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LIFTINGS OF DIAGRAMS OF SEMILATTICES

BY DIAGRAMS OF DIMENSION GROUPS

JIŘÍ TŮMA AND FRIEDRICH WEHRUNG

Introduction

There are various ways to obtain distributive semilattices from other mathemat-
ical objects. Two of them are the following; we refer to Section 1 for more precise
definitions. A dimension group is a directed, unperforated partially ordered abelian
group with the interpolation property, see also K.R. Goodearl [6]. With a dimen-
sion group G we can associate its semilattice of compact ( = finitely generated)
ideals IdcG. Because of the interpolation property the positive cone G+ has the
refinement property, thus the compact ideal semilattice IdcG is distributive. A ring
R is locally matricial over a field K, if it is isomorphic to a direct limit of finite
products of full matricial rings Mn(K). If R is locally matricial, or, more generally,
regular (in von Neumann’s sense), then its semilattice IdcR of compact ideals is
distributive, see, for example, K.R. Goodearl [5].

These two different contexts are related as follows. With a locally matricial
ring R, we can associate its (partially ordered) Grothendieck group K0(R). It turns
out that K0(R) is a dimension group, and the following relation holds:

IdcR ∼= Idc(K0(R)), (0.1)

see [5, Corollary 15.21]. Therefore, the compact ideal semilattice of a locally ma-
tricial ring is the compact ideal lattice of a dimension group. By the results of
K.R. Goodearl and D. E. Handelman [7], the converse holds for dimension groups
of cardinality at most ℵ1, but it fails for larger dimension groups, see F. Wehrung
[17, 18]. Nevertheless this makes it worthwhile to study the functor that with a
dimension group G associates its semilattice of compact ideals IdcG. For a sur-
vey paper on this and related issues we refer the reader to K. R. Goodearl and F.
Wehrung [8].

The central open problem that motivates the present paper is Problem 10.1 of [8],
that asks whether any distributive 〈∨, 0〉-semilattice of cardinality at most ℵ1 is
isomorphic to the compact ideal semilattice of some dimension group. Let us call
this the compact ideal representation problem. By [7], this is equivalent to asking
whether any distributive 〈∨, 0〉-semilattice of cardinality at most ℵ1 is isomorphic
to the compact ideal semilattice of some locally matricial ring. Although we do not
solve this problem here, we settle related issues with some interest of their own,
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2 J. TŮMA AND F. WEHRUNG

and, hopefully, that will provide a stepping stone towards a solution for the general
problem.

We first recall the answers to some related questions. As a corollary of the main
result of G. M. Bergman [2] and a theorem of K. R. Goodearl [5], the following result
is obtained, see also [8] for different proofs.

Theorem 0.1. Every countable distributive 〈∨, 0〉-semilattice S is isomorphic to

IdcG for some countable dimension group G.

Another result of [8] is the following.

Theorem 0.2. Every distributive lattice L with zero is isomorphic to IdcG for

some dimension group G.

On the other hand, P. Růžička [14] constructs a distributive 〈∨, 0〉-semilattice of
cardinality ℵ2 that is not isomorphic to IdcG for any dimension group G.

These results leave open the case of distributive 〈∨, 0〉-semilattices of cardinal-
ity ℵ1. By P. Pudlák [13], every distributive 〈∨, 0〉-semilattice is isomorphic to
the direct union of its finite distributive 〈∨, 0〉-subsemilattices. A variant of this
result, stating that every distributive 〈∨, 0〉-semilattice is a direct limit of finite
Boolean 〈∨, 0〉-semilattices, is proved in [8]. Thus it is natural to try an inductive
approach to the compact ideal representation problem for distributive semilattices
of cardinality ℵ1: find a simultaneous representation of a suitable limit system of
finite Boolean semilattices that converges to a given distributive semilattice S of
cardinality ℵ1. By A. P. Huhn [10], one can assume that the limit system is indexed
by an infinite lattice in which every principal ideal is a finite dismantlable lattice.

After preliminary results, most notably about the existence of the so-called λ-
generic maps in Sections 4 and 5, we prove in Section 6 our main results:

Theorem 6.4. Every finite dismantlable diagram of finite Boolean 〈∨, 0〉-semi-

lattices has a simultaneous representation with respect to the functor Idc.

Theorem 7.1. For any countable distributive 〈∨, 0〉-semilattice S and any count-

able dimension vector space H, every 〈∨, 0〉-homomorphism f : S → IdcH can be

lifted by a positive homomorphism f : G→ H for some dimension vector space G.

We also state consequences of Theorem 7.1, as well in ring theory as in lattice
theory, see Corollaries 7.4 and 7.5.

The remaining sections contain various counterexamples to other strategies for
a positive solution of the compact ideal representation problem for distributive
semilattices of cardinality ℵ1.

1. Basic concepts

For basic concepts about partially ordered abelian groups, we refer the reader to
K.R. Goodearl [6]. We recall some of the definitions here. For a partially ordered
abelian group G, we denote by G+ = {x ∈ G | 0 ≤ x} the positive cone of G, and
we say that G is directed, if G = G+ + (−G+). We put G++ = G+ \ {0}, and we
note N = Z++. A subgroup H of G is convex, if 0 ≤ x ≤ a implies that x ∈ H , for
all a ∈ H and x ∈ G. We say that H is an ideal of G, if it is a directed, convex
subgroup of G, and a compact ideal of G, if it is an ideal generated by a finite
subset of G.
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As every ideal of G is directed, any ideal (resp., compact ideal) of G is generated
(as an ideal) by a subset of G+ (resp., finite subset of G+). In the latter case,
one may replace a finite subset {a1, . . . , an} of G+ by the singleton {a}, where
a =

∑n
i=1 ai, so the compact ideals of G are exactly the subsets of G of the form

G(a) =
{

x ∈ G | ∃n ∈ Z+ such that − na ≤ x ≤ na
}

, for a ∈ G+.

An order-unit of G is an element a ∈ G+ such that G(a) = G. We denote by IdG
the lattice of ideals of G, and by IdcG the 〈∨, 0〉-semilattice of compact ideals of G.
Observe that IdG is an algebraic lattice and that IdcG is its 〈∨, 0〉-semilattice of
compact elements, see G. Grätzer [9] for unexplained terminology. For elements
a, b ∈ G+, we write a ∝ b, if there exists n ∈ N such that a ≤ nb, and a ≍ b, if
a ∝ b ∝ a. Hence

IdcG =
{

G(a) | a ∈ G+
}

,

with containment and equality among the G(a)-s determined by

G(a) ⊆ G(b) iff a ∝ b and G(a) = G(b) iff a ≍ b,

for all a, b ∈ G+. Hence, IdcG is isomorphic to ∇(G+), the maximal semilattice

quotient of G+, see [8].
The assignment G 7→ IdcG can be naturally extended to a functor, by defining,

for a positive homomorphism (that is, an order-preserving group homomorphism)
f : G→ H of partially ordered abelian groups and a compact ideal I of G, (Idc f)(I)
as the compact ideal of H generated by the image f [I] of I under f . Hence,
(Idc f)(G(a)) = H(f(a)), for all a ∈ G+, and it is an easy exercise to verify that
the functor Idc thus defined preserves direct limits.

Most of the partially ordered abelian groups we shall deal with will be equipped
with an additional structure of vector space, always over the field Q of rational
numbers. Any partially ordered vector space E has the additional property that
mx ≥ 0 implies that x ≥ 0, for all m ∈ N and all x ∈ E, we say that E is
unperforated, see [6]. We observe that all group homomorphisms between vector
spaces preserve the vector space structure.

A refinement monoid (see A. Tarski [15], F. Wehrung [16]) is a commutative
monoid M such that for any positive integers m, n and elements a0, . . . , am−1, b0,
. . . , bn−1 of M such that

∑

i<m ai =
∑

j<n bj , there are elements ci,j (for i < m

and j < n) such that ai =
∑

j<n ci,j , for all i < m, and bj =
∑

i<m ci,j , for all
j < n.

A partially ordered abelian group G is an interpolation group (see [6]) if for all
positive integers m, n and elements a0, . . . , am−1, b0, . . . , bn−1 of G such that
ai ≤ bj , for all i < m and j < n, there exists x ∈ G such that ai ≤ x ≤ bj, for
all i < m and j < n. Equivalently, the positive cone G+ is a refinement monoid
(see [6, Proposition 2.1]). In addition, we say that G is a dimension group (see
[6]) if G is directed and unperforated. If G is an interpolation group, then IdcG
is a refinement semilattice. Refinement semilattices are usually called distributive

semilattices, see [9].
We can prove right away the following very elementary lifting result:

Proposition 1.1. For every 〈∨, 0〉-semilattice S, there exists a partially ordered

vector space E such that Idc E ∼= S.

