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SUBLATTICES OF LATTICES OF ORDER-CONVEX SETS, III.

THE CASE OF TOTALLY ORDERED SETS

MARINA SEMENOVA AND FRIEDRICH WEHRUNG

Abstract. For a partially ordered set P , let Co(P ) denote the lattice of all
order-convex subsets of P . For a positive integer n, we denote by SUB(LO)

(resp., SUB(n)) the class of all lattices that can be embedded into a lattice of
the form ∏

i∈I

Co(Ti),

where 〈Ti | i ∈ I〉 is a family of chains (resp., chains with at most n elements).
We prove the following results:
(1) Both classes SUB(LO) and SUB(n), for any positive integer n, are

locally finite, finitely based varieties of lattices, and we find finite equa-
tional bases of these varieties.

(2) The variety SUB(LO) is the quasivariety join of all the varieties SUB(n),
for 1 ≤ n < ω, and it has only countably many subvarieties. We clas-
sify these varieties, together with all the finite subdirectly irreducible
members of SUB(LO).

(3) Every finite subdirectly irreducible member of SUB(LO) is projective
within SUB(LO), and every subquasivariety of SUB(LO) is a variety.

1. Introduction

For a partially ordered set (from now on poset) (P,E), a subset X of P is order-

convex, if x E z E y and {x, y} ⊆ X implies that z ∈ X , for all x, y, z ∈ P .
The lattices of the form Co(P ) have been characterized by G. Birkhoff and M. K.
Bennett in [2]. In M. Semenova and F. Wehrung [12], the authors solve a problem
stated in K. V. Adaricheva, V. A. Gorbunov, and V. I. Tumanov [1], by proving the
following result.

Theorem 1. The class SUB of all lattices that can be embedded into some lattice

of the form Co(P ) forms a variety, defined by three identities, (S), (U), and (B).

In M. Semenova and F. Wehrung [13], this result is extended to special classes
of posets P :

Theorem 2. For a positive integer n, the class SUBn of all lattices that can be

embedded into some lattice of the form Co(P ), where P is a poset of length at
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2 M. SEMENOVA AND F. WEHRUNG

most n, is a variety, defined by the identities (S), (U), (B), together with new

identities (Hn) and (Hk,n+1−k), for 1 ≤ k ≤ n.

In the present paper, we extend these results to sublattices of products of lattices
of convex subsets of chains (i.e., totally ordered sets), thus solving a problem of [12].
More specifically, we denote by SUB(LO) (resp., SUB(n)) the class of all lattices
that can be embedded into a lattice of the form

∏

i∈I

Co(Ti),

where 〈Ti | i ∈ I〉 is a family of chains (resp., chains with at most n elements). We
prove the following results:

(1) Both classes SUB(LO) and SUB(n) are finitely based varieties of lattices,
for any positive integer n. Moreover, SUB(n + 1) = SUB(LO) ∩ SUBn

(Theorems 8.2 and 9.4).
(2) By using a result of V. Slav́ık [14], we prove that the variety SUB(LO) is

locally finite (Theorem 9.5).
(3) The variety SUB(LO) is the quasivariety join of all the varieties SUB(n),

for 1 ≤ n < ω (Corollary 9.7), and every proper subvariety of SUB(LO)
is finitely generated (Corollary 11.7).

(4) The only proper subvarieties of SUB(LO) are those between SUB(n) and
SUB(n+ 1) for some natural number n (Theorem 11.5).

(5) We classify all finite subdirectly irreducible members of SUB(LO), and we
describe exactly the lattice of all subvarieties of SUB(LO) (Theorem 11.5
to Corollary 11.9).

(6) All finite subdirectly irreducible members of SUB(LO) are projective
within SUB(LO) (Theorem 12.4), and every subquasivariety of SUB(LO)
is a variety (Theorem 12.5).

The main technical result towards the proof that SUB(LO) is a variety is that
the reflexive closure of the join-dependency relation D is transitive, in any member
of SUB(LO) with ‘enough’ join-irreducible elements (Corollary 6.2). This may be
viewed as an analogue, for certain join-semidistributive lattices, of the transitivity
of perspectivity proved by von Neumann in continuous geometries, see [11].

We refer the reader to our papers [12, 13] for unexplained notation and termi-
nology. In particular, the identities (S), (U), and (B), together with their join-ir-
reducible translations (Sj), (Uj), and (Bj), and tools such as Stirlitz tracks or the
Udav-Bond partition, are defined in [12]. The identities (Hn) and (Hm,n), their
join-irreducible translations, and bi-Stirlitz tracks are defined in [13]. We shall of-
ten use the trivial fact that Co(P,E) = Co(P,D), for any poset (P,E), where D

denotes the converse order of E.
The join-dependency relation on a lattice L, see R. Freese, J. Ježek, and J. B.

Nation [5], is defined on the set J(L) of all join-irreducible elements of L, and it is
written DL, or D if L is understood from the context. For a ∈ J(L), we write, as
in [12, 13],

[a]D = {x ∈ J(L) | a D x}.

2. Join-seeds and more minimal covers

We recall from [13] the following definition:
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Definition 2.1. A subset Σ of a lattice L is a join-seed, if the following statements
hold:

(i) Σ ⊆ J(L);
(ii) every element of L is a join of elements of Σ;
(iii) for all p ∈ Σ and all a, b ∈ L such that p ≤ a ∨ b and p � a, b, there are

x ≤ a and y ≤ b both in Σ such that p ≤ x ∨ y is minimal in x and y.

Two important examples of join-seeds are provided by the following lemma,
see [13].

Lemma 2.2. Any of the following assumptions implies that the subset Σ is a join-

seed of the lattice L:

(i) L = Co(P ) and Σ = {{p} | p ∈ P}, for some poset P .

(ii) L is a dually 2-distributive, complete, lower continuous, finitely spatial

lattice, and Σ = J(L).

Lemma 2.3. Let L be a lattice satisfying (B), let Σ be a join-seed of L, let p ∈ Σ,

let x, y ∈ [p]D. If the inequality p ≤ x∨y holds, then it is minimal in both x and y.

Proof. From the assumption that x, y ∈ [p]D, it follows that p � x, y. Since
p ≤ x ∨ y and Σ is a join-seed of L, there are u ≤ x and v ≤ y in Σ such that the
inequality p ≤ u ∨ v holds and is minimal in both u and v. Furthermore, by the
definition of the D relation and since Σ is a join-seed of L, there are x′, y′ ∈ Σ
such that both inequalities p ≤ x∨ x′ and p ≤ y ∨ y′ hold and are minimal in x, x′,
y, y′. By applying (Bj) to the inequalities p ≤ x ∨ x′, u ∨ v and by observing that
p � x, v, we obtain that p ≤ x′ ∨ u. Since u ≤ x and the inequality p ≤ x ∨ x′ is
minimal in x, we obtain that u = x. Similarly, v = y. �

Lemma 2.4. Let L be a lattice satisfying (B), let Σ be a join-seed of L. Then

[p]D ∩ Σ is an antichain of L, for any p ∈ Σ.

Proof. Let x, y ∈ [p]D. Since Σ is a join-seed of L, there are x′, y′ ∈ Σ such that
both inequalities p ≤ x ∨ x′ and p ≤ y ∨ y′ are minimal nontrivial join-covers.
Observe that p � x, x′, y, y′. If x ≤ y, then, since p � y = x ∨ y and L satisfies
(Bj), the inequality p ≤ x ∨ y′ holds. Since x ≤ y and the inequality p ≤ y ∨ y′ is
minimal in y, we obtain that x = y. �

3. The identity (E)

Let (E) be the following identity in the variables x, a, b0, b1, b2:

x ∧
∧

i<3

(a ∨ bi) =
∨

i<3



x ∧ bi ∧
∧

j 6=i

(a ∨ bj)





∨
∨

σ∈S3

[
x ∧ (a ∨ b∗0,σ) ∧ (a ∨ b∗1,σ) ∧ (a ∨ bσ(2))

]
,

where we denote by S3 the group of all permutations of {0, 1, 2} and we put

b∗0,σ = bσ(0) ∧ (x ∨ bσ(1)), (3.1)

b∗1,σ = bσ(1) ∧ (x ∨ bσ(2)) ∧ (bσ(0) ∨ bσ(2)), (3.2)

for all σ ∈ S3.
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We now introduce a lattice-theoretical axiom, the join-irreducible interpretation

of (E), that we will denote by (EΣ).

Definition 3.1. For a lattice L and a subset Σ of J(L), we say that L satisfies
(EΣ), if for all elements x, a, b0, b1, and b2 of Σ, if the inequality x ≤ a ∨ bi is a
minimal nontrivial join-cover, for every i < 3, then there exists σ ∈ S3 such that
bσ(0) ≤ x ∨ bσ(1) ≤ x ∨ bσ(2) and bσ(1) ≤ bσ(0) ∨ bσ(2).

The geometrical meaning of (EΣ) is illustrated on Figure 1. The lines of that
figure represent the ordering of the either the poset P or its dual (and not the or-
dering of L) in case L = Co(P,E). For example, the left half of Figure 1 represents
(up to dualization of E) the relations a E x E bi, for i < 3, so that the inequality
{x} ≤ {a} ∨ {bi} holds in L. Similar conventions hold for Figures 2 and 3.

a
a

b0 b1 b2

x
x

bσ(0)

bσ(1)

bσ(2)

Figure 1. Illustrating (EΣ)

Lemma 3.2. Let L be a lattice, let Σ be a subset of J(L). Then the following

statements hold:

(i) If L satisfies (E), then L satisfies (EΣ).
(ii) If Σ is a join-seed of L and L satisfies both (B) and (EΣ), then L satis-

fies (E).

Proof. (i) Suppose that x, a, b0, b1, b2 ∈ Σ satisfy the premise of (EΣ). Since x is
join-irreducible and x � bi, for all i < 3, we obtain, by applying the identity (E)
and using the notation introduced in (3.1) and (3.2), that there exists σ ∈ S3 such
that both inequalities x ≤ a ∨ b∗0,σ, a ∨ b

∗
1,σ hold. Since b∗i,σ ≤ bσ(i), it follows from

the minimality of bσ(i) in the inequality x ≤ a∨ bσ(i) that b∗i,σ = bσ(i), for all i < 2.
Therefore, bσ(0) ≤ x ∨ bσ(1) ≤ x ∨ bσ(2) and bσ(1) ≤ bσ(0) ∨ bσ(2).

(ii) Let c (resp., d) denote the left hand side (resp., right hand side) of the
identity (E). Since d ≤ c holds in any lattice, it suffices to prove that c ≤ d. Let
p ∈ Σ with p ≤ c, we prove that p ≤ d. If p ≤ a, then p ≤ x ∧ a ≤ d. If p ≤ bi, for
some i < 3, then p ≤ x ∧ bi ∧

∧
j 6=i(a ∨ bj) ≤ d.

