Sublattices of lattices of order-convex sets, III. The case of totally ordered sets
Marina V. Semenova, Friedrich Wehrung

To cite this version:

HAL Id: hal-00003977
https://hal.science/hal-00003977
Submitted on 21 Jan 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SUBLATTICES OF LATTICES OF ORDER-CONVEX SETS, III.
THE CASE OF TOTALLY ORDERED SETS

MARINA SEMENOVA AND FRIEDRICH WEHRUNG

Abstract. For a partially ordered set P, let $\text{Co}(P)$ denote the lattice of all order-convex subsets of P. For a positive integer n, we denote by $\text{SUB}(\mathcal{L}_0)$ (resp., $\text{SUB}(n)$) the class of all lattices that can be embedded into a lattice of the form

$$\prod_{i \in I} \text{Co}(T_i),$$

where $(T_i | i \in I)$ is a family of chains (resp., chains with at most n elements).

We prove the following results:

1. Both classes $\text{SUB}(\mathcal{L}_0)$ and $\text{SUB}(n)$, for any positive integer n, are locally finite, finitely based varieties of lattices, and we find finite equational bases of these varieties.

2. The variety $\text{SUB}(\mathcal{L}_0)$ is the quasivariety join of all the varieties $\text{SUB}(n)$, for $1 \leq n < \omega$, and it has only countably many subvarieties. We classify these varieties, together with all the finite subdirectly irreducible members of $\text{SUB}(\mathcal{L}_0)$.

3. Every finite subdirectly irreducible member of $\text{SUB}(\mathcal{L}_0)$ is projective within $\text{SUB}(\mathcal{L}_0)$, and every subquasivariety of $\text{SUB}(\mathcal{L}_0)$ is a variety.

1. Introduction

For a partially ordered set (from now on poset) (P, \leq), a subset X of P is order-convex, if $x \leq z \leq y$ and $\{x, y\} \subseteq X$ implies that $z \in X$, for all $x, y, z \in P$.

The lattices of the form $\text{Co}(P)$ have been characterized by G. Birkhoff and M. K. Bennett in [2]. In M. Semenova and F. Wehrung [12], the authors solve a problem stated in K. V. Adaricheva, V. A. Gorbunov, and V. I. Tumanov [1], by proving the following result.

Theorem 1. The class SUB of all lattices that can be embedded into some lattice of the form $\text{Co}(P)$ forms a variety, defined by three identities, (S), (U), and (B).

In M. Semenova and F. Wehrung [13], this result is extended to special classes of posets P:

Theorem 2. For a positive integer n, the class SUB_n of all lattices that can be embedded into some lattice of the form $\text{Co}(P)$, where P is a poset of length at

\begin{itemize}
 \item [Date:] January 21, 2005.
 \item [2000 Mathematics Subject Classification.] Primary: 06B05, 06B20, 06B15, 06A05, 08C15. Secondary: 05B25.
 \item [Key words and phrases.] Lattice, embedding, poset, chain, order-convex, variety, join-irreducible, join-ideal.
\end{itemize}

The first author was partially supported by INTAS grant no. YSF: 2001/1-65. The authors were partially supported by GA CR grant no. 201/00/0766 and by institutional grant MSM:J13/98/113200007a.
most n, is a variety, defined by the identities (S), (U), (B), together with new identities (H_n) and $(H_{k,n+1-k})$, for $1 \leq k \leq n$.

In the present paper, we extend these results to sublattices of products of lattices of convex subsets of chains (i.e., totally ordered sets), thus solving a problem of [12]. More specifically, we denote by $	ext{SUB} (\mathcal{L}_0)$ (resp., $	ext{SUB}(n)$) the class of all lattices that can be embedded into a lattice of the form

$$\prod_{i \in I} \text{Co}(T_i),$$

where $\langle T_i \mid i \in I \rangle$ is a family of chains (resp., chains with at most n elements). We prove the following results:

1. Both classes $	ext{SUB}(\mathcal{L}_0)$ and $	ext{SUB}(n)$ are finitely based varieties of lattices, for any positive integer n. Moreover, $	ext{SUB}(n+1) = \text{SUB}(\mathcal{L}_0) \cap \text{SUB}_n$ (Theorems 8.2 and 9.4).

