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Abstract. This paper deals with the problem of constructing directed trees of optimal weight and

root r with depth at most f(|V |) (called f − depthDSTPr). We first prove that the maximization and

the minimization versions are equal-approximable under the differential ratio, that measures how the

value of an approximate solution is placed in the interval between the worst and the best solutions

values of an instance. We show that both problems can be approximately solved, in polynomial time,

within differential ratio bounded above by (lim inf f − 1)/ lim inf f . Next, we demonstrate that, when

dealing with edge distances 1 and 2, undirected graphs and f(n) = 2 (called 2 − depthSTPr[1, 2]),

we improve the ratio to 3/4. Based upon these results, we obtain new bounds for standard ratio: a

(lim inf f −1)/ lim inf f -standard approximation for Max f −depthDSTPr which can be improved to 4/5

for Min 2 − depthSTPr[1, 2] and 7/8 for Max 2 − depthSTPr[1, 2].

Keywords: Approximate algorithms; Differential ratio; Performance ratio; Analysis of Algorithms;

Reductions;

1. Introduction

This paper considers the problem of finding low diameter spanning tree of maximum weight. Given a

complete directed graph on n vertices with positive weights on its edges, we look for a directed maximum

weight spanning tree with root r and radius bounded by f(n) (the depth depends on the graph order).

We refer to this problem as the Max f − depthDSTP . To our knowledge, this problem has not been

studied before, while for any integer function f verifying lim inf f1 ≥ 2 its minimization version has been

studied both for directed graphs [25] and undirected graphs [15], [14], [16], [19] (in particular, it is known

that the minimization problem is NP − hard). We also deal with a variant called f − depthDSTP [a; b],

where the edge-weights are in the set {a, a + 1, ..., b − 1, b}.

We focus on the design of approximation algorithms with guaranteed performance ratios, that run

within polynomial time and produce sub-optimal solutions. Usually, the scientific community compares

the worst-case ratio (here called standard ratio) of the cost of the solution generated by the algorithm to

the optimal cost. However, we mainly refer in this article to another ratio called differential ratio which

measures the worst ratio of, on the one hand, the difference between the cost of the solution generated by

the algorithm and the worst cost, and on the other hand, the difference between the optimal cost and the

worst cost. This measure, studied by [3], [12] and more recently by [10], leads to new algorithms taking

into account the extreme solutions of the instance, and provides the opportunity to better understand

these problems. Besides, we show that there are tight links between both measures for our problems.

The goal of an NPO-optimization problem π = (D, sol,m, goal)2 with respect to an instance I is to find

an optimum solution x∗ such that OPT (I) = m[I, x∗] = goal{m[I, x] : x ∈ sol[I]}. Another important

solution of π is a worst solution x∗ defined by: WOR(I) = m[I, x∗] = goal3{m[I, x] : x ∈ sol[I]}. In

1lim inf f denotes the quantity limp→∞ infn≥p f(n)
2D is the set of instances, sol is the set of feasible solutions, m is the objective function and goal ∈ {Max, Min}
3If goal = Max, then goal = Min and goal = Max.
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[3], the term trivial solution referred to as worst solution and all the exposed examples have the property

that a worst solution can be trivially computed in polynomial time. For example, this is the case of the

maximum Cut problem where, given a graph, the worst solution is the empty edge-set, or the Bin-Packing

problem, where we can trivially put the items using a distinct bin per item. On the contrary, since a worst

solution of the maximum weight bounded-depth spanning tree is an optimal solution of its corresponding

minimization version, the computation of such a solution is far from being trivial! The same property

occurs for the Traveling Salesman problem and we have proved that Min TSP and Max TSP (resp.

Min TSP [1, 2] and Max TSP [1, 2]) are 2/3 [23] (resp. 3/4)-differential approximable [24].

1.1. Approximate algorithms and reductions. In order to study algorithm performances, two mea-

sures are commonly used: standard ratio [13], [2], [6] and differential ratio [10], [3] and [12].

