of lower
functions (resp., upper functions) is a lower function (resp., an upper function).
This gives a class of “simple” lower functions and upper functions, an analogue of
finitely generated lower subsets or upper subsets of a poset.

Definition 8.2. Let P be a D-valued poset. An affine lower function on P is a
map f : P → D defined by a rule of the form

f(x) =
∨

i<n

‖x ≤ ui‖ ∧ αi, for all x ∈ P,
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where n ∈ ω\{0}, u0,. . . , un−1 ∈ P , and α0,. . . , αn−1 ∈ D. Dually, an affine upper
function on P is a map f : P → D defined by a rule of the form

f(x) =
∨

i<n

‖ui ≤ x‖ ∧ αi, for all x ∈ P,

where n ∈ ω \ {0}, u0,. . . , un−1 ∈ P , and α0,. . . , αn−1 ∈ D.

In particular, any affine lower function is a lower function, and any affine upper
function is an upper function.

Definition 8.3. Let P be a D-valued partial lattice. An ideal function on P is a
lower function f : P → D such that

∥∥∥a =
∨
X
∥∥∥ ∧

∧

x∈X

f(x) ≤ f(a), for all a ∈ P and all X ∈ [P ]<ω
∗ .

Dually, a filter function on P is an upper function f : P → D such that
∥∥∥a =

∧
X
∥∥∥ ∧

∧

x∈X

f(x) ≤ f(a), for all a ∈ P and all X ∈ [P ]<ω
∗ .

An affine ideal function on P is a function that is simultaneously an affine lower
function and an ideal function on P . Dually, an affine filter function on P is a
function that is simultaneously an affine upper function and a filter function on P .

We observe that the set of all ideal functions (resp., filter functions) on P is
closed under componentwise meet, but not under componentwise join as a rule,
just the same way as the union of two ideals of a partial lattice is not necessarily
an ideal.

Example 8.4. Every partial lattice P can be viewed as a 2-valued partial lattice,
see Example 5.2. If I is an ideal of P , then the characteristic function of I is an
ideal function on P , and, dually, a similar statement holds for filters.

Lemma 8.5. Let P be a D-valued partial lattice, let f : P → D.

(i) If P is finitely join-sampled and f is an ideal function, then
∥∥∥a ≤

∨
X
∥∥∥ ∧

∧

x∈X

f(x) ≤ f(a), for all a ∈ P and all X ∈ [P ]<ω
∗ .

(ii) If P is finitely meet-sampled and f is a filter function, then
∥∥∥
∧
X ≤ a

∥∥∥ ∧
∧

x∈X

f(x) ≤ f(a), for all a ∈ P and all X ∈ [P ]<ω
∗ .

Proof. We provide a proof for (i). Let U be a join-sample of X . Then, for a ∈ P ,

∥∥∥a ≤
∨
X
∥∥∥ ∧

∧

x∈X

f(x) =
∨

u∈U

(
‖a ≤ u‖ ∧

∥∥∥u =
∨
X
∥∥∥ ∧

∧

x∈X

f(x)

)

≤
∨

u∈U

‖a ≤ u‖ ∧ f(u)

(because f is an ideal function)

≤ f(a),

(because f is a lower function). �
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In a D-valued partial lattice P , it is easy to prove that any principal lower
function is an affine ideal function, and any principal upper function is an affine
filter function. Our next result provides extensions of this simple fact.

Proposition 8.6. Let P be a D-valued partial lattice, let X and U be nonempty
finite subsets of P . Then the following assertions hold:

(i) Suppose that P is finitely join-sampled. Then the map a 7→ ‖a ∈ Idn(X,U)‖
is an affine lower function on P . Furthermore, if P has (Id∨), then the
map a 7→ ‖a ∈ Id(X)‖ is an affine ideal function on P .

(ii) Suppose that P is finitely meet-sampled. Then the map a 7→ ‖a ∈ Filn(X,U)‖
is an affine upper function on P . Furthermore, if P has (Fil∨), then the
map a 7→ ‖a ∈ Fil(X)‖ is an affine filter function on P .

Proof. We provide a proof for (i). For n < ω, let fn : a 7→ ‖a ∈ Idn(X,U)‖. We
prove, by induction on n, that fn is an affine lower function.

For n = 0, f0(a) =
∨

x∈X ‖a ≤ x‖ for all a, thus f0 is an affine lower function.
Before proceeding to the induction step, we prove a claim:

Claim 1. The map a 7→ ‖a ≤
∨
Y ‖ is an affine lower function, for all Y ∈ [P ]<ω

∗ .

Proof of Claim. Let V be a join-sample of Y . Then
∥∥∥a ≤

∨
Y
∥∥∥ =

∨

v∈V

‖a ≤ v‖ ∧ βv, for all a ∈ P (use Lemma 6.3(i)),

where we put βv = ‖v =
∨
Y ‖, for all v ∈ V . � Claim 1.

Now suppose that fn is an affine lower function on P . Then

fn+1(a) = fn(a) ∨
∨

∅⊂Z⊆U

∥∥∥a ≤
∨
Z
∥∥∥ ∧ γZ ,

for all a ∈ P , where we put γZ = ‖Z ⊆ Idn(X,U)‖, for all nonempty Z ⊆ U .
Therefore, by Claim 1 and the induction hypothesis, fn+1 is an affine lower function.
So all fn are affine lower functions.

Now let f : a 7→ ‖a ∈ Id(X)‖. Suppose that P has (Id∨). Let U be an (Id∨)-
sample of X , with index n. So ‖a ∈ Id(X)‖ = ‖a ∈ Idn(X,U)‖, for all a ∈ P .
Hence f is an affine lower function. So, to conclude the proof, it is sufficient to
prove that f is an ideal function. So let Z ∈ [P ]<ω

∗ , let a ∈ P . We compute:
∥∥∥a =

∨
Z
∥∥∥ ∧

∧

z∈Z

f(z) =
∥∥∥a =

∨
Z
∥∥∥ ∧

∧

z∈Z

‖z ∈ Idn(X,U)‖

=
∥∥∥a =

∨
Z
∥∥∥ ∧ ‖Z ⊆ Idn(X,U)‖

≤
∥∥∥a =

∨
Z
∥∥∥ ∧ ‖Z ⊆ Idn(X,U ∪ Z)‖

≤ ‖a ∈ Idn+1(X,U ∪ Z)‖

(because ‖a =
∨
Z‖ ≤ ‖a ≤

∨
Z‖)

= f(a).

So f is an ideal function on P . �
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Notation 8.7. Let P be a D-valued partial lattice. We denote by Iaff(P ) (resp.,
Faff(P )) the set of all affine ideal functions (resp., affine filter functions) on P ,
partially ordered componentwise.

For the remainder of this section, we assume that P is a D-valued partial lattice.

Notation 8.8. Let f : P → D. If there exists a least ideal (resp., filter) function g
such that f ≤ g, then we denote this function by f Id (resp., fFil).

We observe that f ≤ f Id and also f ≤ fFil.

Lemma 8.9. Let X ∈ [P ]<ω
∗ .

(i) Suppose that P has (Id∨). Let f : a 7→ ‖a ∈ ↓X‖ ∧ α. Then f Id : a 7→
‖a ∈ Id(X)‖ ∧ α.

(ii) Suppose that P has (Fil∨). Let f : a 7→ ‖a ∈ ↑X‖ ∧ α. Then fFil : a 7→
‖a ∈ Fil(X)‖ ∧ α.

Proof. We provide a proof for (i). Let g : a 7→ ‖a ∈ Id(X)‖ ∧ α. It is obvious that
f ≤ g. By Proposition 8.6, g is an affine ideal function on P .

It remains to prove that g ≤ h, for every ideal function h on P such that f ≤ h.
Since g has the form a 7→ ‖a ∈ Idn(X,U)‖ ∧ α, for some U and some n, it suffices
to prove that

‖a ∈ Idn(X,U)‖ ∧ α ≤ h(a), for all a ∈ P, all U ∈ [P ]<ω
∗ , and all n < ω. (8.1)

For n = 0, ‖a ∈ Idn(X,U)‖ ∧ α = f(a) ≤ h(a), so (8.1) holds. Assume that (8.1)
holds for n. For nonempty Z ⊆ U , we compute:

∥∥∥a ≤
∨
Z
∥∥∥ ∧ ‖Z ⊆ Idn(X,U)‖ ∧ α ≤

∥∥∥a ≤
∨
Z
∥∥∥ ∧

∧

z∈Z

h(z)

(by the induction hypothesis)

≤ h(a)

by Lemma 8.5. Hence ‖a ∈ Idn+1(X,U)‖∧α ≤ h(a), for all a ∈ P . This concludes
the proof of (8.1). �

As a consequence, f Id can be computed explicitly, for any affine lower function
f (and dually):

Proposition 8.10. Let n ∈ ω \ {0}, let u0,. . . , un−1 ∈ P , let α0,. . . , αn−1 ∈ D.
For all nonempty I ⊆ n, we put

u(I) = { ui | i ∈ I },

α(I) =
∧

i∈I

αi.

(i) Suppose that P has (Id∨). Let f : a 7→
∨

i<n ‖a ≤ ui‖ ∧ αi. Then f Id is
defined, and

f Id(a) =
∨

∅⊂I⊆n

∥∥∥a ∈ Id(u(I))
∥∥∥ ∧ α(I),

for all a ∈ P . In particular, f Id is an affine ideal function.
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(ii) Suppose that P has (Fil∨). Let f : a 7→
∨

i<n ‖ui ≤ a‖ ∧ αi. Then fFil is
defined, and

fFil(a) =
∨

∅⊂I⊆n

∥∥∥a ∈ Fil(u(I))
∥∥∥ ∧ α(I),

for all a ∈ P . In particular, fFil is an affine filter function.

Proof. We provide a proof for (i). By Lemma 8.9, for ∅ ⊂ I ⊆ n, the map
gI : a 7→

∥∥a ∈ Id(u(I))
∥∥ ∧ α(I) is an affine ideal function, so g =

∨
∅⊂I⊆n gI is an

affine lower function on P . Furthermore, g{i}(a) = ‖a ≤ ui‖ ∧ αi, for all i < n and
all a ∈ P , thus f ≤ g. Let h be an ideal function on P such that f ≤ h. In order
to verify that g ≤ h, it suffices to verify that gI ≤ h for all nonempty I ⊆ n. For
a ∈ P ,

∥∥∥a ∈ ↓u(I)
∥∥∥ ∧ α(I) =

∨

i∈I

‖a ≤ ui‖ ∧ α(I) ≤ f(a) ≤ h(a).

Therefore, by Lemma 8.9, gI ≤ h. This holds for all I, therefore, g ≤ h.
To conclude the proof, it suffices to prove that g is an ideal function on P . So,

let a ∈ P and let X ∈ [P ]<ω
∗ . We shall prove that

∥∥∥a =
∨
X
∥∥∥ ∧

∧

x∈X

g(x) ≤ g(a). (8.2)

To prove (8.2), it suffices to prove that ‖a =
∨
X‖ ∧

∧
x∈X g(x) ∈ G implies that

g(a) ∈ G, for any prime filter G of D. By Lemmas 6.4 and 7.8 and by the definition
of g,

a/G =
∨
X/G, (8.3)

and, for all x ∈ X , there exists a nonempty Ix ⊆ n such that

α(Ix) ∈ G, (8.4)
∥∥∥x ∈ Id(u(Ix))

∥∥∥ ∈ G. (8.5)

Now put I =
⋃

x∈X Ix. Then, by (8.4), α(I) =
∧

x∈X α(Ix) ∈ G. Furthermore,

Ix ⊆ I, hence
∥∥x ∈ Id(u(Ix))

∥∥ ≤
∥∥x ∈ Id(u(I))

∥∥, so, by (8.5),
∥∥x ∈ Id(u(I))

∥∥ ∈ G,

for all x ∈ X . So we have proved that
∥∥x ∈ Id(u(I))

∥∥ ∧ α(I) ∈ G, for all x ∈ X .

By Lemma 7.8, x/G ∈ Id
(
u(I)/G

)
. This holds for all x ∈ X , thus, by (8.3),

a/G ∈ Id
(
u(I)/G

)
. By Lemma 7.8,

∥∥a ∈ Id(u(I))
∥∥ ∧ α(I) ∈ G, whence g(a) ∈ G.

This completes the proof of (8.2). �

Note the following immediate corollary of Proposition 8.10:

Corollary 8.11. Let P be a D-valued partial lattice, let f : P → D, let α ∈ D.

(i) Suppose that P has (Id∨). If f is an affine lower function, then (f∧α)Id =
f Id ∧ α.

(ii) Suppose that P has (Fil∨). If f is an affine upper function, then (f ∧
α)Fil = fFil ∧ α.
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9. The lattices of affine ideal functions and affine filter functions

In this section, we fix a distributive lattice D with unit, and a D-valued partial
lattice P .

Lemma 9.1.

(i) Suppose that P has (Id∩). Then the meet of any two affine lower functions
on P is an affine lower function on P . In particular, Iaff(P ) is closed
under meet.

(ii) Suppose that P has (Fil∩). Then the meet of any two affine upper functions
on P is an affine upper function on P . In particular, Faff(P ) is closed
under meet.

Proof. We provide a proof for (i). Let f , g ∈ Iaff(P ). Write

f : x 7→
∨

i<m

‖x ≤ ui‖ ∧ αi, g : x 7→
∨

j<n

‖x ≤ vj‖ ∧ βj .

By (Id∩), there exists a common (Id∩)-sample W for all pairs {ui, vj}, for 〈i, j〉 ∈
m× n. This means that

‖x ≤ ui‖ ∧ ‖x ≤ vj‖ =
∨

w∈W

‖x ≤ w‖ ∧ γi,j,w, for all x ∈ P,

where we put γi,j,w = ‖w ≤ ui‖ ∧ ‖w ≤ vj‖, for all 〈i, j, w〉 ∈ m × n×W . Hence,
for x ∈ P ,

f(x) ∧ g(x) =
∨

i<m
j<n

‖x ≤ ui‖ ∧ ‖x ≤ vj‖ ∧ αi ∧ βj

=
∨

w∈W

‖x ≤ w‖ ∧ γw,

where we put γw =
∨

〈i,j〉∈m×n γi,j,w ∧ αi ∧ βj , for all w ∈ W . Therefore, f ∧ g is

an affine lower function.
Since the meet of any two ideal functions on P is an ideal function on P , it

follows that Iaff(P ) is closed under meet. �

Corollary 9.2.

(i) If P has both (Id∩) and (Id∨), then Iaff(P ), with componentwise ordering,
is a lattice.

(ii) If P has both (Fil∩) and (Fil∨), then Faff(P ), with componentwise order-
ing, is a lattice.