2. By using a result of V. Slavík [14], we prove that the variety $	ext{SUB}(\mathcal{L}_0)$ is locally finite (Theorem 9.5).

3. The variety $	ext{SUB}(\mathcal{L}_0)$ is the quasivariety join of all the varieties $	ext{SUB}(n)$, for $1 \leq n < \omega$ (Corollary 9.7), and every proper subvariety of $	ext{SUB}(\mathcal{L}_0)$ is finitely generated (Corollary 11.7).

4. The only proper subvarieties of $	ext{SUB}(\mathcal{L}_0)$ are those between $	ext{SUB}(n)$ and $	ext{SUB}(n+1)$ for some natural number n (Theorem 11.5).

5. We classify all finite subdirectly irreducible members of $	ext{SUB}(\mathcal{L}_0)$, and we describe exactly the lattice of all subvarieties of $	ext{SUB}(\mathcal{L}_0)$ (Theorem 11.5 to Corollary 11.9).

6. All finite subdirectly irreducible members of $	ext{SUB}(\mathcal{L}_0)$ are projective within $	ext{SUB}(\mathcal{L}_0)$ (Theorem 12.4), and every subquasivariety of $	ext{SUB}(\mathcal{L}_0)$ is a variety (Theorem 12.5).

The main technical result towards the proof that $	ext{SUB}(\mathcal{L}_0)$ is a variety is that the reflexive closure of the join-dependency relation D is transitive, in any member of $	ext{SUB}(\mathcal{L}_0)$ with ‘enough’ join-irreducible elements (Corollary 6.2). This may be viewed as an analogue, for certain join-semidistributive lattices, of the transitivity of perspectivity proved by von Neumann in continuous geometries, see [11].

We refer the reader to our papers [12, 13] for unexplained notation and terminology. In particular, the identities (S), (U), and (B), together with their join-irreducible translations (S_j), (U_j), and (B_j), and tools such as Stirlitz tracks or the Udav-Bond partition, are defined in [12]. The identities (H_n) and $(H_{n,n})$, their join-irreducible translations, and bi-Stirlitz tracks are defined in [13]. We shall often use the trivial fact that $\text{Co}(P, \leq) = \text{Co}(P, \geq)$, for any poset (P, \leq), where \geq denotes the converse order of \leq.

The join-dependency relation on a lattice L, see R. Freese, J. Ježek, and J. B. Nation [5], is defined on the set $J(L)$ of all join-irreducible elements of L, and it is written D_L, or D if L is understood from the context. For $a \in J(L)$, we write, as in [12, 13],

$$[a]^D = \{ x \in J(L) \mid a D x \}.$$
Definition 2.1. A subset Σ of a lattice L is a join-seed, if the following statements hold:

(i) $\Sigma \subseteq J(L)$;
(ii) every element of L is a join of elements of Σ;
(iii) for all $p \in \Sigma$ and all $a, b \in L$ such that $p \leq a \lor b$ and $p \not\leq a, b$, there are $x \leq a$ and $y \leq b$ both in Σ such that $p \leq x \lor y$ is minimal in x and y.

Two important examples of join-seeds are provided by the following lemma, see [13].

Lemma 2.2. Any of the following assumptions implies that the subset Σ is a join-seed of the lattice L:

(i) $L = \text{Co}(P)$ and $\Sigma = \{\{p\} \mid p \in P\}$, for some poset P.
(ii) L is a dually 2-distributive, complete, lower continuous, finitely spatial lattice, and $\Sigma = J(L)$.

Lemma 2.3. Let L be a lattice satisfying (B), let Σ be a join-seed of L, let $p \in \Sigma$, let $x, y \in [p]^D$. If the inequality $p \leq x \lor y$ holds, then it is minimal in both x and y.