Definition 1.1. Let π be an NPO problem and x be a feasible solution of an instance I. We define the

performance ratios of x with respect to the instance I as

• (standard ratio) ρ[π](I, x) = Min{
m[I, x]

OPT (I)
,
OPT (I)

m[I, x]
}

• (differential ratio) δ[π](I, x) =
WOR(I) − m[I, x]

WOR(I) − OPT (I)
♦

The performance ratio is a number less than or equal to 1, and is equal to 1 when m[I, x] = OPT (I).

Remark that, compared to some definitions, we have inverted the standard performance ratio in the case

of minimization problems. Hence, we will always consider the ratio value as being between 0 and 1. Let π

be an NPO problem, for any instance I of π, a polynomial time algorithm A returns a feasible solution xA.

The performance of A with respect to R ∈ {δ, ρ} on the instance I is the quantity RA[π](I) = R[π](I, xA).

We say that A is an r-approximation algorithm with respect to R if for any instance I, we have RA(I) ≥ r.

Definition 1.2. For any performance ratio R ∈ {δ, ρ},

• an NPO problem belongs to the class APX(R) if there exists an r-approximation with respect to R

for some constant r ∈]0; 1].

• an NPO problem belongs to the class PTAS(R) if there exists an r-approximation Ar, for any

constant r ∈]0; 1[. The family {Ar}0<r<1 is said to be an approximation scheme. ♦

Clearly, the following inclusion holds for any measure R ∈ {δ, ρ}: PTAS(R) ⊆ APX(R). As it is

usually done, we will denote by APX and PTAS, respectively, the classes APX(ρ) and PTAS(ρ). As

shown in [8], many problems can have different behavior patterns depending on whether the differential

or standard ratio is chosen. This is true for Vertex Covering or Dominating Set. Nevertheless, there are

some problems that establish some connections between the differential and the standard ratios, like Bin

Packing [9] or Traveling Salesman [22], as well as the problems we are dealing with. Consider the following

approximation preserving reductions between pairs (π, R):

Definition 1.3. For πi ∈ NPO and Ri ∈ {δ, ρ}, i = 1, 2,

• an A-reduction from the pair (π1, R1) to the pair (π2, R2), denoted by (π1, R1) ≤
A (π2, R2),

is a triplet (∝, f, c) such that:

(i) ∝: Dπ1
7−→ Dπ2

, transforms an instance of π1 into an instance of π2 in polynomial time.

(ii) f : solπ2
[∝ (I)] 7−→ solπ1

[I], transforms solutions for π2 into solutions for π1 in polynomial time.

(iii) c : [0; 1] 7−→ [0; 1] (called expansion of the A-reduction) is a function verifying c−1(0) ⊆ {0}, and

∀ε ∈ [0; 1],∀I ∈ Dπ1
,∀x ∈ solπ2

[∝ (I)]: R2[π2](∝ (I), x) ≥ ε =⇒ R1[π1](I, f(x)) ≥ c(ε)

• an A ∗ P -reduction from the pair (π1, R1) to the pair (π2, R2), denoted by (π1, R1) ≤A∗P (π2, R2),

is an A-reduction from (π1, R1) to (π2, R2) such that the restriction of function c to an interval [a; 1] is

bijective and c(1) = 1 (note that c(ε) does not necessarily verify c−1(0) ⊆ {0}).

If (πi, Ri) ≤
A∗P (π3−i, R3−i) with c(ε) = ε for i = 1, 2, we say that (π1, R1) is equivalent to (π2, R2). ♦
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The A-reduction preserves constant approximation while the A ∗ P -reduction preserves approximation

schemes. They are natural generalizations of reductions described by the authors of [26], [2] and [7].