Proof. We first observe that S can be 〈∨, 0〉-embedded into some powerset semi-
lattice P(X), for a set X . For example, take X = S and use the embedding
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that with any s ∈ S associates j(s) = {x ∈ S | s � x}. We then let F denote the
vector space of all maps f : X → Q with finite range. For any f ∈ F , we put
supp f = {x ∈ X | f(x) 6= 0}, and we put

M = {f ∈ F | f(x) ≥ 0, for all x ∈ X and supp f ∈ S} .

Then M is an additive submonoid of F (in particular, it is cancellative), M ∩
(−M) = {0}, and M is closed under multiplication by nonnegative scalars. Hence
M is the positive cone of a structure of directed partially ordered vector space on
E = M + (−M). Let π : M → S be the map defined by the rule π(f) = supp f , for
all f ∈M . Then π(f) ≤ π(g) (resp., π(f) = π(g)) iff f ∝ g (resp., f ≍ g) in E, for
all f , g ∈ M , whence π induces an isomorphism ϕ from IdcE onto S by the rule
ϕ(E(f)) = supp f , for all f ∈M . �

Unfortunately, even if S is distributive, the partially ordered vector space E
constructed above may not have interpolation.

Throughout the paper we shall often formulate our results in basic categorical
language. Among the main categories we shall be working with are the following:

— The category E of pairs A = (A0, 1A), where A0 is a partially ordered
vector space (that we will subsequently identify with A) and 1A is an
order-unit of A0. For objects A and B of E, a homomorphism, or positive

homomorphism, from A to B is a positive homomorphism f : A0 → B0.
Observe that we do not require that f(1A) = 1B. We say that a homo-
morphism f : A → B is normalized, if f(1A) = 1B. In particular, we will
slightly abuse terminology by using isomorphisms only in the ‘normalized’
sense, that is, an isomorphism f : A→ B satisfies the equality f(1A) = 1B.

— The full subcategory Ed of E consisting of all dimension vector spaces in E.
— The category S of 〈∨, 0〉-semilattices and 〈∨, 0〉-homomorphisms.
— The full subcategory Sfb of S whose objects are the finite Boolean semilat-

tices.

In particular, Idc defines, by restriction, a functor from E to S that preserves direct
limits.

Every partially ordered set (P,≤) can be viewed as a category with objects
x ∈ P and a unique morphism εx,y : x → y whenever x ≤ y in P . Let E′ be a
subcategory of E. We say that a diagram Φ: (P,≤) → S of semilattices (i.e., a
functor from P , viewed as a category, to S) has a lifting, with respect to the functor
Idc, to the category E′, if there is a diagram Ψ: (P,≤) → E′ such that the two
functors Φ and Idc ◦Ψ are naturally equivalent, that is, if there are isomorphisms
ιx : Φ(x) → Idc(Ψ(x)), for x ∈ P , such that the following diagram commutes,

Idc(Ψ(x))
Idc(Ψ(εx,y)) // Idc(Ψ(y))

Φ(x)

ιx

OO

Φ(εx,y)
// Φ(y)

ιy

OO

for all x ≤ y in P . We will usually omit the phrase with respect to Idc, since lifts
with respect to other functors will not be investigated.

For a set I, we denote by P(I) the powerset of I, and, for any i ∈ I, we put

Pi(I) = {X ∈ P(I) | i ∈ X} , P
∗
i (I) = {X ∈ P(I) | i /∈ X} .
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2. Pseudo-simplicial spaces

For a nonempty, finite set X , let QX denote the partially ordered vector space
with underlying vector space QX and partial ordering defined by

f ≤ g ⇔ either f = g or f(x) < g(x), for all x ∈ X,

endowed with the canonical order-unit 1X , defined as the constant function on X
with value 1. Then QX is a dimension vector space. It is simple, that is, Idc QX

∼=
2. We denote by (1Xx )x∈X the canonical basis of QX , so that 1X =

∑

x∈X 1Xx .

We observe that while 1X ∈ (QX)++, the vectors 1Xx , for x ∈ X , do not belong
to (QX)++ unless X is a singleton. Nevertheless they keep a certain positivity
character, captured by the following definition:

Definition 2.1. For a partially ordered abelian group G, we define a partial pre-
ordering ≤arch on G by the rule

x ≤arch y ⇐⇒ ∃u ∈ G such that nx ≤ ny + u, for all n ∈ Z+, (2.1)

for all x, y ∈ G. Then we define the partially preordered abelian group Garch =
(G,≤arch), the archimedean quotient of G.

In particular, for any finite set X , the archimedean quotient of QX is QX , and
0 <arch 1Xx , for all x ∈ X .

Definition 2.2. An object A of E is

(i) simple pseudo-simplicial, if A ∼= QX for some nonempty finite set X ,
(ii) pseudo-simplicial, if A =

⊕

i<nAi for some natural number n and some
simple pseudo-simplicial spaces Ai, for i < n.

The formula in (ii) above means that A =
⊕

i<nAi as vector spaces, 1A =
∑

i<n 1Ai
, and the canonical bijection from

∏

i<nAi to A is an isomorphism in E

(that is, for the vector space structure as well as the—componentwise—partial order
structure).

In particular, simplicial vector spaces, that is, spaces of the form Qn with the
positive cone (Qn)+ consisting of all vectors with non-negative coordinates, are
particular cases of pseudo-simplicial spaces. Observe that for any pseudo-simplicial
space E, the space Earch is simplicial.

For a simple pseudo-simplicial space A, the canonical basis of A is defined as the
set T of minimal elements t of A++

arch such that t∧ (1A− t) = 0, where ∧ denotes the
meet operation in the lattice-ordered group Aarch. Hence T is a (finite) vector space
basis of A and the map from QT to A that with any sequence (xt)t∈T associates
∑

t∈T xtt is an isomorphism from QT onto A. It sends 1Tt to t, for all t ∈ T , and

1T to 1A.
We denote by Eps the full subcategory of E whose objects are the pseudo-sim-

plicial spaces.
We state without proof the following lemma, that summarizes some elementary

properties of pseudo-simplicial spaces.

Lemma 2.3. Let m be a natural number, let A0, . . . , Am−1 be simple pseudo-sim-

plicial spaces. Put A =
⊕

i<m Ai, and identify Ai with its canonical image in A,

for all i < m. Then the following assertions hold.

(i) The ideals of A are exactly the subsets of the form
⊕

i∈I Ai for a subset I
of {0, 1, . . . ,m− 1}.
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(ii) The simple ideals of A are exactly the Ai, for i < m.

(iii) IdcA ∼= 2m, a finite Boolean semilattice.

For a partially ordered vector space E, the two binary relations ∝ and ≍ on E+

can be refined as follows. For a positive, rational number λ and a, b ∈ E+, we
introduce the following notations:

a ∝λ b, if a ≤ λb;

a ≍λ b, if a ∝λ b and b ∝λ a;

a ∝arch
λ b, if a ∝λ+ε b, for all rational ε > 0;

a ≍arch
λ b, if a ≍λ+ε b, for all rational ε > 0.

Hence a ∝arch
λ b (resp., a ≍arch

λ b) in E implies that a ∝λ b (resp., a ≍λ b) in Earch;
the converse holds if E is simple.

3. Basic facts about refinement

We start with an easy and useful lemma.

Lemma 3.1. Let M be a refinement monoid, let I and Ti, i ∈ I, be finite nonempty

sets, let a, ai,j (for i ∈ I and j ∈ Ti) be elements of M such that

a =
∑

j∈Ti

ai,j , for all i ∈ I.

Then there are elements xϕ (for ϕ ∈ T =
∏

i∈I Ti) of M such that

a =
∑

ϕ∈T

xϕ and ai,j =
∑

ϕ∈T
ϕ(i)=j

xϕ, for all i ∈ I and j ∈ Ti. (3.1)

Proof. An easy induction on the cardinality of I. There is nothing to prove if
|I| = 1. Now assume that the claim holds for any set I of cardinality n ≥ 1 and
I ′ = I ∪ {k} 6= I. By the induction hypothesis on I we get elements xϕ ∈ M for
ϕ ∈ T such that

a =
∑

ϕ∈T

xϕ and ai,j =
∑

ϕ∈T
ϕ(i)=j

xϕ, for all i ∈ I and j ∈ Ti.

Since also a =
∑

l∈Tk
ak,l and M is a refinement monoid, we get that there are

elements xϕ,l ∈M , for ϕ ∈ T and l ∈ Tk, such that

xϕ =
∑

l∈Tk

xϕ,l and ak,l =
∑

ϕ∈T

xϕ,l

for any ϕ ∈ T and l ∈ Tk. Thus

a =
∑

l∈Tk

ak,l =
∑

l∈Tk

∑

ϕ∈T

xϕ,l.