Suppose from now on that p � a and p � bi, for all i < 3. Since p ≤ a ∨ bi and
Σ is a join-seed of L, there are ui ≤ a and vi ≤ bi in Σ such that the inequality
p ≤ ui ∨ vi is a minimal nontrivial join-cover, for all i < 3. In particular, ui,
vi ∈ [p]D. Put u = u0, and let i < 3. By applying (Bj) to the inequalities
p ≤ u∨v0, ui∨vi and observing that p � a (thus p � u∨ui), we obtain the inequality
p ≤ u ∨ vi. Furthermore, by Lemma 2.3, this inequality is minimal in both u and
vi. Hence, by (EΣ), there exists σ ∈ S3 such that vσ(0) ≤ p ∨ vσ(1) ≤ p ∨ vσ(2) and
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vσ(1) ≤ vσ(0) ∨ vσ(2). Therefore, by putting

v∗0,σ = vσ(0) ∧ (p ∨ vσ(1)),

v∗1,σ = vσ(1) ∧ (p ∨ vσ(2)) ∧ (vσ(0) ∨ vσ(2)),

we obtain the equalities v∗0,σ = vσ(0) and v∗1,σ = vσ(1), and the inequalities

p ≤ x ∧ (u ∨ v∗0,σ) ∧ (u ∨ v∗1,σ) ∧ (u ∨ vσ(2)) ≤ d.

Since every element of L is a join of elements of Σ, the inequality c ≤ d follows. �

Corollary 3.3. The lattice Co(T ) satisfies the identity (E), for any chain (T,E).

Proof. We apply Lemma 3.2 to L = Co(T ) together with the join-seed Σ =
{{p} | p ∈ T}. Let x, a, b0, b1, b2 ∈ T such that the inequality {x} ≤ {a} ∨ {bi}
is a minimal nontrivial join-cover, for all i < 3. Since Co(T,E) = Co(T,D), we
may assume without loss of generality that a ⊳ x ⊳ b0, thus x ⊳ bi, for all i < 3.
Since T is a chain, there exists σ ∈ S3 such that bσ(0) E bσ(1) E bσ(2), whence

{bσ(0)} ≤ {x} ∨ {bσ(1)} ≤ {x} ∨ {bσ(2)} and {bσ(1)} ≤ {bσ(0)} ∨ {bσ(2)}.

Hence Co(T ) satisfies (EΣ). Since Co(T ) satisfies (B) (see [12]) and Σ is a join-seed
of Co(T ), it follows from Lemma 3.2 that Co(T ) satisfies (E). �

Lemma 3.4. Let L be a join-semidistributive lattice satisfying the identity (E), let

a, x ∈ J(L) and b0, b1, b2 ∈ J(L) be distinct such that x ≤ a ∨ bi is a minimal

nontrivial join-cover, for all i < 3. Then a ∨ b0 ≤ a ∨ b1 ≤ a ∨ b2 implies that

a ∨ b0 < a ∨ b1 < a ∨ b2 and b1 ≤ b0 ∨ b2.

Proof. Let i, j be distinct in {0, 1, 2}. If a ∨ bi = a ∨ bj , then, by the join-semidis-
tributivity of L, x ≤ a∨bi = a∨(bi∧bj); it follows from the minimality assumption
on bi that bi ≤ bj . Similarly, bj ≤ bi, whence bi = bj , a contradiction. Thus we
have obtained the inequalities

a ∨ b0 < a ∨ b1 < a ∨ b2. (3.3)

On the other hand, it follows from Lemma 3.2 that there exists σ ∈ S3 such that
the inequalities

x ∨ bσ(0) ≤ x ∨ bσ(1) ≤ x ∨ bσ(2), (3.4)

bσ(1) ≤ bσ(0) ∨ bσ(2) (3.5)

hold. From (3.4) it follows that a∨ bσ(0) ≤ a∨ bσ(1) ≤ a∨ bσ(2), thus, by (3.3), σ is
the identity. The conclusion follows from (3.4) and (3.5). �

4. The identity (P)

Let (P) be the following identity in the variables a, b, c, d, b0, b1:

a ∧ (b′ ∨ c) ∧ (c ∨ d) =
(
a ∧ b′ ∧ (c ∨ d)

)
∨

(
a ∧ d ∧ (b′ ∨ c)

)

∨

[
a ∧

((
b′ ∧ (a ∨ d)

)
∨ c

)
∧ (c ∨ d)

]

∨
∨

i<2

[
a ∧ (bi ∨ c) ∧

((
b′ ∧ (a ∨ bi) ∧ (bi ∨ d)

)
∨ c

)
∧ (c ∨ d)

]
,

where we put b′ = b ∧ (b0 ∨ b1).
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We now introduce a lattice-theoretical axiom, the join-irreducible interpretation

of (P), that we will denote by (PΣ).

Definition 4.1. For a lattice L and a subset Σ of J(L), we say that L satisfies
(PΣ), if for all elements a, b, c, d, b0, b1 in Σ, if both inequalities a ≤ b∨ c, c∨d are
minimal nontrivial join-covers and b ≤ b0 ∨ b1, then either b ≤ a ∨ d or there exists
i < 2 such that a ≤ bi ∨ c and b ≤ a ∨ bi, bi ∨ d.

The geometrical meaning of (PΣ) is illustrated on Figure 2. Horizontal lines are
meant to suggest that “no side is chosen yet”. For example, the non-horizontal
lines in the left half of Figure 2 represent various inequalities such as c E a E d
and c E a E b (in case L = Co(P,E)), while the horizontal line represents the
inequalities b1−i E b E bi, for some i < 2. A similar convention applies to Figure 3.

a a
a

b b

b

c c
c

d

d

d

b0 b0

bi

Case where

Case where

b ≤ a ∨ d

b1−i

b1
b1





b ≤ a ∨ bi

b ≤ bi ∨ d

a ≤ bi ∨ c

Figure 2. Illustrating (PΣ)

Lemma 4.2. Let L be a lattice, let Σ be a subset of J(L). Then the following

statements hold:

(i) If L satisfies (P), then L satisfies (PΣ).
(ii) If Σ is a join-seed of L and L satisfies both (B) and (PΣ), then L satis-

fies (P).

Proof. (i) Let a, b, c, d, b0, b1 ∈ Σ satisfy the premise of (PΣ). Observe that
b ∧ (b0 ∨ b1) = b, thus the left hand side of the identity (P) computed with these
parameters equals a. Since a � b, d and a is join-irreducible, either a ≤

(
b∧(a∨d)

)
∨c

or a ≤ bi ∨ c and a ≤
(
b ∧ (a ∨ bi) ∧ (bi ∨ d)

)
∨ c, for some i < 2. In the first case,

from the fact that the cover a ≤ b ∨ c is minimal in b it follows that b ≤ a ∨ d in
the first case, and b ≤ a ∨ bi, bi ∨ d in the second case.

(ii) Let e (resp., f) denote the left hand side (resp., right hand side) of the
identity (P). Let p ∈ Σ such that p ≤ e, we prove that p ≤ f . If either p ≤ c or
p ≤ b′ or p ≤ d this is obvious, so suppose, from now on, that p � c, b′, d. Since Σ
is a join-seed of L, there are u ≤ b′ together with v, v′ ≤ c and w ≤ d in Σ such
that both inequalities

p ≤ u ∨ v, (4.1)

p ≤ v′ ∨ w (4.2)
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are minimal nontrivial join-covers. In particular, u, v, v′, w ∈ [p]D. Furthermore,
by applying (Bj) to the inequalities (4.1) and (4.2) and observing that p � v ∨ v′

(because p � c), we obtain the inequality

p ≤ v ∨ w. (4.3)

Furthermore, it follows from Lemma 2.3 that (4.3) is a minimal nontrivial join-
cover. Since Σ is a join-seed of L, there are ui ≤ bi in Σ ∪ {0}, for i < 2, such that
u ≤ u0 ∨ u1. Suppose first that u0, u1 ∈ Σ. Since L satisfies (PΣ), either

u ≤ p ∨ w (4.4)

or

p ≤ ui ∨ v and u ≤ p ∨ ui, ui ∨w, for some i < 2. (4.5)

The conclusion (4.5) also holds if uj = 0, for some j < 2, because u ≤ u1−j.
If (4.4) holds, then

p ≤ a ∧
((
u ∧ (p ∨ w)

)
∨ v

)
∧ (v ∨w) ≤ f.

If (4.5) holds, then

p ≤ a ∧ (ui ∨ v) ∧
((
u ∧ (p ∨ ui) ∧ (ui ∨ w)

)
∨ v

)
∧ (v ∨ w) ≤ f.

Since every element of L is a join of elements of Σ, the inequality e ≤ f follows.
Since f ≤ e holds in any lattice, we obtain that e = f . �

Corollary 4.3. The lattice Co(T ) satisfies (P), for every chain (T,E).

Proof. We apply Lemma 4.2 to L = Co(T ) together with the join-seed Σ =
{{p} | p ∈ T}. Let a, b, c, d, b0, b1 ∈ T such that both inequalities {a} ≤
{b}∨ {c}, {c}∨ {d} are minimal nontrivial join-covers and {b} ≤ {b0}∨ {b1}. Since
Co(T,E) = Co(T,D), we may assume without loss of generality that c ⊳ a ⊳ b, d.
Furthermore, from {b} ≤ {b0} ∨ {b1} it follows that there exists i < 2 such that
b E bi. Since T is a chain, either b E d or d E b. In the first case, {b} ≤ {a} ∨ {d}.
In the second case, {a} ≤ {bi} ∨ {c} and {b} ≤ {a} ∨ {bi}, {bi} ∨ {d}.

Hence Co(T ) satisfies (PΣ). By Lemma 4.2, Co(T ) satisfies (P). �

5. The identity (HS)

Let (HS) be the following identity in the variables a, b, c, b0, b1:

a ∧ (b′ ∨ c) =(a ∧ b′) ∨
∨

i<2

[
a ∧

(
(b ∧ bi) ∨ c

)]

∨
∨

i<2

[
a ∧

((
b′ ∧ (a ∨ bi)

)
∨ c

)
∧ (bi ∨ c) ∧ (b ∨ b1−i)

]

∨
∨

i<2

[
a ∧

((
b′ ∧ (a ∨ bi)

)
∨ c

)
∧ (b0 ∨ c) ∧ (b1 ∨ c)

]
,

where we put b′ = b ∧ (b0 ∨ b1). Since the right hand side of (HS) lies obviously
below the right hand side of the identity (S) while the left hand sides are the same,
we obtain immediately the following result.

Lemma 5.1. The identity (HS) implies the Stirlitz identity (S).
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As observed in [12], (S) implies both join-semidistributivity and dual 2-distrib-
utivity. Therefore, we obtain the following consequence.