The differential ratio measures how the value of an approximate solution is located in the interval

between WOR(I) and OPT (I) whereas for a maximization problem, the standard ratio measures how the

value of an approximate solution is placed in the interval between 0 and OPT (I). Hence, in this latter

case, we have an A ∗ P -reduction from the standard ratio to the differential ratio:

Lemma 1.4. If π = (D, sol,m, Max) ∈ NPO, then (π, ρ) ≤A∗P (π, δ) with c(ε) = ε.

2. the f-depth constrained spanning tree problem

The f-depth constrained spanning tree problem, also called the Hop tree problem in [15], [14], [16] or

the Shallow-Light spanning tree problem in [25], [19], is formally defined as follow. Let f be an integer

function, without loss of generality, we can suppose that f(n) is always an integer between 2 and n.

Definition 2.1. Consider a complete directed graph
−→
Kn = (V,

−→
E ) containing a vertex r ∈ V and non-

negative costs d(−→e ) for each directed edge −→e ∈ E. We want to find an optimal-cost directed spanning

tree
−→
T with root r such that the depth of

−→
T (the maximum number of edges in the unique path from r

to any vertex in
−→
T ) is at most f(|V |), where the cost of a tree is the sum of the weights on its directed

edges. We refer this problem as f − depthDSTPr. When the root r is not specified, we use the notation

f − depthDSTP and when the graph is undirected, we use the notation f − depthSTPr. Finally if the

function f is constant (i.e., f(n) = k ∀n) then we use the notation k − depthDSTPr.

If goal = Max, the problem is called Max f − depthDSTPr, else Min f − depthDSTPr. We use the

notation f − depthDSTPr when we consider without distinction the case goal = Max or goal = Min. ♦

For the undirected case with goal = Min and constant integer function f , this problem has been

extensively studied in [15], [14], [16] and arises in many applications such as telecommunication network

design and facility location. It is NP -hard for any k ≥ 2, even when distances are one and two (see [1]

and [20]) and it is generally not in APX. For k = 2, this problem is O(1/ lnn)-approximable with the

standard ratio and is equivalent to a version of the simple uncapacitated facility location problem whereas

its restriction with distances one and two is 4/5-standard approximable and APX-complete [1]. Moreover,

it has been proved in [19] that Min k−depthSTPr is O(1/ lnn)-standard approximable for every constant

k ≥ 2 and Min f − depthSTPr is O(1/nε)-standard approximable for any fixed 0 < ε < 1.

Shallow-Light tree introduced and studied in [4] and [18], is a natural generalization of this problem

where the diameter is given by another function l(e). Then, we want to find a tree that simultaneously

approximate both a minimum spanning tree and a shortest path tree.

For the directed case, the only approximate results are given by a bicriteria approach [21]. An algorithm

is said to have a (ρ1, ρ2)-standard approximation if it finds a tree whose weight is at most within a factor

ρ1 from the optimum for trees of diameter bounded by k, but whose diameter is bounded by ρ2k rather

than k. The main result of [25] suggests a (2, lnn)-standard approximation for Shallow-Light tree problem

in directed graphs.

To our knowledge, no standard approximation result has been found for Max f − depthDSTPr or for

Max f − depthSTPr (the undirected case), even when the depth does not depend on the graph order.

We show that Max f − depthDSTPr is (lim inf f − 1)/ lim inf f -approximable in the differential frame-

work. Then, we deduce the same results for standard ratio.

3. Some structural properties

We present some properties of f − depthDSTP depending on whether the function f is constant or

not. We prove that f − depthDSTPr is the most general problem to approximate. In other words,
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they are reductions from the undirected or non specific root cases to it. Then, we demonstrate that the

maximization, minimization and metric versions are differential equal-approximable. As a second step, we

establish some connected relations for the f − depthDSTPr family when f is constant.

3.1. Relations between the different subcases. There are simple reductions from f − depthDSTP

and f − depthSTPr to f − depthDSTPr for both ratios. That is why we will only focus on the problem

f − depthDSTPr.