Proof. We provide a proof for (i). By Lemma 9.1, Iaff(P ) is closed under meet. If
f , g ∈ Iaff(P ), then f ∨ g (the componentwise join of f and g) is an affine lower
function on P , thus, by Proposition 8.10, (f ∨ g)Id is defined, and it belongs to
Iaff(P ). So (f ∨ g)Id is the join of {f, g} in Iaff(P ). �

In order to differentiate between the componentwise join f ∨ g and the join
of {f, g} in Iaff(P ) (or Faff(P )), we introduce a notation:

Notation 9.3. Under the assumptions of Corollary 9.2, we denote by f ∨Id g (resp.,
f ∨Fil g) the join of {f, g} in Iaff(P ) (resp., in Faff(P )).
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Our next goal is to relate the meet and the join in Iaff(P ) and Faff(p) on the
one hand, and the meet (intersection) and the join in I(P/G) and F(P/G) on the
other hand, for a prime filter G of D. For a lower function f : P → D, the inverse
image f−1G of G has the property that if y ∈ f−1G and x ≤G y (the preordering
≤G has been introduced in Section 5), then x ∈ f−1G. Hence, x/G ∈ f−1G/G iff
f(x) ∈ G. This also holds for upper functions on P . Our next result analyzes in
more detail the map f 7→ f−1G/G.

Proposition 9.4. Let G be a prime filter of D.

(i) Suppose that P has (Id∩) and (Id∨). Then the rule f 7→ f−1G/G deter-
mines a lattice homomorphism from 〈Iaff(P ),∧,∨Id〉 to 〈I(P/G),∩,∨〉.

(ii) Suppose that P has (Fil∩) and (Fil∨). Then the rule f 7→ f−1G/G deter-
mines a lattice homomorphism from 〈Faff(P ),∧,∨Fil〉 to 〈F(P/G),∩,∨〉.

Proof. We provide a proof for (i). We denote by πG the map f 7→ f−1G/G. If
f : x 7→ ‖x ≤ u‖ ∧ α, for fixed u ∈ P and α ∈ D, then πG(f) equals ↓u/G if α ∈ G,
∅ otherwise, so πG(f) is in both cases an ideal of P/G.

To prove that πG is a join-homomorphism with range contained in Id(P/G), it

suffices to prove that if f =
∨Id

i<n
fi, where n ∈ ω \ {0} and fi : a 7→ ‖a ≤ ui‖ ∧ αi

for all i < n (where ui ∈ P and αi ∈ D), then πG(f) is the join of { πG(fi) | i < n }
in Id(P/G), that is, we must prove that

f−1G/G = Id

(
⋃

i<n

f−1
i G/G

)
. (9.1)

So, let a ∈ P . Suppose first that a/G ∈ f−1G/G, that is, f(a) ∈ G. By the formula
given for f in Proposition 8.10(i), there exists a nonempty subset I of n such that,
using the same notations as in Proposition 8.10(i), α(I) ∈ G and

∥∥a ∈ Id(u(I))
∥∥ ∈ G.

Therefore, αi ∈ G for all i ∈ I, and, by Lemma 7.8, a/G ∈ Id(u(I)/G). But, for

i ∈ I, fi(ui) = αi ∈ G, thus ui/G ∈ f−1
i G/G. Therefore, a/G ∈ Id

(⋃
i<n f

−1
i G/G

)
.

Conversely, suppose that a/G ∈ Id
(⋃

i<n f
−1
i G/G

)
. We observe that

⋃
i<n f

−1
i G/G

is generated, as a lower subset of P/G, by u(I)/G, where I = { i < n | αi ∈ G }.
Thus, a/G ∈ Id(u(I)/G), so, by Lemma 7.8,

∥∥a ∈ Id(u(I))
∥∥ ∈ G. Since α(I) ∈ G,∥∥a ∈ Id(u(I))

∥∥ ∧ α(I) ∈ G, whence f(a) ∈ G, that is, a/G ∈ f−1G/G.
So we have proved that (9.1) holds. As remarked above, this shows that πG is a

join-homomorphism with range a subset of Id(P/G).
To conclude the proof, it is sufficient to prove that πG is a meet-homomorphism.

This is easy: for a ∈ P ,

a/G ∈ πG(f ∧ g) iff f(a) ∧ g(a) ∈ G

iff f(a) ∈ G and g(a) ∈ G

iff a/G ∈ πG(f) and a/G ∈ πG(g)

iff a/G ∈ πG(f) ∩ πG(g).

Therefore, πG(f ∧ g) = πG(f) ∩ πG(g). �

10. The elements [[f ≤ g]]

We first introduce a convenient notation.
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Notation 10.1. Let 〈αi | i ∈ I 〉 be a family of elements of a lattice D, let α ∈ D.

Let α =
∨fin

i∈I
αi hold, if there exists a finite subset J of I such that αi ≤

∨
j∈J αj ,

for all i ∈ I, and α =
∨

j∈J αj .

Hence, α =
∨fin

i∈I
αi means that the supremum of the αi is, really, the supremum

of a finite subfamily of 〈αi | i ∈ I 〉.
For the remainder of this section, let D be a distributive lattice with unit and

let P be a D-valued poset.

Lemma 10.2. Let m, n ∈ ω \ {0}, let u0,. . . , um−1, v0, . . . , vn−1 ∈ P , α0,. . . ,
αm−1, β0,. . . , βn−1 ∈ D. We define maps f and g from P to D by the rules

f(x) =
∨

i<m

‖ui ≤ x‖ ∧ αi, g(x) =
∨

j<n

‖x ≤ vj‖ ∧ βj ,

for all a ∈ P . Put

γ =
∨

〈i,j〉∈m×n

αi ∧ βj ∧ ‖ui ≤ vj‖ .

Then γ =
∨fin

x∈P
f(x) ∧ g(x).

Proof. For x ∈ P ,

f(x) ∧ g(x) =
∨

〈i,j〉∈m×n

‖ui ≤ x‖ ∧ ‖x ≤ vj‖ ∧ αi ∧ βj

≤
∨

〈i,j〉∈m×n

‖ui ≤ vj‖ ∧ αi ∧ βj

= γ.

Conversely, for 〈i, j〉 ∈ m× n,

αi ∧ βj ∧ ‖ui ≤ vj‖ ≤ αi ∧ g(vj) ∧ ‖ui ≤ vj‖ ≤ f(vj) ∧ g(vj).

The conclusion follows, with γ =
∨

j<n f(vj) ∧ g(vj). �

Definition 10.3. For an affine upper function f : P → D and an affine lower
function g : P → D, we put

[[f ≤ g]] =
∨fin

x∈P
f(x) ∧ g(x).

By Lemma 10.2, [[f ≤ g]] is always defined, and it is an element of D.

Remark 10.4. With f and g defined as in the statement of Lemma 10.2, we have
obtained that

[[f ≤ g]] =
∨

j<n

f(vj) ∧ g(vj).

We could have obtained, similarly, that

[[f ≤ g]] =
∨

i<m

f(ui) ∧ g(ui).

These expressions will be used in Lemma 11.3.
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11. Extension of the Boolean values to W(P )

Throughout this section, let D be a distributive lattice with unit, let P be a
D-valued partial lattice with (Id∩), (Fil∩), (Id∨), and (Fil∨). We shall extend the
notation ‖a ≤ b‖, for a, b ∈ P , to all pairs of elements of W(P ).

Definition 11.1. For ẋ ∈ W(P ), we define, by induction on the height of ẋ, an
affine ideal function ẋ− and an affine filter function ẋ+ on P by the following rules:

(i) If ẋ = a ∈ P , then ẋ− : t 7→ ‖t ≤ a‖ and ẋ+ : t 7→ ‖a ≤ t‖.
(ii) (ẋ ∧ ẏ)− = ẋ− ∧ ẏ−, and (ẋ ∨ ẏ)− = ẋ− ∨Id ẏ−, for all ẋ, ẏ ∈ W(P ).
(iii) (ẋ ∧ ẏ)+ = ẋ+ ∨Fil ẏ+, and (ẋ ∨ ẏ)+ = ẋ+ ∧ ẏ+, for all ẋ, ẏ ∈ W(P ).

We can now provide the D-valued analogue of the notation ẋ≪ ẏ introduced in
Definition 2.5, by using the elements [[f ≤ g]], see Definition 10.3:

Definition 11.2. For ẋ, ẏ ∈ W(P ), we put

‖ẋ≪ ẏ‖ = [[ẋ+ ≤ ẏ−]].

As an easy consequence of Remark 10.4, we record the following:

Lemma 11.3. For a ∈ P and ẋ ∈ W(P ), the following equalities hold:

‖a≪ ẋ‖ = ẋ−(a), ‖ẋ≪ a‖ = ẋ+(a)

Definition 11.4. We define ‖ẋ ≤ ẏ‖, for ẋ, ẏ ∈ W(P ), by induction on max{ht(ẋ), ht(ẏ)},
as follows:

(i) ‖ẋ ≤ ẏ‖ = ‖ẋ≪ ẏ‖, if ẋ ∈ P or ẏ ∈ P ,
(ii) ‖ẋ0 ∨ ẋ1 ≤ ẏ0 ∧ ẏ1‖ =

∧
i,j<2 ‖ẋi ≤ ẏj‖,

(iii) ‖ẋ0 ∨ ẋ1 ≤ ẏ0 ∨ ẏ1‖ =
∧

i<2 ‖ẋi ≤ ẏ0 ∨ ẏ1‖.
(iv) ‖ẋ0 ∧ ẋ1 ≤ ẏ0 ∧ ẏ1‖ =

∧
j<2 ‖ẋ0 ∧ ẋ1 ≤ ẏj‖.

(v) ‖ẋ0 ∧ ẋ1 ≤ ẏ0 ∨ ẏ1‖ = ‖ẋ0 ∧ ẋ1 ≪ ẏ0 ∨ ẏ1‖ ∨
∨

i,j<2 ‖ẋi ≤ ẏj‖.

Proposition 11.5. Let ẋ, ẋ0, ẋ1, ẏ, ẏ0, ẏ1 ∈ W(P ). Then the following equalities
hold:

‖ẋ0 ∨ ẋ1 ≤ ẏ‖ = ‖ẋ0 ≤ ẏ‖ ∧ ‖ẋ1 ≤ ẏ‖ ; (11.1)

‖ẋ ≤ ẏ0 ∧ ẏ1‖ = ‖ẋ ≤ ẏ0‖ ∧ ‖ẋ ≤ ẏ1‖ . (11.2)

Proof. By induction on n < ω, we prove that (11.1) (resp., (11.2)) holds for all
ẋ0, ẋ1, ẏ such that ht(ẋ0) + ht(ẋ1) + ht(ẏ) ≤ n (resp., for all ẋ, ẏ0, ẏ1 such that
ht(ẋ) + ht(ẏ0) + ht(ẏ1) ≤ n). Let us prove, for example, that (11.1) holds.

Suppose first that ẏ = a ∈ P . We compute:

‖ẋ0 ∨ ẋ1 ≤ a‖ = ‖ẋ0 ∨ ẋ1 ≪ a‖ (by the definition of ‖ẋ ≤ a‖)

= (ẋ0 ∨ ẋ1)
+(a) (by Lemma 11.3)

= ẋ+
0 (a) ∧ ẋ+

1 (a)

= ‖ẋ0 ≪ a‖ ∧ ‖ẋ1 ≪ a‖

= ‖ẋ0 ≤ a‖ ∧ ‖ẋ1 ≤ a‖ .

Next, suppose that ẏ = ẏ0 ∧ ẏ1. We compute:

‖ẋ0 ∨ ẋ1 ≤ ẏ‖ =
∧

i,j<2

‖ẋi ≤ ẏj‖
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(by Definition 11.4(ii))

= ‖ẋ0 ≤ ẏ0 ∧ ẏ1‖ ∧ ‖ẋ1 ≤ ẏ0 ∧ ẏ1‖

(by the induction hypothesis about (11.2))

= ‖ẋ0 ≤ ẏ‖ ∧ ‖ẋ1 ≤ ẏ‖ .

Finally, the case ẏ = ẏ0 ∨ ẏ1 is trivial (see Definition 11.4(iii)). �

For any prime filter G on D, we consider the canonical map

̺G : W(P ) ։ W(P/G), ẋ 7→ ẋ/G.

For a ∈ P and for ẋ, ẏ ∈ W(P ), ̺G satisfies

̺G(a) = a/G ∈ P/G,

̺G(ẋ ∨ ẏ) = ̺G(ẋ) ∨ ̺G(ẏ),

̺G(ẋ ∧ ẏ) = ̺G(ẋ) ∧ ̺G(ẏ).

We now relate the D-valued ẋ− and ẋ+ with their corresponding classical ver-
sions, see Definition 2.4:

Lemma 11.6. Let G be a prime filter of D. For any a ∈ P and ẋ ∈ W(P ), the
following equivalences hold:

ẋ−(a) ∈ G iff a/G ∈ (ẋ/G)−, (11.3)

ẋ+(a) ∈ G iff a/G ∈ (ẋ/G)+ (11.4)

In other words, (ẋ−)−1G/G = (ẋ/G)− and (ẋ+)−1G/G = (ẋ/G)+.

Proof. We provide a proof for (11.3). We argue by induction on the height of ẋ. If
ẋ = b ∈ P , we must prove ‖a ≤ b‖ ∈ G iff a/G ∈ (b/G)−, which is the definition of
the ordering in P/G.

Suppose that ẋ = ẋ0 ∨ ẋ1. Then ẋ− = ẋ−0 ∨Id ẋ−1 . We compute further:

(ẋ−)−1G/G = (ẋ−0 )−1G/G ∨ (ẋ−1 )−1G/G in I(P/G)

(by Proposition 9.4)

= (ẋ0/G)− ∨ (ẋ1/G)−

(by the induction hypothesis)

= (ẋ0/G ∨ ẋ1/G)−

(see Definition 2.4)

= ((ẋ0 ∨ ẋ1)/G)−

= (ẋ/G)−.

The proof for the case ẋ = ẋ0 ∧ ẋ1 is similar. �

It is now easy to relate the symbols ẋ≪ ẏ (see Definition 2.5) and ‖ẋ≪ ẏ‖:

Corollary 11.7. Let G be a prime filter of D, let ẋ, ẏ ∈ W(P ). Then ẋ/G ≪ ẏ/G

(in W(P/G)) iff ‖ẋ≪ ẏ‖ ∈ G.

We are now ready to extend Corollary 11.7 to the case ‖ẋ ≤ ẏ‖:
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Proposition 11.8. Let G be a prime filter of D, let ẋ, ẏ ∈ W(P ). Then ẋ/G � ẏ/G

(in W(P/G)) iff ‖ẋ ≤ ẏ‖ ∈ G.