Lemma 5.2. The identity (HS) implies both join-semidistributivity and dual 2-dis-
tributivity.

We now introduce a lattice-theoretical axiom, the join-irreducible interpretation

of (HS), that we will denote by (HSΣ).

Definition 5.3. For a lattice L and a subset Σ of J(L), we say that L satisfies
(HSΣ), if for all elements a, b, c, b0, b1 in Σ, if a 6= b, the inequality a ≤ b ∨ c is
minimal in b, and b ≤ b0 ∨ b1 is a nontrivial join-cover, then there exists i < 2 such
that b ≤ a ∨ bi and either a ≤ bi ∨ c, b ∨ b1−i or a ≤ b0 ∨ c, b1 ∨ c.

The geometrical meaning of (HSΣ) is illustrated on Figure 3.

a a

a

b0 b1b
b

b
Case where

c

c
c

Case where
bi

bi

b1−i






a ≤ bi ∨ c

a ≤ b ∨ b1−i

b ≤ a ∨ bi






a ≤ b0 ∨ c

a ≤ b1 ∨ c

b ≤ a ∨ bi

b1−i

Figure 3. Illustrating (HSΣ)

Lemma 5.4. Let L be a lattice, let Σ be a subset of J(L). Then the following

statements hold:

(i) If L satisfies (HS), then L satisfies (HSΣ).
(ii) If Σ is a join-seed of L and L satisfies (HSΣ), then L satisfies (HS).

Proof. (i) Let a, b, c, b0, b1 ∈ Σ satisfy the premise of (HSΣ). Observe that
b′ = b ∧ (b0 ∨ b1) = b and a ∧ (b′ ∨ c) = a. Since a ≤ b ∨ c is minimal in b and
b ∧ bi < b, it follows from the join-irreducibility of a that there exists i < 2 such
that one of the following inequalities holds:

a ≤
((
b ∧ (a ∨ bi)

)
∨ c

)
∧ (bi ∨ c) ∧ (b ∨ b1−i),

a ≤
((
b ∧ (a ∨ bi)

)
∨ c

)
∧ (b0 ∨ c) ∧ (b1 ∨ c).

From the minimality of b in a ≤ b∨ c it follows that b ≤ a∨ bi. Furthermore, in the
first case a ≤ bi ∨ c, b ∨ b1−i while in the second case a ≤ b0 ∨ c, b1 ∨ c.

(ii) Let d (resp., e) denote the left hand side (resp., right hand side) of the
identity (HS). Let p ∈ Σ such that p ≤ d, we prove that p ≤ e. If p ≤ b′ then
p ≤ d ∧ b′ = a ∧ b′, if p ≤ c then p ≤ a ∧ c, in both cases p ≤ e. Suppose from now
on that p � b′, c. Since Σ is a join-seed of L, there are u ≤ b′ and v ≤ c in Σ such
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that p ≤ u ∨ v is a minimal nontrivial join-cover. If u ≤ bi, for some i < 2, then
u ≤ b ∧ bi, whence

p ≤ a ∧ (u ∨ v) ≤ a ∧
(
(b ∧ bi) ∨ c

)
≤ e.

Suppose from now on that u � b0, b1. Since Σ is a join-seed of L, there are u0 ≤ b0
and u1 ≤ b1 in Σ such that u ≤ u0 ∨ u1 is a minimal nontrivial join-cover. By
(HSΣ), there exists i < 2 such that u ≤ p ∨ ui and either p ≤ ui ∨ v, u ∨ u1−i or
p ≤ u0 ∨ v, u1 ∨ v. In the first case,

p ≤ a ∧ (ui ∨ v) ∧ (u ∨ u1−i) ∧
((
u ∧ (p ∨ ui)

)
∨ v

)
≤ e.

In the second case,

p ≤ a ∧ (u0 ∨ v) ∧ (u1 ∨ v) ∧
((
u ∧ (p ∨ ui)

)
∨ v

)
≤ e.

Since every element of L is a join of elements of Σ, we obtain that d ≤ e. Since
e ≤ d holds in any lattice, we obtain that d = e. �

Corollary 5.5. The lattice Co(T ) satisfies (HS), for every chain (T,E).

Proof. We apply Lemma 5.4 to L = Co(T ) together with the join-seed Σ =
{{p} | p ∈ T}. Let a, b, c, b0, b1 ∈ T such that a 6= b, the inequality {a} ≤ {b}∨{c}
is minimal in b (thus a 6= c), and {b} ≤ {b0} ∨ {b1}. Since Co(T,E) = Co(T,D),
we may assume without loss of generality that c ⊳ a ⊳ b. Furthermore, there exists
i < 2 such that b E bi, whence {b} ≤ {a}∨ {bi}. Since T is a chain, either b1−i E a
or a E b1−i. In the first case, {a} ≤ {bi} ∨ {c}, {b} ∨ {b1−i}. In the second case,
{a} ≤ {b0} ∨ {c}, {b1} ∨ {c}.

Hence Co(T ) satisfies (HSΣ). By Lemma 5.4, Co(T ) satisfies (HS). �

6. The Transitivity Lemma

The main purpose of the present section is to prove the following technical lemma,
which provides a large supply of minimal coverings.

Lemma 6.1 (The Transitivity Lemma). Let L be a lattice satisfying the identities

(HS), (U), (B), (E), and (P), let Σ be a join-seed of L, and let a, b, c, b0, b1 ∈ Σ
such that both a ≤ b ∨ c and b ≤ b0 ∨ b1 are minimal nontrivial join-covers. Then

there exists i < 2 such the following statements hold:

(i) the inequality b ≤ a∨bi holds, and both inequalities b ≤ c∨bi and a ≤ c∨bi
are minimal nontrivial join-covers;

(ii) one of the following two statements holds:

(ii.1) a ≤ bi ∨ c, b1−i ∨ b and, if a 6= b1−i, then the inequality a ≤ b0 ∨ b1 is

a minimal nontrivial join-cover;

(ii.2) a ≤ b0 ∨ c, b1 ∨ c and, if a 6= b1−i, then the inequality a ≤ b1−i ∨ c is

a minimal nontrivial join-cover.

The situation may be partly viewed on Figure 3.

Proof. It follows from Lemma 5.4 that there exists i < 2 such that

b ≤ a ∨ bi and either a ≤ bi ∨ c, b1−i ∨ b or a ≤ b0 ∨ c, b1 ∨ c. (6.1)

Since b ≤ bi ∨ c is a nontrivial join-cover and Σ is a join-seed of L, there are x ≤ bi
and c′ ≤ c in Σ such that b ≤ x∨ c′ is a minimal nontrivial join-cover. By applying
(Bj) to the inequalities b ≤ bi ∨ b1−i, x ∨ c′ and observing that b � bi = bi ∨ x, we
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obtain that b ≤ b1−i ∨ x, whence, by the minimality assumption on bi, x = bi. By
applying Lemma 5.4 to the minimal nontrivial join-covers a ≤ b∨ c and b ≤ bi ∨ c

′,
we obtain that either a ≤ c′∨c = c, a contradiction, or a ≤ b∨c′. By the minimality
assumption on c, the latter implies that c = c′. Hence we have proved the following:

the inequality b ≤ bi ∨ c is a minimal nontrivial join-cover. (6.2)

Now we shall proceed by proving the following statement:

the inequality a ≤ bi ∨ c is a minimal nontrivial join-cover. (6.3)

If a ≤ bi, then b ≤ a ∨ bi = bi, a contradiction; whence a � bi. So a ≤ bi ∨ c is a
nontrivial join-cover, thus, since Σ is a join-seed of L, there are x ≤ bi and c′ ≤ c
in Σ such that a ≤ x ∨ c′ is a minimal nontrivial join-cover. By applying (Bj) to
the inequalities a ≤ b ∨ c, x ∨ c′ and observing that a � c = c ∨ c′, we obtain that
a ≤ b ∨ c′, whence, by the minimality assumption on c, we obtain that c = c′.

Now we apply Lemma 4.2 to the minimal nontrivial join-covers a ≤ b ∨ c, x ∨ c
and the inequality b ≤ b0 ∨ b1. Thus either b ≤ a ∨ x or there exists j < 2 such
that a ≤ bj ∨ c and b ≤ a∨ bj , bj ∨ x. Suppose that the second case holds. If i 6= j,
then b ≤ a ∨ bj ≤ c ∨ bj . But b ≤ c ∨ bi and b ≤ bi ∨ bj, whence, by (Uj), either
b ≤ b0 or b ≤ b1 or b ≤ c, a contradiction. Therefore, i = j and b ≤ x ∨ bi = bi, a
contradiction.

Hence the first case holds, thus it follows from a ≤ x ∨ c that b ≤ x ∨ c with
x ≤ bi, thus, by (6.2), x = bi. This completes the proof of (6.3), and thus also the
proof of (i).

Now let us establish the remaining minimal nontrivial join-covers in (ii), under
the additional assumption that a 6= b1−i. We have already seen that a � bi. If
a ≤ b1−i, then, since b ≤ a ∨ bi and by the minimality assumption on b1−i, we
obtain that a = b1−i, a contradiction. Therefore, we have obtained the inequalities

a � b0 and a � b1. (6.4)

Now we separate cases, according to (6.1).

Case 1. a ≤ bi ∨ c, b ∨ b1−i. From the second inequality and b ≤ b0 ∨ b1 it follows
that a ≤ b0∨b1. Thus, by (6.4) and since Σ is a join-seed of L, there are x0 ≤ b0 and
x1 ≤ b1 in Σ such that a ≤ x0 ∨ x1 is a minimal nontrivial join-cover. By applying
(Bj) to the inequalities a ≤ bi ∨ c (see (6.3)) and a ≤ xi ∨ x1−i and observing that
a � bi = xi ∨ bi, we obtain the inequality a ≤ c ∨ xi with xi ≤ bi, thus, by (6.3),
xi = bi. On the other hand, b ≤ a ∨ bi ≤ bi ∨ x1−i with x1−i ≤ b1−i, thus, by the
minimality assumption on b1−i, we obtain that x1−i = b1−i. Therefore, we have
proved the following statement:

the inequality a ≤ b0 ∨ b1 is a minimal nontrivial join-cover. (6.5)

Case 2. a ≤ b0 ∨ c, b1 ∨ c. From (6.4), the inequalities a � c and a ≤ b1−i ∨ c, and
the assumption that Σ is a join-seed of L, it follows that there are x ≤ b1−i and
c′ ≤ c in Σ such that a ≤ x∨c′ is a minimal nontrivial join-cover. By applying (Bj)
to the inequalities a ≤ b∨ c, x∨ c′ and observing that a � c = c∨ c′, we obtain that
a ≤ b ∨ c′, whence, since c′ ≤ c and by the minimality assumption on c, we obtain
that c = c′.