Lemma 3.1. for any R ∈ {ρ, δ}, goal ∈ {Min, Max} and arbitrary function f , we have:

(i) (goal f − depthDSTP,R) ≤A∗P (goal f − depthDSTPr, R) with c(ε) = ε.

(ii) (goal f − depthSTPr, R) ≤A∗P (goal f − depthDSTPr, R) with c(ε) = ε.

Proof: We only show the case goal = Max and R = δ.

• For (i): Let I = (
−→
Kn, d) be an instance. We define Ir = (

−→
Kn, r, d) 4 for all r ∈ V , and if

−→
Tr is a feasible

solution of Ir, we take
−→
T = argmax{m[I,

−→
Tr] | r ∈ V }. Now, consider r∗ such that OPT (Ir∗) = OPT (I);

if m[Ir∗ ,
−→
Tr∗ ] ≥ εOPT (Ir∗) + (1 − ε)WOR(Ir∗), then m[I,

−→
T ] ≥ εOPT (I) + (1 − ε)WOR(I).

• For (ii): The proof is similar and well known. ¤

Min f − depthDSTPr is not in APX whereas Max f − depthDSTPr is in APX (as later proved).

The asymmetry in the approximability of both versions can be considered as somewhat strange given

the structural symmetry existing between them. Since differential approximation is stable under affine

transformation of the objective function, Max f−depthDSTPr and Min f−depthDSTPr are differential-

equivalent 5. Besides, another difference with the standard ratio is that Min f −depthDSTPr is not more

difficult than the same problem with triangular inequality (called metric). Finally, for the restriction

where the weight function is bivalued, we can always boil down to the case a = 1 and b = 2.

Proposition 3.2. For any integer function f , the following assertions hold:

(i) Min f − depthDSTPr is differential-equivalent to Max f − depthDSTPr.

(ii) Min f − depthDSTPr[a, b]6 is differential-equivalent to Max f − depthDSTPr[a, b].

(iii) f − depthDSTPr is differential-equivalent to metric f − depthDSTPr.

(iv) f − depthDSTPr{a, b}7 is differential-equivalent to f − depthDSTPr[1, 2].

Proof : Let I = (
−→
Kn, r, d) be an instance, set dmax = max−→e ∈

−→
E

d(−→e ) and dmin = min−→e ∈
−→
E

d(−→e ).

• For (i) and (ii): (Min f − depthDSTPr, δ) ≤
A∗P (Max f − depthDSTPr, δ) with c(ε) = ε.

We transform I into instance ∝ (I) = (
−→
Kn, r, d′) defined by: ∀−→e ∈

−→
E , d′(−→e ) = dmax + dmin − d(−→e ).

For any feasible solution
−→
T , we have: m[∝ (I),

−→
T ] = (|V | − 1)(dmax + dmin) − m[I,

−→
T ].

Hence if m[∝ (I),
−→
T ] ≥ εOPT (∝ (I))+(1−ε)WOR(∝ (I)), then m[I,

−→
T ] ≤ εOPT (I)+(1−ε)WOR(I).

Conversely, the proof is similar since ∝ ◦ ∝= Id.

• For (iii), the proof is similar, except that function d’ is now defined by d′(−→e ) = dmax + d(−→e ).

• Finally, for (iv) the function d’ is defined by d′(−→e ) = 1 iff d(−→e ) = a. ¤

Note that for f − depthDSTPr, the following easy theorem holds, thus giving a bridge between differ-

ential and standard ratios when edge weights belong to an interval [a, b].