Proof. We argue by induction on the pair 〈ht(ẋ), ht(ẏ)〉. If ẋ ∈ P or ẏ ∈ P , the
conclusion follows from Corollary 11.7. The cases ẋ = ẋ0 ∨ ẋ1 and ẏ = ẏ0 ∧ ẏ1,
ẋ = ẋ0 ∨ ẋ1 and ẏ = ẏ0 ∨ ẏ1, and ẋ = ẋ0 ∧ ẋ1 and ẏ = ẏ0 ∧ ẏ1 are obvious by the
induction hypothesis. The case ẋ = ẋ0∧ẋ1 and ẏ = ẏ0∨ ẏ1 is easy by Corollary 11.7
and the induction hypothesis. �

By using the fact that the relation � (see Definition 2.6) is reflexive and tran-
sitive in each P/G (see Lemma 2.7) and by Lemma 4.6, we obtain the following
consequence:

Corollary 11.9. For ẋ, ẏ, ż ∈ W(P ), the following inequalities hold:

‖ẋ ≤ ẋ‖ = 1;

‖ẋ ≤ ẏ‖ ∧ ‖ẏ ≤ ż‖ ≤ ‖ẋ ≤ ż‖ .

Remark 11.10. Of course, the identity ‖ẋ ≤ ẋ‖ = 1 is easy to prove directly. How-
ever, proving the inequality ‖ẋ ≤ ẏ‖ ∧ ‖ẏ ≤ ż‖ ≤ ‖ẋ ≤ ż‖ directly is much less
intuitive (though, of course, possible) if one has to avoid the use of prime filters
of D.

In particular, W(P ) is a D-valued poset.

Part 3. D-comeasured partial lattices

12. Finitely covered D-comeasured partial lattices

Our next definition will be a combination between the definition of a D-valued
poset and a partial lattice. In this section, we fix a distributive lattice D with unit.

Definition 12.1. A D-comeasured partial lattice is a structure
〈P, ‖−−‖ ,≤,

∨
,
∧
〉 that satisfies the following axioms:

(i) 〈P,≤,
∨
,
∧
〉 is a partial lattice.

(ii) 〈P, ‖−−‖〉 is a D-valued poset.
(iii) x ≤ y implies that ‖x ≤ y‖ = 1.
(iv) a =

∨
X implies that ‖a ≤ b‖ =

∧
x∈X ‖x ≤ b‖, for all a, b ∈ P and all

X ∈ dom
∨

.
(v) a =

∧
X implies that ‖b ≤ a‖ =

∧
x∈X ‖b ≤ x‖, for all a, b ∈ P and all

X ∈ dom
∧

.

Definition 12.2. Let P be a D-valued poset, let D be a subset of [P ]<ω
∗ . If

X ∈ [P ]<ω
∗ , a D-cover of X is a nonempty, finite subset D′ of D such that

‖X = Y ‖ ≤
∨

Z∈D′

‖X = Z‖ , for all Y ∈ D.

We say that D is finitely covering, if every element of [P ]<ω
∗ has a D-cover.

We say that a D-comeasured partial lattice P is finitely covering, if both dom
∨

and dom
∧

are finitely covering subsets of [P ]<ω
∗ .

Observe that if D′ is a D-cover of X , then any finite subset of D that contains
D′ is also a D-cover of X .
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Observe also that in the definition of a D-cover, we could have replaced the
inequality

‖X = Y ‖ ≤
∨

Z∈D′

‖X = Z‖

by the inequality

‖X = Y ‖ ≤
∨

Z∈D′

‖Y = Z‖ ,

since ‖X = Y ‖ ∧ ‖X = Z‖ = ‖X = Y ‖ ∧ ‖Y = Z‖ (by Lemma 4.3).

Lemma 12.3. Let P be a D-valued poset, let D be a finitely covering subset of
[P ]<ω

∗ . Then for all X ∈ [P ]<ω
∗ , there exists a nonempty finite subset D′ of D such

that

‖Y ⊆ X‖ ≤
∨

Z∈D′

‖Y = Z‖ , for all Y ∈ D.

Proof. Pick a common D-cover, D′, of all nonempty subsets of X . We compute:

‖Y ⊆ X‖ =
∨

∅⊂T⊆X

‖Y = T ‖

(by Lemma 4.5)

=
∨

∅⊂T⊆X

∨

Z∈D′

‖Y = T ‖ ∧ ‖T = Z‖

(because Y ∈ D)

≤
∨

Z∈D′

‖Y = Z‖

by Lemma 4.3. �

We observe that the condition that P be finitely covering, for a D-comeasured
partial lattice P , implies that both dom

∨
and dom

∧
are nonempty.

The following observation, although trivial, provides us with two important
classes of finitely covering D-comeasured partial lattices.

Proposition 12.4. Let P be a D-comeasured partial lattice. Each of the following
conditions implies that P is finitely covering:

(i) P is finite, and both dom
∨

and dom
∧

are nonempty.
(ii) P is a lattice, that is, dom

∨
= dom

∧
= [P ]<ω

∗ .

Proof. (i) It is obvious that for every nonempty subset D of [P ]<ω
∗ , D is a D-cover

of every element of [P ]<ω
∗ . This holds, in particular, for dom

∨
and dom

∧
.

(ii) For X ∈ [P ]<ω
∗ , {X} is simultaneously a dom

∨
-cover and a dom

∧
-cover

of X . �

Now we state the fundamental connection between D-comeasured partial lattices
and D-valued partial lattices:
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Proposition 12.5. Let P be a finitely covering D-comeasured partial lattice. Then

P extends to a D-valued partial lattice P̃ that satisfies
∥∥∥a =

∨
X
∥∥∥ =

∨fin 〈
‖a = b‖ ∧ ‖X = Y ‖ | 〈b, Y 〉 ∈ P × [P ]<ω

∗ , b =
∨
Y
〉
,

(12.1)
∥∥∥a =

∧
X
∥∥∥ =

∨fin 〈
‖a = b‖ ∧ ‖X = Y ‖ | 〈b, Y 〉 ∈ P × [P ]<ω

∗ , b =
∧
Y
〉
,

(12.2)

for all 〈a,X〉 ∈ P × [P ]<ω
∗ . Furthermore, P̃ is finitely sampled.

Proof. We first prove a claim.

Claim 1.

(i) ‖X ⊆ Y ‖ ≤ ‖a ≤ b‖, for all a, b ∈ P and all X, Y ∈ [P ]<ω
∗ such that

a =
∨
X and b =

∨
Y .

(i*) ‖X ⊆ Y ‖ ≤ ‖b ≤ a‖, for all a, b ∈ P and all X, Y ∈ [P ]<ω
∗ such that

a =
∧
X and b =

∧
Y .

(ii) ‖X = Y ‖ ≤ ‖a = b‖, for all a, b ∈ P and all X, Y ∈ [P ]<ω
∗ such that

a =
∨
X and b =

∨
Y .

(ii*) ‖X = Y ‖ ≤ ‖a = b‖, for all a, b ∈ P and all X, Y ∈ [P ]<ω
∗ such that

a =
∧
X and b =

∧
Y .

Proof of Claim. We first prove (i). Let x ∈ X . The inequality y ≤ b holds for all
y ∈ Y , thus ‖y ≤ b‖ = 1, so

‖x = y‖ = ‖x = y‖ ∧ ‖y ≤ b‖ ≤ ‖x ≤ b‖ .

Hence,

‖X ⊆ Y ‖ ≤ ‖x ∈ Y ‖ =
∨

y∈Y

‖x = y‖ ≤ ‖x ≤ b‖ ,

so, since a =
∨
X ,

‖X ⊆ Y ‖ ≤
∧

x∈X

‖x ≤ b‖ = ‖a ≤ b‖ .

(i*) is dual of (i), and (ii), (ii*) follow immediately. � Claim 1.

We prove now that the equations (12.1) and (12.2) are consistent definitions of
‖a =

∨
X‖ and ‖a =

∧
X‖. We do it, for example, for (12.1). So let 〈a,X〉 ∈

P × [P ]<ω
∗ . We put

α =
∨

i<n

‖a = ai‖ ∧ ‖X = Xi‖ ,

where {Xi | i < n } is a dom
∨

-cover of X and ai =
∨
Xi, for all i < n. For

〈b, Y 〉 ∈ P × [P ]<ω
∗ such that b =

∨
Y , we compute:

‖a = b‖ ∧ ‖X = Y ‖ =
∨

i<n

‖a = b‖ ∧ ‖X = Y ‖ ∧ ‖X = Xi‖

(by the definition of a dom
∨

-cover)

=
∨

i<n

‖a = b‖ ∧ ‖Xi = Y ‖ ∧ ‖X = Xi‖
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(by an easy application of Lemma 4.3)

≤
∨

i<n

‖a = b‖ ∧ ‖ai = b‖ ∧ ‖X = Xi‖

(by Claim 1 applied to 〈Xi, Y 〉)

≤
∨

i<n

‖a = ai‖ ∧ ‖X = Xi‖

= α,

hence, α =
∨fin

〈 ‖a = b‖ ∧ ‖X = Y ‖ | 〈b, Y 〉 ∈ P × [P ]<ω
∗ , b =

∨
Y 〉. This settles

(12.1). The proof for (12.2) is dual.
We now verify that all items of Definition 5.1 are satisfied by the Boolean values

obtained above.

Condition 1. ‖a =
∨
X‖ ∧ ‖a ≤ b‖ = ‖a =

∨
X‖ ∧

∧
x∈X ‖x ≤ b‖.

Let {Xi | i < n } be a dom
∨

-cover of X . Put ai =
∨
Xi, for all i < n. We

compute:
∥∥∥a =

∨
X
∥∥∥ ∧ ‖a ≤ b‖ =

∨

i<n

‖a = ai‖ ∧ ‖X = Xi‖ ∧ ‖a ≤ b‖

=
∨

i<n

‖a = ai‖ ∧ ‖X = Xi‖ ∧ ‖ai ≤ b‖

(because ‖a = ai‖ ∧ ‖a ≤ b‖ = ‖a = ai‖ ∧ ‖ai ≤ b‖)

=
∨

i<n

(
‖a = ai‖ ∧ ‖X = Xi‖ ∧

∧

x∈Xi

‖x ≤ b‖

)

(because ai =
∨
Xi)

=
∨

i<n

(
‖a = ai‖ ∧ ‖X = Xi‖ ∧

∧

x∈X

‖x ≤ b‖

)

(by Lemma 4.4)

=
∥∥∥a =

∨
X
∥∥∥ ∧

∧

x∈X

‖x ≤ b‖ .

Condition 2. ‖a =
∨
X‖ ∧ ‖X = Y ‖ ≤ ‖a =

∨
Y ‖.

Again, let {Xi | i < n } be a common dom
∨

-cover of X and Y , and put
ai =

∨
Xi, for all i < n. We compute:
∥∥∥a =

∨
X
∥∥∥ ∧ ‖X = Y ‖ =

∨

i<n

‖a = ai‖ ∧ ‖X = Xi‖ ∧ ‖X = Y ‖

≤
∨

i<n

‖a = ai‖ ∧ ‖Y = Xi‖

(by Lemma 4.3)

≤
∥∥∥a =

∨
Y
∥∥∥ .
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Condition 3. ‖a =
∨
X‖ ∧ ‖a = b‖ ≤ ‖b =

∨
X‖.

Again, let {Xi | i < n } be a dom
∨

-cover of X , and put ai =
∨
Xi, for all i < n.

We compute:
∥∥∥a =

∨
X
∥∥∥ ∧ ‖a = b‖ =

∨

i<n

‖a = ai‖ ∧ ‖X = Xi‖ ∧ ‖a = b‖

≤
∨

i<n

‖b = ai‖ ∧ ‖X = Xi‖

=
∥∥∥b =

∨
X
∥∥∥ .

Hence we have verified items (1), (2), and (3) of Definition 5.1. The items (1*),
(2*), and (3*) are dual.

At this point, we have verified that (12.1) and (12.2) define a structure of D-

valued partial lattice P̃ on P .

It remains to prove that P̃ is finitely sampled. We verify, for example, that P̃ is
finitely join-sampled. So, let X ∈ [P ]<ω

∗ . Let {Xi | i < n } be a dom
∨

-cover of X ,
and put ai =

∨
Xi, for all i < n. Put U = { ai | i < n }. For a ∈ P and i < n,

‖a = ai‖ ∧ ‖X = Xi‖ ≤ ‖ai = ai‖ ∧ ‖X = Xi‖ ≤
∥∥∥ai =

∨
X
∥∥∥ ,

so we obtain the following inequalities:
∥∥∥a =

∨
X
∥∥∥ =

∨

i<n

‖a = ai‖ ∧ ‖X = Xi‖

≤
∨

i<n

∥∥∥ai =
∨
X
∥∥∥

=
∨

u∈U

∥∥∥u =
∨
X
∥∥∥ .

Therefore, U is a join-sample of X . Dually, P̃ is finitely meet-sampled. �

Remark 12.6. In particular, in the context of Proposition 12.5, the notation ‖a =
∨
X‖,

for
∨
X defined, is unambiguous, because the singleton {X} is a dom

∨
-cover of X ,

thus, if b is defined as
∨
X , then ‖a =

∨
X‖ (as defined in (12.1)) equals ‖a = b‖.

Of course, the dual statement holds for the meet.

We can now state a useful strengthening of Proposition 12.4:

Proposition 12.7. Let P be a D-comeasured partial lattice. Each of the following
conditions implies that P is finitely covering and that the associated D-valued partial
lattice satisfies (Id∩), (Id∨), (Fil∩), and (Fil∨):

(i) P is finite and both dom
∨

and dom
∧

are nonempty.
(ii) P is a lattice.

Proof. In both cases, it follows from Proposition 12.4 that P is finitely covering.

We denote by P̃ the associated finitely sampled D-comeasured partial lattice, see
Proposition 12.5.

(i) We assume that P is finite. For X ∈ [P ]<ω
∗ , it is obvious that P is a finite

(Id∩)-sample of X . Hence, P̃ has (Id∩).
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We prove that P is also an (Id∨)-sample of X . Indeed, if G is a prime filter of D
and if k < ω, then the condition

Id0(X/G,P/G) ⊂ Id1(X/G,P/G) ⊂ · · · ⊂ Idk(X/G,P/G)

implies that k < |P/G|, thus, a fortiori, k < |P |. In particular, Id|P |−1(X/G,P/G) =
Id|P |(X/G,P/G). Hence, by Lemma 7.9, P is an (Id∨)-sample of X , with index

|P | − 1. So P̃ has (Id∨). The dual statements, about (Fil∩) and (Fil∨), are proved
similarly.

