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Abstract. In this paper, we revisit the famous heuristic called nearest neighbor (NN) for the trav-

eling salesman problem under maximization and minimization goal. We deal with variants where the

edge costs belong to interval [a; ta] for a > 0 and t > 1, which certainly corresponds to practical

cases of these problems. We prove that NN is a (t + 1)/2t-approximation for Max TSP [a; ta] and

a 2/(t + 1)-approximation for Min TSP [a; ta] under the standard performance ratio. Moreover, we

show that these ratios are tight for some instances.

Keywords: Approximate algorithms; Performance ratio; Analysis of Algorithms; Traveling sales-

man problem.

The classical traveling salesman problem can be formulated as follows: given Kn, a complete graph

on n vertices with non-negative integer costs on its edges, the traveling salesman problem under min-

imization version, called Min TSP (resp. maximization, called Max TSP ) consists of minimizing

(resp. maximizing) the cost of a Hamiltonian cycle, the cost of such cycle is the sum of its edge’s costs.

Moreover, when the edge-weights are in the set {a, a+1, ..., b− 1, b}, we will call of TSP [a; b] problem.

Several restrictions of this problem have often being studied in the literature, like Euclidean, metric or

1, 2 cases and very elegant positive or negative approximation results have being produced by Arora

[1], Christofides [2], Papadimitriou and Yannakakis [7], Engebretsen and Karpinski [3], Papadimitriou

and Vempala [6]. There are no special study about this heuristic when edge-weights are in the set

{a, a + 1, ..., b − 1, b}.

In this paper, we revisit some approximation results for Nearest Neighbor algorithm (noted NN)

described the first time by Karg and Thompson [5], also called the next best method in some sequencing

jobs to a single production facility. This very simple heuristic has already mainly studied by Fisher

et al. [4] for Max TSP and by Rosenkrantz et al. [8] for Min metric − TSP and consist in starting

from any vertex and keep visiting the nearest vertex that has not been visited. In [4], the authors

present several polynomial-time approximation algorithms, among which Nearest Neighbor achieving

approximation ratio 1/2 for the maximization version whereas in [8], the results are less optimistic since

they produce a θ(1/log n)-approximation for minimization metric version, by using an approximation

measure, called performance ratio, defined as:

ρ[π]A(I) = Min{
A(I)

OPT (I)
,
OPT (I)

A(I)
}

where A(I) is the value of algorithm A and OPT (I) is the value of an optimal solution on the instance

I of a combinatorial problem π.

The performance ratio is a number less than or equal to 1, and is equal to 1 when A(I) = OPT (I).

Remark that, compared to some definitions, we have inverted the performance ratio in the case of

minimization problems. Hence, we will always consider the ratio value as being between 0 and 1. We

say that A is an r-approximation if for any instance I, we have ρA(I) ≥ r.
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A case that seems to be very common in practical situations appears when dmax/dmin is upper

bounded by a constant. We prove that, when edge-costs belongs to the interval [a; ta], Nearest Neighbor

is a (t + 1)/2t-approximation for the maximization problem and yields a 2/(t + 1)-approximation for

the minimization version.

The previous guaranteed performances on theses heuristics are strengthened by our results in both

versions. Moreover, we show that ratios are tight.

1. The Nearest Neighbor algorithm

This algorithm depends on the goal of the traveling salesman problem, so when we study maximiza-

tion case, we replace goal by Max else goal by Min.

[NNgoal]

input: I = (Kn, d) instance of goal TSP ;

output : An acyclic permutation p of I;

Take arbitrarily x1 ∈ V ;

Set S = {x1} and z = x1;

While S 6= V do

Take y /∈ S such that d(z, y) = goal{d(z, w)|w /∈ S} (line a);

Set y = p(z) and z = y;

End while ;

p(y) = x1 ;

return p ;

We assume that when there are ties in different steps of algorithm, it can be broken by taking the

vertex with minimum index, so in particular we always start with vertex x1. This algorithm yields an

Hamilton cycle since an acyclic permutation describes a feasible solution by the set {(x, p(x))|x ∈ V }

(where p points out the successor of x in the cycle) and its complexity-time is O(n2).