Theorem 3.3. For any integer function f , we have the following assertion:

4Note that this is not a reduction according to the definition 1.3 since, for any instance I, we are defining several (not

one) new instances.
5See definition (1.3).
6Restriction where all edge weights belong to an interval [a, b].
7Restriction where all edge weights belong to a set {a, b}.
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(goal f − depthDSTPr[a, b], ρ) ≤A∗P (goal f − depthDSTPr[a, b], δ) with the expansion verifying:

• c1(ε) =
(b − a)ε

b
+

a

b
if goal = Max

• c2(ε) =
a

b − (b − a)ε
if goal = Min

Proof : We only demonstrate the goal = Max case. Let I be an instance and
−→
T be a feasible solution:

if m[I,
−→
T ] ≥ εOPT (I) + (1 − ε)WOR(I), then m[I,

−→
T ] ≥ c1(ε)OPT (I) since WOR(I) ≥ a

b OPT (I). ¤

Remark that, with the standard ratio, f−depthDSTPr[a, b] (for a and b not depending on the instance)

is ”easy” to approximate (i.e., f − depthDSTPr[a, b] ∈ APX) since even a worst solution is an a/b-

approximation (take ε = 0 in theorem (3.3)). Nevertheless, we can deduce from this theorem that Max f−

depthSTPr[a, b] is APX − complete and the hardness thresholds for standard and differential framework

are identical since Min f − depthSTPr[a, b] is APX − complete.

Corollary 3.4. If lim inf f 6= +∞ then f − depthDSTPr[a, b] /∈ PTAS(δ) unless P = NP .

3.2. Relations within the problem family Max f − depthDSTPr when f is constant. These

problems share strong structural aspects from the differential point of view according to different values

of diameter. We have that Max 2 − depthDSTPr ∈ APX(R) if and only if, for any integer k, Max k −

depthDSTPr ∈ APX(R),∀R ∈ {ρ, δ}. More specifically, we prove that a ”good solution” for Max k −

depthDSTPr is also a ”good solution” for Max (k+1)−depthDSTPr, and reciprocally, we can transform

a ”good solution” for Max (k + 1) − depthDSTPr into a ”good solution” for Max k − depthDSTPr.

For a directed spanning tree
−→
T with root r of

−→
G = (V,

−→
E ), let p be the ”father” function of the tree

and let (V0, V1, ..., Vq) be the partition of V where Vi = {v : r = pi(v)} is the i-th level vertices subset and

q is the depth of
−→
T . So, we have in particular V0 = {r} and all vertices of Vq are leaves of

−→
T . In order to

keep it simple, we suppose that q is a multiple of k (we could always add some Vi = ∅). Finally, let
−→
T0 be

the directed tree defined by
−→
T 0 = ∪v∈V \{r}{(r, v)}, which has a depth equal to 1. The main idea of the

following algorithm consists in discarding some edges of
−→
T and connecting each resulting tree to the root

r in order to obtain a tree with depth k.

[shorteningtreek]

input : A complete directed graph
−→
Kn = (V,

−→
E ) with r ∈ V , edge-valued by d

and a directed spanning tree
−→
T rooted at r;

output : 2 directed trees sol1 and sol2 of depth at most k and root r;

Build (V0, V1, ..., Vq) the partition associated with
−→
T ;

For i = 1 to k do
−→
E i =

−→
T \ {(p(v), v) : ∃v ∈ Vt, t ≡ i − 1 mod k};

build
−→
T i =

−→
E i ∪j≤q/k−1 ∪v∈Vjk+i

{(r, v)};

End for i

sol1 = argmin{d(
−→
T i), i = 1, ..., k};

sol2 = argmax{d(
−→
T i), i = 1, ..., k};

It is easy to see that for any i ≤ k, the tree
−→
T i is a feasible solution and that the time-complexity of this

algorithm is polynomial with respect to the encoding of the input.

Lemma 3.5. The solutions sol1 and sol2 produced by [shorteningtreek] verify:

d(sol1) ≤
k − 1

k
d(
−→
T ) +

1

k
d(
−→
T 0) ≤ d(sol2)
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Proof: We just have to consider the following equality:

(3.1)
∑

i≤k

d(
−→
T i) = (k − 1)d(

−→
T ) + d(

−→
T 0)

¤

We now establish A-reductions with expansion c(ε) = k−1
k ε. However, these reductions would not have

any operational impact since we later prove that Max k − depthDSTPr is c(1)-differential approximable.