Proof. From the assumption that $x, y \in [p]^D$, it follows that $p \not\leq x, y$. Since $p \leq x \lor y$ and Σ is a join-seed of L, there are $u \leq x$ and $v \leq y$ in Σ such that the inequality $p \leq u \lor v$ holds and is minimal in both u and v. Furthermore, by the definition of the D relation and since Σ is a join-seed of L, there are $x', y' \in \Sigma$ such that both inequalities $p \leq x' \lor y'$ and $p \not\leq x' \lor y'$ hold and are minimal in x', y, y'. By applying (B$_1$) to the inequalities $p \leq x' \lor y', u \lor v$ and by observing that $p \not\leq x, v$, we obtain that $p \leq x' \lor u$. Since $u \leq x$ and the inequality $p \leq x \lor x'$ is minimal in x, we obtain that $u = x$. Similarly, $v = y$.

Lemma 2.4. Let L be a lattice satisfying (B), let Σ be a join-seed of L. Then $[p]^D \cap \Sigma$ is an antichain of L, for any $p \in \Sigma$.

Proof. Let $x, y \in [p]^D$. Since Σ is a join-seed of L, there are $x', y' \in \Sigma$ such that both inequalities $p \leq x' \lor y'$ and $p \not\leq y' \lor y'$ are minimal nontrivial join-covers. Observe that $p \not\leq x, x', y, y'$. If $x \leq y$, then, since $p \not\leq y = x \lor y$ and L satisfies (B$_1$), the inequality $p \leq x \lor y'$ holds. Since $x \leq y$ and the inequality $p \not\leq y \lor y'$ is minimal in y, we obtain that $x = y$.

3. The identity (E)

Let (E) be the following identity in the variables x, a, b_0, b_1, b_2:

$$x \land \bigwedge_{i \leq 3} (a \lor b_i) = \bigvee_{i < 3} \left[x \land b_i \land \bigwedge_{j \neq i} (a \lor b_j) \lor \bigvee_{\sigma \in \mathfrak{S}_3} \left[x \land (a \lor b_{0,\sigma}^* \land (a \lor b_{1,\sigma}^* \land (a \lor b_{2,\sigma}(2))) \right],
$$

where we denote by \mathfrak{S}_3 the group of all permutations of $\{0, 1, 2\}$ and we put

$$b_{0,\sigma}^* = b_{\sigma(0)} \land (x \lor b_{\sigma(1)}), \quad (3.1)$$

$$b_{1,\sigma}^* = b_{\sigma(1)} \land (x \lor b_{\sigma(2)}) \land (b_{\sigma(0)} \lor b_{\sigma(2)}), \quad (3.2)$$

for all $\sigma \in \mathfrak{S}_3$.
We now introduce a lattice-theoretical axiom, the *join-irreducible interpretation of* \((E^\Sigma)\), that we will denote by \((E^\Sigma)\).

Definition 3.1. For a lattice \(L\) and a subset \(\Sigma\) of \(J(L)\), we say that \(L\) satisfies \((E^\Sigma)\), if for all elements \(x, a, b_0, b_1, b_2\) of \(\Sigma\), if the inequality \(x \leq a \lor b_1\) is a minimal nontrivial join-cover, for every \(i < 3\), there exists \(\sigma \in \mathcal{G}_3\) such that \(b_\sigma(0) \leq x \lor b_\sigma(1) \leq x \lor b_\sigma(2)\) and \(b_\sigma(1) \leq b_\sigma(0) \lor b_\sigma(2)\).

The geometrical meaning of \((E^\Sigma)\) is illustrated on Figure 1. The lines of that figure represent the ordering of the either the poset \(P\) or its dual (and not the ordering of \(L\)) in case \(L = \text{Co}(P, \leq)\). For example, the left half of Figure 1 represents (up to dualization of \(\leq\)) the relations \(a \leq x \leq b_i\), for \(i < 3\), so that the inequality \(\{x\} \leq \{a\} \lor \{b_i\}\) holds in \(L\). Similar conventions hold for Figures 2 and 3.