The authors of [4] have proved by linear programming method that Max TSP is 1/2-approximable,

whereas we prove by a combinatorial technic that more generally Max TSP [a; ta] is (t + 1)/2t-

approximable for all t > 1.

Theorem 1.1. The algorithm [NNmax] is a t+1

2t
-approximation for Max TSP [a; ta] and this ratio is

tight.

Proof: Let I = (Kn, d) be an instance on n vertices, such that a ≤ d(e) ≤ ta for all edge e and let

p∗ (resp. p) be an acyclic permutation describing an optimal solution of I (resp. the solution returned

by NN). We split V into V1 = {x ∈ V |d(x, p(x)) < d(x, p∗(x))} and V2 = {x ∈ V |d(x, p(x)) ≥

d(x, p∗(x))}. Remark that V2 6= ∅ since by construction x1 ∈ V2. Moreover, if V1 = ∅ then the nearest

neighbor heuristic is optimal and we have the main key following result:

(1.1) ∀x ∈ V1, d(p∗(x), p ◦ p∗(x)) ≥ d(x, p∗(x))

Indeed, let x ∈ V1; by construction p∗(x) correspond to a previous step of algorithm than x (else

x ∈ V2) and then at the step p∗(x), we have x /∈ S and the expected result.

Finally, we obtain

2NNmax(I) =
∑

x∈V d(x, p(x)) +
∑

x∈V d(p∗(x), p ◦ p∗(x))

≥
∑

x∈V2
d(x, p(x)) +

∑
x∈V1

d(p∗(x), p ◦ p∗(x)) + a|V1| + a|V2|

≥
∑

x∈V2
d(x, p∗(x)) +

∑
x∈V1

d(x, p∗(x)) + an

≥ OPTmax(I) + 1

t
OPTmax(I)

We now show that this ratio is tight. Let Jn = (Kn, d) be an instance defined by: V = {xi| 1 ≤ i ≤ 2n}

and for all i, j such that 1 ≤ i ≤ n < j ≤ 2n, we have d(xi, xj−n) = d(xi, xj) = ta and d(xi, xj) = a.
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The nearest neighbor solution is described by ∀i ≤ 2n−1, p(xi) = xi+1 and p(x2n) = x1 and an optimal

solution by ∀i ≤ n − 1, p∗(xi) = xn+i, p∗(xn+i) = xi+1 and p∗(xn) = x2n, p∗(x2n) = x1. Finally, we

obtain:

ρNNmax
(Jn) =

a(n + 1)(t + 1) − 2a

2atn
−→

t + 1

2t
♦

In order to study the behavior of NNmin, we will establish a mathematical relation between respec-

tive solutions returned by algorithm on two instances linked by reduction. Moreover, we show that

this relation remains true for OPTmax and OPTmin.

Theorem 1.2. The algorithm [NNmin] is a 2

t+1
-approximation for Min − TSP [a; ta] and this ratio

is tight.

Proof: Let I = (Kn, d) be an instance on n vertices of Min − TSP [a; ta], set dmax = maxe∈E d(e)

and dmin = mine∈E d(e). We transform instance I into instance ∝ (I) = (Kn, d′) just by changing

the weight of edges by d′(e) = dmax + dmin − d(e). It is clear that ∝ (I) is still an instance verifying

a ≤ d′(e) ≤ ta, so we can apply nearest neighbor algorithm on ∝ (I) and we have:

(1.2) NNmin(I) = n(dmax + dmin) − NNmax(∝ (I))

We show this equality by an inductive proof. Note pmin (reps. pmax) the solution produces by NNmin

(resp. NNmax) on the instance I (resp. ∝ (I)). For an arbitrate step x (we identify current step

with last vertex visited) if we have y = pmin(x) then ∀z /∈ S, d(x, y) ≤ d(x, z) and ∀z /∈ S, d′(x, y) =

dmax +dmin −d(x, y) ≥ dmax +dmin −d(x, z) = d′(x, z), thus we have y = pmax(x) and more generally

for any vertex x, pmin(x) = pmax(x).

