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SUBLATTICES OF LATTICES OF ORDER-CONVEX SETS, I.

THE MAIN REPRESENTATION THEOREM

MARINA SEMENOVA AND FRIEDRICH WEHRUNG

Abstract. For a partially ordered set P , we denote by Co(P ) the lattice of
order-convex subsets of P . We find three new lattice identities, (S), (U), and

(B), such that the following result holds.

Theorem. Let L be a lattice. Then L embeds into some lattice of the form

Co(P ) iff L satisfies (S), (U), and (B).

Furthermore, if L has an embedding into some Co(P ), then it has such
an embedding that preserves the existing bounds. If L is finite, then one can
take P finite, with

|P | ≤ 2| J(L)|2 − 5| J(L)| + 4,

where J(L) denotes the set of all join-irreducible elements of L.
On the other hand, the partially ordered set P can be chosen in such a way

that there are no infinite bounded chains in P and the undirected graph of the
predecessor relation of P is a tree.

1. Introduction

For a partially ordered set (from now on poset) 〈P,E〉, a subset X of P is
order-convex, if x E z E y and {x, y} ⊆ X implies that z ∈ X , for all x, y,
z ∈ P . The set Co(P ) of all order-convex subsets of P forms a lattice under inclu-
sion. This lattice is algebraic, atomistic, and join-semidistributive (see Section 2 for
the definitions), thus it is a special example of a convex geometry, see P.H. Edel-
man [5], P. H. Edelman and R. Jamison [6], or K. V. Adaricheva, V. A. Gorbunov,
and V. I. Tumanov [2]. Furthermore, it is ‘biatomic’ and satisfies the nonexistence
of so-called ‘zigzags’ of odd length on its atoms. Is is proved in G. Birkhoff and
M. K. Bennett [3] that these conditions characterize the lattices of the form Co(P ).

One of the open problems of [2] is the characterization of all sublattices of the
lattices of the form Co(P ).

Problem 3 of [2] for Co(P ). Describe the subclass of those lattices that are

embeddable into finite lattices of the form Co(P ).
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2 M. SEMENOVA AND F. WEHRUNG

In the present paper, we solve completely this problem, not only in the finite case
but also for arbitrary lattices. Our main result (Theorem 6.7) is that a lattice L can
be embedded into some lattice of the form Co(P ) iff L satisfies three completely
new identities, that we denote by (S), (U), and (B). Furthermore, P can be taken
either finite in case L is finite, or tree-like (see Theorem 7.7).

This result is quite surprising, as it yields the unexpected consequence (see Corol-
lary 6.9) that the class of all lattices that can be embedded into some Co(P ) is
a variety, thus it is closed under homomorphic images. However, while it is fairly
easy (though not completely trivial) to verify directly that the class is closed under
reduced products and substructures (thus it is a quasivariety), we do not know any
direct proof that it is closed under homomorphic images.

One of the difficulties of the present work is to guess, for a given L, which
poset P will solve the embedding problem for L (i.e., L embeds into Co(P )). The
first natural guess, that consists of using for P the set of all join-irreducible elements
of L, fails, as illustrated by the two examples of Section 8. We shall construct P
via sequences of join-irreducible elements of L. In fact, we are able to embed L into
Co(P ) for two different sorts of posets P :

(1) P is finite in case L is finite; this is the construction of Section 6.
(2) P is tree-like (as defined in Section 2); this is the construction of Section 7.

The two requirements (1) and (2) above can be simultaneously satisfied in case L
has no D-cycle, see Theorem 7.7(iii). However, the finite lattice L of Example 8.2
can be embedded into some finite Co(Q), but into no Co(R), where R is a finite
tree-like poset, see Corollary 10.6. It is used to produce, in Section 10, a quasi-
identity that holds in all Co(R), where R is finite and tree-like (or even what we
call ‘crown-free’), but not in all finite Co(P ).

We conclude the paper by a list of open problems.

2. Basic concepts

A lattice L is join-semidistributive, if it satisfies the axiom

x ∨ y = x ∨ z ⇒ x ∨ y = x ∨ (y ∧ z), for all x, y, z ∈ L. (SD∨)

We denote by J(L) the set of join-irreducible elements of L. We say that L is
finitely spatial (resp., spatial) if every element of L is a join of join-irreducible
(resp., completely join-irreducible) elements of L.

We say that L is lower continuous, if the equality

a ∨
∧
X =

∧
(a ∨X)

holds, for all a ∈ L and all downward directed X ⊆ L such that
∧
X exists (where

a ∨ X = {a ∨ x | x ∈ X}). It is well known that every dually algebraic lattice is
lower continuous—see Lemma 2.3 in P. Crawley and R. P. Dilworth [4], and spatial
(thus finitely spatial)—see Theorem I.4.22 in G. Gierz et al. [9] or Lemma 1.3.2 in
V. A. Gorbunov [10].

For every element x in a lattice L, we put

↓x = {y ∈ L | y ≤ x}; ↑x = {y ∈ L | y ≥ x}.

If a, b, c ∈ L such that a ≤ b ∨ c, we say that the (formal) inequality a ≤ b ∨ c is
a nontrivial join-cover, if a � b, c. We say that it is minimal in b, if a � x ∨ c, for
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all x < b, and we say that it is a minimal nontrivial join-cover, if it is a nontrivial
join-cover and it is minimal in both b and c.

The join-dependency relation D = DL (see R. Freese, J. Ježek, and J. B. Na-
tion [7]) is defined on the join-irreducible elements of L by putting

p D q, if p 6= q and ∃x such that p ≤ q ∨ x holds and is minimal in q.

It is important to observe that p D q implies that p � q, for all p, q ∈ J(L).
For a poset P endowed with a partial ordering E, we shall denote by ⊳ the

corresponding strict ordering. The set of all order-convex subsets of P forms a
lattice under inclusion, that we shall denote by Co(P ). The meet in Co(P ) is the
intersection, while the join is given by

X ∨ Y = X ∪ Y ∪
⋃

{z ∈ P | ∃〈x, y〉 ∈ (X × Y ) ∪ (Y ×X) such that x ⊳ z ⊳ y},

for all X , Y ∈ Co(P ). Let us denote by ≺ the predecessor relation of P . We say
that a path of P is a finite sequence d = 〈x0, . . . , xn−1〉 of distinct elements of P
such that either xi ≺ xi+1 or xi+1 ≺ xi, for all i with 0 ≤ i ≤ n−2; if n > 0, we say
that d is a path from x0 to xn−1. We say that the path d is oriented, if xi ≺ xi+1,
for all i with 0 ≤ i ≤ n − 2. We say that P is tree-like, if the following properties
hold:

(i) for all a E b in P , there are n < ω and x0, . . . , xn ∈ P such that
a = x0 ≺ x1 ≺ · · · ≺ xn = b;

(ii) for all a, b ∈ P , there exists at most one path from a to b.

3. Dually 2-distributive lattices

For a positive integer n, the identity of n-distributivity is introduced in A. P.
Huhn [12]. In this paper we shall only need the dual of 2-distributivity, which is
the following identity:

a ∧ (x ∨ y ∨ z) = (a ∧ (x ∨ y)) ∨ (a ∧ (x ∨ z)) ∨ (a ∧ (y ∨ z)).

We omit the easy proof of the following lemma, that expresses how dual 2-distributivity
can be read on the join-irreducible elements.

Lemma 3.1. Let L be a dually 2-distributive lattice. For all p ∈ J(L) and all a, b,
c ∈ L, if p ≤ a ∨ b ∨ c, then either p ≤ a ∨ b or p ≤ a ∨ c or p ≤ b ∨ c.

We observe that for finitely spatial L, the converse of Lemma 3.1 holds.
The following lemma will be used repeatedly throughout the paper.

Lemma 3.2. Let L be a dually 2-distributive, complete, lower continuous lattice.

Let p ∈ J(L) and let a, b ∈ L such that p ≤ a ∨ b and p � a, b. Then the following

assertions hold:

(i) There are minimal x ≤ a and y ≤ b such that p ≤ x ∨ y.
(ii) Any minimal x ≤ a and y ≤ b such that p ≤ x ∨ y are join-irreducible.

Proof. (i) Let X ⊆ ↓a and Y ⊆ ↓b be chains such that p ≤ x ∨ y, for all 〈x, y〉 ∈
X × Y . It follows from the lower continuity of L that p ≤ (

∧
X) ∨ (

∧
Y ). The

conclusion of (i) follows from a simple application of Zorn’s Lemma.
(ii) From p � a, b it follows that both x and y are nonzero. Suppose that

x = x0 ∨ x1 for some x0, x1 < x. It follows from the minimality assumption on x
that p � x0∨y and p � x1∨y, whence, by Lemma 3.1, p ≤ x0∨x1, thus p ≤ x ≤ a,
a contradiction. Hence x is join-irreducible. �
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For p, a, b ∈ J(L), we say that 〈a, b〉 is a conjugate pair with respect to p, if
p � a, b and a and b are minimal such that p ≤ a ∨ b; we say then that b is a
conjugate of a with respect to p. Observe that the latter relation is symmetric in a
and b, and that it implies that p D a and p D b.

Notation 3.3. For a lattice L and p ∈ J(L), we put

[p]D = {x ∈ J(L) | p D x}.

Corollary 3.4. Let L be a dually 2-distributive, complete, lower continuous lattice,

and let p ∈ J(L). Then every a ∈ [p]D has a conjugate with respect to p.

Proof. By the definition of join-dependency, there exists c ∈ L such that p ≤ a ∨ c
and p � x ∨ c, for all x < a. By Lemma 3.2, there are a′ ≤ a and b ≤ c minimal
such that p ≤ a′ ∨ b, and both a′ and b are join-irreducible. It follows that a′ = a,
whence b is a conjugate of a with respect to p. �

4. Stirlitz, Udav, and Bond

4.1. The Stirlitz identity (S) and the axiom (Sj). Let (S) be the following
identity:

a ∧ (b′ ∨ c) = (a ∧ b′) ∨
∨

i<2

(
a ∧ (bi ∨ c) ∧

(
(b′ ∧ (a ∨ bi)) ∨ c

))
,

where we put b′ = b ∧ (b0 ∨ b1).

Lemma 4.1. The Stirlitz identity (S) holds in Co(P ), for any poset 〈P,E〉.

Proof. Let A, B, B0, B1, C ∈ Co(P ) and a ∈ A ∩ (B′ ∨ C), where we put B′ =
B ∩ (B0 ∨B1). Denote by D the right hand side of the Stirlitz identity calculated
with these parameters. If a ∈ B′ then a ∈ A∩B′ ⊆ D. If a ∈ C then a ∈ A∩C ⊆ D.

Suppose that a /∈ B′∪C. There exist b ∈ B′ and c ∈ C such that, say, b ⊳ a ⊳ c.
Since b ∈ B0∨B1, there are i < 2 and b′ ∈ Bi such that b′ E b, hence a ∈ A∩(Bi∨C).
Furthermore, b ∈ B′ ∩ (A ∨Bi), thus a ∈ (B′ ∩ (A ∨Bi)) ∨ C, so a ∈ D. �

Lemma 4.2. The Stirlitz identity (S) implies dual 2-distributivity.

Proof. Take b0 = x, b1 = y, b = x ∨ y, and c = z. �

Let (SD2
∨) be the following identity:

x ∨ (y ∧ z) = x ∨ (y ∧ (x ∨ (z ∧ (x ∨ y)))). (SD2
∨)

It is well known that (SD2
∨) implies join-semidistributivity (that is, the axiom

(SD∨)), see, for example, P. Jipsen and H. Rose [13, page 81].

Lemma 4.3. The Stirlitz identity (S) implies (SD2
∨).

Proof. Let L be a lattice satisfying (S), let x, y, z ∈ L. Set y2 = y∧(x∨(z∧(x∨y))).
Set a = b1 = y, b = z, c = b0 = x, and b′ = b ∧ (b0 ∨ b1) = z ∧ (x ∨ y). Then the
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following inequalities hold:

y2 = y ∧
(
x ∨

(
z ∧ (x ∨ y)

))

= a ∧
((
b ∧ (b0 ∨ b1)

)
∨ c

)

≤ (a ∧ b′) ∨
∨

i<2

(
a ∧ (bi ∨ c) ∧

(
(b′ ∧ (a ∨ bi)) ∨ c

))

= (y ∧ z) ∨ (y ∧ x) ∨
(
y ∧

(
(z ∧ y) ∨ x

))

= (y ∧ z) ∨
(
y ∧

(
x ∨ (y ∧ z)

))

= y ∧
(
x ∨ (y ∧ z)

)

≤ x ∨ (y ∧ z).

This implies that x ∨ y2 ≤ x ∨ (y ∧ z). Since the converse inequality holds in any
lattice, the conclusion follows. �

We now introduce a lattice-theoretical axiom, the join-irreducible interpretation

of (S), that we will denote by (Sj).