Suppose now that x < b1−i. Applying Lemma 4.2 to the join covers a ≤ c∨x, b∨c
and b ≤ b0 ∨ b1, we obtain that either b ≤ a ∨ x or b ≤ a ∨ bj, x ∨ bj , for some
j < 2. In the first case, b ≤ a ∨ x ≤ c ∨ x. Since b � b1−i = b1−i ∨ x, we obtain, by



ORDER-CONVEX SUBSETS OF CHAINS 11

(Bj) applied to the inequalities b ≤ b0 ∨ b1, c ∨ x that b ≤ bi ∨ x, which contradicts
the assumption that the cover b ≤ b0 ∨ b1 is a minimal nontrivial join-cover. Hence
the second case applies. If j 6= i, then b ≤ a ∨ bj ≤ c ∨ bj , while b ≤ c ∨ bi and
b ≤ bi ∨ bj , whence, by (Uj), either b ≤ bi or b ≤ bj or b ≤ c, a contradiction. Hence
j = i and b ≤ x ∨ bi with x < b1−i, which contradicts the minimality assumption
on b1−i. This completes the proof of the following statement:

the inequality a ≤ b1−i ∨ c is a minimal nontrivial join-cover, (6.6)

and thus the proof of (ii). �

In particular, in the context of Lemma 6.2, it follows from (i) that aD bi always
holds. Moreover, if a 6= b1−i, then, by (ii), aD b1−i holds. Therefore, we obtain the
following remarkable corollary.

Corollary 6.2. Let L be a lattice satisfying the identities (HS), (U), (B), (E), and

(P), let Σ be a join-seed of L. For any a, b, c ∈ Σ, from a D b D c and a 6= c it

follows that a D c.

7. The construction

In this section, we shall fix a complete, lower continuous, finitely spatial lattice L
satisfying (HS), (U), (B), (E), and (P). By Lemma 5.2, L is dually 2-distributive,
thus, by Lemma 2.2, Σ = J(L) is a join-seed of L.

For every a ∈ J(L), we denote by {Aa, Ba} the Udav-Bond partition of [a]D

associated with a, as defined in [12, Section 5]. We define a binary relation Ea on
Ja(L) = {a} ∪ [a]D by the following:

(i) x Ea a Ea y and x Ea y, for all (x, y) ∈ (Aa ∪ {a}) × (Ba ∪ {a});
(ii) x Ea y iff y ≤ a ∨ x, for all x, y ∈ Aa;
(iii) x Ea y iff x ≤ a ∨ y, for all x, y ∈ Ba.

We also say that x ⊳a y iff x Ea y and x 6= y, for all x, y ∈ Ja(L).

Lemma 7.1. The relation Ea is a total ordering of Ja(L), for any a ∈ J(L).

Proof. It is trivial that Ea is reflexive. Let x, y, z ∈ Ja(L) with x Ea y and y Ea z,
we prove that x Ea z. This is obvious if either a ∈ {x, y, z} or (x, z) ∈ Aa × Ba,
so suppose otherwise. Then x and z belong to the same block of the Udav-Bond
partition associated with a, say, {x, z} ⊆ Aa. Since y Ea z, y belongs to Aa as
well. Furthermore, z ≤ a ∨ y ≤ a ∨ x and thus x Ea z. The proof for {x, z} ⊆ Ba

is similar. This proves that Ea is transitive.
Let x, y ∈ Ja(L) such that x Ea y Ea x, we prove that x = y. This is obvious if

a ∈ {x, y}, so suppose that a /∈ {x, y}. Then x and y belong to the same block of
the Udav-Bond partition associated with a, say, {x, y} ⊆ Aa. Pick u ∈ Ba. Then
a∨x = a∨ y, but a ≤ u∨x, u∨ y, thus u∨ x = u∨ y, thus, by the join-semidistrib-
utivity of L (see Lemma 5.2),

a ≤ u ∨ x = u ∨ y = u ∨ (x ∧ y).

However, by Lemma 2.3, both inequalities a ≤ u ∨ x, u ∨ y are minimal nontrivial
join-covers, thus x = y. Hence Ea is antisymmetric.

Now let x, y ∈ Ja(L), we prove that either x Ea y or y Ea x. This is obvious if
either a ∈ {x, y} or x and y belong to different blocks of the Udav-Bond partition
associated with a, so suppose otherwise, say, {x, y} ⊆ Ba. Pick u ∈ Aa. By
Lemma 2.3, both inequalities a ≤ u∨x, u∨y are minimal nontrivial join-covers, thus,
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by applying Lemma 3.2 to the minimal nontrivial join-covers a ≤ u∨x, u∨ y, u∨ y,
we obtain that either x ≤ a ∨ y or y ≤ a ∨ x, thus either x Ea y or y Ea x. The
proof for {x, y} ⊆ Aa is similar. Hence Ea is a total ordering. �

For any a ∈ J(L), let ϕa : L→ P(Ja(L)) be the map defined by the rule

ϕa(x) = {b ∈ Ja(L) | b ≤ x}, for all x ∈ L.

Lemma 7.2. The set ϕa(x) is order-convex in (Ja(L),Ea), for any x ∈ L.

Proof. Let u, v, w ∈ Ja(L) such that u ⊳a w ⊳a v and u, v ≤ x, we prove that
w ≤ x. If u ∈ {a}∪Aa and v ∈ {a}∪Ba, then a ≤ u∨v ≤ x, and then, w ∈ {a}∪Aa

implies that w ≤ a ∨ u ≤ x, while w ∈ {a} ∪Ba implies that w ≤ a ∨ v ≤ x.
Suppose now that u, v ∈ Aa. From w Ea v it follows that w ∈ Aa. Pick t ∈ Ba.

By Lemma 2.3, all inequalities a ≤ t ∨ u, t ∨ v, t ∨ w are minimal nontrivial join-
covers; from a ∨ v ≤ a ∨ w ≤ a ∨ u it follows that t ∨ v ≤ t ∨ w ≤ t ∨ u, thus, by
Lemma 3.4, w ≤ u ∨ v ≤ x. The argument is similar in case u, v ∈ Ba. �

Lemma 7.3. The map ϕa is a lattice homomorphism from L to Co(Ja(L)), and

it preserves the existing bounds.

Proof. It is clear that ϕa is a meet-homomorphism from L to Co(Ja(L)) and that it
preserves the existing bounds. Let x, y ∈ L, we prove that ϕa(x∨y) = ϕa(x)∨ϕa(y).
It suffices to prove that b ∈ ϕa(x ∨ y) implies that b ∈ ϕa(x) ∨ ϕa(y), for any
b ∈ Ja(L). This is trivial if b ∈ ϕa(x) ∪ ϕa(y), so suppose otherwise, that is,
b � x, y. Since b ≤ x∨y and J(L) is a join-seed of L, there are b0 ≤ x and b1 ≤ y in
J(L) such that the inequality b ≤ b0 ∨ b1 is a minimal nontrivial join-cover. From
Corollary 6.2 it follows that both b0 and b1 belong to Ja(L). If b = a, then the pair
(b0, b1) belongs either to Aa × Ba or Ba × Aa. In the first case, b0 Ea a Ea b1, in
the second case, b1 Ea a Ea b0; in both cases, b = a ∈ ϕa(x) ∨ ϕa(y).

Suppose from now on that b 6= a, say, b ∈ Ba. Pick c ∈ J(L) such that a ≤ b ∨ c
is a minimal nontrivial join-cover; observe that c ∈ Aa. So there exists i < 2 such
that the statements (i), (ii) of Lemma 6.1 hold.

From the fact that the inequality a ≤ bi ∨ c is a minimal nontrivial join-cover
and c ∈ Aa it follows that bi ∈ Ba. From the relations b, bi ∈ Ba, b 6= bi, and
b ≤ a ∨ bi it follows that

b ⊳a bi. (7.1)

If a = b1−i, then, since b ∈ Ba, we obtain that b1−i = a ⊳a b, thus, by (7.1),
b ∈ ϕa(x)∨ϕa(y). Suppose from now on that a 6= b1−i. If (ii.1) of Lemma 6.1 holds,
then the inequality a ≤ b0∨ b1 is a minimal nontrivial join-cover with bi ∈ Ba, thus
b1−i ∈ Aa, thus b1−i ⊳a b, which, together with (7.1), implies that b ∈ ϕa(x)∨ϕa(y).
Suppose now that (ii.2) of Lemma 6.1 holds. From the fact that a ≤ b1−i ∨ c is a
minimal nontrivial join-cover and c ∈ Aa it follows that b1−i ∈ Ba. If b Ea b1−i,
then, since b, b1−i ∈ Ba, we obtain that b ≤ a ∨ b1−i ≤ c ∨ b1−i, but b ≤ c ∨ bi and
b ≤ bi ∨ b1−i, whence, by (Uj), either b ≤ b0 or b ≤ b1 or b ≤ c, a contradiction.
Hence b 5a b1−i, thus, by Lemma 7.1, b1−i Ea b. Therefore, it follows again from
(7.1) that b ∈ ϕa(x) ∨ ϕa(y). �

8. The representation theorem

Notation 8.1. Let SUB(LO) denote the class of all lattices that can be embedded
into a direct product of the form

∏
i∈I Co(Ti), where 〈Ti | i ∈ I〉 is a family of

chains.
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Our main theorem is the following.

Theorem 8.2. For a lattice L, the following are equivalent:

(i) L belongs to SUB(LO).
(ii) L satisfies the identities (HS), (U), (B), (E), and (P).
(iii) There exists an embedding ϕ : L →֒

∏
i∈I Co(Ti), for some family 〈Ti | i ∈ I〉

of chains, which preserves the existing bounds and satisfies the following

additional properties:

— if L is finite, then
∑

i∈I |Ti| ≤ | J(L)|2;
— if L is subdirectly irreducible, then I = {0}, ϕ is atom-preserving,

and, if L is finite, then |T0| = | J(L)|.
— if L is finite, atomistic, and subdirectly irreducible, then L ∼= Co(n),

where n = | J(L)|.

Proof. (i)⇒(ii) We have seen in [12] that L satisfies (U) and (B). Moreover, it
follows from Corollaries 3.3, 4.3, and 5.5 that L satisfies (E), (P), and (HS).

(ii)⇒(iii) As in [12, 13], we embed L into the filter lattice L̂ of L, partially ordered
by reverse inclusion. This embedding preserves the existing bounds and atoms. We

recall that L̂ is complete, lower continuous, and finitely spatial. Let Ja(L̂) and

ϕa : L̂→ Co(Ja(L̂)) be defined as in Section 7, and let ψa : L→ Co(Ja(L̂)) be the

restriction of ϕa to L, for any a ∈ J(L̂). Since every element of L̂ is a join of elements

of J(L̂), it follows from Lemma 7.3 that the map ψ : L →
∏

a∈J(L̂)
Co(Ja(L̂)) that

with any x ∈ L associates the family 〈ψa(x) | a ∈ J(L̂)〉 is a lattice embedding; it

obviously preserves the existing bounds. In case L is finite, we have L̂ = L and
| Ja(L)| ≤ | J(L)|, for all a ∈ J(L); the cardinality bound follows immediately.