(ii) We assume that P is a lattice. For X ∈ [P ]<ω
∗ , if we put a =

∧
X , then

‖a =
∧
X‖ = 1, thus { a } is an (Id∩)-sample of X . Put b =

∨
X , and let U

be a finite subset of P containing X . For every x ∈ P and every Z such that
∅ ⊂ Z ⊆ U , ‖Z ⊆ Id0(X,U)‖ ≤

∧
z∈Z ‖z ≤ b‖ = ‖

∨
Z ≤ b‖, from which it follows

that ‖x ≤
∨
Z‖ ∧ ‖Z ⊆ Id0(X,U)‖ ≤ ‖x ≤ b‖. Since the value ‖x ≤ b‖ is reached

for Z = X , we conclude that ‖x ∈ Id1(X,U)‖ = ‖x ≤ b‖. Now we observe that

x 7→ ‖x ≤ b‖ is an ideal function on P̃ . It follows that X is an (Id∨)-sample of X ,
with index 1. There are similar, dual statements, for (Fil∩) and (Fil∨). �

13. Statement and proof of Theorem A

In order to relateD-comeasured partial lattices and congruence lattices of partial
lattices, we state the following simple result.

Proposition 13.1. Let D be a distributive lattice with unit, let 〈P,≤,
∨
,
∧
〉 be

a partial lattice, endowed with a map P × P → D, 〈x, y〉 7→ ‖x ≤ y‖. Then the
following are equivalent:

(i) 〈P, ‖−−‖ ,≤,
∨
,
∧
〉 is a D-comeasured partial lattice.

(ii) There exists a homomorphism ϕ : 〈Conc P,∨,0P 〉 → 〈D,∧, 1〉 such that

‖x ≤ y‖ = ϕ(Θ+
P (x, y)), for all x, y ∈ P.

Proof. (i)⇒(ii) It is sufficient to prove that if n < ω and a, b, a0,. . . , an−1, b0,. . . ,
bn−1 ∈ P , the condition

Θ+
P (a, b) ⊆

∨

i<n

Θ+
P (ai, bi) (13.1)

implies that

‖a ≤ b‖ ≥
∧

i<n

‖ai ≤ bi‖ . (13.2)

So put α =
∧

i<n ‖ai ≤ bi‖, and define a binary relation ≤θ on P by the rule

x ≤θ y iff α ≤ ‖x ≤ y‖ , for all x, y ∈ P.

We verify that θ is a congruence of the partial lattice P . It is obvious that θ is a
preordering of P , see Definition 4.1, and that θ contains the ordering ≤ of P . Let
u ∈ P , let X ∈ [P ]<ω

∗ , we verify that u =
∨
X (resp., u =

∧
X) implies that u is

the supremum (resp., the infimum) of X with respect to θ. We do it for example
for the join. From X ≤ u, it follows that X ≤θ u. Now let v ∈ P such that X ≤θ v,
that is, α ≤ ‖x ≤ v‖, for all x ∈ X . Since u =

∨
X , it follows from Definition 12.1

that α ≤ ‖u ≤ v‖, that is, u ≤θ v. This proves our assertion about the supremum.
The proof for the infimum is dual.

Now, by the definition of α, the inequality ai ≤θ bi holds for all i < n, that
is, Θ+

P (ai, bi) ⊆ θ. Hence, by (13.1), Θ+
P (a, b) ⊆ θ, that is, α ≤ ‖a ≤ b‖, in other

words, (13.2) holds.
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(ii)⇒(i) This direction of the proof follows immediately from the identities

Θ+
P (a, b) =

∨

x∈X

Θ+
P (x, b), if a =

∨
X,

Θ+
P (b, a) =

∨

x∈X

Θ+
P (b, x), if a =

∧
X,

for all a, b ∈ P and all X ∈ [P ]<ω
∗ . �

Definition 13.2. Let D be a distributive lattice with zero. A D-measured par-
tial lattice is a pair 〈P, ϕ〉, where P is a partial lattice and ϕ : Conc P → D is a
{∨, 0}-homomorphism.

If, in addition, P is a lattice, we say that 〈P, ϕ〉 is a D-measured lattice.
We say that 〈P, ϕ〉 is proper, if ϕ isolates 0 (that is, ϕ(θ) = 0 iff θ = 0P , for all

θ in Conc P ).

Hence, by Proposition 13.1, the notions of a D-comeasured partial lattice and a
D-measured partial lattice are, up to dualization of D, equivalent.

Definition 13.3. Let D be a distributive lattice with unit, let P be a finitely
covering D-comeasured partial lattice. We say that P has (Id∩) (resp., (Id∨),

(Fil∩), (Fil∨)), if the D-valued partial lattice P̃ of Proposition 12.5 has (Id∩)
(resp., (Id∨), (Fil∩), (Fil∨)).

We say that P is balanced, if it has (Id∩), (Id∨), (Fil∩), and (Fil∨).
If D is a distributive lattice with zero, we say that a D-measured partial lattice

P is balanced, if the associated Dd-comeasured partial lattice is balanced. Similar
definitions hold for (Id∩), (Id∨), (Fil∩), and (Fil∨).

By Proposition 12.7, every D-measured lattice, or every finite D-measured par-
tial lattice with nonempty meet and join, is balanced.

Now we can provide a precise statement, and proof, for Theorem A. We recall
that jP is the natural embedding from P into FL(P ), see Section 2.2.

Theorem A. Let D be a distributive lattice with zero, let 〈P, ϕ〉 be a balanced D-
measured partial lattice. Then there exists a {∨, 0}-homomorphism
ψ : Conc FL(P ) → D such that

ψ ◦ Conc jP = ϕ.

The remainder of this section will be devoted to the proof of Theorem A.
We first endow P with its natural structure of Dd-comeasured partial lattice, see

Proposition 13.1. By assumption, this structure is balanced, that is, it is finitely
covering and it has (Id∩), (Id∨), (Fil∩), and (Fil∨), see Definition 13.3. We define
elements ‖ẋ ≤ ẏ‖, for all elements ẋ, ẏ of W(P ), as in Definition 11.4. We define
binary relations �∗ and ≡∗ on W(P ) by the rules

ẋ �∗ ẏ iff ‖ẋ ≤ ẏ‖ = 1,

ẋ ≡∗ ẏ iff ‖ẋ = ẏ‖ = 1.

It follows from Corollary 11.9 that �∗ is a preordering of W(P ) and that ≡∗ is the
associated equivalence relation. Let L = 〈W(P ),�∗〉/≡∗ be the quotient poset. For
ẋ ∈ W(P ), we denote by [ẋ] the ≡∗-equivalence class of ẋ. For x, y ∈ L and ẋ ∈ x,
ẏ ∈ y, the element ‖ẋ ≤ ẏ‖ does not depend of the choice of 〈ẋ, ẏ〉, we denote it
by ‖x ≤ y‖. Similarly, we define ‖x = y‖ = ‖ẋ = ẏ‖. Furthermore, it follows from
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Proposition 11.5 that [ẋ ∨ ẏ] (resp., [ẋ ∧ ẏ]) is the supremum (resp., the infimum)
of {x, y} in L.

Hence, L is a lattice. Furthermore, by Proposition 11.5, the equality

‖x0 ∨ x1 ≤ y‖ = ‖x0 ≤ y‖ ∧ ‖x1 ≤ y‖

holds for all x0, x1, y ∈ L. Symmetrically, the equality

‖x ≤ y0 ∧ y1‖ = ‖x ≤ y0‖ ∧ ‖x ≤ y1‖

holds for all x, y0, y1 ∈ L. Therefore, an easy induction shows that ‖
∨
X ≤ a‖ =∧

x∈X ‖x ≤ a‖ and ‖a ≤
∧
X‖ =

∧
x∈X ‖a ≤ x‖, for all a ∈ L and all X ∈ [L]<ω

∗ .

Hence, L is a Dd-comeasured partial lattice, see Definition 12.1. Therefore, by
Proposition 13.1, there exists a {∨, 0}-homomorphism ρ : Conc L→ D such that

ρ(Θ+
L(x, y)) = ‖x ≤ y‖ , for all x, y ∈ L. (13.3)

Furthermore, it is easy to verify that the rule a 7→ [a] defines a homomorphism of
partial lattices from P to L. Thus, since L is a lattice, there exists, by Proposi-
tion 2.8, a unique lattice homomorphism f : FL(P ) → L such that f(a) = [a], for
all a ∈ P .

We put ψ = ρ ◦ Conc f , a {∨, 0}-homomorphism from Conc FL(P ) to D. For a,
b ∈ P ,

ψ
(
Θ+

FL(P )(a, b)
)

= ρ
(
Θ+

L([a], [b])
)

= ‖[a] ≤ [b]‖ = ‖a ≤ b‖ = ϕ
(
Θ+

P (a, b)
)
,

so ψ ◦ Conc jP = ϕ. This concludes the proof of Theorem A.

14. Quotients of D-comeasured partial lattices by prime filters

In this section, we fix a distributive lattice D with unit.
If P is a finitely coveringD-comeasured partial lattice, then, by Proposition 12.5,

P extends canonically to a D-valued partial lattice. So, by using Proposition 5.6,
we can define a partial lattice P/G, for every prime filter G of D. Our next result
describes the join and meet operations in P/G.

Lemma 14.1. Let P be a finitely covering D-comeasured partial lattice, let a ∈
P/G, let X ∈ [P/G]<ω

∗ . Then the following assertions hold:

(i) a =
∨

X in P/G iff there are a ∈ P and X ∈ [P ]<ω
∗ such that a = a/G,

X = X/G, and a =
∨
X.

(ii) a =
∧

X in P/G iff there are a ∈ P and X ∈ [P ]<ω
∗ such that a = a/G,

X = X/G, and a =
∧
X.

Proof. We prove (i); (ii) is dual. Suppose first that a =
∨

X. Pick a ∈ a and
X ∈ [P ]<ω

∗ such that X = X/G. By the definition of the join operation in P/G,
‖a =

∨
X‖ ∈ G. Let {Xi | i < n } (where n > 0) be a dom

∨
-cover of X . Put

ai =
∨
Xi, for all i < n. So the equality

∥∥∥a =
∨
X
∥∥∥ =

∨

i<n

‖a = ai‖ ∧ ‖X = Xi‖

holds by definition, thus, since G is prime, there exists i < n such that a = ai/G and
X = Xi/G. Since ai =

∨
Xi, we have proved the “if” direction of the implication

in (i).
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To prove the converse, assume that a = a/G, X = X/G, and a =
∨
X . Since

{X} is a dom
∨

-cover of X , ‖a =
∨
X‖ = 1 ∈ G, hence a/G =

∨
(X/G) in P/G by

the definition of
∨

in P/G, so a =
∨

X. �

Definition 14.2. Let P and Q be D-comeasured partial lattices, let f : P → Q be
a homomorphism of partial lattices. We say that f is

(i) a uniform map, if ‖x ≤ y‖ ≤ ‖f(x) ≤ f(y)‖, for all x, y ∈ P .
(ii) an isometry, if f is an embedding of partial lattices and ‖x ≤ y‖ = ‖f(x) ≤ f(y)‖,

for all x, y ∈ P .

Lemma 14.3. Let P and Q be finitely covering D-comeasured partial lattices, let
f : P → Q be a uniform map. For any prime filter G of D, one can define a
homomorphism fG : P/G→ Q/G of partial lattices by the rule

fG(x/G) = f(x)/G, for all x ∈ P. (14.1)

Furthermore, if f is an isometry, then fG is an embedding of partial lattices.

Proof. For x, y ∈ P , ‖x ≤ y‖ ∈ G implies that ‖f(x) ≤ f(y)‖ ∈ G, so, (14.1) defines
a unique order-preserving map fG : P/G→ Q/G.

We prove that fG is a homomorphism of partial lattices. We do it for example
for the join. So let a ∈ P/G, X ∈ [P/G]<ω

∗ such that a =
∨

X. By Lemma 14.1,
there are a ∈ P and X ∈ [P ]<ω

∗ such that a = a/G, X = X/G, and a =
∨
X .

Since f is a homomorphism of partial lattices, f(a) =
∨
f [X ]. Thus, again by

Lemma 14.1, f(a)/G =
∨
f [X ]/G, that is, fG(a) =

∨
fG[X]. The proof for the

meet is dual.
Finally, if f is an isometry, then ‖x ≤ y‖ ∈ G iff ‖f(x) ≤ f(y)‖ ∈ G, for all x,

y ∈ P , thus fG is an order-embedding. �

15. Amalgamation of D-comeasured partial lattices above a finite

lattice

We extend in this section the results of Section 3 to D-comeasured partial lat-
tices.

We fix a distributive lattice D with unit.

Definition 15.1. A V-formation of D-comeasured partial lattices is a structure
〈K,P,Q, f, g〉 subject to the following conditions:

(DV1) K, P , Q are D-comeasured partial lattices.
(DV2) f : K →֒ P and g : K →֒ Q are isometries.

A V-formation 〈K,P,Q, f, g〉 is standard, if the following conditions hold:

(SDV1) K is a finite lattice.
(SDV2) K = P ∩Q (set-theoretically), and f and g are, respectively, the inclusion

map from K into P and the inclusion map from K into Q.

Remark 15.2. The definition of a standard V-formation of D-comeasured partial
lattices is not a generalization of the definition of a standard V-formation of partial
lattices (Definition 3.1): indeed, observe the additional requirement that K be
finite.

As in Section 3, we shall write 〈K,P,Q〉 instead of 〈K,P,Q, f, g〉 for standard
V-formations.

The following analogue of Lemma 3.2 trivially holds:
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Lemma 15.3. Every V-formation 〈K,P,Q, f, g〉 of D-comeasured partial lattices,
with K a finite lattice, is isomorphic to a standard V-formation.

The definition of an amalgam or a pushout of a V-formation is, mutatis mutandis,
exactly the same as in Definition 3.3. The corresponding analogue of Proposition 3.4
is then the following:

Proposition 15.4. Let D = 〈K,P,Q, f, g〉 be a V-formation of D-comeasured
partial lattices, with K a finite lattice. Then D has a pushout in the category of
D-comeasured partial lattices and uniform maps.

Furthermore, assume that D is a standard V-formation. Then the pushout
〈R, f ′, g′〉 of D can be described by the following data:

(a) R = P∐KQ as a partial lattice (see Notation 3.5). In particular, R = P∪Q
set-theoretically.

(b) For x, y ∈ R, the Boolean value ‖x ≤ y‖ can be computed as follows:
(b1) ‖x ≤ y‖ = ‖x ≤ y‖P , if x, y ∈ P .
(b2) ‖x ≤ y‖ = ‖x ≤ y‖Q, if x, y ∈ Q.

(b3) ‖x ≤ y‖ =
∨

z∈K ‖x ≤ z‖P ∧ ‖z ≤ y‖Q, if x ∈ P and y ∈ Q.

(b4) ‖x ≤ y‖ =
∨

z∈K ‖x ≤ z‖Q ∧ ‖z ≤ y‖P , if x ∈ Q and y ∈ P .