In other words, the bound resulting from this method is at most k−1
k ε < k−1

k .

Proposition 3.6. The following assertions hold for all k ≥ 2 and R ∈ {ρ, δ}:

(i) (Max (k + 1) − depthDSTPr, R) ≤A (Max k − depthDSTPr, R) with c(ε) = k−1
k ε

(ii) (Max k − depthDSTPr, R) ≤A (Max (k + 1) − depthDSTPr, R) with c(ε) = k−1
k ε

Proof: Let I = (
−→
Kn, r, d) be an instance of Max k − depthDSTPr and denote by OPTk(I) (resp.,

WORk(I)) the optimum value (resp., worst value) of I. We only demonstrate the differential case.

• For (i): Let
−→
T be a feasible solution that yields an ε-differential approximation for Max k −

depthDSTPr (obviously,
−→
T is a solution for Max (k + 1) − depthDSTPr), we have:

(3.2) m[I,
−→
T ] ≥ εOPTk(I) + (1 − ε)WORk(I)

Thanks to solution sol2 of lemma (3.5) with inputs (I,
−→
T ∗

k+1) where
−→
T ∗

k+1 is an optimal solution of I for

Max (k + 1) − depthDSTPr and d(
−→
T 0) ≥ WORk+1(I) , we obtain:

(3.3) OPTk(I) ≥
k − 1

k
OPTk+1(I) +

1

k
WORk+1(I)

Thus, combining (3.2), (3.3) and since WORk(I) ≥ WORk+1(I), we obtain that
−→
T is a c(ε)-differential

approximation for Max (k + 1) − depthDSTPr.

• For (ii): Let
−→
T be a feasible solution which yields an ε-differential approximation for Max (k + 1)−

depthDSTPr and transform
−→
T into sol2 using the polynomial [shorteningtreek] algorithm.

(3.4) d(sol2) ≥
k − 1

k
m[I,

−→
T ] +

1

k
d(
−→
T 0)

Thanks to solution sol1 of lemma (3.5) with inputs (I,
−→
T −

k+1) where
−→
T −

k+1 is a worst solution of I for

Max (k + 1) − depthDSTPr, we also have:

(3.5)
k − 1

k
WORk+1(I) ≥ WORk(I) −

1

k
d(
−→
T 0)

Hence, combining (3.4) and (3.5), we obtain the expected result. ¤

Thus, proposition (3.6) leads to the main theoretical result: Max 2 − depthDSTPr ∈ APX(R) if and

only if, for any function f , Max f − depthDSTPr ∈ APX(R),∀R ∈ {ρ, δ}.

4. Approximation results

We obtain a good solution if we apply [shorteningtreef ] on
−→
T ∗, an optimal maximum spanning tree

of G. The complexity time of this algorithm is in O[f(n) ln(dmax)(m + n)] where m = |
−→
E | and n = |V |.

Theorem 4.1. We have the following results:

• f − depthDSTPr ∈ PTAS(δ) if lim inf f = +∞.

• Else f − depthDSTPr is differential approximable within
lim inf f − 1

lim inf f
and this ratio is tight.
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Proof: We only demonstrate the second item. Let I = (
−→
Kn, r, d) be an instance of Max f −

depthDSTPr. We suppose that n = |V | is asymptotically big (else we yield an optimal solution in

constant time). Thus, we have f(n) ≥ lim inf f . The solution sol2 of the [shorteningtreef ] algorithm with

a maximum directed spanning tree
−→
T ∗ as input leads to the result since OPT (I) ≤ d(