For all a, b, b0, b1, c ∈ J(L), the inequalities a ≤ b∨ c, b ≤ b0 ∨ b1,
and a 6= b imply that either a ≤ b ∨ c for some b < b or b ≤ a ∨ bi
and a ≤ bi ∨ c for some i < 2.

Throughout the paper we shall make repeated use of the item (i) of the following
statement. Item (ii) provides a convenient algorithm for verifying whether a finite
lattice satisfies (S).

Proposition 4.4. Let L be a lattice. Then the following assertions hold:

(i) If L satisfies (S), then L satisfies (Sj).
(ii) If L is complete, lower continuous, finitely spatial, dually 2-distributive,

and satisfies (Sj), then L satisfies (S).

Proof. (i) Let a ≤ b∨ c, b ≤ b0 ∨ b1, and a 6= b for some a, b, b0, b1, c ∈ J(L). Then
the element b′ of the Stirlitz identity is b′ = b ∧ (b0 ∨ b1) = b; observe also that
a ∧ (b ∨ c) = a. Therefore, applying (S) yields

a = a ∧ (b′ ∨ c)

= (a ∧ b′) ∨
∨

i<2

(
a ∧ (bi ∨ c) ∧

(
(b′ ∧ (a ∨ bi)) ∨ c

))

= (a ∧ b) ∨
∨

i<2

(
a ∧ (bi ∨ c) ∧

(
(b ∧ (a ∨ bi)) ∨ c

))
.

Since a is join-irreducible, either a ≤ b or a ≤ (bi ∨ c) ∧ ((b ∧ (a ∨ bi)) ∨ c) for some
i < 2. If a ≤ b then a ≤ a ∨ c with a < b (because a 6= b). Suppose that a � b.
Then a ≤ (bi ∨ c) ∧ ((b ∧ (a ∨ bi)) ∨ c) ≤ bi ∨ c for some i < 2. If b 6≤ a ∨ bi, then
a ≤ b ∨ c for b = b ∧ (a ∨ bi) < b.

(ii) Put b′ = b∧ (b0∨b1), and let d denote the right hand side of the identity (S).
Since d ≤ a ∧ (b′ ∨ c), we must prove the converse inequality only. Let a1 ∈ J(L)
with a1 ≤ a∧ (b′ ∨ c). Then a1 ≤ a and a1 ≤ b′ ∨ c. If a1 ≤ b′, then a1 ≤ a∧ b′ ≤ d.
If a1 ≤ c, then a1 ≤ a ∧ c ≤ d.
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Suppose now that a1 � b′, c. Then, by using Lemma 3.2, we obtain that there
are minimal b′1 ≤ b′ and c1 ≤ c such that the following inequality holds,

a1 ≤ b′1 ∨ c1 (4.1)

and both b′1 and c1 are join-irreducible. From a1 � b′ it follows that a1 � b′1.
If b′1 ≤ bi for some i < 2, then the inequalities b′1 ≤ b′ ∧ bi ≤ b′ ∧ (a ∨ bi) and
a1 ≤ b′1 ∨ c1 ≤ (b′ ∧ (a∨ bi))∨ c hold; but in this case, we also have a1 ≤ a∧ (bi ∨ c),
whence a1 ≤ d. Suppose that b′1 � b0, b1. Then, by Lemma 3.2, there are join-irre-
ducible elements di ≤ bi, i < 2, such that the following inequality

b′1 ≤ d0 ∨ d1 (4.2)

holds. It follows from (4.1), (4.2), a1 � b′1, the minimality of b′1 in (4.1), and (Sj)
that there exists i < 2 such that b′1 ≤ a1 ∨ di and a1 ≤ di ∨ c1. Then the following
inequalities hold:

a1 ≤ a ∧ (di ∨ c1) ∧ (b′1 ∨ c1) ≤ a ∧ (bi ∨ c) ∧ ((b′ ∧ (a ∨ bi)) ∨ c) ≤ d.

In every case, a1 ≤ d. Since L is finitely spatial, it follows that a∧ (b′ ∨ c) ≤ d. �

4.2. The Bond identity (B) and the axiom (Bj). Let (B) be the following
identity:

x ∧ (a0 ∨ a1) ∧ (b0 ∨ b1) =
∨

i<2

((
x ∧ ai ∧ (b0 ∨ b1)

)
∨

(
x ∧ bi ∧ (a0 ∨ a1)

))

∨
∨

i<2

(
x ∧ (a0 ∨ a1) ∧ (b0 ∨ b1) ∧ (a0 ∨ bi) ∧ (a1 ∨ b1−i)

)
.

Lemma 4.5. The Bond identity (B) holds in Co(P ), for any poset 〈P,E〉.

Proof. Let X , A0, A1, B0, B1 be elements of Co(P ). Denote by C the right hand
side of the Bond identity formed from these elements. Let x ∈ X ∩ (A0 ∨ A1) ∩
(B0∨B1), we prove that x ∈ C. The conclusion is obvious if x ∈ A0∪A1∪B0∪B1,
so suppose that x /∈ A0 ∪A1 ∪B0 ∪B1. Since x ∈ (A0 ∨A1) \ (A0 ∪A1), there are
a0 ∈ A0 and a1 ∈ A1 such that, say, a0 ⊳ x ⊳ a1. Since x ∈ (B0 ∨B1) \ (B0 ∪B1),
there are b0 ∈ B0 and b1 ∈ B1 such that either b0 ⊳ x ⊳ b1 or b1 ⊳ x ⊳ b0. In the
first case, x belongs to X ∩ (A0∨A1)∩ (B0∨B1)∩ (A0∨B1)∩ (A1∨B0), thus to C.
In the second case, x belongs to X ∩ (A0 ∨A1)∩ (B0 ∨B1)∩ (A0 ∨B0)∩ (A1 ∨B1),
thus again to C. �

We now introduce a lattice-theoretical axiom, the join-irreducible interpretation

of (B), that we will denote by (Bj).

For all x, a0, a1, b0, b1 ∈ J(L), the inequalities x ≤ a0∨a1, b0∨ b1
imply that either x ≤ ai or x ≤ bi for some i < 2 or x ≤ a0 ∨ b0,
a1 ∨ b1 or x ≤ a0 ∨ b1, a1 ∨ b0.

Throughout the paper we shall make repeated use of the item (i) of the following
statement. Item (ii) provides a convenient algorithm for verifying whether a finite
lattice satisfies (B).

Proposition 4.6. Let L be a lattice. Then the following assertions hold:

(i) If L satisfies (B), then L satisfies (Bj).
(ii) If L is complete, lower continuous, finitely spatial, dually 2-distributive,

and satisfies (Bj), then L satisfies (B).
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Proof. Item (i) is easy to prove by using the (B) identity and the join-irreducibility
of x.

(ii) Let u (resp., v) denote the left (resp., right) hand side of the identity (B).
It is obvious that v ≤ u. Since L is finitely spatial, in order to prove that u ≤ v
it is sufficient to prove that for all p ∈ J(L) such that p ≤ u, the inequality p ≤ v
holds. This is obvious if either p ≤ ai or p ≤ bi for some i < 2, so suppose that
p � ai, bi, for all i < 2. Then, by Lemma 3.2, there exist x0, x1, y0, y1 ∈ J(L) such
that xi ≤ ai and yi ≤ bi, for all i < 2, while p ≤ x0 ∨ x1, y0 ∨ y1. By assumption,
we obtain that one of the following assertions holds:

p ≤ (x0 ∨ y0) ∧ (x1 ∨ y1) ≤ (a0 ∨ b0) ∧ (a1 ∨ b1);

p ≤ (x0 ∨ y1) ∧ (x1 ∨ y0) ≤ (a0 ∨ b1) ∧ (a1 ∨ b0).

In any case, p ≤ v, which completes the proof. �

4.3. The Udav identity (U) and the axiom (Uj). Let (U) be the following
identity:

x ∧ (x0 ∨ x1) ∧ (x1 ∨ x2) ∧ (x0 ∨ x2)

= (x ∧ x0 ∧ (x1 ∨ x2)) ∨ (x ∧ x1 ∧ (x0 ∨ x2)) ∨ (x ∧ x2 ∧ (x0 ∨ x1)).

Lemma 4.7. The Udav identity (U) holds in Co(P ), for any poset 〈P,E〉.

Proof. Let X , X0, X1, X2 be elements of Co(P ). Denote by U (resp., V ) the left
hand side (resp., right hand side) of the Udav identity formed from these elements.
It is clear that U contains V . Conversely, let x ∈ U , we prove that x belongs
to V . This is clear if x ∈ X0 ∪ X1 ∪ X2, so suppose that x /∈ X0 ∪ X1 ∪ X2.
Since x ∈ (X0 ∨ X1) \ (X0 ∪ X1), there are x0 ∈ X0 and x1 ∈ X1 such that, say,
x0 ⊳ x ⊳ x1. Since x ∈ (X1 ∨X2) \ (X1 ∪X2), there are x′1 ∈ X1 and x2 ∈ X2 such
that either x′1 ⊳ x ⊳ x2 or x2 ⊳ x ⊳ x′1. But since x ⊳ x1 ∈ X1 and x /∈ X1, the
first possibility is ruled out, whence x2 ⊳ x ⊳ x′1. Since x ∈ (X0 ∨X2) \ (X0 ∪X2),
there are x′0 ∈ X0 and x′2 ∈ X2 such that either x′0 ⊳ x ⊳ x′2 or x′2 ⊳ x ⊳ x′0. The
first possibility is ruled out by x2 ⊳ x and x /∈ X2, while the second possibility is
ruled out by x0 ⊳ x and x /∈ X0. In any case, we obtain a contradiction. �

As we already did for (S) and (B), we now introduce a lattice-theoretical axiom,
the join-irreducible interpretation of (U), that we will denote by (Uj).

For all x, x0, x1, x2 ∈ J(L), the inequalities x ≤ x0∨x1, x0∨x2, x1∨x2

imply that either x ≤ x0 or x ≤ x1 or x ≤ x2.

Throughout the paper we shall make repeated use of the item (i) of the following
statement. Item (ii) provides a convenient algorithm for verifying whether a finite
lattice satisfies (U).

Proposition 4.8. Let L be a lattice. Then the following assertions hold:

(i) If L satisfies (U), then L satisfies (Uj).
(ii) If L is complete, lower continuous, finitely spatial, dually 2-distributive,

and satisfies both (Bj) and (Uj), then L satisfies both (B) and (U).

Proof. Item (i) is easy to prove by using the (U) identity and the join-irreducibility
of x.

(ii) We have already seen in Proposition 4.6 that L satisfies (B).
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Let u (resp., v) be the left hand side (resp., right hand side) of the identity (U).
It is clear that v ≤ u. Let p ∈ J(L) such that p ≤ u, we prove that p ≤ v. This
is obvious if p ≤ xi for some i < 3, so suppose that p � xi, for all i < 3. Then,
by using Lemma 3.2, we obtain that there are join-irreducible elements pi, p

′
i ≤ xi

(i < 3) of L such that the following inequalities hold:

p ≤ p0 ∨ p1, p
′
1 ∨ p2, p

′
0 ∨ p

′
2. (4.3)

Since p � x1 and L satisfies (Bj), it follows from the first two inequalities of (4.3)
that p ≤ p0 ∨ p

′
1, p1 ∨ p2. Similarly, from p � x2, the last two inequalities of (4.3),

and (Bj), we obtain the inequalities p ≤ p′1 ∨ p
′
2, p

′
0 ∨ p2, and from the first and the

last inequality of (4.3), together with p � x0 and (Bj), we obtain the inequalities
p ≤ p0 ∨ p

′
2, p

′
0 ∨ p1. In particular, we have obtained the inequalities

p ≤ p0 ∨ p
′
1, p

′
1 ∨ p

′
2, p0 ∨ p

′
2,

whence, by the assumption (Uj), p ≤ xi for some i < 3, a contradiction. �

5. First steps together of the identities (S), (U), and (B)

5.1. Udav-Bond partitions. The goal of this subsection is to prove the following
partition result of the sets [p]D (see Notation 3.3).

Proposition 5.1. Let L be a complete, lower continuous, dually 2-distributive

lattice that satisfies (U) and (B). Then for every p ∈ J(L), there are subsets A
and B of [p]D that satisfy the following properties:

(i) [p]D = A ∪B and A ∩B = ∅.

(ii) For all x, y ∈ [p]D, p ≤ x ∨ y iff 〈x, y〉 ∈ (A×B) ∪ (B ×A).

Moreover, the set {A,B} is uniquely determined by these properties.

The set {A,B} will be called the Udav-Bond partition (of [p]D) associated with p.
We observe that every conjugate with respect to p of an element of A (resp., B)
belongs to B (resp., A).

Proof. If [p]D = ∅ the result is obvious, so suppose that [p]D 6= ∅. By Lemma 3.2,
there are a, b ∈ [p]D minimal such that p ≤ a ∨ b. We define A and B by the
formulas

A = {x ∈ [p]D | p ≤ x ∨ b}, B = {y ∈ [p]D | p ≤ a ∨ y}.