Furthermore, both f ′ and g′ are isometries.

Proof. We first prove the mutual compatibility of (b1)–(b4) above. Up to symmetry
between P and Q, this amounts to considering the three following cases:

Case 1. x, y ∈ K, prove that ‖x ≤ y‖P = ‖x ≤ y‖Q. This follows immediately
from the fact that both maps f : K →֒ P and g : K →֒ Q are isometries, thus
‖x ≤ y‖P = ‖x ≤ y‖Q = ‖x ≤ y‖K .

Case 2. x ∈ P , y ∈ K, prove that

‖x ≤ y‖P =
∨

z∈K

‖x ≤ z‖P ∧ ‖z ≤ y‖Q .

For z ∈ K,

‖x ≤ z‖P ∧ ‖z ≤ y‖Q = ‖x ≤ z‖P ∧ ‖z ≤ y‖P

(because z, y ∈ K)

≤ ‖x ≤ y‖P ,

and, for z = y, ‖x ≤ z‖P ∧ ‖z ≤ y‖Q = ‖x ≤ y‖P , which proves our assertion.

Case 3. x, y ∈ K, prove that
∨

z∈K

‖x ≤ z‖P ∧ ‖z ≤ y‖Q =
∨

z∈K

‖x ≤ z‖Q ∧ ‖z ≤ y‖P .

By Case 2, the left hand side and the right hand side of the equality above are both
equal to ‖x ≤ y‖P (and to ‖x ≤ y‖Q).

Now we verify that 〈x, y〉 7→ ‖x ≤ y‖ defines a structure of D-valued poset on R.
It is obvious that ‖a ≤ a‖ = 1, for all a ∈ R.

Now let a, b, c ∈ R, we prove the inequality

‖a ≤ b‖ ∧ ‖b ≤ c‖ ≤ ‖a ≤ c‖ . (15.1)

Up to symmetry between P and Q, it is sufficient to consider the three following
cases:
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Case 1′. a, b, c ∈ P . Then (15.1) follows from the fact that P is a D-valued poset.

Case 2′. a, b ∈ P , and c ∈ Q. We compute:

‖a ≤ b‖ ∧ ‖b ≤ c‖ =
∨

x∈K

‖a ≤ b‖P ∧ ‖b ≤ x‖P ∧ ‖x ≤ c‖Q

≤
∨

x∈K

‖a ≤ x‖P ∧ ‖x ≤ c‖Q

= ‖a ≤ c‖ .

Case 3′. a ∈ P , b, c ∈ Q. This case is similar to Case 2′.

Case 4′. a ∈ P , b ∈ Q, c ∈ P . For u, v ∈ K,

‖a ≤ u‖P ∧ ‖u ≤ b‖Q ∧ ‖b ≤ v‖Q ∧ ‖v ≤ c‖P ≤ ‖a ≤ u‖P ∧ ‖u ≤ v‖Q ∧ ‖v ≤ c‖P

= ‖a ≤ u‖P ∧ ‖u ≤ v‖P ∧ ‖v ≤ c‖P

(because u, v ∈ K)

≤ ‖a ≤ c‖P

= ‖a ≤ c‖ .

It follows that

‖a ≤ b‖ ∧ ‖b ≤ c‖ =
∨

u, v∈K

‖a ≤ u‖P ∧ ‖u ≤ b‖Q ∧ ‖b ≤ v‖Q ∧ ‖v ≤ c‖P

≤ ‖a ≤ c‖ .

This completes the proof that R is a D-valued poset. Furthermore, it is obvious
that x ≤ y implies that ‖x ≤ y‖ = 1, for all x, y ∈ R.

We now verify items (iv) and (v) of the definition of a D-comeasured partial
lattice (see Definition 12.1). Let us verify (iv). So, let a ∈ R and X ∈ [R]<ω

∗ such
that a =

∨
X . We verify that

‖a ≤ b‖ =
∧

x∈X

‖x ≤ b‖ , for all b ∈ R. (15.2)

Without loss of generality, {a} ∪X ⊆ P and a =
∨
X in P . If b ∈ P , then all the

Boolean values involved in (15.2) are computed in P , so (15.2) follows from the fact
that P is a D-comeasured partial lattice.

So, suppose that b ∈ Q. For x ∈ X , x ≤ a, thus ‖x ≤ a‖ = 1, so ‖a ≤ b‖ =
‖x ≤ a‖ ∧ ‖a ≤ b‖ ≤ ‖x ≤ b‖, thus

‖a ≤ b‖ ≤
∧

x∈X

‖x ≤ b‖ .

To prove the converse inequality, we observe that, since D is distributive and both
X and K are nonempty and finite, the following equalities

∧

x∈X

‖x ≤ b‖ =
∧

x∈X

∨

y∈K

‖x ≤ y‖P ∧ ‖y ≤ b‖Q

=
∨

ν : X→K

∧

x∈X

‖x ≤ ν(x)‖P ∧ ‖ν(x) ≤ b‖Q
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hold. Thus, to complete the proof of (15.2), it suffices to prove that for any map
ν : X → K, the inequality

∧

x∈X

‖x ≤ ν(x)‖P ∧ ‖ν(x) ≤ b‖Q ≤ ‖a ≤ b‖ (15.3)

holds. Since K is a lattice, c =
∨

x∈X ν(x) is defined in K. The inequality
‖x ≤ ν(x)‖P ≤ ‖x ≤ c‖P holds for any x ∈ X (because ν(x) ≤ c), and, since
c =

∨
x∈X ν(x) in Q and Q is a D-comeasured partial lattice,

∧

x∈X

‖ν(x) ≤ b‖Q = ‖c ≤ b‖Q .

It follows that
∧

x∈X

‖x ≤ ν(x)‖P ∧ ‖ν(x) ≤ b‖Q =
∧

x∈X

‖x ≤ ν(x)‖P ∧
∧

x∈X

‖ν(x) ≤ b‖Q

≤
∧

x∈X

‖x ≤ c‖P ∧ ‖c ≤ b‖Q

= ‖a ≤ c‖P ∧ ‖c ≤ b‖Q

(because c =
∨

x∈X ν(x) in P and P is a D-comeasured partial lattice)

≤ ‖a ≤ b‖ .

This completes the proof of (15.2). Therefore, R satisfies (iv) of Definition 12.1.
The proof of (v) of Definition 12.1 is dual.

So, R is a D-comeasured partial lattice. The fact that both f ′ and g′ are isome-
tries is trivial.

If S is a D-comeasured partial lattice and f : P → S and g : Q→ S are uniform
maps such that f ◦ f = g ◦ g, then there exists a unique map h : R → S such that
h ◦ f ′ = f and h ◦ g′ = g, namely, h is defined by the rule

h(x) = f(x), for any x ∈ P, and h(x) = g(x), for any x ∈ Q.

Since R is the pushout of P and Q above K in the category of partial lattices (see
Proposition 3.4), h is a homomorphism of partial lattices. It remains to prove that
‖x ≤ y‖R ≤ ‖h(x) ≤ h(y)‖S , for all x, y ∈ R. If x, y ∈ P , then

‖h(x) ≤ h(y)‖S =
∥∥f(x) ≤ f(y)

∥∥
S
≥ ‖x ≤ y‖P = ‖x ≤ y‖R .

A similar proof applies to the case where x, y ∈ Q. If x ∈ P and y ∈ Q, we
compute:

‖h(x) ≤ h(y)‖S =
∥∥f(x) ≤ g(y)

∥∥
S

≥
∨

z∈K

∥∥f(x) ≤ f(z)
∥∥

S
∧ ‖g(z) ≤ g(y)‖S

(because f↾K = g↾K)

≥
∨

z∈K

‖x ≤ z‖P ∧ ‖z ≤ y‖Q

(because f and g are uniform)

= ‖x ≤ y‖R .
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The proof is similar in case x ∈ Q and y ∈ P . Therefore, h is uniform. So, R is the
pushout of P and Q above K in the category of D-comeasured partial lattices. �

Of course, in accordance with Notation 3.5, we shall also write R = P ∐K Q in
the context of Proposition 15.4.

In Lemmas 15.5 and 15.6, let D = 〈K,P,Q, f, g〉 be a standard V-formation of
D-comeasured partial lattices (so that K is a finite lattice). We put R = P ∐K Q,
endowed with its structure of D-comeasured partial lattice described in Proposi-
tion 15.4.

Lemma 15.5. The equality

‖x = y‖ =
∨

z∈K

‖x = z‖ ∧ ‖z = y‖

holds, for all x, y ∈ R such that either x ∈ P and y ∈ Q, or x ∈ Q and y ∈ P .

Proof. We assume, for example, that x ∈ P and y ∈ Q. We compute:

‖x = y‖ = ‖x ≤ y‖ ∧ ‖y ≤ x‖

=
∨

u, v∈K

‖x ≤ u‖ ∧ ‖u ≤ y‖ ∧ ‖y ≤ v‖ ∧ ‖v ≤ x‖ .

For u, v ∈ K, ‖x ≤ u‖ ∧ ‖v ≤ x‖ ≤ ‖v ≤ u‖, while ‖u ≤ y‖ ∧ ‖y ≤ v‖ ≤ ‖u ≤ v‖.
Therefore,

‖x = y‖ =
∨

u, v∈K

‖x ≤ u‖ ∧ ‖u ≤ y‖ ∧ ‖y ≤ v‖ ∧ ‖v ≤ x‖ ∧ ‖u = v‖

=
∨

u, v∈K

‖x ≤ u‖ ∧ ‖u ≤ y‖ ∧ ‖y ≤ u‖ ∧ ‖u ≤ x‖ ∧ ‖u = v‖

=
∨

u∈K

‖x = u‖ ∧ ‖u = y‖ ,

which concludes the proof. �

Lemma 15.6.

(i) For any a ∈ P and any Y ∈ [Q]<ω
∗ , the inequality ‖a ∈ Y ‖ ≤ ‖a ∈ K‖

holds.
(ii) For any X ∈ [P ]<ω

∗ and any Y ∈ [Q]<ω
∗ , the inequality ‖X ⊆ Y ‖ ≤

‖X ⊆ K‖ holds.

Proof. (i) For all y ∈ Y , we compute, using Lemma 15.5:

‖a = y‖ =
∨

z∈K

‖a = z‖ ∧ ‖z = y‖ ≤ ‖a ∈ K‖ ,

since ‖a = z‖ ≤ ‖a ∈ K‖. This holds for all y ∈ Y , so the conclusion follows.
(ii) is a trivial consequence of (i). �

We are now able to prove the following fundamental result:

Proposition 15.7. Let D = 〈K,P,Q, f, g〉 be a standard V-formation of D-co-
measured partial lattices. Put R = P ∐K Q. If P and Q are finitely covering, then
R is finitely covering.
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Proof. We prove, for example, that the domain of the join in R is finitely covering.
So let Z ∈ [R]<ω

∗ , we prove that Z has a dom
∨

R-cover.
Write Z = X ∪ Y , where X ∈ [P ]<ω and Y ∈ [Q]<ω. By Lemma 12.3, applied

within P , there exists a finite subset {Xi | i < m } (with m > 0) of dom
∨

P such
that

‖U ⊆ X ∪K‖ ≤
∨

i<m

‖U = Xi‖ , for all U ∈ dom
∨

P
.

Therefore, for any U ∈ dom
∨

P ,

‖Z = U‖ ≤ ‖U ⊆ X ∪ Y ‖ ∧ ‖Y ⊆ U‖

≤ ‖U ⊆ X ∪ Y ‖ ∧ ‖Y ⊆ K‖

(by Lemma 15.6(ii))

= ‖U ⊆ X ∪ Y ‖ ∧ ‖X ∪ Y ⊆ X ∪K‖

≤ ‖U ⊆ X ∪K‖

≤
∨

i<m

‖U = Xi‖ . (15.4)

Similarly, there exists a finite subset {Xi | m ≤ i < m+n } (with n > 0) of dom
∨

Q

such that

‖Z = U‖ ≤
∨

j<n

‖U = Xm+j‖ , for all U ∈ dom
∨

Q
. (15.5)

Therefore, by (15.4) and (15.5) and since dom
∨

R = dom
∨

P ∪dom
∨

Q,

‖Z = U‖ ≤
∨

i<m+n

‖U = Xi‖ , for all U ∈ dom
∨

R
.

So, {Xi | i < m+ n } is a dom
∨

R-cover of Z. The proof for the meet is dual. �

In the context of Proposition 15.7, since R is a finitely covering D-comeasured
partial lattice, it can, by Proposition 12.5, be canonically extended into a D-valued

partial lattice, namely, R̃. Hence, for every prime filter G of D, K/G is a finite lat-
tice, and P/G, Q/G, andR/G are partial lattices, see Proposition 5.6. Furthermore,
by Lemma 14.3, the canonical maps K/G →֒ P/G, K/G →֒ Q/G, P/G →֒ R/G,
and Q/G →֒ R/G are embeddings of partial lattices. The question whether they
form a pushout (in the category of partial lattices) is answered naturally:

Proposition 15.8. Let 〈K,P,Q〉 be a standard V-formation of D-comeasured par-
tial lattices, with P and Q finitely covering. Then R/G = P/G∐K/GQ/G, for any
prime filter G of D.

Proof. From R = P ∪Q follows trivially that R/G = P/G ∪Q/G.
Let a ∈ P/G and b ∈ Q/G such that a ≤ b. Pick a ∈ a and b ∈ b, then ‖a ≤ b‖ ∈

G, thus, by the definition of the Boolean values in R (see Proposition 15.4), there
exists c ∈ K such that ‖a ≤ c‖ ∧ ‖c ≤ b‖ ∈ G. Hence, for c = c/G, we obtain that
a ≤ c ≤ b. A similar statement, with P and Q exchanged, holds. This implies that
K/G = P/G ∩ Q/G and that the ordering of R/G is the same as the ordering of
P/G∐K/GQ/G, see Proposition 3.4. Finally, the fact that R/G and P/G∐K/GQ/G
have the same join and meet operations follows easily from Lemma 14.1. �
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16. (Id∩)- and (Fil∩)-samples for P ∐K Q

In this section, we shall fix a distributive lattice D with unit and a standard
V-formation 〈K,P,Q〉 of D-comeasured partial lattices, with P and Q finitely cov-
ering. We put R = P ∐K Q. By Propositions 15.4 and 15.7, R is a finitely covering
D-comeasured partial lattice.

This section will be devoted to the proof of the following result:

Proposition 16.1. Suppose that P and Q have (Id∩) (resp., (Fil∩)). Then R has
(Id∩) (resp., (Fil∩)).

Proof. We provide a proof for (Id∩); the proof for (Fil∩) is dual.
Let a, b ∈ R, we shall find an (Id∩)-sample of {a, b}. Up to symmetry between

P and Q, there are two cases to consider.