Since T×Tk =
∏

i∈I∪{k} Ti, the indices (ϕ, l) are in one-to-one correspondence with

functions ψ ∈ T × Tk. Moreover, for every i ∈ I and j ∈ Ti we get

ai,j =
∑

ϕ∈T
ϕ(i)=j

xϕ =
∑

ϕ∈T
ϕ(i)=j

∑

l∈Tk

xϕ,l =
∑

ψ∈T×Tk

ψ(i)=j

xψ .
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Finally, for every l ∈ Tk we get

ak,l =
∑

ϕ∈T

xϕ,l =
∑

ψ∈T×Tk

ψ(k)=l

xψ. �

Lemma 3.2. Let λ ≥ 1 be a rational number, let E be a dimension vector space,

let I be a finite set, let ai (for i ∈ I) be elements of E+. Then the following are

equivalent:

(i) ai ≍λ aj, for all i, j ∈ I.
(ii) There are elements bX (for X ∈ P(I)) of E+ such that

ai =
∑

X∈P∗

i
(I)

bX + λ ·
∑

X∈Pi(I)

bX , for all i ∈ I.

Proof. (ii)⇒(i) is trivial.
Now assume that (i) holds. By applying interpolation to the system of inequal-

ities λ−1ai ≤ aj , for all i, j ∈ I, we obtain a ∈ E such that λ−1ai ≤ a ≤ aj , for all
i, j ∈ I. Hence, a ≤ ai ≤ λa, for all i ∈ I, so that there are a′i, a

′′
i ∈ E+ such that

ai = a+a′i and (λ−1)a = a′i+a′′i , for all i ∈ I. By Lemma 3.1 applied to M = E+

and J = {0, 1}, there are elements bX of E+, for X ∈ P(I), such that

a′i = (λ− 1)
∑

X∈Pi(I)

bX , a′′i = (λ− 1)
∑

X∈P∗

i
(I)

bX , for all i ∈ I;

a =
∑

X∈P(I)

bX .

Therefore, for all i ∈ I,

ai =
∑

X∈P(I)

bX + (λ− 1)
∑

X∈Pi(I)

bX

=
∑

X∈P∗

i
(I)

bX + λ ·
∑

X∈Pi(I)

bX . �

4. Flat and generic homomorphisms with simple target

Definition 4.1. Let m be a natural number, let A0, . . . , Am−1, B be simple

objects of Ed, let f :
⊕

i<mAi → B be a positive homomorphism, let λ ≥ 1 be a
rational number. We say that f is

(i) λ-flat, if f(1Ai
) ≍arch

λ f(1Aj
), for all i, j < m such that f(1Ai

), f(1Aj
) 6= 0.

(ii) λ-generic, if for any simple pseudo-simplicial space C and for any λ-flat
homomorphism g :

⊕

i<m Ai → C such that

f [Ai] 6= {0} ⇔ g[Ai] 6= {0} , for all i < m,

there exists a homomorphism h : B → C such that g = h ◦ f .

The following simple result summarizes some of the basic properties of flat and
generic homomorphisms:

Lemma 4.2. Let m be a natural number, let A be a pseudo-simplicial space, let

A0, . . . , Am−1, B, G be simple objects of Ed. Let α, β, λ be rational numbers such

that 1 ≤ α ≤ β and 1 ≤ λ.

(i) Every homomorphism f :
⊕

i<mAi → B is λ-flat for some λ ≥ 1.
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(ii) Every α-flat homomorphism from a pseudo-simplicial space to a simple

pseudo-simplicial space is β-flat.

(iii) Every β-generic homomorphism from a pseudo-simplicial space to a simple

pseudo-simplicial space is α-generic.

(iv) Suppose that G is pseudo-simplicial, let f : A → G and h : A → B be

homomorphisms, and let g : IdcG→ IdcB be a 〈∨, 0〉-homomorphism such

that Idc h = g ◦ Idc f . If f is λ-generic and h is λ-flat, then there exists a

homomorphism g : G→ B such that g = Idc g and h = g ◦ f .

The situation of (iv) above may be summarized by the following commutative
diagrams:

IdcB B

IdcG

g
;;vvvvvvvvv

G

g
??�

�
�

�

IdcA
Idc f

ccHHHHHHHHH

Idc h

OO

A

f

__????????

h

OO

Proof. To prove (i) observe that if f(1Ai
) 6= 0, then it is an order-unit in B.

Thus for any i, j < m such that both f(1Ai
) and f(1Aj

) are nonzero, there exists

λi,j ∈ Q++ such that f(1Ai
) ≤ λi,jf(1Aj

). Now set λ any positive rational number
larger than 1 and all λi,j .

Claims (ii) and (iii) are straightforward.
To prove (iv) observe first that g has a lifting, that is, a homomorphism g : G→

B such that Idc g = g. Indeed, if g = 0, take g = 0, while if g is the unique
isomorphism from IdcG to IdcB, any nonzero positive homomorphism from G
to B is a lifting of g, for example, if G = Qm and if b ∈ B++, the map g : G → B
defined by the rule g(x0, . . . , xm−1) =

(
∑

i<m xi
)

b, for all x0, . . . , xm−1 ∈ Q.
Now, for (iv) above, if h = 0, then any lifting g of g satisfies the required

conditions. So suppose that h 6= 0. Then, by the λ-genericity of f and the λ-
flatness of h, there exists a homomorphism g : G → B such that h = g ◦ f . In
particular, g 6= 0. Similarly, from Idc h = g ◦ Idc f and Idc h 6= 0 follows that g 6= 0.
Therefore, since both G and B are simple, g lifts g. �

We shall now define the canonical generic maps. We are given a pseudo-simplic-
ial space A and a 〈∨, 0〉-homomorphism f : IdcA→ 2. We shall construct a simple
pseudo-simplicial space G = Gen(A,f ) and a lifting f : A → G of f with respect
to the Idc functor.

Put A =
⊕

i<m Ai, for a natural number m and simple pseudo-simplicial spaces
A0, . . . , Am−1. We shall define a pseudo-simplicial space G = Gen(A,f ) and, for
every rational number λ ≥ 1, a lifting fλ : A → G of f with respect to the Idc

functor.
For all i < m, let Ti denote the canonical basis of Ai (see Section 2). Hence

the Ti, for i < m, are mutually disjoint finite sets and
⋃

i<m Ti is a vector space
basis of A. Let I = {i < m | f(Ai) = 1} (observe that Ai is a compact ideal of A,
thus it belongs to the domain of f , see Lemma 2.3). Furthermore, we put

T =
∏

i∈I

Ti, F = P(I) × T, and G = QF .
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Observe that both T and F are finite, nonempty sets. For a rational number λ ≥ 1,
we define a linear map fλ : A→ QF by its action on the elements of

⋃

i<m Ti. For
i < m and t ∈ Ti, we define fλ(t) = 0 if i /∈ I, while, if i ∈ I, we put

fλ(t) =
∑

(X,ϕ)∈F
i/∈X, ϕ(i)=t

1F(X,ϕ) + λ ·
∑

(X,ϕ)∈F
i∈X, ϕ(i)=t

1F(X,ϕ). (4.1)

For all i < m, let fi,λ denote the restriction of fλ to Ai.

Lemma 4.3. The map fi,λ is a positive homomorphism from Ai to QF , for all

i < m, and it is nonzero iff i ∈ I.

Proof. For i /∈ I, fi,λ = 0. Suppose now that i ∈ I. It is trivial that fi,λ defines
a positive homomorphism from (Ai)arch ∼= QTi to QF . To prove that it is also
a nonzero positive homomorphism from Ai to QF , it is sufficient to prove that
fi,λ(1Ai

) is an order-unit of QF . By observing that 1Ai
=
∑

t∈Ti
t and by using

(4.1), we can compute:

fi,λ(1Ai
) =

∑

(X,ϕ)∈F
i/∈X

1F(X,ϕ) + λ ·
∑

(X,ϕ)∈F
i∈X

1F(X,ϕ).

Since all the components of this vector relatively to all 1F(X,ϕ), for (X,ϕ) ∈ F , are

positive, fi,λ(1
Ti) is indeed an order-unit of QF . �

It follows from Lemma 4.3 that fλ is a positive homomorphism from A to QF . It
follows immediately from Lemma 4.3 that fλ : A→ QF is a lifting of the semilattice
map f : IdcA→ 2. Indeed, if we take the canonical isomorphism from Idc QF to 2,
the following diagram

2
can. // Idc QF

IdcA

f

OO

Idc fλ

::uuuuuuuuu

is commutative, since fλ[Ai] 6= {0} iff f(Ai) = 1, for all i < m.

Lemma 4.4. The homomorphism fλ is λ-flat.

Proof. For all i ∈ I, fλ(1Ai
) = fi,λ(1Ai

) is a linear combination of the vectors
1F(X,ϕ), for (X,ϕ) ∈ F , with coefficients either 1 or λ (see (4.1)). The conclusion

follows. �

We observe here the relevance of the definition of flatness by using ≍arch instead
of ≍: indeed, the vectors 1F(X,ϕ), for (X,ϕ) ∈ F , do not belong to the positive cone

of QF except if F is a singleton.
Now we come to the main result of this section:

Lemma 4.5. The homomorphism fλ is λ-generic.