Let x ∈ [p]D. By Corollary 3.4, x has a conjugate with respect to p, denote it by y.
By Lemma 3.2(ii), y is join-irreducible, thus y ∈ [p]D. By applying (Bj) to the
inequalities p ≤ a ∨ b, x ∨ y, we obtain that either p ≤ a ∨ x, b ∨ y or p ≤ a ∨ y,
b ∨ x, thus either p ≤ a ∨ x or p ≤ b ∨ x. If both inequalities hold simultaneously,
then, since p ≤ a ∨ b and by (Uj), we obtain that p lies below either a or b or x, a
contradiction. Hence we have established (i).

Let x, y ∈ [p]D, we shall establish in which case the inequality p ≤ x ∨ y
holds. Suppose first that x ∈ A and y ∈ B. By applying (Bj) to the inequalities
p ≤ b ∨ x, a ∨ y, we obtain that either p ≤ x ∨ y or p ≤ b ∨ y. In the second case,
y ∈ B, but y ∈ A, a contradiction by item (i); hence p ≤ x ∨ y.

Now suppose that x, y ∈ A. If p ≤ x∨y, then, by applying (Uj) to the inequalities
p ≤ x∨ y, b∨x, b∨ y, we obtain that p lies below either x or y or b, a contradiction.
Hence p � x ∨ y. The conclusion is the same for 〈x, y〉 ∈ B × B. This concludes
the proof of item (ii).

Finally, the uniqueness of {A,B} follows easily from items (i) and (ii). �
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5.2. Choosing orientation with Stirlitz. In this subsection we shall investigate
further the configuration on which (Sj) is based. The following lemma suggests an
‘orientation’ of the join-irreducible elements in such a configuration. More specifi-
cally, we are trying to embed the given lattice into Co(P ), for some poset 〈P,E〉.
Attempting to define P as J(L), this would suggest to order the elements a, b, b0,
and b1 by c ⊳ a ⊳ b and b1−i ⊳ b ⊳ bi. Although the elements of P will be defined
via finite sequences of elements of J(L), rather than just elements of J(L), this idea
will be crucial in the construction of Section 7.

Lemma 5.2. Let L be a lattice satisfying (Sj) and (Uj). Let a, b, b0, b1, c ∈ J(L)
such that a 6= b and satisfying the inequalities a ≤ b ∨ c with b minimal such, and

b ≤ b0 ∨ b1 with b � b0, b1. Then the following assertions hold:

(i) The inequalities b ≤ a ∨ bi and a ≤ bi ∨ c together are equivalent to the

single inequality b ≤ bi ∨ c, for all i < 2.
(ii) There is exactly one i < 2 such that b ≤ bi ∨ c.

Proof. We first observe that b � c (otherwise a ≤ c). If b ≤ a ∨ bi and a ≤ bi ∨ c,
then obviously b ≤ bi ∨ c. Suppose, conversely, that b ≤ b0 ∨ c. If b ≤ b1 ∨ c, then,
by observing that b ≤ b0 ∨ b1 and applying (Uj), we obtain that either b ≤ b0 or
b ≤ b1 or b ≤ c, a contradiction. Hence b � b1 ∨ c, the uniqueness statement of (ii)
follows. Furthermore, by (Sj), there exists i < 2 such that b ≤ a∨ bi and a ≤ bi ∨ c,
whence b ≤ bi ∨ c, thus i = 0. Therefore, b ≤ a ∨ b0 and a ≤ b0 ∨ c. �

Next, for a conjugate pair 〈b, b′〉 of elements of J(L) with respect to some ele-
ment a of J(L), we define

C[b, b′] = {x ∈ J(L) | b D x and b ≤ b′ ∨ x}. (5.1)

Notation 5.3. Let SUB denote the class of all lattices that satisfy the identities
(S), (U), and (B).

Hence SUB is a variety of lattices. It is finitely based, that is, it is defined by
finitely many equations.

Lemma 5.4. Let L be a complete, lower continuous, finitely spatial lattice in SUB.

Let a, b ∈ J(L) such that a D b. Then the equality C[b, b0] = C[b, b1] holds, for all

conjugates b0 and b1 of b with respect to a.

Proof. We prove, for example, that C[b, b0] is contained in C[b, b1]. Let x ∈ C[b, b0]
(so b ≤ b0 ∨ x), and suppose that x /∈ C[b, b1] (so b � b1 ∨ x). By Corollary 3.4,
x has a conjugate, say, y, with respect to b. Since both relations a ≤ b ∨ b1 and
b ≤ x∨ y are minimal nontrivial join-covers, it follows from Lemma 5.2 that either
b ≤ b1 ∨ x or b ≤ b1 ∨ y, but the first possibility does not hold. Hence the following
inequalities hold:

b ≤ b0 ∨ x, b1 ∨ y, x ∨ y. (5.2)

Furthermore, by the uniqueness statement of Lemma 5.2, b � b0 ∨ y. Thus, by
(Bj) and the first two inequalities in (5.2) (observe that b � b0, b1, x, y), we obtain
that b ≤ b0 ∨ b1. Hence a ≤ b ∨ b0 ≤ b0 ∨ b1, whence a ≤ b ∨ b0, b ∨ b1, b0 ∨ b1, a
contradiction by (Uj). �

For all a, b ∈ J(L) such that a D b, there exists, by Corollary 3.4, a conjugate b′

of b with respect to a. By Lemma 5.4, for fixed a, the value of C[b; b′] does not
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depend of b′. This entitles us to define

C(a, b) = C[b, b′], for any conjugate b′ of b with respect to a. (5.3)

Lemma 5.5. Let a, b ∈ J(L) such that aD b. Then the set {C(a, b), [b]D \ C(a, b)}
is the Udav-Bond partition of [b]D associated with b.

Proof. It suffices to prove that the assertions (i) and (ii) of Proposition 5.1 are sat-
isfied by the set {C(a, b), [b]D \ C(a, b)}. We first observe the following immediate
consequence of Lemma 5.2.

Claim. For any x ∈ [b]D and any conjugate x′ of x, x /∈ C(a, b) iff x′ ∈ C(a, b).

From now on we fix a conjugate b′ of b with respect to a. Let x, y ∈ [b]D, let x′

(resp., y′) be a conjugate of x (resp., y) with respect to b.
Suppose first that x ∈ C(a, b) and y /∈ C(a, b), we prove that b ≤ x∨y. It follows

from the Claim above that y′ ∈ C(a, b), whence the inequalities b ≤ b′ ∨ x, b′ ∨ y′

hold, hence, by (Uj), b � x ∨ y′. But b ≤ x ∨ x′, y ∨ y′, thus, since b � x, x′, y, y′

and by (Bj), the inequality b ≤ x ∨ y holds.
Suppose next that x, y ∈ C(a, b). Since b ≤ b′ ∨x, b′ ∨ y, the inequality b ≤ x∨ y

would yield, by (Uj), a contradiction; whence b � x ∨ y.
Suppose, finally, that x, y /∈ C(a, b). Thus, by the Claim, y′ ∈ C(a, b), whence,

by the above, b ≤ x ∨ y′, y ∨ y′, whence, by (Uj), b � x ∨ y. �

5.3. Stirlitz tracks. Throughout this subsection, we shall fix a lattice L satisfying
the identities (S), (U), and (B). By Lemma 4.2, L is dually 2-distributive as well.
Furthermore, it follows from Propositions 4.4, 4.6, and 4.8 that L satisfies (Sj),
(Uj), and (Bj).

Definition 5.6. For a natural number n, a Stirlitz track of length n is a pair
σ = 〈〈ai | 0 ≤ i ≤ n〉, 〈a′i | 1 ≤ i ≤ n〉〉, where the elements ai for 0 ≤ i ≤ n and a′i
for 1 ≤ i ≤ n are join-irreducible and the following conditions are satisfied:

(i) the inequality ai ≤ ai+1 ∨ a
′
i+1 holds, for all i ∈ {0, . . . , n− 1}, and it is a

minimal nontrivial join-cover;
(ii) the inequality ai ≤ a′i ∨ ai+1 holds, for all i ∈ {1, . . . , n− 1}.

We shall call a0 the base of σ. Observe that ai D ai+1, for all i ∈ {0, . . . , n− 1}.

Observe that if σ is a Stirlitz track as above, then, by Lemma 5.2, the following
inequalities also hold:

ai+1 ≤ ai ∨ ai+2; (5.4)

ai ≤ a′i+1 ∨ ai+2, (5.5)

for all i ∈ {0, . . . , n− 2}.
The main property that we will need about Stirlitz tracks is the following.

Lemma 5.7. For a positive integer n, let σ = 〈〈ai | 0 ≤ i ≤ n〉, 〈a′i | 1 ≤ i ≤ n〉〉
be a Stirlitz track of length n. Then the inequalities ai ≤ a0 ∨ an and ai ≤ a′1 ∨ an

hold, for all i ∈ {0, . . . , n}. Furthermore, 0 ≤ k < l ≤ n implies that ak � al; in

particular, the elements ai, for 0 ≤ i ≤ n, are distinct.

Proof. We argue by induction on n. The result is trivial for n = 1, and it follows
from (5.4) and (5.5) for n = 2. Suppose that the result holds for n ≥ 2, and let
σ = 〈〈ai | 0 ≤ i ≤ n+ 1〉, 〈a′i | 1 ≤ i ≤ n+ 1〉〉 be a Stirlitz track of length n+1. We



LATTICES OF ORDER-CONVEX SETS, I 11

observe that σ∗ = 〈〈ai | 0 ≤ i ≤ n〉, 〈a′i | 1 ≤ i ≤ n〉〉 is a Stirlitz track of length n,
whence, by the induction hypothesis, the following inequalities hold:

an−1 ≤ a0 ∨ an, (5.6)

an−1 ≤ a′1 ∨ an. (5.7)

We first prove that an−1 ≤ a0 ∨ an+1. Indeed, suppose that this does not hold.
Hence, a fortiori an−1 � a0, an+1. Hence, by applying (Bj) to (5.5) (for i = n− 1)
and (5.6) and observing that an−1 � an, a

′
n, we obtain that an−1 ≤ an ∨ an+1.

Therefore, an−1 ≤ an ∨ an+1, an ∨ a′n, a
′
n ∨ an+1, a contradiction by (Uj). Hence,

indeed, an−1 ≤ a0 ∨ an+1. Consequently, by (5.4), an ≤ an−1 ∨ an+1 ≤ a0 ∨ an+1.
Hence, for i ∈ {0, . . . , n}, it follows from the induction hypothesis (applied to σ∗)
that ai ≤ a0 ∨ an ≤ a0 ∨ an+1.

The proof of the inequalities ai ≤ a′1∨an+1, for i ∈ {0, . . . , n}, is similar, with a0

replaced by a′1 and (5.6) replaced by (5.7).
Finally, let 0 ≤ k < l ≤ n, and suppose that ak ≤ al. By applying the previous

result to the Stirlitz track 〈〈ak+i | 0 ≤ i ≤ l− k〉, 〈a′k+i | 1 ≤ i ≤ l − k〉〉, we obtain

that al−1 ≤ ak ∨al = al, a contradiction. Hence ak � al, in particular, ak 6= al. �

Lemma 5.8. For positive integers m, n > 0, let

σ = 〈〈ai | 0 ≤ i ≤ m〉, 〈a′i | 1 ≤ i ≤ m〉〉, τ = 〈〈bj | 0 ≤ j ≤ n〉, 〈b′j | 1 ≤ j ≤ n〉〉

be Stirlitz tracks with the same base p = a0 = b0 and p ≤ a1 ∨ b1. Then ai, bj ≤
am ∨ bn, for all i ∈ {0, . . . ,m} and j ∈ {0, . . . , n}.

Proof. Suppose first that the inequality p ≤ a1 ∨ b′1 holds. Then p ≤ a1 ∨ b
′
1, b

′
1 ∨

b1, b1 ∨ a1, a contradiction by (Uj). Hence p � a1 ∨ b′1, thus, by applying (Bj) to
the inequalities p ≤ a1 ∨ a

′
1, b1 ∨ b

′
1, we obtain that p ≤ a′1 ∨ b

′
1.

Furthermore, from Lemma 5.7 it follows that ai ≤ p∨ am, for all i ∈ {0, . . . ,m},
and bj ≤ p ∨ bn, for all j ∈ {0, . . . , n}, thus it suffices to prove that p ≤ am ∨ bn.
Again, from Lemma 5.7 it follows that p ≤ a′1∨am, b

′
1∨bn. Suppose that p � am∨bn.

Then p � a′1, am, b
′
1, bn, thus, by (Bj), p ≤ a′1 ∨ bn. Furthermore, we have seen that

p ≤ b′1 ∨ bn and p ≤ a′1 ∨ b
′
1. Hence, by (Uj), p lies below either a′1 or b′1 or bn, a

contradiction. �

6. The small poset associated with a lattice in SUB

Everywhere in this section before Theorem 6.7, we shall fix a complete, lower
continuous, finitely spatial lattice L in SUB. For every element p ∈ J(L), we denote
by {Ap, Bp} the Udav-Bond partition of [p]D associated with p (see Subsection 5.1).
We let + and − be distinct symbols, and we put R = R0 ∪ R− ∪ R+, where R0,
R−, and R+ are the sets defined as follows.