Moreover, this equality also holds for the respective optimal solution of I and ∝ (I):

(1.3) OPTmax(∝ (I)) = n(dmax + dmin) − OPTmin(I)

Let p∗min be an optimal solution of I, it is an feasible solution of ∝ (I), thus we have OPTmin(I) ≥

n(dmax + dmin) − OPTmax(∝ (I)). Conversely since ∝ (I)◦ ∝ (I) = I, we also have OPTmin(I) ≤

n(dmax + dmin) − OPTmax(∝ (I)).

Thanks the equality (1.3) and since OPTmin(I) ≥ dminn, we also obtain:

(1.4) OPTmax(∝ (I)) ≤ n(dmint + dmin) − OPTmin(I) ≤ tOPTmin(I)

Finally, add equality (1.2) to (1.3) and thanks to previous theorem and inequality (1.4), we have:

NNmin(I) − OPTmin(I) = OPTmax(∝ (I)) − NNmax(∝ (I))

≤ t−1

2t
OPTmax(∝ (I))

≤ t−1

2t
tOPTmin(I)

≤ t−1

2
OPTmin(I)

and the expected result holds.

We show that this ratio is tight by considering the instances ∝ (Jn) = (Kn, d′) where Jn = (Kn, d)

is defined as in the previous theorem. Thus, we obtain:

ρNNmin
(∝ (Jn)) =

2an

a(n + 1) + at(n − 1)
−→

2

t + 1

We give another proof of this theorem by a straightforward analysis of this heuristic in the special

case where the edge-costs are only a and ta . We split V into V1 = {x ∈ V |d(x, p(x)) = a} and

V2 = {x ∈ V |d(x, p(x)) = ta} and we have that V1 (reps. V2) is isomorphic to the edge set of cost a

(reps. at) taken by the heuristic, so we have:

(1.5) NNmin(I) = a|V1| + at|V2| = an + a(t − 1)|V2|
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We do the same partition for an optimal solution p∗; so we split V into V ∗

1 = {x ∈ V |d(x, p∗(x)) = a}

and V ∗

2 = {x ∈ V |d(x, p∗(x)) = ta}. We also have the following result:

(1.6) OPTmin(I) = an + a(t − 1)|V ∗

2 |

Moreover, the key following result establishes one relationship between sets Vi, i = 1, 2 thanks to

optimal acyclic permutation p∗:

(1.7) p∗(V2 ∩ V ∗

1 ) ⊆ V1

Indeed, this mathematical relation shows that for each mistake of algorithm (i.e., x ∈ V2 ∩V ∗

1 ), we can

find a step for which the heuristic works well (i.e., y ∈ V1). The proof is not presented here. Finally,

since p∗ is a permutation, we have:

2a(t − 1)|V2| = a(t − 1)|V2 ∩ V ∗

2 | + a(t − 1)|V2 ∩ V ∗

1 | + a(t − 1)|V2|

= a(t − 1)|V2 ∩ V ∗

2 | + a(t − 1)|p∗(V2 ∩ V ∗

1 )| + a(t − 1)|V2|

≤ a(t − 1)|V2 ∩ V ∗

2 | + a(t − 1)(|V1| + |V2|)

≤ (an + a(t − 1)|V2 ∩ V ∗

2 |) + atn − 2an

≤ OPTmin(I) + +atn − 2an

Thus, we obtain:
NNmin(I) = an + a(t − 1)|V2|

≤ 1

2
OPTmin(I) + atn

2

≤ t+1

2
OPTmin(I)

and the expected result holds. ¤

Finally let us notice we could show that this algorithm gives the same performance ratio for the

two versions of Hamiltonian path problem (with or without a specified endpoint) through a slight

modification of line a of algorithm. Nevertheless for the version where the two endpoints are specified,

this heuristic yields no constant approximation ratio when dmax/dmin is not upper bounded by a

constant.
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