−→
T ∗). Let us show

that this ratio is tight: consider the following instance In = (
−→
Kn, r, d) such that the sub-graph induced

by V \ {r} is a complete directed graph of n lim inf f vertices and the edges-distances are two. Moreover,

d(r, v) = 1,∀v ∈ V \ {r}. So,
−→
T ∗ is a Hamiltonian path from r to an arbitrary vertex v and:

d(sol2) = d(
−→
T1) = 2n lim inf f − n, WOR(In) = n lim inf f, OPT (In) = 2n lim inf f − 1

Hence, we obtain δshortingtreef
(In) −→ lim inf f−1

lim inf f . ¤

We deduce from lemma (1.4) and from theorem (3.3) the two corollaries:

Corollary 4.2. For any integer function f such that lim inf f < +∞:

• Max f − depthDSTPr is (lim inf f − 1)/ lim inf f-standard approximable

• Max f − depthDSTPr[a, 2a] is (2 lim inf f − 1)/2 lim inf f-standard approximable.

• Min f − depthDSTPr[a, 2a] is lim inf f/(lim inf f + 1)-standard approximable.

Corollary 4.3. For any integer function f such that lim inf f = +∞:

• Max f − depthDSTPr ∈ PTAS

• Min f − depthDSTPr[a; 2a] ∈ PTAS

5. The depth constraint Minimum Spanning Tree with distances one and two

We end this article with studying the special case where the edge-costs one and two, the depth of the

tree is two and the graph is undirected (i.e., 2−depthSTPr[1, 2]). As often, such specific studies allow us to

better comprehend the structure and difficulty of those problems (see [27], [11] for the Traveling Salesman

problem and [5] for the Steiner Tree problem). For example, we can now suppose that a worst solution

is computable in polynomial time though the computation of such a solution for the general problem is

NP − hard !

We need to introduce some additional notations: Gi, i = 1, 2 denotes the sub-graph of Kn containing

only edges with costs i, and ΓG(x) is the set of neighbors of x in the graph G. For V ′ ⊆ V , we write

ΓG(V ′) = ∪x∈V ′ΓG(x). Then, Γ2
G(x) = ΓG ◦ ΓG(x) = ∪y∈ΓG(x)ΓG(y).

We present some elementary properties for Min 2 − depthSTPr[1, 2]: firstly, we can always suppose

that a worst solution is only constituted by edges of cost 2 (otherwise the solution is trivial) and then, it

is really the worst valued solution that we can expect. Secondly, we can easily obtain within polynomial

time some feasible solutions that contain a lot of edges with cost one:

Lemma 5.1. For an instance I = (Kn, r, d) of Min 2 − depthSTPr[1, 2], the following assertions hold:

(i) We can suppose that WOR(I) = 2(|V | − 1).

(ii) We can restrict ourselves to solutions T verifying d(x, p(x)) = 1,∀x ∈ V \ {r}, p(x) 6= r.

(iii) We can restrict ourselves to solutions T verifying {(r, x)| d(r, x) = 1} ⊆ T .

Proof : Let I = (Kn, r, d) be an instance of Min 2 − depthSTPr[1, 2]

• For (i): In fact, we have for every vertex v1 ∈ V , the property:

Γ2
G2

(v1) ∪ ΓG2
(v1) 6= V =⇒ Γ2

G1
(v1) ∪ ΓG1

(v1) = V

Finally we take v1 = r and if WOR(I) < 2(|V | − 1) then we can easily build an optimal tree of cost n− 1

and depth 2.
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• For (ii): Let T be a feasible solution and suppose that d(x, p(x)) = 2. Observe that T ′ = (T \

{(x, p(x))})∪{(r, x)} is a feasible solution and d(T ′) ≤ d(T ). By iterating the process as much as possible,

we obtain the result.

• For (iii), the proof is exactly the same as for (ii). ¤

Observe that this lemma also holds for any integer function f . Thanks to lemma (5.1), we show

that 2 − depthSTPr[1, 2] is differential reducible to Steiner Dominating Set and since the latter is 3/4-

approximable, we obtain a 3/4-differential approximation for 2 − depthSTPr[1, 2].