![Figure 1. Illustrating \((E^\Sigma)\)](image)

Lemma 3.2. Let \(L\) be a lattice, let \(\Sigma\) be a subset of \(J(L)\). Then the following statements hold:

(i) If \(L\) satisfies \((E)\), then \(L\) satisfies \((E^\Sigma)\).

(ii) If \(\Sigma\) is a join-seed of \(L\) and \(L\) satisfies both \((B)\) and \((E^\Sigma)\), then \(L\) satisfies \((E)\).

Proof. (i) Suppose that \(x, a, b_0, b_1, b_2 \in \Sigma\) satisfy the premise of \((E^\Sigma)\). Since \(x\) is join-irreducible and \(x \not< b_i\), for all \(i < 3\), we obtain, by applying the identity \((E)\) and using the notation introduced in (3.1) and (3.2), that there exists \(\sigma \in \mathcal{G}_3\) such that both inequalities \(x \leq a \lor b_\sigma(0), a \lor b_\sigma(1)\) hold. Since \(b_\sigma(1) \leq b_\sigma(2)\), it follows from the minimality of \(b_\sigma(2)\) in the inequality \(x \leq a \lor b_\sigma(2)\) that \(b_\sigma(1) = b_\sigma(2)\), for all \(i < 2\). Therefore, \(b_\sigma(0) \leq x \lor b_\sigma(1) \leq x \lor b_\sigma(2)\) and \(b_\sigma(1) \leq b_\sigma(0) \lor b_\sigma(2)\).

(ii) Let \(c\) (resp., \(d\)) denote the left hand side (resp., right hand side) of the identity \((E)\). Since \(d \leq c\) holds in any lattice, it suffices to prove that \(c \leq d\). Let \(p \in \Sigma\) with \(p \leq c\), we prove that \(p \leq d\). If \(p \leq a\), then \(p \leq x \lor a \leq d\). If \(p \leq b_i\), for some \(i < 3\), then \(p \leq x \lor b_i \land \bigwedge_{j \neq i}(a \lor b_j) \leq d\).

Suppose from now on that \(p \not< a\) and \(p \not< b_i\), for all \(i < 3\). Since \(p \leq a \lor b_i\) and \(\Sigma\) is a join-seed of \(L\), there are \(u_i \leq a\) and \(v_i \leq b_i\) in \(\Sigma\) such that the inequality \(p \leq u_i \lor v_i\) is a minimal nontrivial join-cover, for all \(i < 3\). In particular, \(u_i, v_i \in [p]^D\). Put \(u = u_0\), and let \(i < 3\). By applying (B) to the inequalities \(p \leq u \lor v_i, u_i \lor v_i\), and observing that \(p \not< a\) (thus \(p \not< u \lor v_i\)), we obtain the inequality \(p \leq u \lor v_i\). Furthermore, by Lemma 2.3, this inequality is minimal in both \(u\) and \(v_i\). Hence, by \((E^\Sigma)\), there exists \(\sigma \in \mathcal{G}_3\) such that \(v_\sigma(0) \leq p \lor v_\sigma(1) \leq p \lor v_\sigma(2)\) and
Since every element of L is a join of elements of Σ, the inequality $c \leq d$ follows. □

Corollary 3.3. The lattice $\text{Co}(T)$ satisfies the identity (E), for any chain (T, \leq).