R0 = {〈p〉 | p ∈ J(L)},

R+ = {〈a, b,+〉 | a, b ∈ J(L), a D b},

R− = {〈a, b,−〉 | a, b ∈ J(L), a D b}.

We define a map e : R → J(L) by putting e(〈p〉) = p, for all p ∈ J(L), while
e(〈a, b,+〉) = e(〈a, b,−〉) = b, for all a, b ∈ J(L) with a D b.
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Let ≺ be the binary relation on R that consists of the following pairs:

〈p, a,−〉 ≺ 〈p〉 ≺ 〈p, b,+〉 whenever a ∈ Ap and b ∈ Bp, (6.1)

〈b, c,−〉 ≺ 〈a, b,+〉 ≺ 〈b, d,+〉 and (6.2)

〈b, d,−〉 ≺ 〈a, b,−〉 ≺ 〈b, c,+〉, whenever c ∈ [b]D \ C(a, b) and d ∈ C(a, b).
(6.3)

Lemma 6.1. Let ε ∈ {+,−}, let n < ω, and let a0, . . . , an, b0, . . . , bn ∈ J(L)
such that ai D bi, for all i ∈ {0, . . . , n} and 〈a0, b0, ε〉 ≺ · · · ≺ 〈an, bn, ε〉. Then

exactly one of the following cases occurs:

(i) ε = + and, putting an+1 = bn, the equality ai+1 = bi holds, for all i ∈
{0, . . . , n}, while there are join-irreducible elements a′1, . . . , a′n+1 of L
such that 〈〈ai | 0 ≤ i ≤ n+ 1〉, 〈a′i | 1 ≤ i ≤ n+ 1〉〉 is a Stirlitz track.

(ii) ε = − and, putting a−1 = b0, the equality ai−1 = bi holds, for all i ∈
{0, . . . , n}, while there are join-irreducible elements a′−1, . . . , a′n−1 of L
such that 〈〈an−i | 0 ≤ i ≤ n+ 1〉, 〈a′n−i | 1 ≤ i ≤ n+ 1〉〉 is a Stirlitz track.

Proof. Suppose that ε = + (the proof for ε = − is similar). We argue by induction
on n. If n = 0, then, from the assumption that a0 D b0 and by using Corollary 3.4,
we obtain a conjugate a′1 of b0 with respect to a0, and 〈〈a0, a1〉, 〈a

′
1〉〉 is obviously

a Stirlitz track.
Suppose that n > 0. From the assumption that 〈an−1, bn−1,+〉 ≺ 〈an, bn,+〉 and

the definition of ≺, we obtain that an = bn−1. Furthermore, from the induction
hypothesis it follows that there exists a Stirlitz track of the form

〈〈ai | 0 ≤ i ≤ n〉, 〈a′i | 1 ≤ i ≤ n〉〉.

Put an+1 = bn, and let a′n+1 be a conjugate of an+1 with respect to an. Using
again the assumption that 〈an−1, bn−1,+〉 ≺ 〈an, bn,+〉, we obtain the inequality
an ≤ a′n ∨ an+1. Therefore, 〈〈ai | 0 ≤ i ≤ n+ 1〉, 〈a′i | 1 ≤ i ≤ n+ 1〉〉 is a Stirlitz
track. �

Let E denote the reflexive and transitive closure of ≺.

Lemma 6.2. The relation E is a partial ordering on R, and ≺ is the predecessor

relation of E.

Proof. We need to prove that for any n > 0, if r0 ≺ · · · ≺ rn in R, then r0 6= rn.
We have three cases to consider.

Case 1. r0 ∈ R+. In this case, ri = 〈ai, bi,+〉 ∈ R+, for all i ∈ {1, . . . , n}. By
Lemma 6.1, if we put an+1 = bn, then ai+1 = bi, for all i ∈ {0, . . . , n}, and there
are join-irreducible elements a′1, . . . , a′n+1 of L such that

〈〈ai | 0 ≤ i ≤ n+ 1〉, 〈a′i | 1 ≤ i ≤ n+ 1〉〉

is a Stirlitz track. In particular, by Lemma 5.7, a0 6= an, whence r0 6= rn.

Case 2. r0 ∈ R0. Then ri ∈ R+, for all i ∈ {1, . . . , n}, thus r0 6= rn.

Case 3. r0 ∈ R−. If rn /∈ R−, then r0 6= rn. Suppose that rn ∈ R−. Then ri =
〈ai, bi,−〉 belongs to R−, for all i ∈ {0, . . . , n}. By Lemma 6.1, if we put a−1 = b0,
then ai−1 = bi, for all i ∈ {0, . . . , n}, and there are join-irreducible elements a′−1,
. . . , a′n−1 of L such that 〈〈an−i | 0 ≤ i ≤ n+ 1〉, 〈a′n−i | 1 ≤ i ≤ n+ 1〉〉 is a Stirlitz
track. In particular, by Lemma 5.7, a0 6= an, whence r0 6= rn. �
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Definition 6.3.

(i) Two finite sequences r = 〈r0, . . . , rn−1〉 and s = 〈s0, . . . , sn−1〉 of same
length of R are isotype, if either e(ri) = e(si), for all i ∈ {0, . . . , n− 1}, or
e(ri) = e(sn−1−i), for all i ∈ {0, . . . , n− 1}.

(ii) An oriented path (see Section 2) r = 〈r0, . . . , rn−1〉 of elements of R is
— positive (resp., negative), if there are elements ai, bi (for 0 ≤ i < n)

of J(L) such that ri = 〈ai, bi,+〉 (resp., ri = 〈ai, bi,−〉), for all i ∈
{0, . . . , n− 1}.

— reduced, if either it is positive or is has the form

〈u0, . . . , uk−1, 〈p〉, v0, . . . , vl−1〉,

where p ∈ J(L), 〈u0, . . . , uk−1〉 is negative, and 〈v0, . . . , vl−1〉 is posi-
tive.

Lemma 6.4. Every oriented path of R is isotype to a reduced oriented path.

Proof. Let r be an oriented path of R, we prove that r is isotype to a reduced
oriented path. If r is either positive or reduced there is nothing to do. Suppose
that r is neither positive nor reduced. Then r has the form

〈〈ak−1, ak,−〉, . . . , 〈a0, a1,−〉, 〈b0, b1,+〉, . . . , 〈bl−1, bl,+〉〉

for some integers k > 0 and l ≥ 0. If l = 0, then r is isotype to the positive path

〈〈a0, a1,+〉, . . . , 〈ak−1, ak,+〉〉.

Suppose now that l > 0. Since 〈a0, a1,−〉 ≺ 〈b0, b1,+〉, two cases can occur.

Case 1. a0 = b1 and a1 /∈ C(b0, b1) (see (6.2)). Observe that 〈a0, a1,−〉 ≺ 〈a0〉 if
a1 ∈ Aa0

while 〈a0〉 ≺ 〈a0, a1,+〉 if a1 ∈ Ba0
(see (6.1)). In the first case,

it follows from Lemma 5.5 (applied to C(a0, a1)) that the sequence

〈〈ak−1, ak,−〉, . . . , 〈a0, a1,−〉, 〈a0〉, 〈b1, b2,+〉, . . . , 〈bl−1, bl,+〉〉

is an oriented path, isotype to r. Similarly, in the second case, the oriented
path

〈〈bl−1, bl,−〉, . . . , 〈b1, b2,−〉, 〈a0〉, 〈a0, a1,+〉, . . . , 〈ak−1, ak,+〉〉

is isotype to r.
Case 2. a1 = b0 and b1 /∈ C(a0, a1) (see (6.3)). Observe that 〈b0〉 ≺ 〈b0, b1,+〉 if

b1 ∈ Bb0 while 〈b0, b1,−〉 ≺ 〈b0〉 if b1 ∈ Ab0 (see (6.1)). In the first case,
the oriented path

〈〈ak−1, ak,−〉, . . . , 〈a1, a2,−〉, 〈b0〉, 〈b0, b1,+〉, . . . , 〈bl−1, bl,+〉〉

is isotype to r. Similarly, in the second case, the oriented path

〈〈bl−1, bl,−〉, . . . , 〈b0, b1,−〉, 〈b0〉, 〈a1, a2,+〉, . . . , 〈ak−1, ak,+〉〉

is isotype to r.

This concludes the proof. �

We define a map ϕ from L into the powerset of R as follows:

ϕ(x) = {r ∈ R | e(r) ≤ x}, for all x ∈ L. (6.4)

Lemma 6.5. The set ϕ(x) belongs to Co(R,E), for all x ∈ L.
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Proof. It is sufficient to prove that if r0 ≺ · · · ≺ rn in R such that e(r0), e(rn) ≤ x,
the relation e(rk) ≤ x holds whenever 0 < k < n. By Lemma 6.4, it is sufficient
to consider the case where the oriented path r = 〈r0, . . . , rn〉 is reduced. If it is
positive, then, by Lemma 6.1, there exists a Stirlitz track of the form

〈〈ai | 0 ≤ i ≤ n+ 1〉, 〈a′i | 1 ≤ i ≤ n+ 1〉〉

for join-irreducible elements ai, a
′
i of L with ri = 〈ai, ai+1,+〉, for all i ∈ {0, . . . , n}.

But then, by Lemma 5.7 applied to the Stirlitz track

〈〈ai+1 | 0 ≤ i ≤ n〉, 〈a′i+1 | 1 ≤ i ≤ n〉〉,

e(rk) = ak+1 ≤ a1 ∨ an+1 ≤ x. Suppose from now on that r is not positive. Then
three cases can occur.

Case 1. r = 〈〈a0〉, 〈a0, a1,+〉, . . . , 〈an−1, an,+〉〉 for some a0, . . . , an ∈ J(L). It
follows from Lemma 6.1 that there exists a Stirlitz track of the form

〈〈ai | 0 ≤ i ≤ n〉, 〈a′i | 1 ≤ i ≤ n〉〉,

hence, by Lemma 5.7, e(rk) = ak ≤ a0 ∨ an ≤ x.
Case 2. r = 〈〈an−1, an,−〉, . . . , 〈a0, a1,−〉, 〈a0〉〉 for some a0, . . . , an ∈ J(L). The

argument is similar to the one for Case 1.
Case 3. r = 〈〈an′−1, an′ ,−〉, . . . , 〈a0, a1,−〉, 〈a0〉, 〈b0, b1,+〉, . . . , 〈bn′′−1, bn′′ ,+〉〉 for

some positive integers n′ and n′′ and join-irreducible a0 = b0, a1, . . . ,
an′ , b1, . . . , bn′′ . From 〈a0, a1,−〉 ≺ 〈a0〉 ≺ 〈b0, b1,+〉 it follows that
a0 = b0 ≤ a1∨ b1. From Lemma 6.1 it follows that there are Stirlitz tracks
of the form

σ = 〈〈ai | 0 ≤ i ≤ n′〉, 〈a′i | 1 ≤ i ≤ n′〉〉,

τ = 〈〈bj | 0 ≤ j ≤ n′′〉, 〈b′j | 1 ≤ j ≤ n′′〉〉,

with the same base a0 = b0 ≤ a1 ∨ b1. Since e(rk) has either the form ai,
where 0 ≤ i < n′, or bj , where 0 ≤ j < n′′, it follows from Lemma 5.8 that
e(rk) ≤ an′ ∨ bn′′ ≤ x.

This concludes the proof. �

Lemma 6.6. The map ϕ is a 〈0, 1〉-lattice embedding from L into Co(R).

Proof. It is obvious that ϕ is a 〈∧, 0, 1〉-homomorphism. Let x, y ∈ L such that
x � y. Since L is finitely spatial, there exists p ∈ J(L) such that p ≤ x and p � y.
Hence, 〈p〉 ∈ ϕ(x) \ ϕ(y), so ϕ(x) � ϕ(y). Therefore, ϕ is a 〈∧, 0, 1〉-embedding.

Now let x, y ∈ L and let r ∈ ϕ(x ∨ y), we prove that r ∈ ϕ(x) ∨ ϕ(y). The
conclusion is trivial if r ∈ ϕ(x) ∪ ϕ(y), so suppose that r /∈ ϕ(x) ∪ ϕ(y). We need
to consider two cases:

Case 1. r = 〈p〉, for some p ∈ J(L). So p ≤ x ∨ y while p � x, y. By Lemma 3.2,
there are minimal u ≤ x and v ≤ y such that p ≤ u ∨ v, hence u and v are join-ir-
reducible and they do not belong to the same side of the Udav-Bond partition of
[p]D associated with p (see Proposition 5.1). Hence, by the definition of ≺, either
〈p, u,−〉 ≺ 〈p〉 ≺ 〈p, v,+〉 or 〈p, v,−〉 ≺ 〈p〉 ≺ 〈p, u,+〉. Since 〈p, u, ε〉 ∈ ϕ(x) and
〈p, v, ε〉 ∈ ϕ(y), for all ε ∈ {+,−}, it follows from this that 〈p〉 ∈ ϕ(x) ∨ ϕ(y).