Proof. Let C be a simple pseudo-simplicial space, let g :
⊕

i<mAi → C be a λ-flat
homomorphism such that g[Ai] 6= {0} iff fλ[Ai] 6= {0} (that is, i ∈ I), for all i < m.
Set again Ai = QTi

for every i < m. We define elements ai (for i < m) and a(t)

(for i < m and t ∈ Ti) of C by

ai = g(1Ai
), a(t) = g(t).
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Observe that ai ∈ C+ while we can only say that a(t) ∈ C+
arch. Moreover, ai =

∑

t∈Ti
a(t). From the fact that g is λ-flat follows that ai ≍arch

λ aj in C, for all i,

j ∈ I, hence, by Lemma 3.2 applied to Carch (that has interpolation, because C is
pseudo-simplicial), there are elements bX (for X ∈ P(I)) of C+

arch such that

ai =
∑

X∈P∗

i
(I)

bX + λ ·
∑

X∈Pi(I)

bX , for all i ∈ I. (4.2)

Now, for fixed i ∈ I, we apply refinement to the equality

∑

t∈Ti

a(t) =
∑

X∈P∗

i
(I)

bX + λ ·
∑

X∈Pi(I)

bX ,

which holds in C+
arch. We obtain elements cX,i,t (for (X, i) ∈ P(I) × I and t ∈ Ti)

of C+
arch such that

a(t) =
∑

X∈P∗

i
(I)

cX,i,t + λ ·
∑

X∈Pi(I)

cX,i,t (for all i ∈ I and t ∈ Ti) (4.3)

bX =
∑

t∈Ti

cX,i,t (for all X ∈ P(I)). (4.4)

Now we apply Lemma 3.1 to the system of equations (4.4) in C+
arch. We find

elements d(X,ϕ) (for (X,ϕ) ∈ F ) of C+
arch such that

bX =
∑

ϕ∈T

d(X,ϕ) (for all X ∈ P(I)) (4.5)

cX,i,t =
∑

ϕ∈T
ϕ(i)=t

d(X,ϕ) (for all X ∈ P(I), i ∈ I, t ∈ Ti). (4.6)

We define a linear map h : QF → C by the rule

h(1F(X,ϕ)) = d(X,ϕ), for all (X,ϕ) ∈ F. (4.7)

Hence h is a positive homomorphism from QF to Carch. To verify that h is a positive
homomorphism from QF to C, it suffices to verify that h(1F ) ∈ C+. This is trivial
for I = ∅ (then QF = Q). Suppose that I 6= ∅. We compute:

h(1F ) =
∑

(X,ϕ)∈F

h(1F(X,ϕ)) =
∑

(X,ϕ)∈F

d(X,ϕ)

=
∑

X∈P(I)

bX (by (4.5)).

Hence, it follows from (4.2) that h(1F ) ≍ ai in Carch for any i ∈ I. But ai ∈ C+,
thus h(1F ) ∈ C+.

It remains to prove that h ◦ fλ(t) = g(t), for all i < m and all t ∈ Ti. This is
obvious if i /∈ I, in which case both sides of the equality are zero. So suppose that



LIFTING SEMILATTICE DIAGRAMS 11

i belongs to I. We compute:

h ◦ fλ(t) =
∑

(X,ϕ)∈F
i/∈X,ϕ(i)=t

d(X,ϕ) + λ ·
∑

(X,ϕ)∈F
i∈X, ϕ(i)=t

d(X,ϕ) (by (4.1) and (4.7))

=
∑

X∈P∗

i
(I)

cX,i,t + λ ·
∑

X∈Pi(I)

cX,i,t (by (4.6))

= a(t) (by (4.3))

= g(t) (by the definition of a(t)),

which concludes the proof. �

5. Flat and generic homomorphisms with arbitrary target

Definition 5.1. Let n be a natural number, let B0, . . . , Bn−1 be simple pseu-
do-simplicial spaces, let A be a pseudo-simplicial space, let f : A→

⊕

j<n Bj be a
homomorphism. Write

f(x) = (f0(x), . . . , fn−1(x)), for all x ∈ A,

with fj : A→ Bj , for all j < n. For any rational number λ ≥ 1, we say that f is

(i) λ-flat, if f0, . . . , fn−1 are λ-flat.
(ii) λ-generic, if f0, . . . , fn−1 are λ-generic.

Because of Lemma 2.3, the decomposition B =
⊕

j<n Bi of B into simple ideals
is unique, hence the definition above is well-stated.

Part of Lemma 4.2 has a straightforward analogue for these more general defi-
nitions of flat and generic maps:

Lemma 5.2. Let α and β be rational numbers such that 1 ≤ α ≤ β.

(i) Every homomorphism f : A→
⊕

j<nBj is λ-flat for some λ ≥ 1.

(ii) Every α-flat homomorphism is β-flat.

(iii) Every β-generic homomorphism is α-generic.

The definition of canonical generic homomorphisms of Section 4 extends easily
to this new context, as follows.

Let A be a pseudo-simplicial space, let n be a natural number, let f : IdcA→ 2n

be a 〈∨, 0〉-homomorphism. So there are unique 〈∨, 0〉-homomorphisms f j : IdcA→
2, for j < n, such that

f(X) = (f0(X), . . . ,fn−1(X)), for all X ∈ IdcA.

We put Gj = Gen(A,f j), for all j < n, and G =
⊕

j<nGj . For any rational
number λ ≥ 1, we define the canonical λ-generic homomorphism fλ : A → G by
the rule

fλ(x) = (f0,λ(x), . . . , fn−1,λ(x)), for all x ∈ A,

where fj,λ : A → Gj is the canonical λ-generic map associated with A and f j , for
all j < n. It is trivial, by Lemmas 4.4 and 4.5 and by Definition 5.1, that fλ is
both λ-flat and λ-generic.

Now define a map ι : 2n → IdcG by

ι(i0, i1, . . . , in−1) =
⊕

j∈J

Gj , (5.1)
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where we put J = {j < n | ij = 1}. Since the diagram

2
can. // IdcGj

IdcA

f j

OO

Idc fj,λ

::vvvvvvvvv

is commutative for any j < n, we get that also the diagram

2n
ι // IdcG

IdcA

f

OO

Idc fλ

;;vvvvvvvvv

is commutative. Thus we have proved the following lemma.

Lemma 5.3. The identity ι ◦ f = Idc fλ holds. Thus the map fλ lifts f .

The main result of this section is the following analogue of Lemma 4.2(iv).

Lemma 5.4. Let A, B, G be pseudo-simplicial spaces, let f : A→ G and h : A→ B
be positive homomorphisms, and let g : IdcG → IdcB be a 〈∨, 0〉-homomorphism

such that Idc h = g ◦ Idc f . Let m, p be the natural numbers such that IdcA ∼= 2m

and IdcG ∼= 2p, and put q = min
{

2m−1, p
}

if m, p > 0, and q = 1 otherwise. Let

λ ≥ 1 be a rational number. If f is qλ-generic and h is λ-flat, then there exists a

homomorphism g : G→ B such that g = Idc g and h = g ◦ f .

Proof. First of all, by decomposing B as the direct sum of its simple ideals (see
Lemma 2.3), it is easy to reduce the problem to the case where B is simple. Fur-
thermore, the problem is trivial if either A or G is trivial, so suppose from now
on that both m and p are nonzero. Let A =

⊕

i<mAi and G =
⊕

j<pGj be the
decompositions of A and G as the direct sums of their simple ideals. We write

f(x) = (f0(x), . . . , fp−1(x)), for all x ∈ A,

with homomorphisms fj : A → Gj , for j < p. Moreover, by using the natural
identification of IdcG with

∏

j<p IdcGj , we can decompose g as

g(Y0, . . . , Yp−1) =
∨

j<p

gj(Yj), for all (Y0, . . . , Yp−1) ∈
∏

j<p

IdcGj ,

with 〈∨, 0〉-homomorphisms gj : IdcGj → IdcB, for j < p. Hence Idc h =
∨

j<p hj ,

where we put hj = gj ◦ Idc fj, for all j < p. So hj is a 〈∨, 0〉-homomorphism from
IdcA to IdcB.

We define subsets H , Hj (for j < p) of m as follows:

H = {i < m | h[Ai] 6= {0}} , Hj = {i < m | hj(Ai) 6= {0}} .

Put H = {Hj | j < p}. Hence H =
⋃

j<pHj =
⋃

H. Furthermore, put ni =

| {K ∈ H | i ∈ K} |, for all i < m. We make the following obvious observation:

ni = 0, for all i /∈ H, and 1 ≤ ni ≤ q, for all i ∈ H. (5.2)

For any K ∈ H, we define a homomorphism h(K) : A → B by its restriction to
each Ai, for i < m. First, we define the restriction of h(K) to Ai as equal to zero if
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i /∈ K. If i ∈ K, we put

h(K)(x) =
1

ni
h(x), for all x ∈ Ai. (5.3)

Hence, h(K)[Ai] 6= {0} iff i ∈ K, hence

Idc h(Hj) = hj , for all j < p. (5.4)

Furthermore, for all i ∈ H and all x ∈ Ai,

∑

K∈H

h(K)(x) =
∑

K∈H

i∈K

1

ni
h(x) = h(x),

whence we obtain the equality
∑

K∈H

h(K) = h. (5.5)

Next, we put pj = | {j′ < p | Hj = Hj′} | and hj =
1

pj
h(Hj), for all j < p. Hence pj

is a positive integer and, by (5.4), the following holds:

Idc hj = hj , for all j < p. (5.6)

Moreover,
∑

j<p hj =
∑

K∈H
h(K) = h (the last equality follows from (5.5)). So we

have obtained
∑

j<p

hj = h. (5.7)

Now we prove the following crucial claim:

Claim 1. The homomorphism hj is qλ-flat, for all j < p.