Proof. We apply Lemma 3.2 to $L = \text{Co}(T)$ together with the join-seed $\Sigma = \{ \{ p \} \mid p \in T \}$. Let $x, a, b_0, b_1, b_2 \in T$ such that the inequality $\{ x \} \leq \{ a \} \lor \{ b_i \}$ is a minimal nontrivial join-cover, for all $i < 3$. Since $\text{Co}(T, \leq) = \text{Co}(T, \geq)$, we may assume without loss of generality that $a \leq x < b_0$, thus $x \leq b_i$, for all $i < 3$. Since T is a chain, there exists $\sigma \in \mathcal{S}_3$ such that $b_{\sigma(0)} \leq b_{\sigma(1)} \leq b_{\sigma(2)}$, whence

$$\{ b_{\sigma(0)} \} \leq \{ x \} \lor \{ b_{\sigma(1)} \} \leq \{ x \} \lor \{ b_{\sigma(2)} \} \text{ and } \{ b_{\sigma(1)} \} \leq \{ b_{\sigma(0)} \} \lor \{ b_{\sigma(2)} \}.$$

Hence $\text{Co}(T)$ satisfies (E^2). Since $\text{Co}(T)$ satisfies (B) (see [12]) and Σ is a join-seed of $\text{Co}(T)$, it follows from Lemma 3.2 that $\text{Co}(T)$ satisfies (E). □

Lemma 3.4. Let L be a join-semidistributive lattice satisfying the identity (E), let $a, x \in J(L)$ and $b_0, b_1, b_2 \in J(L)$ be distinct such that $x \leq a \lor b_i$ is a minimal nontrivial join-cover, for all $i < 3$. Then $a \lor b_0 \leq a \lor b_1 \leq a \lor b_2$ implies that $a \lor b_0 < a \lor b_1 < a \lor b_2$ and $b_1 \leq b_0 \lor b_2$.

Proof. Let i, j be distinct in $\{ 0, 1, 2 \}$. If $a \lor b_i = a \lor b_j$, then, by the join-semidistribution of L, $x \leq a \lor b_i = a \lor (b_i \land b_j)$; it follows from the minimality assumption on b_i that $b_i \leq b_j$. Similarly, $b_j \leq b_i$, whence $b_i = b_j$, a contradiction. Thus we have obtained the inequalities

$$a \lor b_0 < a \lor b_1 < a \lor b_2.$$

(3.3)

On the other hand, it follows from Lemma 3.2 that there exists $\sigma \in \mathcal{S}_3$ such that the inequalities

$$x \lor b_{\sigma(0)} \leq x \lor b_{\sigma(1)} \leq x \lor b_{\sigma(2)},$$

(3.4)

$$b_{\sigma(1)} \leq b_{\sigma(0)} \lor b_{\sigma(2)}$$

(3.5)

hold. From (3.4) it follows that $a \lor b_{\sigma(0)} \leq a \lor b_{\sigma(1)} \leq a \lor b_{\sigma(2)}$, thus, by (3.3), σ is the identity. The conclusion follows from (3.4) and (3.5). □

4. The identity (P)

Let (P) be the following identity in the variables a, b, c, d, b_0, b_1:

$$a \land (b' \lor c) \land (c \lor d) = (a \land b' \land (c \lor d)) \lor (a \land (d \land (b' \lor c)) \lor (a \land (b \lor (b_0 \lor b_1))) \lor (c \lor d)),$$

where we put $b' = b \land (b_0 \lor b_1)$.

ORDER-CONVEX SUBSETS OF CHAINS 5
We now introduce a lattice-theoretical axiom, the *join-irreducible interpretation of* \((P)\), that we will denote by \((P^\Sigma)\).

Definition 4.1. For a lattice \(L\) and a subset \(\Sigma\) of \(J(L)\), we say that \(L\) satisfies \((P^\Sigma)\), if for all elements \(a, b, c, d, b_0, b_1\) in \(\Sigma\), if both inequalities \(a \leq b \lor c, c \lor d\) are minimal nontrivial join-covers and \(b \leq b_0 \lor b_1\), then either \(b \leq a \lor d\) or there exists \(i < 2\) such that \(a \leq b_i \lor c\) and \(b \leq a \lor b_i \lor d\).