Case 2. r = 〈a, b,+〉 for some a, b ∈ J(L) such that a D b. So b ≤ x ∨ y while
b � x, y. By Lemma 3.2, there are minimal u ≤ x and v ≤ y such that b ≤ u ∨ v,
hence u and v are join-irreducible and they do not belong to the same side of
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the Udav-Bond partition of [b]D associated with b (see Proposition 5.1). Hence, it
follows from Lemma 5.5 that either u /∈ C(a, b) and v ∈ C(a, b) or u ∈ C(a, b) and
v /∈ C(a, b). In the first case,

〈b, u,−〉 ≺ 〈a, b,+〉 ≺ 〈b, v,+〉,

while in the second case,

〈b, v,−〉 ≺ 〈a, b,+〉 ≺ 〈b, u,+〉.

Since 〈b, u, ε〉 ∈ ϕ(x) and 〈b, v, ε〉 ∈ ϕ(y), for all ε ∈ {+,−}, it follows from this
that r ∈ ϕ(x) ∨ ϕ(y).
Case 3. r = 〈a, b,−〉 for some a, b ∈ J(L) such that a D b. The proof is similar to
the proof of Case 2. �

We can now formulate the main theorem of this paper.

Theorem 6.7. Let L be a lattice. Then the following are equivalent:

(i) L embeds into a lattice of the form Co(P ), for some poset P ;

(ii) L satisfies the identities (S), (U), and (B) (i.e., it belongs to the class

SUB);
(iii) L has a lattice embedding into a lattice of the form Co(R), for some

poset R, that preserves the existing bounds. Furthermore, if L is finite,

then R is finite, with

|R| ≤ 2| J(L)|2 − 5| J(L)| + 4.

Proof. (i)⇒(ii) follows immediately from Lemmas 4.1, 4.5, and 4.7.
(ii)⇒(iii) Denote by FilL the lattice of all dual ideals (= filters) of L, ordered

by reverse inclusion; if L has no unit element, then we allow the empty set in
FilL, otherwise we require filters to be nonempty. This way, FilL is complete and
the canonical lattice embedding x 7→ ↑x from L into FilL preserves the existing
bounds. It is well known that FilL is a dually algebraic lattice that extends L
and that satisfies the same identities as L (see, for example, G. Grätzer [11]), in
particular, it belongs to SUB. Furthermore, FilL is dually algebraic, thus lower
continuous and spatial, thus it is a fortiori finitely spatial. We consider the poset
〈R,E〉 constructed above from FilL. By Lemmas 6.5 and 6.6, the canonical map ϕ
defines a 〈0, 1〉-embedding from FilL into Co(R).

(iii)⇒(i) is trivial.
In case L is finite, put n = | J(L)|, we verify that |R| ≤ 2n2−5n+4 for the poset

〈R,E〉 constructed above, in the case where n ≥ 2 (for n ≤ 1 then one can take
for P a singleton). Indeed, it follows from the join-semidistributivity of L (that
itself follows from Lemma 4.3) that L has at least two D-maximal ( = join-prime)
elements, hence the number of pairs 〈a, b〉 of elements of J(L) such that a D b is at
most (n− 1)(n− 2), whence

|R| ≤ 2(n− 1)(n− 2) + n = 2n2 − 5n+ 4. �

Remark 6.8. The upper bound 2| J(L)|2−5| J(L)|+4 of Theorem 6.7(iii), obtained
for the particular poset R constructed above, is reached for L defined as the lattice
of all order-convex subsets of a finite chain.

Corollary 6.9. The class of all lattices that can be embedded into some Co(P )
coincides with SUB; it is a finitely based variety. In particular, it is closed under

homomorphic images.
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Of course, we proved more, for example, the class of all lattices that can be
embedded into some finite Co(P ) forms a pseudovariety (see [10]), thus it is closed
under homomorphic images.

7. The tree-like poset associated with a lattice in SUB

Everywhere in this section before Theorem 7.7, we shall fix a complete, lower
continuous, finitely spatial lattice L in SUB. The goal of the present section is to
define a tree-like poset Γ and a lattice embedding from L into Co(Γ) that preserves
the existing bounds, see Theorem 7.7.

The idea to use D-increasing finite sequences of join-irreducible elements is in-
troduced in K.V. Adaricheva [1], where it is proved that every finite lattice without
D-cycle can be embedded into the lattice of subsemilattices of some finite meet-
semilattice; see also [2].

We denote by Γ the set of all finite, nonempty sequences α = 〈α(0), . . . , α(n)〉
of elements of J(L) such that α(i) D α(i + 1), for all i < n. We put |α| = n (the
length of α), and we extend this definition by putting |∅| = −1. We further put
α = 〈α(0), . . . , α(n−1)〉 (the truncation of α) and e(α) = α(n) (the extremity of α).
If α = β, we say that β is a one-step extension of α. Furthermore, for all n ≥ 0,
we put

Γn = {α ∈ Γ | |α| ≤ n}, and En = Γn \ Γn−1 for n > 0.

For α ∈ Γ \ Γ0, we say that a conjugate of α is an element β of Γ such that α = β
and e(α) and e(β) are conjugate with respect to e(α). It follows from Corollary 3.4
that every element of Γ \ Γ0 has a conjugate. Furthermore, for α, β ∈ Γ, we write
α ∼ β, if either α = β or β = α.

For all n > 0, we define inductively a binary relation ≺n on Γn, together with
subsets Aα and Bα of [e(α)]D for α ∈ Γn−1.

The induction hypothesis to be satisfied consists of the following two assertions:

(S1) ≺n is acyclic.
(S2) For all α, β ∈ Γn, α ∼ β iff either α ≺n β or β ≺n α.

For n = 0, let ≺n be empty.

The case n = 1 is the only place where we have some freedom in the choice of ≺n.
We suppose that we have already used this freedom for the construction of the poset
〈R,E〉 of Section 6, that is, for each p ∈ J(L), let Ap, Bp such that {Ap, Bp} is the
Udav-Bond partition of [p]D associated with p (see Subsection 5.1), and we let R
be the poset associated with this choice that we constructed in Section 6. Then we
put A〈p〉 = Ap and B〈p〉 = Bp, and we define

≺1= {〈〈p, a〉, 〈p〉〉 | p ∈ J(L), a ∈ A〈p〉} ∪ {〈〈p〉, 〈p, b〉〉 | p ∈ J(L), b ∈ B〈p〉}.

It is obvious that ≺1 satisfies both (S1) and (S2).

Now suppose having defined ≺n, for n ≥ 1, that satisfies both (S1) and (S2).
For all α ∈ En, we define subsets Aα and Bα of [e(α)]D as follows:

Case 1. α ≺n α. Then we putAα = [e(α)]D\C(e(α), e(α)) andBα = C(e(α), e(α)).
Case 2. α ≺n α. Then we putAα = C(e(α), e(α)) andBα = [e(α)]D\C(e(α), e(α)).

Then we define ≺n+1 as

≺n+1=≺n ∪{〈α⌢〈x〉, α〉 | α ∈ En and x ∈ Aα}∪{〈α, α
⌢〈y〉〉 | α ∈ En and y ∈ Bα},

(7.1)
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where 〈α, β〉 7→ α⌢β denotes concatenation of finite sequences.

Lemma 7.1. The relation ≺n+1 satisfies both (S1) and (S2).

Proof. It is obvious that ≺n+1 satisfies (S2). Now let us prove (S1), and suppose
that ≺n+1 has a cycle, say, α0 ≺n+1 α1 ≺n+1 · · · ≺n+1 αk = α0, where k ≥ 2. We
pick k minimal with this property. As Aα ∩ Bα = ∅, for all α, we cannot have
k = 2 as well, so k ≥ 3.

By the induction hypothesis, one of the elements of the cycle belongs to En+1,
without loss of generality we may assume that it is the case for α0. Hence, by
(7.1), α1 = α0 belongs to Γn. Let l be the smallest element of {1, . . . , k − 1} such
that αl+1 /∈ Γn (it exists since αk = α0 /∈ Γn). Suppose that l < k − 1. By
(S2) for ≺n+1, αl+2 = αl+1 = αl, a contradiction by the minimality of k. Hence
l = k− 1, which means that α1, . . . , αk−1 ∈ Γn. Hence, since k− 1 ≥ 2, we obtain
that α1 ≺n · · · ≺n αk−1 = α1 is a ≺n-cycle, a contradiction. �

Lemma 7.1 completes the definition of ≺n, for all n > 0. We define ≺ as the
union over all n < ω of ≺n. Hence ≺ is an acyclic binary relation on Γ such that
α ∼ β iff either α ≺ β or β ≺ α, for all α, β ∈ Γ. Since ≺ is acyclic, the reflexive
and transitive closure E of ≺ is a partial ordering on Γ, for which ≺ is exactly
the predecessor relation. For the sake of clarity, we rewrite below the inductive
definition of ≺ and the sets Aα and Bα for α ∈ Γ.

(a) For |α| = 0, Aα and Bα are chosen such that {Aα, Bα} is the Udav-Bond
partition of [e(α)]D associated with e(α).

(b) Suppose that |α| ≥ 1. Then we define Aα and Bα by

〈Aα, Bα〉 =

{(
[e(α)]D \ C(e(α), e(α)), C(e(α), e(α))

)
if α ≺ α,(

C(e(α), e(α)), [e(α)]D \ C(e(α), e(α))
)

if α ≺ α.

(c) α ≺ β implies that α ∼ β.
(d) α⌢〈x〉 ≺ α iff x ∈ Aα and α ≺ α⌢〈x〉 iff x ∈ Bα, for all α ∈ Γ and all

x ∈ [e(α)]D.

By Lemma 5.5, the set {Aα, Bα} is the Udav-Bond partition of [e(α)]D associated
with α, for all α ∈ Γ. Therefore, by Proposition 5.1 and the definition of ≺, we
obtain immediately the following consequence.

Corollary 7.2. For all α ∈ Γ and all x, y ∈ [e(α)]D, e(α) ≤ x ∨ y iff either

α⌢〈x〉 ≺ α ≺ α⌢〈y〉 or α⌢〈y〉 ≺ α ≺ α⌢〈x〉.

For α, β ∈ Γ, we denote by α ∗β the largest common initial segment of α and β.
Observe that α ∗β belongs to Γ∪{∅} and that α ∗β = β ∗α. Put m = |α|− |α ∗β|
and n = |β| − |α ∗ β|. We let P (α, β) be the finite sequence 〈γ0, γ1, . . . , γm+n〉,
where the γi, for 0 ≤ i ≤ m + n, are defined by γ0 = α, γi+1 = γi, for all i < m,
γm+n = β, and γm+n−j−1 = γm+n−j, for all j < n. Hence the γi-s first decrease
from γ0 = α to γm = α∗β by successive truncations, then they increase again from
γm to γm+n = β by successive one-step extensions.

For α, β ∈ Γ, we observe that a path (see Section 2) from α to β is a finite
sequence c = 〈γ0, γ1, . . . , γk〉 of distinct elements of Γ such that γ0 = α, γk = β,
and γi ∼ γi+1, for all i < k.

Proposition 7.3. For all α, β ∈ Γ, there exists at most one path from α to β, and

then this path is P (α, β). Furthermore, such a path exists iff α(0) = β(0).



18 M. SEMENOVA AND F. WEHRUNG

Hence, by using the terminology of Section 2: the poset 〈Γ,E〉 is tree-like.

Proof. Put againm = |α|−|α∗β| and n = |β|−|α∗β|, and P (α, β) = 〈γ0, . . . , γm+n〉.
Let d = 〈δ0, . . . , δk〉 (for k < ω) be a path from α to β. We begin with the following
essential observation.

Claim. The path d consists of a sequence of truncations followed by a sequence of

one-step extensions.

Proof of Claim. Suppose that there exists an index i ∈ {1, . . . , k − 1} such that δi
extends both δi−1 and δi+1. Then δi−1 = δi = δi+1, which contradicts the fact that
all entries of d are distinct.

Hence, either d consists of a sequence of truncations, or there exists a least index
l ∈ {0, . . . , k − 1} such that δl+1 is an extension of δl. If δi+1 is not an extension
of δi for some i ∈ {l, . . . , k − 1}, then, taking the least such i, we obtain that δi
extends both δi−1 and δi+1, a contradiction by the first paragraph of the present
proof. Hence δi+1 is a one-step extension of δi, for all i ∈ {l, . . . , k − 1}. � Claim.