Proof of Claim. By the definition of hj , it suffices to prove that h(K) is qλ-flat, for

all K ∈ H. For all i ∈ K, h(K)(1Ai
) =

1

ni
h(1Ai

), so, for all i, j ∈ K,

h(K)(1Aj
) =

1

nj
h(1Aj

) ≤arch λ

nj
h(1Ai

) (because h is λ-flat)

=
niλ

nj
h(K)(1Ai

)

≤ niλh(K)(1Ai
)

≤ qλh(K)(1Ai
) (by (5.2)),

which concludes the proof of the claim. � Claim 1.

Since f is qλ-generic, it follows from Lemma 4.2 that for all j < p, there exists
a homomorphism gj : Gj → B such that Idc gj = gj and gj ◦ fj = hj . We define
g : G→ B by the rule

g(y0, . . . , yp−1) =
∑

j<p

gj(yj), for all (y0, . . . , yp−1) ∈ B.

Then Idc g = g and, by (5.7), g ◦ f = h. �
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Example 5.5. The following example shows that one cannot replace q by 1 in the
statement of Lemma 5.4. Let h : Q2 → Q be defined by the rule h(x, y) = x + y
(for all x, y ∈ Q), and let f : Q2 → A ⊕ B be any 1-generic lifting of the map
f : 22 → 22 defined by the rule f(x,y) = (x ∨ y,y), with A and B being simple
pseudo-simplicial spaces. Let g : 22 → 2 be defined by the rule g(x,y) = x ∨ y.
By identifying Idc(A ⊕ B) with 22 and Idc Q with 2, the map g defines a 〈∨, 0〉-
homomorphism from Idc(A ⊕ B) to Idc Q, and Idc h = g ◦ Idc f . Obviously, h is
1-flat. However, we prove that there exists no lifting g of g such that h = g ◦ f .
The situation is summarized on the diagrams below:

Idc Q Q

Idc(A⊕B)

g
77ooooooooooo

A⊕B

g
::u

u
u

u
u

Idc(Q ⊕ Q)

Idc f

ggOOOOOOOOOOO

Idc h

OO

Q ⊕ Q
f

ddIIIIIIIIII

h

OO

There are a, c ∈ A++ and b ∈ B++ such that

f(x, y) = (xa+ yc, yb), for all x, y ∈ Q.

From the fact that f is 1-flat follows that a ≍arch
1 c in A. Furthermore, there are

positive, nonzero homomorphisms u : A→ Q and v : B → Q such that

g(x, y) = u(x) + v(y), for all x ∈ A and y ∈ B.

From a ≍arch
1 c follows that u(a) ≍arch

1 u(c), thus, since u(a), u(c) ∈ Q+, u(a) =
u(c). However, by applying h = g ◦ f to (1, 0) and (0, 1) respectively, we obtain
that u(a) = 1 and u(c) + v(b) = 1, hence 0 < u(c) < u(a) = u(c), a contradiction.

We end this section with an easy lifting result:

Lemma 5.6. Let E be a pseudo-simplicial space, let m be a natural number, let

f : 2m → IdcE be a 〈∨, 0〉-homomorphism. Then there exists a positive homomor-

phism f : Qm → E such that, if ι : 2m → Idc Qm denotes the canonical isomor-

phism, the equality f = Idc f ◦ ι holds.

Proof. Let E =
⊕

j<nEj be the decomposition of E as a direct sum of simple

pseudo-simplicial spaces. Denote by (ei)i<m (resp., (ei)i<m) the canonical basis
of 2m (resp., Qm). For all i < m, there exists a subset Ji of {0, 1, . . . , n− 1}
such that f(ei) =

⊕

j∈Ji
Ej . Let f : Qm → E be the linear map defined by

f(ei) =
∑

j∈Ji
1Ej

, for all i < m. Then, for all i < m,

(Idc f ◦ ι)(ei) = (Idc f)(Qei) = E(f(ei)) =
⊕

j∈Ji

Ei = f (ei),

whence Idc f ◦ ι = f . �

6. Pseudo-simplicial liftings of dismantlable diagrams

The existence of λ-generic mappings enables us to construct liftings of a large
class of finite diagrams with respect to the functor Idc. The following definition is
due to K.A. Baker, P. C. Fishburn, and F. S. Roberts [1].
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Definition 6.1. A finite lattice L of cardinality n is called dismantlable if there is
a chain L1 ⊂ L2 ⊂ · · · ⊂ Ln = L of sublattices of L such that |Li| = i for every
i = 1, 2, . . . , n.

We shall use an extension of Definition 6.1 to partially ordered sets. We shall

consider ∅ as a partially ordered set. For a finite partially ordered set P , an element
x of P is doubly-irreducible, if x has at most one upper cover and at most one lower
cover. We denote by IrrP the set of all doubly-irreducible elements of P . For a
subset Q of P , let Q⋖ P be the statement that Q = P \ {x} for some x ∈ IrrP .

Definition 6.2. A finite partially ordered set P of cardinality n is dismantlable, if
there exists a chain ∅ = P0 ⋖ P1 ⋖ · · · ⋖ Pn = P of subsets of P .

Of course, a finite lattice is dismantlable iff it is dismantlable as a partially
ordered set. On the other hand, every finite bounded dismantlable partially ordered
set is a lattice as observed in D. Kelly and I. Rival [12]. Furthermore, a nonempty
partially ordered set P is dismantlable iff there exists x ∈ IrrP such that P \ {x}
is dismantlable.

There is a large supply of finite dismantlable lattices. For example, the following
result was proved in [1]; another proof can be found in D. Kelly and I. Rival [12].

Theorem 6.3. Every finite planar lattice is dismantlable.

There are also non-planar modular dismantlable lattices, like the one diagrammed
on Figure 1. On the other hand, every distributive dismantlable lattice is planar,
see D. Kelly and I. Rival [11].

Figure 1. A dismantlable, modular, non-planar lattice

The main result of this section is the following.

Theorem 6.4. Every diagram Φ: P → Sfb of finite Boolean semilattices indexed by

a finite dismantlable partially ordered set P has a pseudo-simplicial lifting Ψ: P →
Eps.

Proof. We shall proceed by induction on the cardinality of P . We may also assume
without loss of generality that for every x ∈ P we have Φ(x) = 2q for some q ∈ Z+.
If P = ∅ then the result is trivial.

Now assume that P is nonempty. So there exists x ∈ IrrP such that Q = P \{x}
is dismantlable. By the induction hypothesis, the restriction Φ′ of Φ toQ has a pseu-
do-simplicial lifting Ψ′ : Q→ Eps. So there are isomorphisms ιt : Φ(t) → Idc(Ψ

′(t)),
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for t ∈ Q, such that the following holds:

ιt ◦ Φ(εs,t) = Idc(Ψ
′(εs,t)) ◦ ιs, for all s ≤ t in Q. (6.1)

Let n ∈ Z+ such that Φ(x) = 2n.
Suppose first that x is comparable to no element of Q. Then, in order to lift Φ,

it is sufficient to adjoin one lifting of Φ(x) to the diagram Ψ′; take Ψ(x) = Qn.
So, from now on, suppose that x can be compared to at least one element of Q.

We denote by u (resp., v) the unique lower cover (resp., upper cover) of x in P if
it exists. By assumption, either u or v exists.

We start with the case where x is a minimal element of P . Then v exists, and,
by Lemma 5.6, there exists a positive homomorphism f : Qn → Ψ′(v) such that, if
ιx : 2n → Idc Qn denotes the canonical isomorphism, the equality

ιv ◦ Φ(εx,v) = Idc f ◦ ιx (6.2)

holds. We define Ψ(x) = Qn, and, for every t ∈ Q such that x < t, that is, v ≤ t, we
put Ψ(εx,t) = Ψ′(εv,t) ◦ f . It follows from (6.1) that the right half of the following
diagram commutes,

Idc(Ψ(x)) = Idc(Qn)
Idc f // Idc(Ψ

′(v))
Idc(Ψ

′(εv,t)) // Idc(Ψ
′(t))

Φ(x) = 2n

ιx

OO

Φ(εx,v)
// Φ(v)

ιv

OO

Φ(εv,t)
// Φ(t)

ιt

OO

while the commutation of the left half of this diagram follows from (6.2). This
settles the case where x is a minimal element of P .