Suppose now that L is subdirectly irreducible. Thus ψa is an embedding, for

some a ∈ J(L̂); pick such an a. Every atom x of L is also an atom of L̂, and

ψa(x) is nonempty, thus there exists b ∈ Ja(L̂) below x, whence x = b ∈ Ja(L̂)
and ψa(x) = {x}, an atom of Co(Ja(L)). Suppose now that L is finite, thus

L̂ = L. For any x ∈ J(L), if x′ denotes the join of all elements of Ja(L) below x,
then ψa(x) = ψa(x′), whence x = x′, thus, since x is join-irreducible, x ∈ Ja(L);
therefore, Ja(L) = J(L).

Now suppose, in addition, that L is atomistic. Then {x} = ψa(x) belongs to
the range of ψa, for any x ∈ J(L), thus ψa is surjective, hence it is an isomorphism
from L onto Co(J(L),Ea).

(iii)⇒(i) is trivial. �

Remark 8.3. A finite, atomistic lattice L in SUB(LO) may not embed atom-
preservingly into any Co(P ), thus a fortiori into any product of the form

∏
i∈I Co(Ti)

where the Ti-s are chains, as shows [12, Example 8.1]. Also, a finite, atomistic,
subdirectly irreducible lattice in SUB may not be of the form Co(P ), see [12,
Example 8.2].

Corollary 8.4. The class SUB(LO) is a finitely based variety of lattices. In

particular, SUB(LO) is closed under homomorphic images.

This result solves positively Problem 3 in [12].

9. The class SUB(n), for n ≥ 0

We start with the following lemma.
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Lemma 9.1. Let L be a complete, lower continuous, finitely spatial lattice in

SUB(LO), let a ∈ J(L). Let x, y, u ∈ [a]D such that a ≤ u ∨ x, u ∨ y. If

x ≤ a ∨ y, then the inequality x ≤ u ∨ y is a minimal nontrivial join-cover.

Proof. From Lemma 2.3 it follows that both inequalities a ≤ u∨x, u∨y are minimal
nontrivial join-covers. Since x ≤ a ∨ y and a ≤ u ∨ y, we obtain that x ≤ u ∨ y.
From Lemma 2.4 it follows that x � u, y. Since x ≤ u ∨ y and J(L) is a join-seed
of L, there are u′ ≤ u and y′ ≤ y in J(L) such that the inequality x ≤ u′ ∨ y′ is
a minimal nontrivial join-cover. So a ≤ x ∨ u ≤ y′ ∨ u with y′ ≤ y, thus, by the
minimality of y in a ≤ y ∨ u, we obtain that y′ = y. If u′ = a, then a ≤ u, a
contradiction; whence u′ 6= a; but aDxDu′, whence, by Corollary 6.2, aDu′. But
u′ ≤ u and a D u, whence, by Lemma 2.4, u′ = u. �

Now we are able to relate chains in the Ja(L)-s and Stirlitz tracks.

Corollary 9.2. Let L be a complete, lower continuous, finitely spatial lattice in

SUB(LO), let a ∈ J(L), let n be a natural number, let u, x0, . . . , xn ∈ Ja(L)
with x0 ⊳a x1 ⊳a · · · ⊳a xn. Denote by {Aa, Ba} the Udav-Bond partition of [a]D

associated with a. Then the following statements hold:

(i) If u ∈ Aa and x0, . . . , xn ∈ {a}∪Ba, then (〈xi | 0 ≤ i ≤ n〉, 〈u | 1 ≤ i ≤ n〉)
is a Stirlitz track.

(ii) If u ∈ Ba and x0, . . . , xn ∈ {a}∪Aa, then (〈xn−i | 0 ≤ i ≤ n〉, 〈u | 1 ≤ i ≤ n〉)
is a Stirlitz track.

Proof. (i) It follows from Lemma 9.1 that the inequality xi ≤ u∨xi+1 is a minimal
nontrivial join-cover, for any i ∈ {0, . . . , n − 1}; the conclusion follows. The proof
for (ii) is similar. �

We recall, see [13], that for any positive integer n, the class SUBn of all lattices
that can be embedded into some Co(P ) where P is a poset of length at most n is
a finitely based variety, defined by the identities (S), (U), (B), together with new
identities (Hn) and (Hk,n+1−k) for 1 ≤ k ≤ n.

Notation 9.3. For a natural number n, let SUB(n) denote the class of all lattices
that can be embedded into a power of Co(n).

Of course, SUB(0) is the trivial variety while SUB(1) = SUB(2) is the class of
all distributive lattices. Now we obtain the main result of this section.

Theorem 9.4. Let n be a positive integer. The class SUB(n + 1) is a finitely

generated variety, defined by the identities (HS), (U), (B), (E), (P), and (Hk,n+1−k)
for 1 ≤ k ≤ n. Furthermore, SUB(n+ 1) = SUB(LO) ∩ SUBn.

Proof. Since the (n + 1)-element chain belongs to SUBn, the containment
SUB(n + 1) ⊆ SUB(LO) ∩ SUBn is obvious. Furthermore, by the results of [13]
and Theorem 8.2, every lattice in SUB(LO) ∩ SUBn satisfies the identities (HS),
(U), (B), (E), (P), and (Hk,n+1−k) for 1 ≤ k ≤ n.

Now let L be a lattice satisfying the identities (HS), (U), (B), (E), (P), and
(Hk,n+1−k) for 1 ≤ k ≤ n, we prove that L belongs to SUB(n+1). By embedding L
into its filter lattice, we see that it suffices to consider the case where L is complete,
lower continuous, and finitely spatial. By Theorem 8.2, L belongs to SUB(LO).
In order to conclude the proof, it suffices to establish that Ja(L) has at most n+ 1
elements, for any a ∈ J(L). If this is not the case, then both blocks Aa and Ba of
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the Udav-Bond partition of [a]D associated with a are nonempty, and Ja(L) has a
chain of the form

xk ⊳a · · · ⊳a x1 ⊳a x0 = a = y0 ⊳a y1 ⊳a · · · ⊳a yl,

where k and l are positive integers with k + l = n+ 1. Define pairs σ and τ by

σ = (〈xi | 0 ≤ i ≤ k〉, 〈y1 | 1 ≤ i ≤ k〉),

τ = (〈yj | 0 ≤ j ≤ l〉, 〈x1 | 1 ≤ j ≤ l〉).

It follows from Corollary 9.2 that both σ and τ are Stirlitz tracks, but a ≤ x1 ∨
y1, thus the pair (σ, τ) is a bi-Stirlitz track (see [13]) of index (k, l) with k +
l = n + 1, which contradicts the fact that L satisfies the identity (Hk,l), see [13,
Proposition 6.2].

In particular, we have proved that SUB(n + 1) is a variety. Of course, it is
generated by the single finite lattice Co(n+ 1). �

Since the construction underlying Theorem 9.4 is the same as the one underlying
Theorem 8.2, the corresponding additional information is preserved. For example,
any member L of SUB(n+ 1) has an embedding into a power of Co(n+ 1) which
preserves the zero if it exists; furthermore, if L is subdirectly irreducible, then this
embedding preserves atoms.

Theorem 9.5. The variety SUB(LO) is locally finite.

Proof. For a lattice L, let Csub(L) denote the lattice of all convex sublattices of L,
ordered by inclusion. For a variety V of lattices, let Csub(V) denote the variety
generated by all lattices of the form Csub(L), for L ∈ V. For a chain T , the equality
Co(T ) = Csub(T ) obviously holds, whence SUB(LO) is a subvariety of Csub(D),
where D denotes the variety of all distributive lattices. It is proved in V. Slav́ık [14]
that Csub(D) is locally finite, therefore, the smaller variety SUB(LO) is also
locally finite. �

Corollary 9.6. The variety SUB(LO) is generated by Co(ω), where ω denotes

the chain of natural numbers.

If, for a poset P , we denote by SUB(P ) the variety generated by Co(P ), we
obtain the ‘equation’ SUB(LO) = SUB(ω).

Corollary 9.7. The variety SUB(LO) is the quasivariety join of all varieties

SUB(n), where 1 ≤ n < ω.

Proof. Let Q be any quasivariety containing SUB(n), for every positive integer n.
Every finite lattice L in SUB(LO) embeds into a finite power of some Co(n), thus
it belongs to Q. By Theorem 9.5, it follows that Q contains SUB(LO). �

10. Weak Stirlitz tracks in lattices of convex subsets of chains

Definition 10.1. Let L be a lattice, let m, n be positive integers.

(i) A weak Stirlitz track of length n of L is a pair σ = (〈xi | 0 ≤ i ≤ n〉, x),
where x, xi (for 0 ≤ i ≤ n) are elements of L, and the following relations
hold:
(1) x0 6= (x0 ∧ x1) ∨ (x0 ∧ x);
(2) xk ≤ xk+1 ∨ x, for all k ∈ {0, . . . , n− 1};
(3) xk−1 � (xk ∧ xk+1) ∨ x, for all k ∈ {1, . . . , n− 1}.
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(ii) A weak bi-Stirlitz track of index (m,n) of L is a pair (σ, τ), where σ =
(〈xi | 0 ≤ i ≤ m〉, x) and τ = (〈yj | 0 ≤ j ≤ n〉, y) are both weak Stirlitz
tracks such that x0 = y0 ≤ x1 ∨ y1 while x0 6= (x0 ∧ x1) ∨ (x0 ∧ y1).

For a Stirlitz track σ = (〈xi | 0 ≤ i ≤ n〉, 〈x′i | 1 ≤ i ≤ n〉), we put
σ = (〈xi | 0 ≤ i ≤ n〉, x′1), and σ̃ = 〈xi | 0 ≤ i ≤ n〉, the trace of σ and of σ.
The trace of a (weak) bi-Stirlitz track (σ, τ) is the pair (σ̃, τ̃).

Lemma 10.2. Let L be a lattice in SUB. Then the following statements hold:

(i) The pair σ is a weak Stirlitz track of L, for every Stirlitz track σ of L.

(ii) The pair (σ, τ ) is a weak bi-Stirlitz track of L, for every bi-Stirlitz track

(σ, τ) of L.

Proof. (i) Let σ = (〈xi | 0 ≤ i ≤ n〉, 〈x′i | 1 ≤ i ≤ n〉) be a Stirlitz track of L. We
put x = x′1 and we verify (1)–(3) of Definition 10.1(i).