Let l denote the least element of {0, . . . , k} such that l < k implies that δl+1

extends δl. In particular, δl is a common initial segment of both α and β, thus of
α ∗ β. Furthermore,

|α| − l = |δ0| − l = |δl| ≤ |α ∗ β| = |α| −m,

thus l ≥ m. Similarly,

|β| − (k − l) = |δl| ≤ |α ∗ β| = |β| − n,

thus k− l ≥ n. In addition, both α ∗β and δm are initial segments of α of the same
length |α|−m, thus α ∗β = δm. Similarly, both α ∗β and δk−n are initial segments
of β of the same length |β| − n, whence α ∗ β = δk−n. Therefore, δm = δk−n,
whence, since all entries of d are distinct, m = k − n, so k = m+ n, whence l = m
since m ≤ l ≤ k − n. It follows then from the claim that d = P (α, β).

Furthermore, from α ∼ β it follows that α(0) = β(0), thus the same conclusion
follows from the assumption that there exists a path from α to β. Conversely, if
α(0) = β(0), then α ∗ β is nonempty, thus so are all entries of P (α, β). Hence
P (α, β) is a path from α to β. �

Now we define a map π : Γ → R by the following rule:

π(α) =






α if |α| = 0,

〈e(α), e(α),+〉 if α ≺ α,

〈e(α), e(α),−〉 if α ≺ α,

for all α ∈ Γ.

Lemma 7.4. α ≺ β in Γ implies that π(α) ≺ π(β) in R, for all α, β ∈ Γ. In

particular, π is order-preserving

Proof. We argue by induction on the least integer n such that α, β ∈ Γn. We
need to consider first the case where p, a, b ∈ J(L), a ∈ Ap, b ∈ Bp (so that
〈p, a〉 ≺ 〈p〉 ≺ 〈p, b〉 in Γ), and prove that π(〈p, a〉) ≺ π(〈p〉) ≺ π(〈p, b〉) in R. But
by the definition of π, the following equalities hold,

π(〈p, a〉) = 〈p, a,−〉, π(〈p〉) = 〈p〉, and π(〈p, b〉) = 〈p, b,+〉,

while, by the definition of ≺ on R,

〈p, a,−〉 ≺ 〈p〉 ≺ 〈p, b,+〉,
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which solves the case where n = 1.
The remaining case to consider is where α⌢〈x〉 ≺ α ≺ α⌢〈y〉 in Γ, for |α| > 0.

Thus x ∈ Aα and y ∈ Bα, whence

π(α⌢〈x〉) = 〈e(α), x,−〉,

π(α⌢〈y〉) = 〈e(α), y,+〉.

Suppose first that α ≺ α. Then

Aα = [e(α)]D \ C(e(α), e(α)) while Bα = C(e(α), e(α)).

Furthermore, π(α) = 〈e(α), e(α),+〉, while, by the definition of ≺ on R,

〈e(α), x,−〉 ≺ 〈e(α), e(α),+〉 ≺ 〈e(α), y,+〉,

in other words,

π(α⌢〈x〉) ≺ π(α) ≺ π(α⌢〈y〉).

Suppose now that α ≺ α. Then

Aα = C(e(α), e(α)) while Bα = [e(α)]D \ C(e(α), e(α)).

Furthermore, π(α) = 〈e(α), e(α),−〉, while, by the definition of ≺ on R,

〈e(α), x,−〉 ≺ 〈e(α), e(α),−〉 ≺ 〈e(α), y,+〉,

in other words,

π(α⌢〈x〉) ≺ π(α) ≺ π(α⌢〈y〉),

which completes the proof. �

We observe the following immediate consequence of Lemma 7.4.

Corollary 7.5. One can define a zero-preserving complete meet homomorphism

π∗ : Co(R) → Co(Γ) by the rule

π∗(X) = π−1[X ], for all X ∈ Co(R).

We put ψ = π∗ ◦ ϕ, where ϕ : L →֒ Co(R) is the canonical map defined in
Section 6. Hence ψ is a zero-preserving meet homomorphism from L into Co(Γ).
For any x ∈ L, the value ψ(x) is calculated by the same rule as ϕ(x), see (6.4):

ψ(x) = {α ∈ Γ | e(α) ≤ x}.

Lemma 7.6. The map ψ is a lattice embedding from L into Co(Γ). Moreover, ψ
preserves the existing bounds.

Proof. The statement about preservation of bounds is obvious. We have already
seen (and it is obvious) that ψ is a meet homomorphism. Let x, y ∈ L such that
x � y. Since L is finitely spatial, there exists p ∈ J(L) such that p ≤ x and p � y;
whence 〈p〉 ∈ ψ(x) \ ψ(y). Hence ψ is a meet embedding from L into Co(Γ).

Let x, y ∈ L, let α ∈ ψ(x ∨ y), we prove that α ∈ ψ(x) ∨ ψ(y). This is obvious
if α ∈ ψ(x) ∪ ψ(y), so suppose that α /∈ ψ(x) ∪ ψ(y). Hence e(α) ≤ x ∨ y while
e(α) � x, y, thus, by Lemma 3.2, there are minimal u ≤ x and v ≤ y such that
e(α) ≤ u ∨ v, and both u and v belong to [e(α)]D. Therefore, by Corollary 7.2,
either α⌢〈u〉 ≺ α ≺ α⌢〈v〉 or α⌢〈v〉 ≺ α ≺ α⌢〈u〉. In both cases, since α⌢〈u〉 ∈
ψ(x) and α⌢〈v〉 ∈ ψ(y), we obtain that α ∈ ψ(x) ∨ ψ(y). Therefore, ψ is a join
homomorphism. �

Now we can state the main embedding theorem of the present section.
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Theorem 7.7. Let L be a lattice. Then the following assertions are equivalent:

(i) there exists a poset P such that L embeds into Co(P );
(ii) L satisfies the identities (S), (U), and (B) (i.e., it belongs to the class

SUB);
(iii) there exists a tree-like (see Section 2) poset Γ such that L has an embedding

into Co(Γ) that preserves the existing bounds. Furthermore, if L is finite

without D-cycle, then Γ is finite.

Proof. (i)⇒(ii) has already been established, see Theorem 6.7.
(ii)⇒(iii) As in the proof of Theorem 6.7, we denote by FilL the lattice of all

filters of L, ordered by reverse inclusion; if L has no unit element, then we allow
the empty set in FilL, otherwise we require filters to be nonempty. We consider
the poset Γ constructed from FilL as in Section 7. By Lemma 7.6, L embeds into
Co(Γ). The finiteness statement of (iii) is obvious.

(iii)⇒(i) is trivial. �

Even in case L = Co(P ), for a finite totally ordered set P , the poset Γ con-
structed in Theorem 7.7 is not isomorphic to P as a rule. As it is constructed from
finite sequences of elements of P , it does not lend itself to easy graphic representa-
tion. However, many of its properties can be seen on the simpler poset represented
on Figure 5, which is tree-like.

As we shall see in Sections 9 and 10, the assumption in Theorem 7.7(iii) that L
be without D-cycle cannot be removed.

8. Non-preservation of atoms

The posets R and Γ that we constructed in Sections 6 and 7 are defined via

sequences of join-irreducible elements of L. This is to be put in contrast with the
main result of O. Frink [8] (see also [11]), that embeds any complemented modular
lattice into a geometric lattice: namely, this construction preserves atoms. Hence
the question of the necessity of the complication of the present paper, that is, using
sequences of join-irreducible elements rather than just join-irreducible elements,
is natural. In the present section we study two examples that show that this
complication is, indeed, necessary.

Example 8.1. A finite, atomistic lattice in SUB without D-cycle that cannot be

embedded atom-preservingly into any Co(T ).

Proof. Let P be the nine-element poset represented on the left hand side of Figure 1,
together with order-convex subsets P0, P1, P2, Q0, Q1, Q2.

We let K be the set of all elements X of Co(P ) such that pi ∈ X ⇔ p′i ∈ X ,
for all i < 3. It is obvious that K is a meet-subsemilattice of Co(P ) which con-
tains {∅, P} ∪ Ω, where Ω = {P0, P1, P2, Q0, Q1, Q2}. We prove that K is a join-
subsemilattice of Co(P ). Indeed, for all i < 3, both pi and p′i are either maximal
or minimal in P , hence, for all X , Y ∈ Co(P ), pi ∈ X ∨ Y iff pi ∈ X ∪ Y , and,
similarly, p′i ∈ X ∨ Y iff p′i ∈ X ∪ Y . Hence X , Y ∈ K implies that X ∨ Y ∈ K.

Therefore, K is a sublattice of Co(P ). It follows immediately that the atoms
of K are the elements of Ω, that K is atomistic, and the atoms of K satisfy the
following relations (see the right half of Figure 1):

Q0 ≤ P1 ∨ P2; Q1 ≤ P0 ∨ P2; Q2 ≤ P0 ∨ P1;

P0 � P1 ∨ P2; P1 � P0 ∨ P2; P2 � P0 ∨ P1.
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P0 = {p0

p0

, p′0

p′0

}, Q0 = {q0

q0

},

P1 = {p1

p1

, p′1

p′1

}, Q1 = {q1q1 },

P2 = {p2

p2

, p′2

p′2

}, Q2

P0

Q0

P1

Q1

P2

Q2

= {q2

q2

}.

Figure 1. The poset P and the geometry of K.

Hence, the sequence P0P1P2P0P1 is a zigzag of length 5 (in the sense of [3]). It
follows from this and the easy direction of the main theorem of [3] that K cannot
be embedded atom-preservingly into any Co(T ). �

By contrast, our second example is subdirectly irreducible, but it has D-cycles.
We shall see in a subsequent paper [15] that the latter condition is unavoidable,
that is, any finite, subdirectly irreducible atomistic lattice without D-cycle that
can be embedded into some Co(P ) can be embedded atom-preservingly into some
finite Co(P ) without D-cycle.

Example 8.2. A finite, atomistic, subdirectly irreducible lattice in SUB that can-

not be embedded into Co(T ), for any poset T , in an atom-preserving way.

Proof. Let Q be the 12-element poset represented on the left hand side of Figure 2,
together with order-convex subsets A, B, C, A′, B′, C′.

A
A

= {a0

a0

, a1

a1

}

A′

A′

= {a′0

a′0

, a′1

a′1

}

B

B

= {b0
b0

, b1

b1

}

B′

B′

= {b′0

b′0

, b′1

b′1

}

C C= {c0

c0

, c1

c1
}

C ′

C ′
= {c′0

c′0

, c′1
c′1

}

Figure 2. The poset Q and the geometry of L.

We let σ be the anti-automorphism of Q defined by σ(ai) = a1−i, σ(a′i) = a′1−i,
σ(bi) = b1−i, σ(b′i) = b′1−i, σ(ci) = c1−i, σ(c′i) = c′1−i, for all i < 2, and we let L be
the set of all elementsX of Co(Q) such that σX = X . It is obvious that L is a meet-
subsemilattice of Co(Q) which contains {∅, Q}∪Ω, where Ω = {A,B,C,A′, B′, C′}.
We prove that L is a join-subsemilattice of Co(Q). Let X , Y ∈ L, we prove that
X ∨ Y ∈ L.

Since both a′0 and a′1 are either maximal or minimal in Q, the equivalence a′i ∈
X ∨ Y ⇔ a′i ∈ X ∪ Y holds, for all i < 2, whence a′0 ∈ X ∨ Y ⇔ a′1 ∈ X ∨ Y .
Similarly, b′0 ∈ X ∨ Y ⇔ b′1 ∈ X ∨ Y and c′0 ∈ X ∨ Y ⇔ c′1 ∈ X ∨ Y .
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Suppose now that a0 ∈ X ∨ Y , we prove that a1 ∈ X ∨ Y . If a0 ∈ X ∪ Y this is
obvious, so suppose that a0 /∈ X ∪ Y . Without loss of generality, there are x ∈ X
and y ∈ Y such that x ⊳ a0 ⊳ y, whence x ∈ {b′1, b1, c

′
1, c1} and y = a′0. From

Y ∈ L it follows that a′1 ∈ Y , thus A′ ⊆ Y . Similarly, from X ∈ L it follows that
either B ⊆ X or C ⊆ X or B′ ⊆ X or C′ ⊆ X . If B ⊆ X , then b0 ∈ X , thus, since
a′1 ⊳ a1 ⊳ b0 and a′1 ∈ Y , we obtain that a1 ∈ X∨Y . If B′ ⊆ X , then b′0 ∈ X , thus,
since a′1 ⊳ a1 ⊳ b′0 and a′1 ∈ Y , we obtain again that a1 ∈ X ∨ Y . Similar results
hold for either C ⊆ X or C′ ⊆ X . Therefore, a0 ∈ X ∨ Y implies that a1 ∈ X ∨ Y .
By symmetry, we obtain the converse. Similarly, b0 ∈ X ∨ Y ⇔ b1 ∈ X ∨ Y and
c0 ∈ X ∨ Y ⇔ c1 ∈ X ∨ Y . Therefore, X ∨ Y belongs to L, which completes the
proof that L is a sublattice of Co(Q).