Definition 5.2. Consider a simple graph G = (V, E) and V0 ⊆ V . The Steiner Dominating Set

problem SDS consists in finding a minimum size subset V ′ of vertices containing V0 and verifying:

∀x /∈ V ′, ∃y ∈ V ′ such that (x, y) ∈ E. When V0 = ∅, the problem is called Dominating Set and is

denoted by DS. ♦

We introduce these new problems because they are very close to 2−depthSTPr[1, 2] from an differential-

approximability point of view.

Proposition 5.3. We have the following reductions:

(i) (2 − depthSTPr[1, 2], δ) ≤A∗P (SDS, δ) with c(ε) = ε.

(ii) (DS, δ) ≤A∗P (2 − depthSTPr[1, 2], δ) with c(ε) = ε.

Proof : We only demonstrate the case goal = Min.

• For (i): Given I = (Kn, r, d) an instance verifying item(i) of lemma (5.1). We transform I into ∝ (I) =

(G′, V0) instance of SDS defined by: V ′ = V \ {r}, E′ = {e : d(e) = 1} and V0 = {v ∈ V : d(r, v) = 1}.

Let now V1 be a feasible solution of ∝ (I) (containing V0). For every x in V \ V1, let ex = (x, y) be an

edge such that y ∈ V1. We consider T = (∪x∈V1
{(r, x)}) ∪x/∈V1

{ex} and we have:

(5.1) m[I, T ] = |V ′| − |V0| + m[∝ (I), V1]

Let now T ∗ be an optimal solution of I verifying items (ii) and (iii) of lemma (5.1) and we consider the

feasible solution V ∗ = {v : (r, v) ∈ T ∗}; thanks to equation (5.1), we obtain:

(5.2) OPT (I) = |V ′| − |V0| + OPT (∝ (I))

Since WOR(∝ (I)) = |V ′| and WOR(I) = 2|V ′| (use item (i) of lemma (5.1)), we have:

(5.3) WOR(I) ≥| V ′ | − | V0 | +WOR(∝ (I))

By combining (5.1),(5.2) and (5.3) we obtain the result.

• For (ii), we transform I = (V, E) into ∝ (I) = (Kn, r, d) defined by: the vertex set of Kn is V ′ = V ∪{r}

and d(e) = 1 iff e ∈ E. ¤

Theorem 5.4. 2 − depthSTPr[1, 2] is approximable with a differential ratio equal to 3
4 .

Proof : We present an algorithm for SDS which yields a 3/4-differential approximation. We denote

Sx = {x} ∪ ΓG(x) and S′
V = ∪x∈V ′S(x). This algorithm works the following way:

Start with the set V ′ = V0 and delete SV0
from each Sx. While there exists a vertex xi /∈ V ′ such

that |Sxi
| ≥ 4 and S′

V 6= V , add xi to V ′ and delete Sxi
from each Sx. Now, any set Sx has maximum

cardinality 3 and SV ′ 6= V . Then, apply Halldorsson’s algorithm LI6 [17] on the resulting instance and

output V ′.

Remark that this algorithm is only a simple transformation of the one given in [17] for the complemen-

tary graph coloring problem and the proof is similar. ¤
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We use theorem (3.3) and find the same approximation result of [1] for goal = Min with standard ratio

and we obtain a new result for goal = Max.

Corollary 5.5. We have the following results:

• Min 2 − depthSTPr[1, 2] is approximable with standard ratio equal to 4
5 .

• Max 2 − depthSTPr[1, 2] is approximable with standard ratio equal to 7
8 .

In future research studies, it would be interesting to obtain some non-approximability differential (or

standard) results for Max 2 − depthSTPr, similar to those proved in [23] where it is shown that TSP is

not approximable with differential ratio greater than 649
650 unless P = NP .
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