Case 1. a, b ∈ P .
Let U be an (Id∩)-sample of {a, b} in P , we prove that U is also an (Id∩)-sample

of {a, b} in R. This amounts to proving the inequality

‖x ≤ a‖ ∧ ‖x ≤ b‖ ≤
∨

u∈U

‖x ≤ u‖ ∧ ‖u ≤ a‖ ∧ ‖u ≤ b‖ , for all x ∈ R (16.1)

(the converse inequality of (16.1) is trivial). First, for x ∈ P , all the Boolean values
involved in (16.1) are Boolean values in P , so, since U is an (Id∩)-sample of {a, b}
in P , (16.1) holds.

Now suppose that x ∈ Q. We compute:

‖x ≤ a‖ ∧ ‖x ≤ b‖ =
∨

u, v∈K

‖x ≤ u‖ ∧ ‖u ≤ a‖ ∧ ‖x ≤ v‖ ∧ ‖v ≤ b‖

=
∨

w∈K

‖x ≤ w‖ ∧ ‖w ≤ a‖ ∧ ‖w ≤ b‖

(by putting w = u ∧ v in K)

=
∨

w∈K, u∈U

‖x ≤ w‖ ∧ ‖w ≤ u‖ ∧ ‖u ≤ a‖ ∧ ‖u ≤ b‖

(because U is an (Id∩)-sample of {a, b} in P )

≤
∨

u∈U

‖x ≤ u‖ ∧ ‖u ≤ a‖ ∧ ‖u ≤ b‖ ,

so (16.1) is established in this case.

Case 2. a ∈ P , b ∈ Q.
Let U (resp., V ) be a common (Id∩)-sample in P (resp., in Q) of all pairs of the

form {a, z} (resp., {b, z}), for z ∈ K. We put W = U ∪ V , and we prove that W is
an (Id∩)-sample of {a, b} in R.

For any x ∈ P , we compute:

‖x ≤ a‖ ∧ ‖x ≤ b‖ =
∨

z∈K

‖x ≤ a‖ ∧ ‖x ≤ z‖ ∧ ‖z ≤ b‖

=
∨

z∈K, u∈U

‖x ≤ u‖ ∧ ‖u ≤ a‖ ∧ ‖u ≤ z‖ ∧ ‖z ≤ b‖
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(because U is an (Id∩)-sample of all pairs {a, z} for z ∈ K)

≤
∨

u∈U

‖x ≤ u‖ ∧ ‖u ≤ a‖ ∧ ‖u ≤ b‖ .

Similarly, we can obtain that

‖x ≤ a‖ ∧ ‖x ≤ b‖ ≤
∨

v∈V

‖x ≤ v‖ ∧ ‖v ≤ a‖ ∧ ‖v ≤ b‖ ,

for any x ∈ Q. Hence,

‖x ≤ a‖ ∧ ‖x ≤ b‖ ≤
∨

w∈W

‖x ≤ w‖ ∧ ‖w ≤ a‖ ∧ ‖w ≤ b‖ ,

for any x ∈ R. �

17. (Id∨)- and (Fil∨)-samples in P ∐K Q

In this section, we shall fix, as in Section 16, a distributive lattice D with unit
and a standard V-formation 〈K,P,Q〉 of D-comeasured partial lattices, with P and
Q finitely covering. We put R = P ∐K Q. By Propositions 15.4 and 15.7, R is a
finitely covering D-comeasured partial lattice.

This section will be devoted to the proof of the following result:

Proposition 17.1. Suppose that P and Q have (Id∨) (resp., (Fil∨)). Then R has
(Id∨) (resp., (Fil∨)).

Proof. We provide a proof for (Id∨); the proof for (Fil∨) is dual.
Let Z ∈ [R]<ω

∗ . We put X = Z ∩ P and Y = Z ∩Q. Observe that Z = X ∪ Y .
Let X∗ be a common (Id∨)-sample of all subsets of X ∪K in P . Symmetrically,

let Y ∗ be a common (Id∨)-sample of all subsets of Y ∪K in Q. Let m be a common
index for both samples, see Definition 7.6.

We denote by h the height of K, and we put k = (h + 2)m + h + 1. We shall
prove the following assertion:

Z∗ = X∗ ∪ Y ∗ is an (Id∨)-sample of Z in R, with index k. (17.1)

Let G be a prime filter of D. We put T = T/G, for every subset T of R. Recall
that R = P ∐K Q, see Proposition 15.8.

We define I0 ⊆ P and J0 ⊆ Q as follows:

I0 = IdP
m(X,X∗);

J0 = IdQ
m(Y , Y ∗).

Of course, the superscript P (or Q) on the math operator Id indicates in which
partial lattice the Idn(U, V ) function (see Definition 2.9) is computed.

Since m is an index for the (Id∨)-sample X∗ of X , it follows from Lemma 7.5
that

IdP
m(X,X∗) = IdP

m+1(X,T ),

for every T ∈ [P ]<ω
∗ such that X∗ ⊆ T . In particular, I0 is an ideal of P (it is

empty if X = ∅). Similarly, J0 is an ideal of Q.

Claim 1. Assume that (I0 ∪ J0)∩K = ∅. Then I0 ∪ J0 is an ideal of R. Further-

more, I0 ∪ J0 = IdR
n (Z, T ) holds for all n ≥ m and all T ⊇ Z∗ in [R]<ω

∗ .
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Proof of Claim. Since
∨

R =
∨

P ∪
∨

Q and since I0 (resp., J0) is an ideal of P

(resp., Q), I0 ∪ J0 is closed under
∨

R. By the assumption that (I0 ∪ J0) ∩K = ∅,

no pair of I0 ×Q and P ×J0 is comparable, so, since I0 (resp., J0) is a lower subset
of P (resp., Q), I0 ∪ J0 is a lower subset of R. Every ideal of R that contains Z
contains I0 ∪ J0, thus, since Z ⊆ I0 ∪ J0, I0 ∪ J0 is the ideal of R generated by Z.
The second part of the statement of Claim 1 follows immediately. � Claim 1.

Now we assume that (I0 ∪J0)∩K is nonempty. Since it is a nonempty subset of
the finite lattice K, it admits a supremum, that we denote by c0. We observe that

both I0 and J0 are contained in IdR
m(Z,Z∗), thus c0 ∈ IdR

m+1(Z,Z
∗). We extend

this construction by defining inductively In, Jn, and cn, for any n < ω, by

In+1 = IdP
m(X ∪ {cn}, X∗),

Jn+1 = IdQ
m(Y ∪ {cn}, Y ∗),

cn =
∨

((In ∪ Jn) ∩K),

for all n < ω.
Since X∗ is a common (Id∨)-sample of all subsets of X ∪K in P , with index m,

In+1 is an ideal of P , for all n < ω. Similarly, Jn+1 is an ideal of Q. Furthermore,
cn ∈ In+1 ∩ Jn+1, thus cn ≤ cn+1. Therefore, In ⊆ In+1 and Jn ⊆ Jn+1 for all n.

An easy inductive generalization of the argument above showing that c0 ∈

IdR
m+1(Z,Z

∗) leads to the following:

Claim 2. In ∪ Jn ⊆ IdR
(n+1)m+n(Z,Z∗), for all n < ω.

For n < ω, if c0 < c1 < · · · < cn, then n < ht(K) ≤ htK = h. If cn = cn+1,
then cn = cl for all l ≥ n. It follows from this that ch = ch+1, thus Ih+1 = Ih+2

and Jh+1 = Jh+2. We put c = ch, I = Ih+1, and J = Jh+1.

Claim 3. I ∪ J is an ideal of R.

Proof of Claim. Since I is an ideal of P and J is an ideal of Q, I∪J is closed under∨
R. Now we prove that I ∪ J is a lower subset of R. Since c0 ∈ I1 ∩ J1 ⊆ I ∩ J ,

both I ∩K and J ∩K are nonempty, hence there are elements a and b of K defined
by

a =
∨

(I ∩K) and b =
∨

(J ∩K).

Since c = ch ∈ I ∩ J ∩K, c ≤ a and c ≤ b. On the other hand,

c =
∨

((I ∪ J) ∩K) = a ∨ b,

whence c = a = b. So we have established that

c =
∨

(I ∩K) =
∨

(J ∩K). (17.2)

Now let x ∈ R, y ∈ I ∪ J such that x ≤ y, we prove that x ∈ I ∪ J . By symmetry,
we may assume that y ∈ I. If x ∈ P , then, since I is a lower subset of P , x ∈ I and
we are done. If x ∈ Q, then there exists z ∈ K such that x ≤ z ≤ y. Since z ∈ K
and z ≤ y ∈ I, z ≤ c by (17.2), so x ≤ c. But c ∈ J and J is a lower subset of Q,
thus x ∈ J , and we are done again.

So I ∪ J is a lower subset of R, hence an ideal of R. � Claim 3.
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By Claims 2 and 3, I ∪ J = IdR
(h+2)m+h+1(Z, T ), for all finite T containing Z∗,

is the ideal of R generated by Z. In particular,

IdR
(h+2)m+h+1(Z,Z

∗) = IdR
(h+2)m+h+2(Z, T ), (17.3)

for all finite T containing Z∗. This also holds in the context of Claim 1, since one
can, in that case, replace (h+ 2)m+ h+ 1 by m. Therefore, (17.3) holds for every
prime filter G of D. By Lemma 7.9, this proves (17.1). �

Part 4. Congruence amalgamation with distributive target

18. Proof of Theorem B

We first observe the following obvious restatement of Theorem B in terms of
D-measured partial lattices:

Theorem B. Let D be a distributive lattice with zero. Let 〈K,λ〉, 〈P, µ〉, and 〈Q, ν〉
be D-measured partial lattices, with K a finite lattice and each of P and Q either a
finite partial lattice or a lattice. Let f : 〈K,λ〉 → 〈P, µ〉 and g : 〈K,λ〉 → 〈Q, ν〉 be
homomorphisms.

Then there exist a D-measured lattice 〈L,ϕ〉 and homomorphisms f : 〈P, µ〉 →
〈L,ϕ〉 and g : 〈Q, ν〉 → 〈L,ϕ〉 such that f ◦f = g◦g. Furthermore, the construction
can be done in such a way that the following additional properties hold:

(i) L is generated, as a lattice, by f [P ] ∪ g[Q].
(ii) The map ϕ isolates 0.

By Proposition 13.1, ifD is a distributive lattice with zero, then the notions ofD-
measured partial lattice (see Definition 13.2) and of Dd-comeasured partial lattice
(see Definition 12.1) are, essentially, equivalent. It is, in fact, easy to see that this
is a category equivalence. The corresponding notion of morphism of D-measured
partial lattice is given by the following very easy result:

Lemma 18.1. Let D be a distributive lattice with zero, let 〈P, µ〉 and 〈Q, ν〉 be D-
measured partial lattices, let f : P →֒ Q be an embedding of partial lattices. Then
the following are equivalent:

(i) The equality ν ◦ Conc f = µ holds.
(ii) If 〈P, µ〉 and 〈Q, ν〉 are viewed as Dd-comeasured partial lattices, then f is

an isometry (see Definition 14.2).

Proof. Endow each of the structures P and Q with its map ‖−−‖, with target Dd.
An explicit definition of ‖−−‖P and ‖−−‖Q is the following:

‖x ≤ y‖P = µ(Θ+
P (x, y)), for all x, y ∈ P ;

‖x ≤ y‖Q = ν(Θ+
Q(x, y)), for all x, y ∈ Q.

Hence, for x, y ∈ P ,

‖f(x) ≤ f(y)‖Q = ν(Θ+
Q(f(x), f(y))

= ν ◦ (Conc f)(Θ+
P (x, y)). (18.1)

But the principal congruences Θ+
P (x, y), for x, y ∈ P , generate the {∨, 0}-semilattice

Conc P . Hence, ν ◦Conc f = µ iff both maps ν ◦Conc f and µ agree on all principal
congruences of P , that is, by (18.1), ‖f(x) ≤ f(y)‖Q = ‖x ≤ y‖P , for all x, y ∈ P .

�
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Definition 18.2. Let D be a distributive lattice with zero, let 〈P, µ〉 and 〈Q, ν〉
be D-measured partial lattices. A homomorphism from 〈P, µ〉 to 〈Q, ν〉 is a homo-
morphism f : P → Q of partial lattices such that ν ◦ Conc f = µ. If, in addition, f
is an embedding of partial lattices, we say that f is an embedding of D-measured
partial lattices.

Definition 18.3. Let D be a distributive lattice with zero, let 〈P, µ〉 be a D-meas-
ured partial lattice. The kernel of 〈P, µ〉 is the congruence θ of P defined by the
rule

x ≤θ y iff µΘ+
P (x, y) = 0, for all x, y ∈ P.

The kernel projection of 〈P, µ〉 is the canonical projection from P onto P/θ.

In other words, the kernel of 〈P, µ〉 is the largest congruence θ of P such that
µ(ξ) = 0 for all ξ ≤ θ in Conc P . In particular, 〈P, µ〉 is proper (see Definition 13.2)
iff its kernel projection is trivial.

The following lemma states that the kernel projection of 〈P, µ〉 is the universal
projection of 〈P, µ〉 onto a proper D-measured partial lattice:

Lemma 18.4. Let D be a distributive lattice with zero, let 〈P, µ〉 be a D-measured
partial lattice. We denote by p : P ։ P ′ the kernel projection of P . Then there
exists a unique {∨, 0}-homomorphism µ′ : Conc P

′ → D such that µ′ ◦ Conc p = µ.
Furthermore, the following assertions hold:

(i) 〈P ′, µ′〉 is a proper D-measured partial lattice.
(ii) For every proper D-measured partial lattice 〈Q, ν〉 and every homomor-

phism f : 〈P, µ〉 → 〈Q, ν〉, there exists a unique homomorphism f ′ : 〈P ′, µ′〉 →
〈Q, ν〉 such that f ′ ◦ p = f , and f ′ is an embedding of D-measured partial
lattices (see Definition 18.2).

Proof. (i) The compact congruences of P ′ = P/θ are exactly the congruences of
the form α ∨ θ/θ, where α is a compact congruence of P . By the definition of θ,
α∨ θ ≤ β ∨ θ implies that µ(α) ≤ µ(β), for all α, β ∈ Conc P . Hence we can define
a {∨, 0}-homomorphism µ′ : Conc P

′ → D by the rule

µ′(α ∨ θ/θ) = µ(α), for all α ∈ Conc P.

Observe that µ′ ◦ Conc p = µ. The uniqueness assertion about µ′ follows from the
surjectivity of the map Conc p.