It follows immediately that the atoms of L are the elements of Ω, that L is
atomistic, and the atoms of L satisfy the following relations:

A,B ≤ A′ ∨B′; A ≤ A′ ∨B; B ≤ A ∨B′;

B,C ≤ B′ ∨ C′; B ≤ B′ ∨ C; C ≤ B ∨ C′;

A,C ≤ A′ ∨ C′; A ≤ A′ ∨ C; C ≤ A ∨ C′.

Hence, L is subdirectly irreducible, with monolith (i.e., smallest nonzero congru-
ence) the smallest congruence Θ(∅, A) identifying ∅ and A, also equal to Θ(∅, B)
and to Θ(∅, C). Furthermore, the sequence A′B′C′A′B′ is a zigzag of length 5 (in
the sense of [3]). It follows from this and the easy direction of the main theorem
of [3] that L cannot be embedded atom-preservingly into any Co(T ). �

9. Crowns in posets

We first recall the following classical definition.

Definition 9.1. For an integer n ≥ 2, we denote by Z/nZ the set of integers
modulo n. The n-crown Cn is the poset with underlying set (Z/nZ) × {0, 1} and
ordering defined by (i, 0), (i+ 1, 0) < (i, 1), for all i ∈ Z/nZ.

The crown Cn is illustrated on Figure 3.

(0, 0) (1, 0) (2, 0) ,(n− 2 0)(n− 1, 0)

(0, 1) (1, 1) (2, 1) (n− 2, 1)(n− 1, 1)

Cn

Figure 3. The crown Cn.

We shall mostly deal with sub-crowns of posets.

Definition 9.2. For n ≥ 2 and a poset (T,E), a n-crown of T is a finite sequence
〈〈ai, bi〉 | i ∈ Z/nZ〉 of elements of T ×T such that there exists an order-embedding
f : Cn →֒ T with f(i, 0) = ai and f(i, 1) = bi, for all i ∈ Z/nZ.
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We shall sometimes identify an integer modulo n with its unique representative
in {0, 1, . . . , n− 1} and a n-crown 〈〈ai, bi〉 | i ∈ Z/nZ〉 with the finite sequence

〈〈a0, b0〉, 〈a1, b1〉, . . . , 〈an−1, bn−1〉〉.

The following lemma makes it possible to identify crowns within posets.

Lemma 9.3. Let (T,E) be a poset, let n ≥ 3, and let ai, bi (i ∈ Z/nZ) be elements

of T . Then the following are equivalent:

(i) 〈〈ai, bi〉 | i ∈ Z/nZ〉 is a n-crown.

(ii) ai E bj iff i ∈ {j, j + 1}, for all i, j ∈ Z/nZ.

Proof. (i)⇒(ii) is trivial. Conversely, suppose (ii) satisfied, we prove that f : Cn →֒ T
defined by f(i, 0) = ai and f(i, 1) = bi, for all i ∈ Z/nZ, is an order-embedding.
We need to prove the following assertions:

(i) ai E aj implies that i = j, for all i, j ∈ Z/nZ. Indeed, if ai E aj , then
ai E bj, bj−1 (because aj E bj , bj−1), thus, by assumption, i ∈ {j, j + 1} ∩
{j, j − 1} = {j} (we use here the inequality n ≥ 3), that is, i = j.

(ii) bi E bj implies that i = j, for all i, j ∈ Z/nZ. The proof is similar to the
one of (i).

(iii) bj E ai occurs for no i, j ∈ Z/nZ. Indeed, suppose that bj E ai. Then bj E

bi, bi−1 (because ai E bi, bi−1), thus, by (ii), j = i = i− 1, a contradiction.

This concludes the proof. �

Definition 9.4. A poset T is crown-free, if it has no n-crown for any n ≥ 3.

Strictly speaking, the 2-crown C2 is crown-free since we are requiring n ≥ 3 in
the definition above. The motivation why we are putting this slight restriction on n
lies in the following observation. First, the poset of Figure 4(i) is tree-like, but it
contains the 2-crown represented on Figure 4(ii); observe also that the n-crown, for
any n ≥ 2, is never tree-like.

(ii)(i)

Figure 4. A tree-like poset which contains the crown C2.

On the other hand, we shall now prove the following result.

Proposition 9.5. Every tree-like poset is crown-free.

As witnessed by the square 22, the converse of Proposition 9.5 does not hold.

Proof. Let (T,E) be a tree-like poset. For x, y ∈ T , we denote by d(x, y) the length
of the unique path from x to y if there is such a path, ∞ otherwise. Observe that
x E y implies that d(x, y) <∞ (but the converse does not hold as a rule), and then
the unique path from x to y is oriented (see Section 2).
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For a n-crown γ = 〈〈ai, bi〉 | i ∈ Z/nZ〉 in T , we put

ℓ(γ) =
∑

i∈Z/nZ

d(ai, bi).

Suppose that T has a n-crown, for some integer n ≥ 3. We pick such a crown
γ = 〈〈ai, bi〉 | i ∈ Z/nZ〉 with ℓ(γ) minimum. For all i ∈ Z/nZ, we let

ai = xi,0 ≺ xi,1 ≺ · · · ≺ xi,pi
= bi,

ai+1 = yi,0 ≺ yi,1 ≺ · · · ≺ yi,qi
= bi

be the paths from ai (resp., ai+1) to bi, where ≺ denotes the predecessor relation
of T .

Claim 1. {xi,p | 0 ≤ p < pi} ∩ {yi,q | 0 ≤ q < qi} = ∅, for all i ∈ Z/nZ.

Proof of Claim. Suppose, to the contrary, that xi,p = yi,q for some p ∈ {0, . . . , pi−1}
and q ∈ {0, . . . , qi −1}. We put b′j = bj , for all j 6= i in Z/nZ, while b′i = xi,p. Since

ai, ai+1 E b′i, the condition k ∈ {l, l+ 1} implies that ak E b′l, for all k, l ∈ Z/nZ.
Conversely, let k, l ∈ Z/nZ such that ak E b′l. From b′l E bl it follows that ak E bl,
whence k ∈ {l, l+ 1}. By Lemma 9.3, the family γ′ = 〈〈ak, b

′
k〉 | k ∈ Z/nZ〉 is a

n-crown. However,

ℓ(γ′) ≤ ℓ(γ) − (pi − p) < ℓ(γ),

which contradicts the minimality of ℓ(γ). � Claim 1.

The proof of the following claim is symmetric.

Claim 2. {yi,q | 0 < q ≤ qi} ∩ {xi+1,p | 0 < p ≤ pi+1} = ∅, for all i ∈ Z/nZ.

We define a walk of T to be a finite sequence c = 〈c0, c1, · · · , cm〉 of elements
of T such that either ci ≺ ci+1 or ci+1 ≺ ci, for all i < m, we say then that c is a
walk from c0 to cm. Hence, a nonempty path of T is a walk with all distinct entries.

Now we let d be the finite sequence defined by

d = 〈x0,k | 0 ≤ k ≤ p0〉
⌢〈y0,q0−l | 0 < l < q0〉

⌢〈x1,k | 0 ≤ k ≤ p1〉
⌢ · · ·

· · ·⌢〈xn−1,k | 0 ≤ k ≤ pn−1〉.

It is obvious that d is a walk from x0,0 = a0 to xn−1,pn−1
= bn−1. We shall now

prove that d is a path.
Suppose, indeed, that d is not a path. Then one of the following cases occurs.

Case 1. There are distinct i, j ∈ Z/nZ, together with k ∈ {0, . . . , pi} and l ∈
{0, . . . , pj}, such that xi,k = xj,l. Then ai E xi,k = xj,l E bj , thus
i ∈ {j, j + 1}, while aj E xj,l = xi,k E bi, thus j ∈ {i, i+ 1}. Since n ≥ 3,
we obtain that i = j, a contradiction.

Case 2. There are distinct i, j ∈ (Z/nZ)\{n− 1}, together with k ∈ {1, . . . , qi−1}
and l ∈ {1, . . . , qj − 1}, such that yi,k = yj,l. Then ai+1 E yi,k = yj,l E bj,
thus i ∈ {j, j − 1}, while aj+1 E yj,l = yi,k E bi, thus j ∈ {i, i− 1},
whence, since n ≥ 3, i = j, a contradiction.

Case 3. There are i ∈ Z/nZ and j ∈ (Z/nZ)\{n− 1}, together with k ∈ {0, . . . , pi}
and l ∈ {1, . . . , qj − 1}, such that xi,k = yj,l. Then from Claim 1 it follows
that i 6= j, while from Claim 2 it follows that i 6= j + 1. On the other
hand, ai E xi,k = yj,l E bj , thus i ∈ {j, j + 1}, a contradiction.
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Therefore, we have proved that d is, indeed, a path from a0 to bn−1. However,
the finite sequence

d′ = 〈yn−1,l | 0 ≤ l ≤ qn−1〉

is a path from yn−1,0 = an = a0 (the indices are modulo n) to yn−1,qn−1
= bn−1,

thus, by the uniqueness of the path from a0 to bn−1, d = d′. Thus every entry x
of d satisfies that x E bn−1, in particular, b0 = x0,p0

E bn−1, a contradiction since
n 6= 1. �

10. A quasi-identity for Co(T ), for finite and crown-free T

Let (θ) be the following lattice-theoretical quasi-identity:
[
a ≤ (a′ ∨ b) ∧ (a′ ∨ c) & b ≤ (b′ ∨ a) ∧ (b′ ∨ c) & c ≤ (c′ ∨ a) ∧ (c′ ∨ b) &

& (a′ ∧ a) ∨ (b′ ∧ b) ∨ (c′ ∧ c) ∨ (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c) ≤ a′ ∧ b′ ∧ c′
]

=⇒ a ≤ a′.

It is inspired by Example 8.2 (see Corollary 10.6). The main result of Section 10 is
the following.

Theorem 10.1. Let (T,E) be a finite crown-free poset. Then Co(T ) satisfies (θ).

Let us begin with an arbitrary (not necessarily finite, not necessarily crown-free)
poset (T,E) and convex subsets A, B, C, A′, B′, C′ of T that satisfy the premise
of (θ), that is,

A ⊆ A′ ∨B; A ⊆ A′ ∨ C;

B ⊆ B′ ∨A; B ⊆ B′ ∨ C;

C ⊆ C′ ∨A; C ⊆ C′ ∨B;

A ∩A′ ⊆ B′ ∩C′; B ∩B′ ⊆ A′ ∩ C′; C ∩ C′ ⊆ A′ ∩B′;

A ∩B ⊆ A′ ∩B′; B ∩ C ⊆ B′ ∩C′; A ∩ C ⊆ A′ ∩ C′.

We shall put Â = A \A′, B̂ = B \B′, and Ĉ = C \ C′. Observe that

Â ∩ (B ∪ C) = B̂ ∩ (A ∪ C) = Ĉ ∩ (A ∪B) = ∅,

Â ∩ B̂ = Â ∩ Ĉ = B̂ ∩ Ĉ = ∅.

We shall later perform a construction whose key argument is provided by the fol-
lowing lemma.

Lemma 10.2. Let a ∈ Â and let a′ ∈ A′ with a ⊳ a′. Then there exists 〈b, b′〉 ∈

B̂ ×B′ such that b′ ⊳ b ⊳ a.

Proof. Observe first that a ∈ A ⊆ A′ ∨ B. Since a /∈ A′ ∪ B, there exists (a′, b) ∈
A′ × B such that either a′ ⊳ a ⊳ b or b ⊳ a ⊳ a′. In the first case, a′ ⊳ a ⊳ a′,
thus, by the convexity of A′, a ∈ A′, a contradiction; whence b ⊳ a. If b ∈ B′, then

b ∈ B ∩ B′ ⊆ A′, but b ⊳ a ⊳ a′, thus a ∈ A′, a contradiction; whence b ∈ B̂. If
there exists x ∈ A with x E b, then, since b ⊳ a, we obtain that b ∈ A ∩B ⊆ A′, a
contradiction again. But b ∈ B ⊆ A∨B′ and b /∈ B′, thus there exists b′ ∈ B′ such
that b′ ⊳ b. �

In particular, we observe the following corollary.
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Corollary 10.3. The sets Â, B̂, and Ĉ are either simultaneously empty or simul-

taneously nonempty.

Proof. If Â is nonempty, we pick a ∈ Â. So a ∈ A′ ∨B while a /∈ A′ ∪B, thus there
is (a′, b) ∈ A′ × B such that either b ⊳ a ⊳ a′ or a′ ⊳ a ⊳ b. In the first case, we

apply Lemma 10.2 to deduce that B̂ 6= ∅. In the second case, we apply the dual of
Lemma 10.2 to reach the same conclusion. �

Now we suppose that Â is nonempty, and we pick a0 ∈ Â. As in the proof
of Corollary 10.3, there exists a′0 ∈ A′ such that either a0 ⊳ a′0 or a′0 ⊳ a0; by
replacing E with its dual if needed, we may assume without loss of generality that
a0 ⊳ a′0.