The inequality (1) is trivial, while the inequality (2) follows from [12, Lemma 5.6].
Suppose that xk−1 ≤ (xk∧xk+1)∨x

′
1. If xk−1 ≤ x′1, then, again by [12, Lemma 5.6],

x0 ≤ xk−1 ∨x
′
1 = x′1, a contradiction; whence xk−1 � x′1. Furthermore, xk−1 � xk,

thus xk−1 � xk ∧ xk+1. By applying (B) to the inequalities xk−1 ≤ xk ∨ x′k, (xk ∧
xk+1) ∨ x′1 and observing that xk−1 � xk = xk ∨ (xk ∧ xk+1), we obtain that
xk−1 ≤ (xk ∧ xk+1) ∨ x

′
k with xk ∧ xk+1 < xk, which contradicts the minimality

assumption on xk.
(ii) follows immediately from (i) and the join-irreducibility of x0. �

For subsets X and Y of a chain (T,E), let X ⊳ Y and X Ew Y be the following
statements:

X ⊳ Y ⇋ x ⊳ y, for all (x, y) ∈ X × Y,

X Ew Y ⇋ ∀x ∈ X, ∃y ∈ Y such that x E y.

Of course, the equivalence

X ⊳ Y ⇐⇒ (X Ew Y and X ∩ Y = ∅)

holds, for all nonempty X , Y ∈ Co(T ).

Lemma 10.3. Let (T,E) be a chain, let L be a sublattice of Co(T ), let n be a

positive integer. For any weak Stirlitz track (〈Xi | 0 ≤ i ≤ n〉, X) of L, either the

following statement or its dual holds:

X Ew X0 Ew X1 and X ⊳ X1 ⊳ X2 ⊳ · · · ⊳ Xn.

Proof. If X1∩X 6= ∅, then Y ∩ (X1∨X) = (Y ∩X1)∨ (Y ∩X) for any Y ∈ Co(T ),
a contradiction for Y = X0. Hence X1 ∩X = ∅. It follows that either X ⊳ X1 or
X1 ⊳ X , say, X ⊳ X1. Since X0 ≤ X1 ∨ X is a nontrivial join-cover, we obtain
that X Ew X0 Ew X1.

Now we prove, by induction on k, that the statement

X ⊳ X1 ⊳ X2 ⊳ · · · ⊳ Xk (10.1)

holds, for any k ∈ {1, . . . , n}. For k = 1 this is already verified. Suppose having
established (10.1) at step k, with 1 ≤ k < n.

Suppose that Xk 6Ew Xk+1, that is, there exists x ∈ Xk such that y ⊳ x holds
for any y ∈ Xk+1. By the induction hypothesis, this also holds for any y ∈ X , thus
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x /∈ X ∨Xk+1, which contradicts the assumption that Xk ⊆ X ∨Xk+1. Hence we
have proved the relation

Xk Ew Xk+1. (10.2)

Suppose that Xk ∩Xk+1 6= ∅. Since X Ew Xk−1 Ew Xk Ew Xk+1, we obtain that
Xk−1 ⊆ (Xk ∩Xk+1) ∨X , a contradiction. Hence we have established the relation

Xk ∩Xk+1 = ∅. (10.3)

From (10.2) and (10.3) it follows that Xk ⊳ Xk+1, which completes the induction
step for (10.1). For k = n, we obtain the conclusion of the lemma. �

Lemma 10.4. Let (T,E) be a chain, let L be a sublattice of Co(T ), let m and n
be positive integers, let (σ, τ) be a weak bi-Stirlitz track of Co(T ) of index (m,n),
with

σ = (〈Xi | 0 ≤ i ≤ m〉, X),

τ = (〈Yj | 0 ≤ j ≤ n〉, Y ).

Then X1 ∨Y1 6= X1 ∪Y1, and, putting Z = X0 = Y0, either the following statement

or its dual holds:

Xm ⊳ · · · ⊳ X1 ⊳ Y1 ⊳ · · · ⊳ Yn and X1 Ew Z Ew Y1.

Furthermore, Z does not meet simultaneously X1 and Y1, and Co(m + n) embeds

into L.

Proof. It follows from Lemma 10.3 that we may assume, without loss of generality,
that the following statement holds:

Xm ⊳ · · · ⊳ X1 ⊳ X and X1 Ew X0 Ew X. (10.4)

Suppose that X0 Ew X1. Since X1 Ew X0 and X0 6⊆ X1, X1 is a proper final
segment of X0. Thus, from X1 ⊳ X it follows that X0 ⊳ X , but X0 ⊆ X1 ∨ X ,
whence X0 ⊆ X1, a contradiction. Hence we have established the relation

X0 6Ew X1. (10.5)

Now suppose that Y1 Ew Y0 and Y1 ⊳ Y . As in the paragraph above, we obtain
that Y0 6Ew Y1. By (10.5) and since X0 = Y0 = Z, there exists z ∈ Z such that
y ⊳ z for any y ∈ X1 ∪Y1, which contradicts the fact that Z ⊆ X1 ∨Y1. Therefore,
by Lemma 10.3, the following statement holds:

Y ⊳ Y1 ⊳ · · · ⊳ Yn and Y Ew Y0 Ew Y1. (10.6)

If X1 ∨ Y1 = X1 ∪ Y1, then Z = (Z ∩ X1) ∨ (Z ∩ Y1), a contradiction. Hence
X1 ∨ Y1 6= X1 ∪ Y1, in particular, X1 ∩ Y1 = ∅. This, together with (10.4) and
(10.6), establishes the statement

Xm ⊳ · · · ⊳ X1 ⊳ Y1 ⊳ · · · ⊳ Yn.

Furthermore, if Z meets both X1 and Y1, then Z = (Z ∩X1) ∨ (Z ∩ Y1), a contra-
diction.

In particular, sending {i} to Xm−i for 0 ≤ i < m and to Yi−m+1 for m ≤ i <
m+ n defines a lattice embedding from Co(m+ n) into L. �
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11. Subvarieties of SUB(LO)

Notation 11.1. For positive integers m and n, we set

Lm,n = {X ∈ Co(m+ n+ 1) | m ∈ X ⇒ m− 1 ∈ X},

and we put cm = {m− 1,m}. Observe that cm ∈ J(Lm,n).

The lattices Lm,n, for m + n ≤ 4, are diagrammed on Figure 4, together with
Co(3) and Co(4).

Definition 11.2. For positive integers m and n, the canonical bi-Stirlitz track

of Lm,n is defined as (σ0, τ0), where we put

σ0 = (〈cm, {m− 1}, . . . , {0}〉, 〈{m+ n} | 1 ≤ i ≤ m〉),

τ0 = 〈cm, {m+ 1}, . . . , {m+ n}〉, 〈{0} | 1 ≤ j ≤ n〉).

We observe that the relation {m− 1} < cm (between entries of (σ0, τ0)) holds.

Lemma 11.3. Let m and n be positive integers. Then the following statements

hold:

(i) Lm,n is a 〈0, 1〉-sublattice of Co(m+ n+ 1).
(ii) The join-irreducible elements of Lm,n are the singletons {i}, where 0 ≤

i ≤ m+ n and i 6= m, together with cm.

(iii) Lm,n is subdirectly irreducible, with monolith (smallest nonzero congru-

ence) Θ({m− 1}, cm).
(iv) All weak bi-Stirlitz tracks γ of Lm,n with index (m′, n′) such that m′+n′ =

m+ n have trace either (σ̃0, τ̃0) or (τ̃0, σ̃0) (see Definition 11.2).

Proof. (i)–(iii) are straightforward. The result of (iv) follows easily from Lemma 10.4.
�

The proof of the following lemma is straightforward.

Lemma 11.4. Let K and L be lattices, let f : K ։ L be a lower bounded, surjective

lattice homomorphism, let β : L →֒ K be the join-homomorphism defined by β(x) =
min f−1{x}, for all x ∈ L. Then the following statements hold:

(i) The image under β of J(L) is contained in J(K).
(ii) The image under β of any minimal nontrivial join-cover of L is a minimal

nontrivial join-cover of K.

(iii) The image under β of any Stirlitz track (resp., bi-Stirlitz track) of L is a

Stirlitz track (resp., bi-Stirlitz track) of K.

Now we can classify all finite subdirectly irreducible members of SUB(LO).

Theorem 11.5.

(i) Let L be a finite subdirectly irreducible lattice in SUB(LO), let n be a

positive integer. Then either Co(n) embeds into L or L embeds into Co(n).
(ii) Let V be a subvariety of SUB(LO). Then either SUB(n) ⊆ V or V ⊆

SUB(n), for every positive integer n.
(iii) The only finite subdirectly irreducible members of SUB(LO) are the Co(n),

for n > 0, and the Lm,n, for m, n > 0.
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Proof. (i) Suppose that L does not embed into Co(n). Since L is subdirectly
irreducible, it does not belong to SUB(n), thus, by Theorem 9.4, it does not belong
to SUBn−1. Hence, there exists k ∈ {1, . . . , n−1} such that L does not satisfy the
identity (Hk,n−k), see [13]. Since L is finite, it follows from [13, Proposition 6.2]
that L has a bi-Stirlitz track of index (k, n − k), thus, by Lemma 10.4, Co(n)
embeds into L.

(ii) Suppose that SUB(n) is not contained in V, that is, Co(n) /∈ V. We
prove that any lattice L ∈ V belongs to SUB(n). Since SUB(LO) is locally finite
(Theorem 9.5), it suffices to consider the case where L is finite, hence it suffices to
consider the case where L is finite and subdirectly irreducible. From Co(n) /∈ V it
follows that Co(n) does not embed into L, thus, by (i), L embeds into Co(n), thus
it belongs to SUB(n).

(iii) Let L be a finite subdirectly irreducible member of SUB(LO). Suppose
that L is nondistributive. There exists a largest integer n ≥ 2 such that Co(n)
embeds into L. By (i), L embeds into Co(n+1). Suppose that L is not isomorphic
to Co(n). Since L is subdirectly irreducible, L /∈ SUB(n), thus, as in the proof of
(i), there are k, l > 0 such that k + l = n and L does not satisfy (Hk,l), hence L
has a bi-Stirlitz track (σ, τ) of index (k, l), with, say,

σ = (〈Xi | 0 ≤ i ≤ k〉, 〈X ′
i | 1 ≤ i ≤ k〉),

τ = (〈Yj | 0 ≤ j ≤ l〉, 〈Y ′
j | 1 ≤ j ≤ l〉).

Put Z = X0 = Y0. It follows from Lemma 10.4 that, up to possibly reversing the
ordering of n+ 1 or exchanging σ and τ ,

Xk ⊳ · · · ⊳ X1 ⊳ Y1 ⊳ · · · ⊳ Yl and X1 Ew Z Ew Y1, (11.1)

X1 ∨ Y1 6= X1 ∪ Y1 and Z ∩ Y1 = ∅. (11.2)

Since L has at most n+ 1 join-irreducible elements, these elements are exactly the
Xi-s, for 1 ≤ i ≤ k, the Yj-s, for 1 ≤ j ≤ l, and Z. Furthermore, it follows from
(11.1) and (11.2) that Xi = {k − i} for 1 ≤ i ≤ k, Yj = {k + j} for 1 ≤ j ≤ l,
and Z is either equal to {k} or to {k − 1, k}. In the first case, L ∼= Co(n + 1), a
contradiction, thus the second case applies. But then, L ∼= Lk,l. �

Remark 11.6. There exists a proper class of infinite subdirectly irreducible lattices
in SUB(LO), for example, all lattices of the form Co(T ) where T is an infinite
chain. However, each of those lattices generates the variety SUB(LO).