(ii) For all x, y ∈ P , x/θ ≤ y/θ iff µΘ+
P (x, y) = 0, that is, νΘ+

Q(f(x), f(y)) = 0, or,

since 〈Q, ν〉 is proper, f(x) ≤ f(y). This makes it possible to define an embedding
f ′ : P ′ →֒ Q of partial lattices by the rule f ′(x/θ) = f(x), for all x ∈ P , and
f ′ ◦ p = f . Observe that ν ◦ Conc f

′ = µ′. The uniqueness assertion about f ′

follows from the surjectivity of the map p. �

Proposition 18.5. Let D be a distributive lattice with zero. Let 〈K,λ〉, 〈P, µ〉, and
〈Q, ν〉 be D-measured partial lattices, with K a finite lattice and P , Q balanced. Let
f : 〈K,λ〉 → 〈P, µ〉 and g : 〈K,λ〉 → 〈Q, ν〉 be homomorphisms.

Then there exists a proper D-measured lattice 〈L,ϕ〉, together with homomor-
phisms f : 〈P, µ〉 → 〈L,ϕ〉 and g : 〈Q, ν〉 → 〈L,ϕ〉, such that f ◦ f = g ◦ g and L is
generated, as a lattice, by f [P ] ∪ g[Q].

Proof. We first consider the case where f and g are embeddings and λ, µ, and ν
isolate 0. We view 〈K,λ〉, 〈P, µ〉, and 〈Q, ν〉 as Dd-comeasured partial lattices.
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By Lemma 15.3, we can assume without loss of generality that 〈K,P,Q, f, g〉 is a
standard V-formation. Now we put R = P ∐K Q, as defined in Proposition 15.4,
with the corresponding embeddings f ′ and g′. Let 〈R, ̺〉 be the corresponding
D-measured partial lattice. From the fact that both µ and ν isolate 0 and the
description of R (Proposition 15.4) follows that ̺ isolates 0. By Propositions 15.7,
16.1, and 17.1, R is balanced. By Theorem A, there exists a {∨, 0}-homomorphism
ϕ′ : Conc FL(R) → D such that ϕ′ ◦ Conc jR = ̺. We denote by p : FL(R) ։ L
the kernel projection of 〈FL(R), ϕ′〉, see Definition 18.3, and we put j = p ◦ jR.
By Lemma 18.4, there exists a unique {∨, 0}-homomorphism ϕ : Conc L→ D such
that ϕ ◦ Conc p = ϕ′, and 〈L,ϕ〉 is proper. Furthermore,

ϕ ◦ Conc j = ϕ ◦ Conc p ◦ Conc jR = ϕ′ ◦ Conc jR = ̺.

We put f = j ◦ f ′ and g = j ◦ g′. From f ′ ◦ f = g′ ◦ g follows that f ◦ f = g ◦ g.
Since jR[R] generates FL(R), f [P ] ∪ g[Q] generates L. Since j is a homomorphism
from 〈R, ̺〉 to 〈L,ϕ〉 and since both ̺ and ϕ isolate 0, j is an embedding, thus f
and g are embeddings.

Now we consider the general case. Let h : 〈K,λ〉 ։ 〈K ′, λ′〉, p : 〈P, µ〉 ։ 〈P ′, µ′〉,
q : 〈Q, ν〉 ։ 〈Q′, ν′〉 be the kernel projections. By Lemma 18.4, there are embed-
dings f ′ : 〈K ′, λ′〉 →֒ 〈P ′, µ′〉 and g′ : 〈K ′, λ′〉 →֒ 〈Q′, ν′〉 such that f ′ ◦h = p◦f and
g′ ◦h = q ◦g. By the result of the previous paragraph, there exist a proper D-meas-
ured lattice 〈L,ϕ〉 and embeddings f ′′ : 〈P ′, µ′〉 →֒ 〈L,ϕ〉 and g′′ : 〈Q′, ν′〉 →֒ 〈L,ϕ〉
such that f ′′ ◦ f ′ = g′′ ◦ g′ and L is generated by f ′′[P ′]∪g′′[Q′]. We put f = f ′′ ◦p
and g = g′′ ◦ q. �

Remark 18.6. In the context of Proposition 18.5, we shall later make use of the
following simple fact: If 〈Q, ν〉 is proper, then g is an embedding.

Indeed, for all x, y ∈ Q,

g(x) ≤ g(y) ⇒ ϕΘ+
L(g(x), g(y)) = 0 (because ϕ isolates 0)

⇔ (ϕ ◦ Conc g)(Θ
+
Q(x, y)) = 0

⇔ νΘ+
Q(x, y) = 0

⇔ x ≤ y (because 〈Q, ν〉 is proper),

which proves our assertion.

Proof of Theorem B. By Proposition 12.7, every D-measured partial lattice 〈R, ̺〉
such that either R is finite with nonempty join and meet operations or R is a lattice
is balanced. Theorem B follows immediately as a particular case of Proposition 18.5.

�

19. Saturation properties of D-measured partial lattices

We start with a definition.

Definition 19.1. Let D be a distributive lattice with zero, let 〈P, µ〉 and 〈L,ϕ〉
be D-measured partial lattices, with L a lattice. We say that an embedding
f : 〈P, µ〉 →֒ 〈L,ϕ〉 is a lower embedding (resp., upper embedding, internal em-
bedding), if the filter (resp., ideal, convex sublattice) of L generated by P equals L.

We refer to Definition 18.2 for the definition of an embedding of D-measured
partial lattices.
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Definition 19.2. Let D be a distributive lattice with zero. A proper D-measured
lattice 〈L,ϕ〉 is saturated (resp., lower saturated, upper saturated, internally satu-
rated), if for every embedding (resp., lower embedding, upper embedding, internal
embedding) e : 〈K,λ〉 →֒ 〈P, µ〉 of finite proper D-measured partial lattices, with
K a lattice, and every homomorphism f : 〈K,λ〉 → 〈L,ϕ〉, there exists a homomor-
phism g : 〈P, µ〉 → 〈L,ϕ〉 such that g ◦ e = f .

Proposition 19.3. Let D be a distributive lattice with zero. Every proper balanced
D-measured partial lattice 〈P, ϕ〉 admits an embedding (resp., a lower embedding, an
upper embedding, an internal embedding) into a saturated (resp., lower saturated,
upper saturated, internally saturated) D-measured lattice 〈L,ψ〉 such that |L| =
|P | + |D| + ℵ0.

Proof. A standard increasing chain argument. We present the proof for satu-
rated, the proofs for lower, upper, or internally saturated are similar. We put
κ = |P |+ |D|+ℵ0. By Theorem A, there exist a D-measured lattice 〈K, ζ〉 and an
embedding f : 〈P, ϕ〉 →֒ 〈K, ζ〉. Furthermore, by replacing K by the image of its
kernel projection (use Lemma 18.4), we can suppose that 〈K, ζ〉 is proper. Hence,
without loss of generality, P is a lattice.

Let eξ : 〈Kξ, λξ〉 →֒ 〈Qξ, νξ〉, fξ : 〈Kξ, λξ〉 → 〈P, ϕ〉, for ξ < κ, enumerate, up to
isomorphism, all embeddings e : 〈K,λ〉 →֒ 〈Q, ν〉 and homomorphisms f : 〈K,λ〉 →
〈P, ϕ〉 with 〈K,λ〉 and 〈Q, ν〉 finite, proper D-measured partial lattices, and with
K a lattice. It is easy to construct, by using Proposition 18.5 and Remark 18.6,
a transfinite chain 〈 〈Lξ, ϕξ〉 | ξ < κ 〉 of proper D-measured lattices, together with
embeddings fξ,η : 〈Lξ, ϕξ〉 →֒ 〈Lη, ϕη〉, for ξ < η < κ, satisfying the following
properties:

(i) 〈L0, ϕ0〉 = 〈P, ϕ〉;
(ii) fξ,ζ = fη,ζ ◦ fξ,η, for ξ < η < ζ < κ;
(iii) for any ξ < κ, there exists a homomorphism gξ : 〈Qξ, νξ〉 → 〈Lξ+1, ϕξ+1〉

such that f0,ξ+1◦fξ = gξ◦eξ, that is, the following diagram is commutative:

〈Qξ, νξ〉
gξ

−−−−→ 〈Lξ+1, ϕξ+1〉

eξ

x
xfξ,ξ+1

〈Kξ, λξ〉 −−−−−→
f0,ξ◦fξ

〈Lξ, ϕξ〉

We denote by 〈P, ϕ〉′ the direct limit of all 〈Lξ, ϕξ〉, with transition maps fξ,η,
for ξ < η < κ. Let f〈P,ϕ〉 : 〈P, ϕ〉 →֒ 〈P, ϕ〉′ be the limiting map associated with the
direct system above. Observe that f〈P,ϕ〉 is an embedding.

The D-measured lattice 〈P, ϕ〉′ has the property that for every embedding
e : 〈K,λ〉 →֒ 〈Q, ν〉 of finite proper D-measured partial lattices, with K a lat-
tice, and every homomorphism f : 〈K,λ〉 → 〈P, ϕ〉, there exists a homomorphism
g : 〈Q, ν〉 → 〈P, ϕ〉′ such that g ◦ e = f〈P,ϕ〉 ◦ f .

To conclude the proof, it suffices to iterate the process ω times: put 〈P (0), ϕ(0)〉 =
〈P, ϕ〉, and, for n < ω, put 〈P (n+1), ϕ(n+1)〉 = 〈P (n), ϕ(n)〉′, with the embedding
f〈P (n),ϕ(n)〉 : 〈P

(n), ϕ(n)〉 →֒ 〈P (n+1), ϕ(n+1)〉. The direct limit 〈L,ϕ〉 of all the

〈P (n), ϕ(n)〉, with respect to the transition maps f〈P (n),ϕ(n)〉, satisfies the required
conditions. �
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20. Proofs of Theorems C and D

We first recall the statement of Theorem C:

Theorem C. Let K be a lattice, let D be a distributive lattice with zero, and let
ϕ : ConcK → D be a {∨, 0}-homomorphism. There are a relatively complemented
lattice L of cardinality |K|+ |D|+ ℵ0, a lattice homomorphism f : K → L, and an
isomorphism α : Conc L→ D such that the following assertions hold:

(i) ϕ = α ◦ Conc f .
(ii) The range of f is coinitial (resp., cofinal) in L.
(iii) If the range of ϕ is cofinal in D, then the range of f is internal in L.

In this section, we shall fix a distributive lattice D with zero and an internally
saturated D-measured lattice 〈L,ϕ〉.

Lemma 20.1. The lattice L is relatively complemented.

Proof. Let a < b < c in L, we prove that there exists x ∈ L such that a = b∧x and
c = b ∨ x.

Put K = {a, b, c}, the three-element chain, let f : K →֒ L be the inclusion
map. If we put λ = ϕ ◦ Conc f , then 〈K,λ〉 is a finite, proper (see Definition 19.2)
D-measured lattice and f is an embedding from 〈K,λ〉 into 〈L,ϕ〉.

Next, we put P = {a, b, c, t}, the two-atom Boolean lattice, with zero element a,
unit element c, and atoms b and t, endowed with the homomorphism µ : Conc P →
D defined by

µΘP (a, b) = µΘP (t, c) = ϕΘL(a, b),

µΘP (a, t) = µΘP (b, c) = ϕΘL(b, c).

Then 〈P, µ〉 is a proper D-measured lattice, and the inclusion map j : K →֒ P is
an embedding from 〈K,λ〉 into 〈P, µ〉. The lattices K and P can be visualized on
Figure 1.
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Figure 1. Adding a relative complement of b in [a, c]

By assumption on 〈L,ϕ〉, there exists a homomorphism g : 〈P, µ〉 → 〈L,ϕ〉 such
that g ◦ j = f . Put x = g(t). Then a = b ∧ x and c = b ∨ x. �

Definition 20.2. Let o ≤ i be elements of a lattice K. We say that the elements
a, b of the interval [o, i] are perspective in [o, i], if there exists x ∈ [o, i] such that
x ∧ a = x ∧ b and x ∨ a = x ∨ b.

Lemma 20.3. Let o, i, a, b ∈ L such that o ≤ {a, b} ≤ i. Then the following
conditions are equivalent:

(i) a and b are perspective in [o, i].
(ii) ϕΘL(o, a) = ϕΘL(o, b) and ϕΘL(a, i) = ϕΘL(b, i).
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Proof. (i)⇒(ii) If a and b are perspective in [o, i], then the intervals [o, a] and [o, b]
are projective, hence ΘL(o, a) = ΘL(o, b). Similarly, ΘL(a, i) = ΘL(b, i).

(ii)⇒(i) Let K = {0, u∧ v, u, v, u∨ v, 1} be the lattice diagrammed on Figure 2,
and let f : K → L be the unique lattice homomorphism sending 0 to o, 1 to i, u to
a, and v to b. We put λ = ϕ ◦ Conc f .
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Figure 2. Making u and v perspective in [0, 1]

If we could find a finite proper D-measured partial lattice 〈P, µ〉 and an internal
embedding j : 〈K,λ〉 →֒ 〈P, µ〉 such that u and v are perspective in P , then an
argument similar to the one used in the proof of Lemma 20.1 would conclude the
proof.

To this end, we simply put P = K ∪ {x}, for an element x not in K, with the
ordering of K extended by the relations 0 < x < 1, together with the following
additional joins and meets:

x ∨ u = x ∨ v = 1; x ∧ u = x ∧ v = 0, (20.1)

see Figure 2. We denote by j : K →֒ P the canonical embedding. Observe that j is
internal.

We claim that the map Conc j is surjective. Indeed, it is easy to verify that the
following equalities hold

Θ+
P (x, u ∨ v) = ΘP (u ∨ v, 1);

Θ+
P (x, u) = Θ+

P (x, v) = Θ+
P (x, u ∧ v) = Θ+

P (x, 0) = ΘP (u, 1) = ΘP (v, 1),

thus all the congruences Θ+
P (x,w), for w ∈ K, belong to the range of Conc j. A

similar statement applies to the congruences Θ+
P (w, x), for w ∈ K, which establishes

our claim.
We now define congruences ξ, η, α, and β of P by

ξ = ΘP (0, u ∧ v); η = ΘP (u ∨ v, 1); α = Θ+
P (u, v); β = Θ+

P (v, u).

It follows from (20.1) that ξ ∨ α = ξ ∨ β—denote it by ξ, and that η ∨ α = η ∨ β—
denote it by η. Therefore, by using the surjectivity of Conc j, we obtain that

Conc P = {0P , ξ, η, α, β, α ∨ β, ξ ∨ η, ξ, η,1P }, (20.2)

with all the elements of the right hand side of (20.2) pairwise distinct. The lattice
Conc P is diagrammed on Figure 3.