The geometrical meaning of \((P^\Sigma)\) is illustrated on Figure 2. Horizontal lines are meant to suggest that “no side is chosen yet”. For example, the non-horizontal lines in the left half of Figure 2 represent various inequalities such as \(c \triangleright a \triangleright d\) and \(c \triangleright a \triangleright b\) (in case \(L = \text{Co}(P, \triangleright)\)), while the horizontal line represents the inequalities \(b_1 - i \leq b \leq b_i\), for some \(i < 2\). A similar convention applies to Figure 3.

Lemma 4.2. Let \(L\) be a lattice, let \(\Sigma\) be a subset of \(J(L)\). Then the following statements hold:

(i) If \(L\) satisfies \((P)\), then \(L\) satisfies \((P^\Sigma)\).

(ii) If \(\Sigma\) is a join-seed of \(L\) and \(L\) satisfies both \((B)\) and \((P^\Sigma)\), then \(L\) satisfies \((P)\).

Proof.

(i) Let \(a, b, c, d, b_0, b_1\) \(\in\) \(\Sigma\) satisfy the premise of \((P^\Sigma)\). Observe that \(b \land (b_0 \lor b_1) = b\), thus the left hand side of the identity \((P)\) computed with these parameters equals \(a\). Since \(a \not\leq b, d\) and \(a\) is join-irreducible, either \(a \leq (b \land (a \lor d)) \lor c\) or \(a \leq b_i \lor c\) and \(a \leq (b \land (a \lor b_i) \land (b_i \lor d)) \lor c\), for some \(i < 2\). In the first case, from the fact that the cover \(a \leq b \lor c\) is minimal in \(b\) it follows that \(b \leq a \lor d\) in the first case, and \(b \leq a \lor b_i, b_i \lor d\) in the second case.

(ii) Let \(e\) (resp., \(f\)) denote the left hand side (resp., right hand side) of the identity \((P)\). Let \(p \in \Sigma\) such that \(p \leq e\), we prove that \(p \leq f\). If either \(p \leq c\) or \(p \leq b'\) or \(p \leq d\) this is obvious, so suppose, from now on, that \(p \not\leq c, b', d\). Since \(\Sigma\) is a join-seed of \(L\), there are \(u \leq b'\) together with \(v, v' \leq c\) and \(w \leq d\) in \(\Sigma\) such that both inequalities

\[
\begin{align*}
p &\leq u \lor v, \\
p &\leq v' \lor w
\end{align*}
\]
Lemma 5.1. We obtain immediately the following result.

Below the right hand side of the identity (S) while the left hand sides are the same, where we put

\[p \leq v \lor w. \] (4.3)

Furthermore, it follows from Lemma 2.3 that (4.3) is a minimal nontrivial join-cover. Since \(\Sigma \) is a join-seed of \(L \), there are \(u_i \leq b_i \) in \(\Sigma \cup \{0\} \), for \(i < 2 \), such that \(u_i \leq u_0 \lor u_1 \). Suppose first that \(u_0, u_1 \in \Sigma \). Since \(L \) satisfies \(\text{(P)} \), either

\[u \leq p \lor w \] (4.4)

or

\[p \leq u_i \lor v \text{ and } u \leq p \lor u_i, u_i \lor w, \text{ for some } i < 2. \] (4.5)

The conclusion (4.5) also holds if \(u_j = 0 \), for some \(j < 2 \), because \(u \leq u_{1-j} \).

If (4.4) holds, then

\[p \leq a \land \left((u \land (p \lor w)) \lor v \right) \land (v \lor w) \leq f. \]

If (4.5) holds, then

\[p \leq a \land (u_i \lor v) \land \left((u \land (p \lor u_i) \lor (u_i \lor w)) \lor v \right) \land (v \lor w) \leq f. \]

Since every element of \(L \) is a join of elements of \(\Sigma \), the inequality \(e \leq f \) follows. Since \(f \leq e \) holds in any lattice, we obtain that \(e = f. \) \(\square \)

Corollary 4.3. The lattice \(\text{Co}(T) \) satisfies \(\text{(P)} \), for every chain \((T, \leq) \).