So, suppose, from now on, that x is not minimal in P , so that u exists. Let
m ∈ Z+ such that Φ(u) = 2m. Observe that f = Φ(εu,x) ◦ ι−1

u is a 〈∨, 0〉-ho-
momorphism from Idc(Ψ

′(u)) to 2n. Put G = Gen(Ψ′(u),f ) (see Section 5), let
ιx : 2n → IdcG be the isomorphism given by (5.1). For any rational number µ ≥ 1,
denote by fµ : Ψ′(u) → G the canonical µ-generic lifting of f , see Section 5. Hence,
by Lemma 5.3, the following diagram commutes,

2n
ιx // IdcG

Idc(Ψ
′(u))

f

OO

Idc fµ

99ssssssssss

which means that the following equality holds:

Idc fµ ◦ ιu = ιx ◦ Φ(εu,x). (6.3)

In case x is maximal in P , set µ = 1. In case x is not maximal in P , there
exists, by Lemma 5.2(i) a rational number λ ≥ 1 such that Ψ′(εu,v) is λ-flat. Put
q = min

{

2m−1, n
}

if m, n > 0, q = 1 otherwise, and put µ = qλ. In both cases,
we define Ψ(x) = G and Ψ(εu,x) = fµ, the canonical µ-generic lifting of f . Hence
for every t ≤ u we have to set Ψ(εt,x) = fµ ◦ Ψ′(εt,u), and we need to check that
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the following diagram commutes:

Idc(Ψ
′(t))

Idc(Ψ
′(εt,u))// Idc(Ψ

′(u))
Idc fµ // Idc(Ψ(x)) = IdcG

Φ(t)

ιt

OO

Φ(εt,u)
// Φ(u)

ιu

OO

Φ(εu,x)
// Φ(x)

ιx

OO

The commutativity of the left half of this diagram follows from (6.1), while the
commutativity of the right half follows from (6.3). In particular, this completes the
proof of the induction step if x is the largest element of P .

If x has a (unique) upper cover v we continue as follows. We first observe that
g = ιv ◦ Φ(εx,v) ◦ ι−1

x is a 〈∨, 0〉-homomorphism from IdcG to Idc(Ψ
′(v)). Since

Ψ′(εu,v) is λ-flat and Ψ′(εu,x) = fµ is qλ-generic, Lemma 5.4 can be applied to the
two following commutative diagrams:

Ψ′(v) Idc Ψ′(v)

Ψ(x) = G IdcG

g
eeKKKKKKKKKK

Ψ′(u)

Ψ′(εu,v)

OO

fµ

99sssssssss

Idc(Ψ
′(u))

Idc(Ψ
′(εu,v))

OO

ιx ◦ f

99ssssssssss

Thus there exists a positive homomorphism g : G→ Ψ′(v) such that Idc g = g and
g ◦ fµ = Ψ′(εu,v). We define Ψ(εx,v) = g, thus for every t ≥ v we have to set
Ψ(εx,t) = Ψ′(εv,t) ◦ g, and we need to check that the following diagram commutes:

Idc(Ψ
′(u))

Idc fµ // IdcG
g = Idc g // Idc(Ψ

′(v))
Idc(Ψ

′(εv,t)) // Idc(Ψ
′(t))

Φ(u)

ιu

OO

Φ(εu,x)
// Φ(x)

ιx

OO

Φ(εx,v)
// Φ(v)

ιv

OO

Φ(εv,t)
// Φ(t)

ιt

OO

The commutativity of the right third of this diagram follows from (6.1), the com-
mutativity of the left third follows from (6.3), and the commutativity of the middle
third of this diagram follows from the fact that Idc g = g and the definition of g.
This completes the verification that the extension Ψ of Ψ′ thus defined is as re-
quired. �

7. Lifting 〈∨, 0〉-homomorphisms between countable 〈∨, 0〉-semilattices

The main result of this section is a wide generalization of Lemma 5.6:

Theorem 7.1. Let S be a countable distributive 〈∨, 0〉-semilattice, let H be a count-

able dimension vector space, let f : S → IdcH be a 〈∨, 0〉-homomorphism. Then

f can be lifted, that is, there are a countable dimension vector space G, a pos-

itive homomorphism f : G → H, and an isomorphism α : S → IdcG such that

f = (Idc f) ◦ α.
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Proof. It follows from E. G. Effros, D. E. Handelman, and C.-L. Shen [3] (see also
[6, Theorem 3.19]) that H is the direct limit of a sequence of simplicial (partially
ordered) groups, that is, groups of the form Zn, for n ∈ Z+. Since H is a vector
space, the isomorphism H ∼= H ⊗ Q implies that H is, in fact, the direct limit of
a sequence of simplicial vector spaces : more specifically, H = lim

−→i∈Z+
Hi, where

Hi = Qni for some ni ∈ Z+, with transition maps ti : Hi → Hi+1 and limiting
maps t′i : Hi → H , both being positive homomorphisms, for all i ∈ Z+.

Furthermore, it follows from [8, Corollary 6.7(i)] that S is the direct limit of a
countable sequence of finite Boolean 〈∨, 0〉-semilattices, say, S = lim

−→i∈Z+
2mi , with

mi ∈ Z+, transition maps si : 2mi → 2mi+1 and limiting maps s′
i : 2mi → S, both

being 〈∨, 0〉-homomorphisms, for all i ∈ Z+. The situation may be visualized by
the following commutative diagrams:

2mi+1

s′
i+1

!!D
DD

DD
DD

DD
Hi+1

t′i+1

!!D
DD

DD
DD

D

2mi

si

OO

s′
i

// S Hi

ti

OO

t′i

// H

For all i ∈ Z+, the 〈∨, 0〉-homomorphism f ◦ s′
i : 2mi → IdcH ∼= lim

−→j∈Z+
IdcHj

factors through IdcHj for some j ∈ Z+. Hence, by possibly replacing the sequence
(Hj)j∈Z+ by some subsequence, we can suppose that j = i, allowing to factor f

through a 〈∨, 0〉-homomorphism f i : 2mi → IdcHi. The situation may be visualized
by the following commutative diagram, where the two parallel horizontal sequences
are direct limits:

IdcH0
Idc t0 //

Idc t
′
0

��
IdcH1

Idc t1//

Idc t
′
1

$$
___ // IdcH

2m0

f0

OO

s0

//

s′
0

??2m1

s1

//

f1

OO

s′
1

;;___ // S

f

OO (7.1)

Now we construct, for i ∈ Z+, a certain pseudo-simplicial space Gi, together with
an isomorphism αi : 2mi → IdcGi and a positive homomorphism fi : Gi → Hi such
that the following equality holds:

f i = (Idc fi) ◦ αi. (7.2)

For i = 0, we pick G0, f0, and α0 satisfying (7.2); their existence is ensured by
Lemma 5.6. Now suppose Gi, fi, and αi constructed satisfying (7.2) above, we
construct Gi+1, fi+1, and αi+1. First, by Lemma 5.2(i), there exists a rational
number λ ≥ 1 such that the homomorphism ti ◦ fi : Gi → Hi+1 is λ-flat. We
put q = min

{

2mi−1, ni+1

}

if mi, ni+1 > 0 and q = 1 otherwise. Furthermore,

we put Gi+1 = Gen(Gi, si ◦ α
−1
i ), and we let si : Gi → Gi+1 be the canonical
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qλ-generic lifting of si ◦ α
−1
i . In particular, Lemma 5.3 yields us an isomorphism

αi+1 : 2mi+1 → IdcGi+1 such that the following equality holds:

Idc si = αi+1 ◦ si ◦ α
−1
i . (7.3)

It follows from Lemma 5.4 that there exists a positive homomorphism fi+1 : Gi+1 →
Hi+1 such that Idc fi+1 = f i+1 ◦α

−1
i+1 and fi+1 ◦ si = ti ◦ fi. The situation may be

visualized by the following commutative diagrams:

Hi+1 IdcHi+1

Gi+1

fi+1
ccGGGGGGGG

IdcGi+1

f i+1 ◦ α
−1
i+1

ffLLLLLLLLLL

Gi

ti ◦ fi

OO

si

;;wwwwwwwww
IdcGi

Idc(ti ◦ fi)

OO

αi+1 ◦ si ◦ α
−1
i

88rrrrrrrrrr

Hence the following diagrams are commutative:

Hi
ti // Hi+1 IdcGi

Idc si// IdcGi+1 IdcGi+1

Idc fi+1

&&LLLLLLLLLL

Gi

fi

OO

si
// Gi+1

fi+1

OO

2mi

αi

OO

si
// 2mi+1

αi+1

OO

2mi+1

αi+1

OO

f i+1

// IdcHi+1

(7.4)
We let G be the direct limit of the sequence (Gi)i∈Z+ , with transition maps si : Gi →
Gi+1 and limiting maps s′i : Gi → G, for all i ∈ Z+. Hence G is a dimension vector
space. Furthermore, since the functor Idc preserves direct limits, the commutativ-
ity of the left diagram and the middle diagram in (7.4) imply the existence of a
positive homomorphism f : G → H and an isomorphism α : S → IdcG such that
the following infinite diagrams are commutative:

H0
t0 // H1

t1 // ___ // H

G0

f0

OO

s0
// G1

f1

OO

s1
// ___ // G

f

OO (7.5)

and

IdcG0
Idc s0 // IdcG1

Idc s1// ___ // IdcG

2m0

α0

OO

s0

// 2m1

α1

OO

s1

// ___ // S

α

OO (7.6)

(For sake of clarity, we do not represent on these diagrams the transition maps
corresponding to the direct limits in the rows of (7.5), (7.6).) To verify the equality
(Idc f) ◦ α = f , it suffices to verify that (Idc fi) ◦ αi = f i holds, for all i ∈ Z+,
which is exactly (7.2). �

In particular, it follows from Theorem 7.1 that every countable distributive
〈∨, 0〉-semilattice is isomorphic to IdcG for some dimension vector space G, but
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this is of course much easier to prove directly, see [8, Theorem 5.2]. As an immedi-
ate consequence of this and Theorem 7.1, we record the following:

Corollary 7.2. Let S and T be countable distributive 〈∨, 0〉-semilattices, let f : S →
T be a 〈∨, 0〉-homomorphism. Then f can be lifted, that is, there are countable di-

mension vector spaces G and H together with a positive homomorphism f : G→ H
and isomorphisms α : S → IdcG and β : T → IdcH such that (Idc f) ◦ α = β ◦ f .

Corollary 7.2 cannot be extended to uncountable semilattices, see Example 11.1.
In order to obtain a ring-theoretical version of Corollary 7.2, we shall need the

following more precise well-known form of the isomorphism (0.1), which is essen-
tially contained in [5, Theorem 15.20]:

Lemma 7.3. Let K be a field. For a unital locally matricial K-algebra R, we let

ηR : Idc(K0(R)) → IdcR be the map defined by the rule

ηR(I) = {x ∈ R | [xR] ∈ I} , for all I ∈ Idc(K0(R))

(we let [xR] denote the isomorphism type of xR). Then ηR is a semilattice isomor-

phism and the rule R 7→ ηR defines a natural equivalence from the functor Idc ◦K0

(Idc is meant on dimension groups) to the functor Idc (defined on locally matricial

K-algebras). This means that for any unital locally matricial K-algebras A and

B and any unital K-algebra homomorphism f : A → B, the following diagram is

commutative:

IdcA
Idc f // IdcB

Idc(K0(A))
Idc(K0(f))

//

ηA

OO

Idc(K0(B))

ηB

OO

We can now state the ring-theoretical analogue of Corollary 7.2:

Corollary 7.4. Let S and T be countable distributive 〈∨, 0〉-semilattices (resp.,
countable distributive 〈∨, 0〉-semilattices with unit), let f : S → T be a 〈∨, 0〉-ho-
momorphism (resp., a 〈∨, 0, 1〉-homomorphism), let K be a field. Then there are

countably dimensional locally matricial (resp., countably dimensional locally ma-

tricial unital) K-algebras A and B, a K-algebra homomorphism (resp., a uni-

tal K-algebra homomorphism) f : A → B, and isomorphisms α : S → IdcA and

β : T → IdcB such that (Idc f) ◦ α = β ◦ f .

Proof. We first deal with the case of unital homomorphisms, so both S and T have
unit and f(1) = 1. By Corollary 7.2, there are countable dimension vector spaces
G and H together with a positive homomorphism f ′ : G → H and isomorphisms
α′ : S → IdcG and β′ : T → IdcH such that (Idc f

′) ◦ α′ = β′ ◦ f . Since both
S and T have a largest element, both G and H have an order-unit, that we will
denote respectively by 1G and 1H . Moreover, from f(1) = 1 follows that we
may take f ′(1G) = 1H . By the Elliott, Effros, Handelman, and Shen Theorem (see
[4, 3, 5]), there are countably dimensional, locally matricial, unital K-algebras A, B
and (normalized) isomorphisms α′′ : (G, 1G) → (K0(A), [A]) and β′′ : (H, 1H) →
(K0(B), [B]). By [7, Lemma 1.3], there exists a unital K-algebra homomorphism
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f : A→ B such thatK0(f) = β′′◦f ′◦α′′−1
. Hence the following diagram commutes:

Idc(K0(A))
Idc(K0(f))

// Idc(K0(B))

S
f

//

(Idc α
′′) ◦ α′

OO

T

(Idc β
′′) ◦ β′

OO

By Lemma 7.3, the following diagram commutes,

IdcA
Idc f // IdcB

S
f

//

α

OO

T

β

OO

where we put α = ηA ◦ (Idc α
′′) ◦α′ and β = ηB ◦ (Idc β

′′) ◦ β′. This solves the case
with unit.

In the case without unit, we put S′ = S ∪ {1}, T ′ = T ∪ {1} (where 1 is the
largest element), and we extend f to a map f ′ : S′ → T ′ by putting f ′(1) = 1. We
let f ′ : A′ → B′, together with isomorphisms α′ : S′ → IdcA

′ and β′ : T ′ → IdcB
′,

lift f ′, by using the result of the case with unit. Then we put

A =
{

x ∈ A′ | α′−1
(A′xA′) ∈ S

}

,

B =
{

y ∈ B′ | β′−1
(B′yB′) ∈ T

}

,

so A (resp., B) is an ideal of A′ (resp., B′). Then we let f be the restriction of f ′

from A to B and α : S → IdcA (resp., β : T → IdcB) be the restrictions of α′ and
β′ to S and T , respectively. �

Every locally matricial algebra R is a von Neumann regular ring, and then IdcR
is isomorphic to Conc L(R), the semilattice of compact congruences of the section-
ally complemented, modular lattice L(R) of all principal right ideals of R, see [18,
Corollary 4.4]. (A lattice L with zero is sectionally complemented, if for all a ≤ b in
L, there exists x ∈ L such that a ∧ x = 0 and a ∨ x = b.) The proof of [18, Corol-
lary 4.4] does not involve the unit, and, for a finite field K, every locally matricial
K-algebra R is locally finite, thus so is the lattice L(R). Thus similar methods as
those used in the proof of Corollary 7.4 yield easily the following lattice-theoretical
analogue of Corollary 7.4:

Corollary 7.5. Let S and T be countable distributive 〈∨, 0〉-semilattices, let f : S →
T be a 〈∨, 0〉-homomorphism. Then there are locally finite, sectionally comple-

mented, modular lattices L and M together with a 〈∨,∧, 0〉-homomorphism f : L→
M and isomorphisms α : S → Conc L and β : T → ConcM such that (Conc f)◦α =
β ◦ f . Furthermore, if both S and T have a unit, then one may take both L and M
with unit and f(1) = 1.

The lattices L and M are more than just locally finite and sectionally comple-
mented, for example, every finite subset of L is contained in a finite, sectionally
complemented, modular sublattice of L.
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8. 1-dimensional lifting fails for the Idc functor and

〈∨, 0〉-semilattice embeddings

The following example is a modification of an earlier example of the second
author, and it has been communicated to the authors by P. Růžička.

Example 8.1. There exists a dimension group G together with a 〈∨, 0〉-embedding

µ : IdcG →֒ 22 that cannot be lifted. More precisely, there are no partially or-

dered abelian group H, no positive homomorphism f : G→ H, and no isomorphism

α : IdcH → 22 such that µ = α ◦ Idc f .

Proof. Let G = Z ×lex Z be the lexicographical product of the chain Z of integers
with itself, put a = (0, 1) and b = (1, 0). Hence na ≤ b, for all n ∈ Z+, which we
write a ≪ b. So IdcG ∼= 3, the three-element chain. Denote further by x, y the
atoms of 22.

Let µ : IdcG → 22 be defined by the rule µ(G(0)) = 0, µ(G(a)) = x, and
µ(G(b)) = 1. Observe that µ is a 〈∨, 0〉-embedding. Suppose that there are H , f ,
and α as in the statement above.

Put a′ = f(a) and b′ = f(b). From a≪ b follows that a′ ≪ b′. From α(H(b′)) =
1 = x ∨ y follows that there are c, d ∈ H+ such that α(H(c)) = x, α(H(d)) = y,
and b′ ≤ c + d. Since α(H(a′)) = x = α(H(c)) and α is an isomorphism, the
relation a′ ≍ c holds, thus there exists n ∈ N such that c ≤ na′. Put u = b′ − na′.
Since 0 < a′ ≪ b′, we get 0 < a′ ≪ u and H(u) = H(b′); thus α(H(u)) = 1.
But from c ≤ na′ we get u = b′ − na′ ≤ b′ − c ≤ d. Thus H(u) ⊆ H(d) and
1 = α(H(u)) ≤ α(H(d)) = y, a contradiction. �

Remark 8.2. No mention of the interpolation property has been made here, neither
for G nor for H .