Hence Conc P is the {∨, 0}-semilattice freely generated by ξ̌, η̌, α̌, β̌, subject to
the relations

ξ̌ ∨ α̌ = ξ̌ ∨ β̌; η̌ ∨ α̌ = η̌ ∨ β̌. (20.3)
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Figure 3. The congruence lattice of P

To prove that there exists a {∨, 0}-homomorphism µ : Conc P → D that satisfies
the equalities

µ(ξ) = ϕΘL(o, a ∧ b); µ(η) = ϕΘL(a ∨ b, i);

µ(α) = ϕΘ+
L(a, b); µ(β) = ϕΘ+

L(b, a), (20.4)

it suffices to prove that the elements of D that lie on the right hand sides of the
four equalities in (20.4) satisfy the relations (20.3), which is an easy verification.
Hence the map j is a homomorphism from 〈K,λ〉 to 〈P, µ〉. �

Notation 20.4. For o, i, a, b, c ∈ L such that o ≤ {a, b} ≤ i, we define c = a⊕ b to
hold in [o, i], if a ∧ b = o and a ∨ b = c.

Lemma 20.5. Let o, a, b, i ∈ L such that o ≤ {a, b} ≤ i . Then there exist a0, a1,
b0, b1 ∈ L such that the following conditions hold:

(i) a = a0 ⊕ a1 and b = b0 ⊕ b1 in [o, i];
(ii) ΘL(o, a0) = ΘL(o, a1) = ΘL(o, a) and ΘL(o, b0) = ΘL(o, b1) = ΘL(o, b);
(iii) ΘL(al ∨ bl, a ∨ b) = ΘL(o, a ∨ b), for all l < 2.

Proof. We putK = {o, a∧b, a, b, a∨b, i}, and we let f : K →֒ L be the inclusion map.
Put λ = ϕ ◦ Conc f . As in the proofs of Lemmas 20.1 and 20.3, it suffices to find a
finite partial lattice P , endowed with a {∨, 0}-homomorphism µ : Conc P → D, an
internal embedding j : 〈K,λ〉 →֒ 〈P, µ〉, and elements a0, a1, b0, b1 of P satisfying
(i)–(iii) above in P .

We use Schmidt’s well-known M3[K] construction, see [20]: namely, we put

P = M3[K] = { 〈x, y, z〉 ∈ K3 | x ∧ y = x ∧ z = y ∧ z },

endowed with the componentwise ordering. Since K is finite, P is a lattice. Further-
more, the canonical embedding j : K →֒ P , x 7→ 〈x, x, x〉 is internal and congruence-
preserving, see [20] or [12]. Put µ = λ ◦ (Conc j)

−1. So, j is an internal embedding
from 〈K,λ〉 into 〈P, µ〉.

Now we put a0 = 〈a, o, o〉, a1 = 〈o, a, o〉, b0 = 〈b, o, o〉, b1 = 〈o, b, o〉. Hence
a0 ∧ a1 = 〈o, o, o〉 and a0 ∨ a1 is the least element of P above 〈a, a, o〉, namely,
〈a, a, a〉, that is, j(a). Hence j(a) = a0 ⊕ a1. Similarly, j(b) = b0 ⊕ b1. So (i)
follows.

For e = 〈o, o, i〉, a0 ⊕ e = a1 ⊕ e and b0 ⊕ e = b1 ⊕ e, thus ΘP (j(o), a0) =
ΘP (j(o), a1) = ΘP (j(o), j(a)). Similarly, ΘP (j(o), b0) = ΘP (j(o), b1) = ΘP (j(o), j(b)).
So (ii) follows.
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Finally, a0 ∨ b0 = 〈a ∨ b, o, o〉 and a1 ∨ b1 = 〈o, a ∨ b, o〉, whence

j(a ∨ b) = (a0 ∨ b0) ⊕ (a1 ∨ b1) in P.

It follows that

ΘP (al ∨ bl, j(a ∨ b)) = ΘP (j(o), a1−l ∨ b1−l) = ΘP (j(o), j(a ∨ b)),

for any l < 2, so (iii) follows. �

Lemma 20.6. Let o, a, b, i ∈ L such that o ≤ {a, b} ≤ i. If ϕΘL(o, a) = ϕΘL(o, b),
then ΘL(o, a) = ΘL(o, b). More precisely, there are a0, a1, b0, b1 ∈ L such that

(i) a = a0 ⊕ a1 and b = b0 ⊕ b1 in [o, i];
(ii) a0 and b0 (resp., a1 and b1) are perspective in [o, i].

Proof. Let a0, a1, b0, and b1 be as in Lemma 20.5. By (ii) of Lemma 20.5,
ΘL(o, al) = ΘL(o, a) and ΘL(o, bl) = ΘL(o, b), for all l < 2. It follows from our
assumptions that ϕΘL(o, al) = ϕΘL(o, bl). Furthermore,

ΘL(al, a ∨ b) = ΘL(al, al ∨ bl) ∨ ΘL(al ∨ bl, a ∨ b) = ΘL(o, a ∨ b),

for all l < 2, and, similarly, ΘL(bl, a ∨ b) = ΘL(o, a ∨ b).
It follows then from Lemma 20.3 that a0 and b0 (resp., a1 and b1) are perspective

in [o, i]. �

Lemma 20.7. The map ϕ is an isomorphism from Conc L onto an ideal of D.
If, in addition, 〈L,ϕ〉 is either lower saturated or upper saturated, then ϕ is an
isomorphism from Conc L onto D.

Proof. We first prove that ϕ is one-to-one. Let α, β ∈ Conc L such that ϕ(α) =
ϕ(β). By Lemma 20.1, L is relatively complemented, thus there are o, a, b ∈ L
such that o ≤ a, o ≤ b, α = ΘL(o, a), and β = ΘL(o, b). In particular, ϕΘL(o, a) =
ϕΘL(o, b). By Lemma 20.6, α = β.

We prove next that the range of ϕ is an ideal of D. Since it is a {∨, 0}-
subsemilattice of D, it suffices to prove that the range of ϕ is a lower subset of D.
So let α be an element of the lower subset of D generated by the range of ϕ, we
prove that α belongs to the range of ϕ. There are elements o ≤ i of L such that
α ≤ ϕΘL(o, i). If α = 0 or α = ϕΘL(o, i), then α belongs to the range of ϕ. Now
suppose that 0 < α < ϕΘL(o, i). Put K = {o, i}, let f : K →֒ L be the inclusion
map, and let λ = ϕ ◦ Conc f . Let P = {o, x, i} be the three-element chain, with
o < x < i, and let j : K →֒ P be the inclusion map. Endow P with the {∨, 0}-homo-
morphism µ : Conc P → D defined by µΘP (o, x) = α and µΘP (x, i) = ϕΘL(o, i).
Observe that 〈P, µ〉 is a proper D-measured partial lattice and that j is an inter-
nal embedding from 〈K,λ〉 into 〈P, µ〉. Since 〈L,ϕ〉 is internally saturated, there
exists a homomorphism g : 〈P, µ〉 → 〈L,ϕ〉 such that g ◦ j = f . Hence the element
α = µΘP (o, x) = (ϕ ◦ Conc g)(ΘP (o, x)) belongs to the range of ϕ.

Assume, finally, that 〈L,ϕ〉 is either lower saturated or upper saturated. Let
α ∈ D, we prove that α belongs to the range of ϕ. We do it, for example, for lower
saturated 〈L,ϕ〉. The conclusion is obvious if α = 0, so suppose that α > 0. Pick
any element o of L, and put K = {o}, endowed with the zero homomorphism from
ConcK to D. Let P = {o, x} be the two-element chain, with o < x, endowed with
the {∨, 0}-homomorphism µ : Conc P → D defined by µΘP (o, x) = α. Then j is
a lower embedding from 〈K,λ〉 into the proper D-measured partial lattice 〈P, µ〉,
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with α in the range of µ. We conclude as in the previous paragraph that α belongs
to the range of ϕ. �

We record in Proposition 20.8 the information that we gathered in this section
about internally saturated D-measured partial lattices:

Proposition 20.8. Let D be a distributive lattice with zero, let 〈L,ϕ〉 be an inter-
nally saturated D-measured partial lattice. Then the following assertions hold:

(i) L is relatively complemented.
(ii) The map ϕ is an isomorphism from Conc L onto an ideal of D.
(iii) For o, a, b, i ∈ L such that o ≤ {a, b} ≤ i, ΘL(o, a) = ΘL(o, b) iff there

are a0, a1, b0, b1 ∈ [o, i] such that the following conditions hold:
(a) a = a0 ⊕ a1 and b = b0 ⊕ b1 in [o, i].
(b) a0 and b0 (resp., a1 and b1) are perspective in [o, i].

(iv) If, in addition, 〈L,ϕ〉 is either lower saturated or upper saturated, then ϕ
is an isomorphism from Conc L onto D.

Now let K, D, and ϕ be as in the statement of Theorem C. We replace K by the
image of its kernel projection (see Lemma 18.4), so that without loss of generality,
ϕ isolates 0. By Proposition 19.3, there exist a lower saturated D-measured par-
tial lattice 〈L,α〉 and a lower embedding f : 〈K,ϕ〉 →֒ 〈L,α〉 such that |L| =
|K|+ |D|+ ℵ0. Since 〈L,α〉 is lower saturated, it follows from Proposition 20.8(iv)
that ϕ is an isomorphism from Conc L onto D. The proof is similar if “lower” is
replaced by “upper”.

If the range of ϕ is cofinal in D, a similar argument to the one above works if
we replace “lower embedding” by “internal embedding” and “lower saturated” by
“internally saturated”. This completes the proof of Theorem C.

Now we can prove Theorem D. Indeed, let K, P , Q, f , g, µ, and ν satisfy the
assumption of Theorem D (which is the same as the assumption of Theorem B). We
first use Theorem B to find a lattice L′, homomorphisms of partial lattices f ′ : P →
L′ and g′ : Q → L′, and a {∨, 0}-homomorphism ϕ′ : Conc L

′ → D isolating zero
such that f ′ ◦ f = g′ ◦ g, µ = ϕ′ ◦ Conc f

′, ν = ϕ′ ◦ Conc g
′, and L′ is generated,

as a lattice, by f [P ] ∪ g[Q]. Then we apply Theorem C to ϕ′ : Conc L
′ → D, to

find a relatively complemented lattice L of cardinality |L′| + |D| + ℵ0, a lattice
homomorphism h : L′ → L, and an isomorphism ϕ : Conc L → D such that the
following assertions hold:

(i) ϕ′ = ϕ ◦ Conc h.
(ii) The range of h is coinitial (resp., cofinal) in L.
(iii) If the range of ϕ′ is cofinal in D, then the range of h is internal in L.

Then f = h ◦ f ′ and g = h ◦ g′ satisfy the required conditions. This completes the
proof of Theorem D.

21. A few consequences of Theorem C

As a special case of Theorem C (for the case where ϕ is an isomorphism), we
obtain the following result:

Corollary 21.1. Every lattice K such that ConcK is a lattice has an internal,
congruence-preserving embedding into a relatively complemented lattice.

The other extreme application case of Theorem C is for K being the trivial
lattice and ϕ the zero map:
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Corollary 21.2. Let D be a distributive lattice with zero. Then there exists a
relatively complemented lattice L with zero such that Conc L ∼= D. Furthermore, if
D is bounded, then one can take L bounded.

Actually, by using more of Theorem C, we can obtain a better representation
result than Corollary 21.2:

Corollary 21.3. Let S be a distributive {∨, 0}-semilattice that can be expressed as
the direct limit of a countable sequence of distributive lattices with zero and {∨, 0}-
homomorphisms. Then there exists a relatively complemented lattice L with zero
such that Conc L ∼= S. If, in addition, S is bounded, then one can take L bounded.

Proof. We assume that S is the direct limit of 〈Dn | n < ω 〉, with transition {∨, 0}-
homomorphisms ϕn : Dn → Dn+1, for n < ω. If, in addition, S is bounded,
then we can suppose that the Dn-s are bounded and that the ϕn-s are {∨, 0, 1}-
homomorphisms. We construct by induction a relatively complemented lattice Ln,
a lattice homomorphism fn : Ln → Ln+1, and an isomorphism αn : Conc Ln → Dn.

By Corollary 21.2, there exists a relatively complemented lattice L0 with zero
such that Conc L0

∼= D0; let α0 : Conc L0 → D0 be any isomorphism. If D0 has a
unit, then we can suppose that L0 is bounded.

Suppose having constructed a lattice Ln and an isomorphism αn : Conc Ln →
Dn. We apply Theorem C to the {∨, 0}-homomorphism ϕn ◦ αn : Conc Ln →
Dn+1. We obtain a relatively complemented lattice Ln+1, a zero-preserving lattice
homomorphism fn : Ln → Ln+1, and an isomorphism αn+1 : Conc Ln+1 → Dn+1

such that the following diagram is commutative.

Conc Ln
Conc fn
−−−−−→ Conc Ln+1

αn

y
yαn+1

Dn −−−−→
ϕn

Dn+1

Furthermore, in case S is bounded, the map ϕn ◦ αn is cofinal, so we can take fn

with internal range.
Hence the sequence 〈Ln | n < ω 〉 of lattices, endowed with the sequence of tran-

sition maps fn : Ln → Ln+1, determines a direct limit system, whose image under
the Conc functor is isomorphic, via the αn-s, to the direct system 〈Dn | n < ω 〉
with the ϕn-s. Since the Conc functor preserves direct limits, it follows from this
that Conc L is isomorphic to S. In case S is bounded, all the Ln-s are bounded and
all the fn-s are {0, 1}-embeddings, thus L is bounded. �

22. Open problems

Let p be either a prime number or zero. We denote by Vp the quasivariety of
all lattices that embed into the subspace lattice of a vector space over the prime
field Fp of characteristic p.

Problem 1. Does every lattice in Vp have a congruence-preserving relatively com-
plemented extension in Vp?

It may be the case that a more natural context for Problem 1 is not provided
by the congruence lattice, but the dimension monoid, see [27]. The corresponding
reformulation of Problem 1 is then the following:
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Problem 2. Does every lattice in Vp have a dimension-preserving relatively com-
plemented extension in Vp?

As in [27], we say that a lattice homomorphism f : K → L is dimension preserv-
ing, if the map Dim f : DimK → DimL is an isomorphism.

Problem 3. Let S be the {∨, 0}-direct limit of a countable sequence of distributive
lattices with zero. Does there exist a relatively complemented lattice L in Vp such
that Conc L ∼= S?

If K is a sublattice of a lattice L, we say that L is an automorphism-preserving
extension of K, if every automorphism of K extends to a unique automorphism
of L and K is closed under all automorphisms of L.

Problem 4. Let K be a lattice such that ConcK is a lattice. Does K have a rela-
tively complemented, congruence-preserving, automorphism-preserving extension?

Acknowledgments

It is my great pleasure to thank Kira Adaricheva, Mikhail Sheremet, and Jǐŕı
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