Proof. We apply Lemma 4.2 to \(L = \text{Co}(T) \) together with the join-seed \(\Sigma = \{ \{p\} \mid p \in T \} \). Let \(a, b, c, d, b_0, b_1 \in T \) such that both inequalities \(\{a\} \leq \{b\} \lor \{c\} \lor \{d\} \) are minimal nontrivial join-covers and \(\{b\} \leq \{b_0\} \lor \{b_1\} \). Since \(\text{Co}(T, \leq) = \text{Co}(T, \geq) \), we may assume without loss of generality that \(c \triangleleft a \triangleleft b, d \).

Furthermore, from \(\{b\} \leq \{b_0\} \lor \{b_1\} \) it follows that there exists \(i < 2 \) such that \(b_i \leq b_i \). Since \(T \) is a chain, either \(b \leq d \) or \(d \leq b \). In the first case, \(\{b\} \leq \{a\} \lor \{d\} \).

In the second case, \(\{a\} \leq \{b\} \lor \{c\} \) and \(\{b\} \leq \{a\} \lor \{b_1\} \lor \{b_2\} \lor \{d\} \).

Hence \(\text{Co}(T) \) satisfies \(\text{(P)} \). By Lemma 4.2, \(\text{Co}(T) \) satisfies \(\text{(P)}. \) \(\square \)

5. The identity (HS)

Let (HS) be the following identity in the variables \(a, b, c, b_0, b_1 \):

\[a \land (b' \lor c) = (a \land b') \lor \bigvee_{i<2} [a \land ((b \land b_i) \lor c)] \]

\[\lor \bigvee_{i<2} [a \land ((b' \land (a \lor b_i)) \lor c) \lor (b_i \lor c) \lor (b \lor b_{1-i})] \]

\[\lor \bigvee_{i<2} [a \land ((b' \land (a \lor b_i)) \lor c) \lor (b_0 \lor c) \lor (b_1 \lor c)]. \]

where we put \(b' = b \land (b_0 \lor b_1) \). Since the right hand side of (HS) lies obviously below the right hand side of the identity (S) while the left hand sides are the same, we obtain immediately the following result.

Lemma 5.1. The identity (HS) implies the Stirling identity (S).
From the minimality of \(p \).

Proof.

(i) Let the first case (HS). Let that one of the following inequalities holds:

\[
\begin{align*}
\text{Let } a \leq b, c, b_0, b_1 \text{ in } \Sigma, \text{ if } a \neq b, \text{ the inequality } a \leq b \lor c \text{ is minimal in } b, \text{ and } b \leq b_0 \lor b_1 \text{ is a nontrivial join-cover, then there exists } i < 2 \text{ such that } b \leq a \lor b_i \text{ and either } a \leq b_i \lor c, b \lor b_{1-i} \text{ or } a \leq b_0 \lor c, b_1 \lor c.
\end{align*}
\]

The geometrical meaning of (HS) is illustrated on Figure 3.

![Figure 3. Illustrating (HS) (
\[
\begin{array}{c}
\text{Case where } \begin{cases} a \leq b \lor c \\
\quad a \leq b \lor b_{1-i} \\
\quad b \leq a \lor b_i \\
\end{cases} \\
\quad \text{Case where } \begin{cases} a \leq b_0 \lor c \\
\quad a \leq b_1 \lor c \\
\quad b \leq a \lor b_i \\
\end{cases}
\end{array}
\]
\]

Lemma 5.4. Let \(L \) be a lattice, let \(\Sigma \) be a subset of \(J(L) \). Then the following statements hold:

(i) If \(L \) satisfies (HS), then \(L \) satisfies (HS\(^{\Sigma} \)).

(ii) If \(\Sigma \) is a join-ideal of \(L \) and \(L \) satisfies (HS\(^{\Sigma} \)), then \(L \) satisfies (HS).