9. A finite diagram without any lifting by interpolation groups

The “diagram” of the following example is indexed not by a partially ordered set,
but by a category, namely the category with exactly one object and one nontrivial
idempotent endomorphism.

Example 9.1. Let t : 22 → 22 defined by the rule t(x,y) = (x ∨ y,y) (for all

x, y < 2). Then there is no lifting t of t, between interpolation groups, such that

t2 = t.

Proof. Suppose otherwise. Let G be an interpolation group such that t is an en-
domorphism of G. Since G is an interpolation group and G lifts 22, G can be
decomposed as E × F , where E and F are simple interpolation groups, and t is
given by

t(x, y) = (αx + βy, γy), for all (x, y) ∈ E × F,

where α : E → E, β : F → E, and γ : F → F are nonzero positive homomorphisms.
The equality t = t2 can then be expressed in matrix form as

(

α β
0 γ

)

=

(

α β
0 γ

)(

α β
0 γ

)

=

(

α2 αβ + βγ
0 γ2

)

that is,

α2 = α, γ2 = γ, and αβ + βγ = β. (9.1)
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Hence, by repeated uses of (9.1), we obtain the equalities

β = αβ + βγ

= α(αβ + βγ) + (αβ + βγ)γ

= α2β + 2αβγ + βγ2

= β + 2αβγ,

so we obtain that

2αβγ = 0. (9.2)

However, E and F are simple partially ordered abelian groups and α, β, γ are
nonzero positive homomorphisms, in particular, (2αβγ)[F++] ⊆ E++, which con-
tradicts (9.2). �

10. A diagram of finite Boolean 〈∨, 0〉-semilattices and

〈∨, 0〉-embeddings without any simplicial lifting

Example 10.1. Let f : 22 →֒ 23 and g, h : 23 →֒ 24 be the maps defined by

f(x,y) = (x,y,x ∨ y),

g(u,v,w) = (u,v,w,u ∨ w),

h(u,v,w) = (u,v,w,v ∨ w),

for all x, y, u, v, w ∈ {0, 1}. Observe that g ◦ f = h ◦ f , see the diagram (10.1).

24

23
�/

g
>>~~~~~~~

23
O/

h
``@@@@@@@

22
/ Of

``@@@@@@@ /� f

>>~~~~~~~

(10.1)

Then the diagram (10.1) has no lifting that uses only simplicial partially ordered

vector spaces, that is, a lifting of the form

Q4

Q3

g
>>}}}}}}}

Q3

h
``AAAAAAA

Q2

f0

``AAAAAAA f1

>>}}}}}}}

(10.2)
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Proof. Suppose otherwise. We identify the maps f0, f1, g, and h of the diagram
(10.2) with their matrices, that have the following form:

f0 =





α 0
0 β
ξ η



 , f1 =





α′ 0
0 β′

ξ′ η′



 ,

g =









a 0 0
0 b 0
0 0 c
u 0 w









, h =









a′ 0 0
0 b′ 0
0 0 c′

0 v′ w′









,

with positive rational numbers α, β, ξ, η, α′, β′, ξ′, η′, a, b, c, u, w, a′, b′, c′, v′,
w′. Hence the equality g ◦ f0 = h ◦ f1 takes the form









a 0 0
0 b 0
0 0 c
u 0 w













α 0
0 β
ξ η



 =









a′ 0 0
0 b′ 0
0 0 c′

0 v′ w′













α′ 0
0 β′

ξ′ η′



 ,

that is,








aα 0
0 bβ
cξ cη

uα+ wξ wη









=









a′α′ 0
0 b′β′

c′ξ′ c′η′

w′ξ′ v′β′ + w′η′









. (10.3)

Hence,
η′

ξ′
=
c′η′

c′ξ′
=
cη

cξ
=
η

ξ
, while

η′

ξ′
=
w′η′

w′ξ′
<
v′β′ + w′η′

w′ξ′
=

wη

uα+ wξ
<
wη

wξ
=

η

ξ
, a contradiction. �

Remark 10.2. We have used only the last two rows of the matrices in (10.3), the
rest is there to ensure that f , g, and h are embeddings.

11. A semilattice map without lifting

The following counterexample shows that Corollary 7.2, that states that ev-
ery 〈∨, 0〉-homomorphism between countable distributive 〈∨, 0〉-semilattices can be
lifted by a positive homomorphism between countable dimension vector spaces,
cannot be extended to uncountable semilattices:

Example 11.1. Let B = {x ⊆ ω1 | either x or ω1 \ x is finite}. So B is a Boolean

semilattice of size ℵ1. Let s : B → 2 be the simplest closure operator on B, that is,

s(0) = 0 while s(x) = 1, for all x ∈ B \ {0}. Then s has no lifting, that is, there

are no positive homomorphism s : G→ S, for some partially ordered abelian groups

G and S such that G has interpolation, and no isomorphisms α : B → IdcG and

ε : 2 → Idc S such that the following diagram is commutative:

B
s //

α
��

2

ε
��

IdcG
Idc s

// Idc S
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Proof. Suppose otherwise. In particular, S is a simple partially ordered abelian
group. Let α(1B) = G(u), for some u ∈ G++. For all ξ < ω1, the inequality {ξ} <
1B holds, so α({ξ}) < α(1B) = G(u), thus there are mξ ∈ N and uξ ∈ [0,mξu] in G
such that G(uξ) = α({ξ}). There exists an uncountable subset U of ω1 such that
mξ = m = constant, for all ξ ∈ U , therefore we may replace u by mu and assume
that 0 ≤ uξ ≤ u, for all ξ ∈ U , thus there exists vξ ∈ [0, u] such that uξ + vξ = u.
Furthermore, for ξ 6= η in ω1, {ξ} ∩ {η} = ∅, thus G(uξ) ∩ G(uη) = {0}, hence
uξ ∧ uη = 0 in G.

By applying this last fact together with Lemma 3.1 in the refinement monoid G+

(with I = A and Tξ = {0, 1}, for all ξ ∈ A) to the system of equalities uξ + vξ = u
(for all ξ ∈ A), we obtain the inequality

∑

ξ∈A

uξ ≤ u, for all finite A ⊂ U. (11.1)

Next, since s lifts s, s(uξ) ∈ S++, for all ξ ∈ U , thus, since S is simple, there exists
nξ ∈ N such that s(u) ≤ nξs(uξ). Let V ⊆ U uncountable such that nξ = n =
constant, for all ξ ∈ V . Pick any distinct ξ0, . . . , ξn ∈ V . For all i ∈ {0, . . . , n},
the inequalities s(u) ≤ nξi

·s(uξi
) = n ·s(uξi

) hold, hence, adding together all these
inequalities, we obtain that

(n+ 1) · s(u) ≤ n ·
n
∑

i=0

s(uξi
)

= n · s

(

n
∑

i=0

uξi

)

≤ n · s(u) (by (11.1)),

whence s(u) ≤ 0, a contradiction. �

12. Open problems

We first recall the following central open problem, which is the basic motivation
of the present paper:

Problem 1 (Problem 10.1 of [8]). Let S be a 〈∨, 0〉-semilattice of cardinality ℵ1.
Does there exist a dimension group G such that IdcG ∼= S?

A related problem is the following.

Problem 2. Can every finite diagram (indexed by a non necessarily dismantlable
partially ordered set) of finite Boolean semilattices and 〈∨, 0〉-homomorphisms be
lifted by a diagram of dimension groups and positive homomorphisms?

Example 9.1 shows that the analogue of Problem 2 for diagrams indexed by
arbitrary finite categories (instead of partially ordered sets) fails. Still the problem
for an arbitrary finite partially ordered index set P remains, in particular for P =
23.

We do not know about the ring-theoretical analogue of Theorem 6.4:

Problem 3. Let K be a field. Is it the case that every diagram of finite Boolean
〈∨, 0〉-semilattices that is indexed by a finite dismantlable partially ordered set can
be lifted, with respect to the Idc functor on rings, by a diagram of locally matricial
algebras over K?
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We do not even know whether Problem 3 has a positive solution for the square
diagram of Example 10.1. On the other hand, it follows from the results of F. Weh-
rung [19] that every square diagram of finite Boolean semilattices can be lifted, with

respect to the Idc functor, by a diagram of von Neumann regular algebras (over any

given field).

Problem 4. Let G be a dimension group, let S be a distributive 〈∨, 0〉-semilattice,
and let f : IdcG→ S be a 〈∨, 0〉-homomorphism. Find sufficient conditions under
which f can be lifted, that is, there are a dimension group H and an isomorphism
β : S → IdcH such that Idc f = β ◦ f?

Example 8.1 shows that strong restrictions on G, S, and f are needed. Compare
also with Theorem 7.1.

Acknowledgments

Part of this work was completed while the second author was visiting the depart-
ment of mathematics at Charles University in Prague while staying at the Suchdol
campus. The excellent conditions provided by both places are greatly appreciated.
In particular, special thanks are due to Václav Slav́ık.
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