As the union of the SUB(n), for 1 ≤ n < ω, generates SUB(LO), we obtain the
following corollary.

Corollary 11.7. Every proper subvariety of SUB(LO) is finitely generated.

For a lattice L, let V(L) denote the lattice variety generated by L.

Proposition 11.8. Let (m,n) and (m′, n′) be pairs of positive integers such that

m+ n = m′ + n′. If Lm,n belongs to V(Lm′,n′), then (m,n) = (m′, n′).

Proof. By Jónsson’s Lemma (see B. Jónsson [9] or P. Jipsen and H. Rose [7]),
there are a sublattice L of Lm′,n′ and a congruence θ of L such that Lm,n

∼= L/θ.
The canonical bi-Stirlitz track (σ0, τ0) of index (m,n) of Lm,n

∼= L/θ can be, by
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Lemma 11.4, lifted to a bi-Stirlitz track (σ, τ) of index (m,n) of L, say,

σ = (〈xi | 0 ≤ i ≤ m〉, 〈x′ | 1 ≤ i ≤ m〉), for some x′ ∈ J(L),

τ = (〈yj | 0 ≤ j ≤ n〉, 〈y′ | 1 ≤ j ≤ n〉), for some y′ ∈ J(L),

with the additional property

x1 < x0 (11.3)

(because (σ0, τ0) has this property and the map β of Lemma 11.4 is an order-
embedding). By Lemma 10.2, (σ, τ) is a weak bi-Stirlitz track of L, thus of Lm′,n′ ,
of index (m,n), thus, by Lemma 11.3(iv), its trace is either (σ̃0, τ̃0) or (τ̃0, σ̃0). But
by (11.3), only the first case is possible, whence (m,n) = (m′, n′). �

Corollary 11.9. For any integer n ≥ 2, the lattice Bn of all lattice varieties V

such that SUB(n) ⊆ V ⊂ SUB(n+ 1) is isomorphic to 2n−1.

Proof. It follows from Theorem 11.5 that the join-irreducible elements of Bn are
exactly the varieties V(Lk,l), where k, l > 0 and k + l = n. Furthermore, by
Proposition 11.8, these varieties are mutually incomparable, hence they are atoms
of Bn. Since Bn is finite distributive, it is Boolean with n− 1 atoms. �

The results of this section describe completely the lattice of all subvarieties of
SUB(LO). This lattice is countable. Its bottom is diagrammed on the left half of
Figure 4. We use standard notation, for example, N5 denotes the variety generated
by the pentagon, L1,2 denotes the variety generated by L1,2, and so on. The right
half of Figure 4 represents small subdirectly irreducible members of SUB(LO).

12. Projective members of SUB(LO)

Notation 12.1. Letm, n > 0. We define lattice-theoretical statements Λn(x0, . . . , xn−1)
and Λm,n(x0, x1, . . . , xm+n) as follows:

Λn(x0, . . . , xn−1) ⇋ xk ≤ xi ∨ xj if 0 ≤ i < k < j < n

and xi ∧ xj = x0 ∧ x1 for i 6= j;

Λm,n(x0, x1, . . . , xm+n) ⇋ xk ≤ xi ∨ xj if 0 ≤ i < k < j ≤ m+ n,

xm−1 ≤ xm,

and xi ∧ xj = x0 ∧ x2 for i 6= j and {i, j} 6= {m− 1,m}.

We leave to the reader the easy proof of the following lemma.

Lemma 12.2. Let (T,E) be a finite chain, let n > 0, let A0, . . . , An−1 be pairwise

disjoint elements of Co(T ) such that Ak ⊆ Ai ∨ Aj, for 0 ≤ i < k < j < n. Then

either the following statement or its dual holds:

There are elements xi, yi (i < n) of T such that Ai = [xi, yi), for

all i < n, and

x0 E y0 E x1 E · · · E xn−1 E yn−1.

The following lemma is the key to all projectivity results of the present section.

Lemma 12.3. Let L ∈ SUB(LO). The following statements hold:

(i) For all n > 0 and all a0, . . . , an−1 ∈ L such that Λn(a0, . . . , an−1) holds,

there exists a unique ϕ : Co(n) → L such that ϕ({i}) = ai, for all i < n.
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N5 = L1,1 Co(3) L2,1L1,2

Co(4)

L3,1L2,2

L1,3

SUB(0) = T

L1,1 = N5

SUB(3)

L1,2 L2,1

SUB(4)

L1,3 L3,1

SUB(5)

SUB(1) = SUB(2)
= D

L2,2

Figure 4. Small subvarieties of SUB(LO)

(ii) For all m, n > 0 and all a0, a1, . . . , am+n ∈ L such that Λm,n(a0, a1, . . . , am+n)
holds, there exists a unique ϕ : Lm,n → L such that ϕ({i}) = ai, for all

i 6= m, while ϕ({m− 1,m}) = am.

Proof. Without loss of generality, L is generated by {ai | 0 ≤ i < n} in (i), by
{ai | 0 ≤ i ≤ m+ n} in (ii). In particular, by Theorem 9.5, L is finite. Since L is
a finite member of SUB(LO), we may assume, by Theorem 8.2, that L = Co(T ),
for a finite chain (T,E). Let u be the common value for all ai ∧ aj for i 6= j in (i),
for i 6= j and {i, j} 6= {m− 1,m} in (ii). The uniqueness statement about ϕ is,
in both cases, obvious, and if there is a map ϕ as desired, then it is given by the
rule ϕ(X) =

∨
i∈X ai, for all X ∈ Co(n) in (i), for all X ∈ Lm,n in (ii), with the

convention that the empty join equals u. From the assumption that the ai-s satisfy
(the statement involving joins in) Λn in (i) and Λm,n in (ii) it follows easily that ϕ
is a join-homomorphism.

Now we prove that ϕ is a meet-homomorphism. Suppose first that u is nonempty.
The join of any two members of L is their union, whence L is distributive. The
statement that ϕ is a meet-homomorphism follows immediately in (i). In (ii), for
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all X , Y ∈ Lm,n, we compute:

ϕ(X) ∧ ϕ(Y ) =
∨

〈ai ∧ aj | (i, j) ∈ X × Y 〉

=

{
ϕ(X ∩ Y ) ∨ am−1, if (m− 1,m) ∈ (X × Y ) ∪ (Y ×X),

ϕ(X ∩ Y ), otherwise.

But in the first case, m−1 belongs to X∩Y , so we obtain again that ϕ(X)∧ϕ(Y ) =
ϕ(X ∩ Y ).

Suppose now that u = ∅. By Lemma 12.2, we may assume without loss of
generality that ai = [xi, yi), for elements xi E yi of T , for i < n in (i) and i ≤ m+n
in (ii), such that

x0 E y0 E · · · E xn−1 E yn−1

in (i), while

x0 E y0 E · · · E xm−2 E ym−2 E xm E ym E · · · E xm+n E ym+n

in (ii). Furthermore, from the assumption on the ai-s it follows that xm−1 = xm

and ym−1 ≤ ym in (ii), in particular,

x0 E x1 E · · · E xm+n and y0 E y1 E · · · E ym+n.

Hence, in both cases (i) and (ii), the value of ϕ(X) for X in the domain of ϕ can
be computed by the rule ϕ(X) = [xi, yj) whenever X = [i, j], for i ≤ j. It follows
easily that ϕ is a meet-homomorphism. �

Now we can prove the main result of the present section.

Theorem 12.4. Every finite subdirectly irreducible member of SUB(LO) is pro-

jective in SUB(LO).

Proof. We first prove that Co(n) is projective in SUB(LO), for all n > 0. Let
L ∈ SUB(LO), let π : L ։ Co(n) be a surjective lattice homomorphism, we prove
that there exists a lattice homomorphism ϕ : Co(n) → L such that π ◦ϕ = idCo(n).
Since Co(n) is finite, we may replace L by a finitely generated sublattice, which, by
Theorem 9.5, is finite. Since L is finite, the sublattice π−1{X} has a least element,
that we denote by β(X), for any X ∈ Co(n). Put ai = β({i}), for all i < n. Since
β is a join-homomorphism, the following statement holds:

ak ≤ ai ∨ aj , for 0 ≤ i < k < j < n. (12.1)

Now we define inductively elements bl and al
i of L, for i < n and l < ω, as follows:

a0
i = ai; (12.2)

bl =
∨

〈al
i ∧ a

l
j | i 6= j〉; (12.3)

al+1
i = al

i ∨ b
l. (12.4)

Since L is finite, there exists l < ω such that al+1
i = al

i, for all i < n. From (12.1),
(12.2), and (12.4), it is easy to prove, by induction on l, the inequalities

al
k ≤ al

i ∨ a
l
j , for 0 ≤ i < k < j < n. (12.5)

Furthermore, for i 6= j and k in {0, . . . , n − 1}, al
i ∧ a

l
j ≤ bl ≤ al+1

k = al
k. Hence,

the statement Λn(al
0, . . . , a

l
n−1) holds, thus, by Lemma 12.3(i), there exists a lattice

homomorphism ϕ : Co(n) → L such that ϕ({i}) = al
i, for all i < n. From (12.2)–

(12.4) it follows that π(al
i) = {i}, for all i < n, whence π ◦ ϕ = idCo(n).
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The proof that Lm,n is projective, form, n > 0, is similar, by using Lemma 12.3(ii).
The definitions of the ai-s and the al

i-s are exactly the same as for the Co(n) case,
while the join in the definition of bl in (12.3) has to be taken over the pairs (i, j)
such that i 6= j and {i, j} 6= {m− 1,m}.

By Theorem 11.5, there are no other finite subdirectly irreducible members of
SUB(LO), thus the proof is complete. �

As a consequence of this, we obtain the following result, which shows that
SUB(LO) is a quite peculiar variety, see the contrast with Example 14.1.

Theorem 12.5. Every subquasivariety of SUB(LO) is a variety.

Proof. Let Q be a subquasivariety of SUB(LO), we prove that Q is a variety. It
suffices to prove that every homomorphic image L of a lattice L′ in Q belongs to Q.
Since L belongs to the locally finite variety SUB(LO), it suffices to consider the
case where L is finite. By considering the subdirect decomposition of L, it suffices
then to consider the case where L is subdirectly irreducible. By Theorem 12.4, L is
projective within SUB(LO), thus it embeds into L′; whence L belongs to Q. �

13. An example

For a chain Q and a subset P of Q, endowed with the induced ordering, the
lattice Co(P ) embeds into Co(Q), thus it belongs to the variety generated by
Co(Q). We shall now show, through an example, that this simple observation
cannot be extended to arbitrary posets.