By Lemma 10.2, there are 〈b0, b
′
0〉 ∈ B̂ × B′ and 〈c1, c

′
1〉 ∈ Ĉ × C′ such that

b′0 ⊳ b0 ⊳ a0 and c′1 ⊳ c1 ⊳ a0. By applying the dual of Lemma 10.2 to c′1 ⊳ c1,

we obtain 〈b1, b
′
1〉 ∈ B̂ × B′ such that c1 ⊳ b1 ⊳ b′1. By applying Lemma 10.2 to

b1 ⊳ b′1, we obtain 〈a2, a
′
2〉 ∈ Â × A′ such that a′2 ⊳ a2 ⊳ b1. By applying in the

same fashion Lemma 10.2 and its dual, we obtain 〈c2, c
′
2〉 ∈ Ĉ×C′, 〈b3, b

′
3〉 ∈ B̂×B′,

and 〈a3, a
′
3〉 ∈ Â×A′ such that a2 ⊳ c2 ⊳ c′2, b

′
3 ⊳ b3 ⊳ c2, and b3 ⊳ a3 ⊳ a′3.

Now we observe that b′0 ⊳ b0 ⊳ a0 ⊳ a′0 and b′3 ⊳ b3 ⊳ a3 ⊳ a′3, that is, we can

start the process again. Arguing by induction, we obtain elements 〈ai, a
′
i〉 ∈ Â×A′

for i 6≡ 1 (mod 3), elements 〈bi, b
′
i〉 ∈ B̂ × B′ for i 6≡ 2 (mod 3), and elements

〈ci, c
′
i〉 ∈ Ĉ × C′ for i 6≡ 0 (mod 3) such that the following relations hold, for all

i < ω:

b′3i ⊳ b3i ⊳ a3i ⊳ a′3i; (10.1)

c′3i+1 ⊳ c3i+1 ⊳ b3i+1 ⊳ b′3i+1; (10.2)

a′3i+2 ⊳ a3i+2 ⊳ c3i+2 ⊳ c′3i+2. (10.3)

This can be illustrated by Figure 5.

a0

a′0

b′0

b0

b1

b′1

c′1

c1

c2

c′2

a′2

a2

a3

a′3

b′3

b3

b4

b′4

c′4

c4

c5

c′5

a′5

a5

Figure 5. A pattern in T .

Now we define subsets of T as follows:

Ω+ = {a3i | i < ω} ∪ {b3i+1 | i < ω} ∪ {c3i+2 | i < ω};

Ω− = {a3i+2 | i < ω} ∪ {b3i | i < ω} ∪ {c3i+1 | i < ω};

Ω = Ω+ ∪ Ω−.
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Since Â, B̂, and Ĉ are mutually disjoint and their union contains Ω, we can define
a map χ : Ω → 3 by the rule

χ(x) =






0 (x ∈ Â),

1 (x ∈ B̂),

2 (x ∈ Ĉ),

for all x ∈ Ω.

Lemma 10.4. For all 〈x, y〉 ∈ Ω− × Ω+, χ(x) = χ(y) implies that x 5 y. In

particular, Ω− ∩ Ω+ = ∅.

Proof. We need to prove that for all natural numbers i and j, the following inequal-
ities hold:

• a3i+2 5 a3j . Otherwise, by (10.1) and (10.3), a′3i+2 ⊳ a3i+2 ⊳ a′3j , thus
a3i+2 ∈ A′, a contradiction.

• b3i 5 b3j+1. Otherwise, by (10.1) and (10.2), b′3i ⊳ b3i ⊳ b′3j+1, thus

b3i ∈ B′, a contradiction.
• c3i+1 5 c3j+2. Otherwise, by (10.2) and (10.3), c′3i+1 ⊳ c3i+1 ⊳ c′3j+2,

thus c3i+1 ∈ C′, a contradiction.

This concludes the proof. �

For an integer m ≥ 2, we define a m-pre-crown to be a finite sequence 〈〈xi, yi〉 |
i ∈ Z/mZ〉 of elements of Ω− × Ω+ such that the following conditions hold, for all
i ∈ Z/mZ:

(C1) xi, xi+1 ⊳ yi;
(C2) χ(xi) 6= χ(xi+1) and χ(yi) 6= χ(yi+1) if i 6= m− 1.

If m = 2, then, by (C1), x0, x1 ⊳ y0, y1. Furthermore, by (C2), χ(x0) 6= χ(x1),
thus it follows from x0, x1 ⊳ y0 and Lemma 10.4 that χ(y0) is the unique element
of 3 \ {χ(x0), χ(x1)}. The same holds for χ(y1), whence χ(y0) = χ(y1), which
contradicts (C2). Therefore, if there exists a m-pre-crown, then m ≥ 3.

We can now prove the main lemma of this section.

Lemma 10.5. Suppose that T is crown-free. Then there are no pre-crowns in T .

Proof. Otherwise, let m be the least positive integer such that there exists a m-pre-
crown, and let c = 〈〈xi, yi〉 | i ∈ Z/mZ〉 be such a pre-crown. As observed before,
m ≥ 3. By assumption on T , in order to get a contradiction, it suffices to prove
that c is a crown of T . By (C1) and Lemma 9.3, it suffices to prove that for all i,
j ∈ Z/mZ such that i /∈ {j, j + 1}, the inequality xi E yj does not hold. Suppose
otherwise; by Lemma 10.4, xi ⊳ yj . Two cases can occur.

Case 1. i < j. Then the finite sequence

〈〈xi, yi〉, 〈xi+1, yi+1〉, . . . , 〈xj , yj〉〉

is a (j − i + 1)-pre-crown (see Figure 6(i)), with 1 ≤ j − i ≤ m − 1. By
the minimality assumption on m, this cannot happen unless i = 0 and
j = m− 1, in which case i = j + 1 (modulo m as usual), a contradiction.

Case 2. j < i. Then the finite sequence

〈〈xi, yi−1〉, . . . , 〈xj+2, yj+1〉, 〈xj+1, yj〉〉

is a (i− j)-pre-crown (see Figure 6(ii)), with 2 ≤ i− j < m, which contra-
dicts again the minimality of m.

Hence c is a m-crown of T , a contradiction. �
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xi xixi+1 xj xj+1 xj+2

yi−1yi yi+1 yj yj yj+2yj+1

(i) (ii)

xi+2

Figure 6. Shorter pre-crowns.

Now we have all the necessary tools to conclude the proof of Theorem 10.1.

Proof of Theorem 10.1. Suppose that T is finite and crown-free. There are i < j
such that b3i = b3j . Then the finite sequence

〈〈b3i, a3i〉, 〈c3i+1, b3i+1〉, . . . , 〈a3j−1, c3j−1〉〉

is a (3j − 3i)-pre-crown in T (see Figure 7), a contradiction.

a3i b3i+1 c3i+2 c3j−1

b3i = b3j c3i+1 a3i+2 a3j−1

Figure 7. A pre-crown in T .

Hence we have proved that Â = ∅, that is, A ⊆ A′. Therefore, Co(T ) satis-
fies (θ). �

Corollary 10.6. Let Q be the finite poset and L the finite lattice of Example 8.2.
Then, although L embeds into Co(Q), there is no finite, tree-like poset R such

that L embeds into Co(R).

Proof. It follows from Proposition 9.5 that R is crown-free, thus, by Theorem 10.1,
Co(R) satisfies (θ). On the other hand, the lattice L of Example 8.2 does not
satisfy (θ) (consider the atoms A, B, C, A′, B′, C′ of L), therefore it cannot be
embedded into Co(R). �

On the other hand, it follows from Theorem 7.7(iii) that if a finite lattice L
without D-cycle embeds into some Co(P ), then it embeds into Co(R) for some
finite, tree-like poset R. In the presence of D-cycles anything can happen, for
example, take L = Co(4), the lattice of all order-convex subsets of a four-element
chain; it embeds into Co(4) for the finite, tree-like poset 4, however it has D-cycles.

11. Finite generation and word problem in SUB

For a lattice term s(x1, . . . , xn), a poset P , and convex subsets X1, . . . , Xn

of P , we denote by sP (X1, . . . , Xn) the evaluation of the term s(x1, . . . , xn) at
〈X1, . . . , Xn〉 in the lattice Co(P ).
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The present section rests on the following lemma. Its proof is an easy induction
argument on the length of s, that we leave to the reader.

Lemma 11.1. Let n be a positive integer, let s(x1, . . . , xn) be a lattice term, and let

X1, . . . , Xn be convex subsets of a poset P . Then sP (X1, . . . , Xn) is the directed

union of all subsets of the form sQ(X1 ∩Q, . . . ,Xn ∩Q), for Q ⊆ P finite.

As immediate corollaries, we get the following.

Corollary 11.2. Let P be a poset. Any lattice-theoretical identity valid in all

Co(Q), for Q a finite subset of P , is also valid in Co(P ).

Corollary 11.3. A lattice-theoretical identity is valid in SUB iff it holds in Co(P )
for every finite poset P .

Consequently, the variety SUB is generated by its finite members. By using the
results of J. C. C. McKinsey [14], we obtain the following consequence.

Corollary 11.4. The word problem in the variety SUB is decidable.

This means that it is decidable whether a given lattice identity s(x1, . . . , xm) =
t(x1, . . . , xm) holds in all lattices of the form Co(P ). A closer look at the proof of
Lemma 11.1 shows that it is sufficient to verify whether the given identity holds
in all Co(P ) for |P | ≤ n, where n is the supremum of the lengths of the terms s
and t.

12. Open problems

We know that the class SUB is generated, as a variety, by its finite members
(see Corollary 11.3). We also know that any finite lattice in SUB can be embedded
into some finite Co(P ) (see Theorem 6.7). Nevertheless we do not know whether
the latter generate the whole quasivariety.

Problem 1. Is the class SUB generated, as a quasivariety, by its finite members?

Equivalently, does there exist a lattice quasi-identity that holds in all finite
Co(P )-s but not in all Co(P )-s?

Problem 2. Is the universal theory of all lattices of the form Co(P ) decidable?

A positive answer to Problem 1 would yield a positive answer to Problem 2.

Problem 3. Is the class C of all lattices that can be embedded into a product of
the form

∏
i∈I Co(Ci), where the Ci are chains, a variety?

Problem 3 is solved by the authors in [16].

Problem 4. Can the embedding problem of a lattice in SUB into some Co(P ) be
solved by a functor (that, say, sends any L to some Co(P ))? Can such a functor
be idempotent?

Our next problem has a more computational nature.

Problem 5. For each positive integer n, denote by ξ(n) the least positive integer
such that every finite lattice L in SUB with n join-irreducible elements embeds into
some Co(P ), where |P | ≤ ξ(n). Compute ξ(n), for all n > 0. Does ξ(n) = O(n)
as n goes to infinity?
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For a sublattice K of a finite lattice L, the inequality | J(K)| ≤ | J(L)| holds,
see [1, Lemma 2]. In particular, if a finite lattice L embeds into Co(P ) for some
finite poset P , then | J(L)| ≤ |P |. By combining this with the result of Theorem 6.7,
we obtain the inequalities

n ≤ ξ(n) ≤ 2n2 − 5n+ 4.
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References

[1] K.V. Adaricheva, Two embedding theorems for lower bounded lattices, Algebra Universalis
36 (1996), 425–430.

[2] K.V. Adaricheva, V.A. Gorbunov, and V. I. Tumanov, Join-semidistributive lattices and

convex geometries, Adv. Math. 173 (2003), 1–49.
[3] G. Birkhoff and M.K. Bennett, The convexity lattice of a poset, Order 2 (1985), 223–242.
[4] P. Crawley and R.P. Dilworth, “Algebraic Theory of Lattices”, Prentice-Hall, New Jersey,

1973. vi+201 p.
[5] P.H. Edelman, Meet-distributive lattices and the antiexchange closure, Algebra Universalis

10 (1980), 290–299.
[6] P.H. Edelman and R. Jamison, The theory of convex geometries, Geom. Dedicata 19 (1985),

247–274.
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[12] A.P. Huhn, Schwach distributive Verbände. I, Acta Sci. Math. (Szeged) 33 (1972), 297–305.
[13] P. Jipsen and H. Rose, “Varieties of Lattices”, Lecture Notes in Mathematics 1533, Springer-

Verlag, Berlin Heidelberg, 1992. x+162 p.
[14] J.C. C. McKinsey, The decision problem for some classes of sentences without quantifiers,

J. Symbolic Logic 8 (1943), 61–76.

[15] M. Semenova and F. Wehrung, Sublattices of lattices of order-convex sets, II. Posets of finite

length, Internat. J. Algebra Comput., to appear.
[16] M. Semenova and F. Wehrung, Sublattices of lattices of order-convex sets, III. The case of

totally ordered sets, Internat. J. Algebra Comput., to appear.



LATTICES OF ORDER-CONVEX SETS, I 31

(M. Semenova) Institute of Mathematics of the Siberian Branch of RAS, Acad. Kop-

tyug prosp. 4, 630090 Novosibirsk, Russia

E-mail address: semenova@math.nsc.ru
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