Let P and Q be the posets diagrammed on Figure 5. Obviously, P is a subset
of Q, endowed with the induced ordering.

P Q
0

1

2

3

a

b
c

0

1

2

3

a

b

Figure 5. The posets P and Q

By induction on the natural number n, we define lattice terms x
(n)
1 , x

(n)
2 , s,

and t, in the variables x0, x1, x2, x3, xa, xb, putting x
(0)
1 = x1, x

(0)
2 = x2, and

x
(n+1)
1 = x

(n)
1 ∧

(
x0 ∨ x

(n)
2

)
∧ (x0 ∨ xb);

x
(n+1)
2 = x

(n)
2 ∧

(
x3 ∨ x

(n)
1

)
∧ (x3 ∨ xa),

for all n < ω, then s = x1 ∧
(
x0 ∨

(
(x1 ∨ xb) ∧ (x2 ∨ xa)

))
, and then

t = (x1 ∧xb)∨
(
x1 ∧ (x0 ∨xa)

)
∨

(
x1 ∧ (x2 ∨xa)

)
∨

(
x1 ∧

(
x0∨

(
x2∧ (x1 ∨xa)

)))

∨

(
x1 ∧

(
x0 ∨

(
x2 ∧ (x1 ∨ xb)

)))
∨

(
x1 ∧

(
x0 ∨

(
x2 ∧ (x3 ∨ xb)

)))
.
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Finally, let (∗) be the following identity:

x
(2)
1 ≤ s ∨ t. (∗)

Lemma 13.1. The lattice Co(Q) satisfies (∗).

Proof. Let X0, X1, X2, X3, Xa, Xb be elements of Co(Q), let S and T be obtained

by evaluating s and t at those parameters. We prove that X
(2)
1 is a subset of S∪T .

So, let x1 ∈ X
(2)
1 . If x1 ∈ X0 ∪X2, then x1 ∈ (X0 ∩X1) ∪ (X2 ∩X1) ⊆ T ; suppose

now that x1 /∈ X0 ∪ X2. Since x1 ∈ X0 ∨ X
(1)
2 , there are x0 ∈ X0 and x2 ∈ X

(1)
2

such that either x0 ⊳ x1 ⊳ x2 or x2 ⊳ x1 ⊳ x0.
Suppose that the first case occurs. If x2 ∈ X1 ∪X3, then

x1 ∈
(
X1 ∩

(
X0 ∨ (X1 ∩X2)

))
∪

(
X1 ∩

(
X0 ∨ (X2 ∩X3)

))
⊆ T.

Suppose now that x2 /∈ X1∪X3. Since x2 ∈ X1∨X3, there are x ∈ X1 and x3 ∈ X3

such that either x ⊳ x2 ⊳ x3 or x3 ⊳ x2 ⊳ x. In the second case, from x1 ⊳ x2 ⊳ x
it follows that x2 ∈ X1, a contradiction. Thus x2 ⊳ x3.

From x1 ∈ X
(2)
1 it follows that x1 ∈ X0 ∨ Xb. If x1 belongs to ↓X0 (the lower

subset of Q generated by X0), then x1 ∈ X0 ∩ X1 ⊆ T . If x1 ∈ Xb, then x1 ∈
X1∩Xb ⊆ T . Suppose that x1 /∈ ↓X0∪Xb. Since x1 ∈ X0∨Xb, there exists xb ∈ Xb

such that x1 ⊳ xb. Furthermore, from x2 ∈ X
(1)
2 it follows that x2 ∈ X3 ∨ Xa. If

x2 ∈ ↓Xa, then x2 ∈ X2∩ (X1∨Xa), thus x1 ∈ X1∩
(
X0∨

(
X2∩ (X1∨Xa)

))
⊆ T .

Suppose now that x2 /∈ ↓Xa. Since x2 /∈ X3 and x2 ∈ X3∨Xa, there exists xa ∈ Xa

such that xa ⊳ x2.
If xa E x1, then x1 ∈ X1∩(X2∨Xa) ⊆ T . If x1 E xa, then x1 ∈ X1∩(X0∨Xa) ⊆

T . Suppose now that xa‖x1 (where ‖ denotes incomparability). If x2 E xb, then

x2 ∈ X2 ∩ (X1 ∨Xb), thus x1 ∈ X1 ∩
(
X0 ∨

(
X2 ∩ (X1 ∨ Xb)

))
⊆ T . If xb E x2,

then x2 ∈ X2 ∩ (X3 ∨Xb), thus x1 ∈ X1 ∩
(
X0 ∨

(
X2 ∩ (X3 ∨Xb)

))
⊆ T . Suppose

now that x2‖xb. Since x1‖xa, we have obtained the inequalities

x0 ⊳ x1 ⊳ x2 ⊳ x3, x1 ⊳ xb, xa ⊳ x2, x1‖xa, and x2‖xb. (13.1)

This leaves the only possibility xp = p, for all p ∈ P . In particular,

x1 = 1 ∈ {0} ∨ {c} ⊆ X0 ∨
(
(X1 ∨Xb) ∩ (X2 ∨Xa)

)
,

from which it follows that x1 ∈ S.
The other case to consider is x2 ⊳ x1 ⊳ x0. Then, applying the argument

above to the dual of ⊳, we obtain the dual of (13.1), whence xk = 3 − k, for all
k ∈ {0, 1, 2, 3}, xa = b, and xb = a. In particular,

x1 = 2 ∈ {3} ∨ {c} ⊆ X0 ∨
(
(X1 ∨Xb) ∩ (X2 ∨Xa)

)
,

from which it follows again that x1 ∈ S. In any case, x1 ∈ S ∪ T . �

Lemma 13.2. The lattice Co(P ) does not satisfy (∗).

Proof. Put xp = {p}, an element of Co(P ), for any p ∈ P . Then the left hand side

of (∗), evaluated with those parameters, is x1 = x
(2)
1 = {1}, while the right hand

side is empty. Therefore, Co(P ) does not satisfy (∗). �

Hence we have reached the desired conclusion.
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Proposition 13.3. The poset P embeds into the finite poset Q, but the lattice

Co(P ) does not belong to the variety generated by Co(Q).

14. Open problems

As in [13], we denote, for a class K of posets, by SUB(K) the lattice variety
generated by {Co(P ) | P ∈ K}. Say that a lattice variety V is a Stirlitz variety, if
it is of the form SUB(K) for some class K of posets.

It is clear that any join of Stirlitz varieties is a Stirlitz variety, thus the set of all
Stirlitz varieties, partially ordered by inclusion, is a complete join-semilattice. In
particular, it is a lattice, however, we do not know whether the meet in this lattice
is the same as the meet for varieties.

Problem 1. Is the intersection of two Stirlitz varieties a Stirlitz variety?

Problem 2. Let L be a lattice in SUB. Does there exist a smallest Stirlitz
variety V such that L ∈ V?

A related problem is the following.

Problem 3. For a finite lattice L in SUB, are there only finitely many Stirlitz
varieties V which are minimal with the property that L ∈ V?

Analogies between our results with classical results of the spatial theory of mod-

ular lattices may fail. For example, the main result of C. Herrmann, D. Pickering,
and M. Roddy [6] states that every modular lattice embeds, within its variety, into
an algebraic and spatial modular lattice. On the other hand, every lattice L in
SUB embeds into an algebraic and spatial lattice in SUB — namely, some Co(P ),
however, Co(P ) may not belong to V(L), for example for L = N5. This leads to
the following problem.

Problem 4. Does every lattice in SUB embed, within its variety, into some alge-
braic and spatial lattice?

Of course, by Whitman’s Theorem, every lattice L embeds into a partition lat-
tice, which is both algebraic and spatial, but which does not necessarily lie in the
same variety as L. We do not even know whether every lattice embeds, within its
variety, into an algebraic and spatial lattice! While working on the present paper,
the authors met the following intriguing problem.

Problem 5. Can every lattice be embedded into some lattice that is both algebraic
and dually algebraic?

Note added. The second author recently solved Problem 5.

Problem 6. For a finite poset P , is the class of all sublattices of powers of Co(P )
a variety?

The answer to Problem 6 in the particular case where P is a chain is, by the re-
sults of the present paper, positive, see also Theorem 12.5. The results of Section 13
also suggest a positive answer to Problem 6 in general.

Example 14.1. There are many finite lattices L for which the quasivariety Q(L)
generated by L is not a variety, for example, the modular lattice M3−3 of Figure 6,
see V. A. Gorbunov [3, p. 257]. It is also possible to find L a bounded homomorphic
image of a free lattice. For example, the lattice L1

9, see P. Jipsen and H. Rose
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LM3−3 L1
9

Figure 6. The lattices M3−3, L
1
9, and L

[7, 8], is bounded and subdirectly irreducible. It also has a unique doubly reducible
element; doubling this element gives a finite, bounded lattice L. Furthermore, L
satisfies the Whitman condition, thus it is projective, see [5]. The lattices L1

9 and L
are diagrammed on Figure 6. Since L1

9 is a quotient of L, it belongs to V(L). If L1
9

belonged to Q(L), then, since it is subdirectly irreducible, it would embed into L,
which is easily seen not to be the case. Therefore, Q(L) 6= V(L). Compare this
with Theorem 12.5.

Problem 7. What are the congruence lattices of lattices in SUB(LO)?

Our next problems are related to the variety Csub(D) studied by V. Slav́ık
in [14]. This variety contains the variety SUB(LO) studied in the present paper,
see the proof of Theorem 9.5. In [14], some properties of the finite subdirectly
irreducible members of Csub(D) are given, for example, every proper dual ideal is
a distributive lattice.

Problem 8. Describe the lattice of subvarieties and classify the finite subdirectly
irreducible members of Csub(D).

In V. Slav́ık [15], it is proved that Csub(D) has uncountably many subvarieties,
but this does not seem to rule out a reasonable classification of finitely generated
subvarieties.

Furthermore, it is proved in [14] that Csub(D)∩M = Mω, where M (resp., Mω)
denotes the variety of all modular lattices (resp., the variety generated by the infinite
countable lattice Mω of length two). It is well-known that Mω is finitely based, see
B. Jónsson [10] or [7, Theorem 3.32]. This suggests the following problems.

Problem 9. Is the variety Csub(D) finitely based? More generally, if V is a
self-dual, finitely based variety of lattices, is Csub(V) finitely based?

Problem 10. Describe Csub(D) ∩ SD∨, where SD∨ denotes the quasivariety of
all join-semidistributive lattices. In particular, is Csub(D) ∩ SD∨ a finitely based
quasivariety?
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