Proof. (i) Let \(a, b, c, b_0, b_1 \in \Sigma \) satisfy the premise of (HS\(^{\Sigma} \)). Observe that \(b' = b \land (b_0 \lor b_1) = b \) and \(a \land (b' \lor c) = a. \) Since \(a \leq b \lor c \) is minimal in \(b \) and \(b \land b_i < b \), it follows from the join-irreducibility of \(a \) that there exists \(i < 2 \) such that one of the following inequalities holds:

\[
\begin{align*}
\quad a \leq (b \land (a \lor b_i)) \lor c \land (b_i \lor c) \land (b \lor b_{1-i}), \\
\quad a \leq (b \land (a \lor b_i)) \lor c \land (b_0 \lor c) \land (b \lor b_1). \\
\end{align*}
\]

From the minimality of \(b \) in \(a \leq b \lor c \) it follows that \(b \leq a \lor b_i \). Furthermore, in the first case \(a \leq b_i \lor c, b \lor b_{1-i} \) while in the second case \(a \leq b_0 \lor c, b_1 \lor c \).

(ii) Let \(d \) (resp., \(e \)) denote the left hand side (resp., right hand side) of the identity (HS). Let \(p \in \Sigma \) such that \(p \leq d \), we prove that \(p \leq e \). If \(p \leq b' \) then \(p \leq d \land b' = a \land b' \), if \(p \leq c \) then \(p \leq a \lor c \), in both cases \(p \leq e \). Suppose from now on that \(p \notin b', c \). Since \(\Sigma \) is a join-seed of \(L \), there are \(u \leq b' \) and \(v \leq c \) in \(\Sigma \) such
that \(p \leq u \lor v \) is a minimal nontrivial join-cover. If \(u \leq b_i \), for some \(i < 2 \), then \(u \leq b \land b_i \), whence
\[
p \leq a \land (u \lor v) \leq a \land (b \land b_i) \lor c \leq e.
\]
Suppose from now on that \(u \not\leq b_0, b_1 \). Since \(\Sigma \) is a join-seed of \(L \), there are \(u_0 \leq b_0 \) and \(u_1 \leq b_1 \) in \(\Sigma \) such that \(u \leq u_0 \lor u_1 \) is a minimal nontrivial join-cover. By (HS\(^2\)), there exists \(i < 2 \) such that \(u \leq p \lor u_i \) and either \(u \leq u_i \lor v \lor u_{i-1} \) or \(u \leq u_0 \lor v \lor u_1 \lor v \). In the first case,
\[
p \leq a \land (u_i \lor v) \land (u \lor u_{i-1}) \land (u \land (p \lor u_i)) \lor v) \leq e.
\]
In the second case,
\[
p \leq a \land (u_0 \lor v) \land (u_1 \lor v) \land (u \land (p \lor u_i)) \lor v) \leq e.
\]
Since every element of \(L \) is a join of elements of \(\Sigma \), we obtain that \(d \leq e \). Since \(e \leq d \) holds in any lattice, we obtain that \(d = e \). \(\square \)

Corollary 5.5. The lattice \(\text{Co}(T) \) satisfies (HS), for every chain \((T, \preceq) \).

Proof. We apply Lemma 5.4 to \(L = \text{Co}(T) \) together with the join-seed \(\Sigma = \{\{p\} \mid p \in T\} \). Let \(a, b, c, b_0, b_1 \in T \) such that \(a \not\leq b \), the inequality \(\{a\} \leq \{b\} \lor \{c\} \) is minimal in \(b \) (thus \(a \not\leq c \)), and \(\{b\} \leq \{b_0\} \lor \{b_1\} \). Since \(\text{Co}(T, \preceq) = \text{Co}(T, \succeq) \), we may assume without loss of generality that \(c < a < b \). Furthermore, there exists \(i < 2 \) such that \(b \leq b_i \), whence \(\{b\} \leq \{a\} \lor \{b_i\} \). Since \(T \) is a chain, either \(b_{i-1} \leq a \) or \(a \leq b_{i-1} \). In the first case, \(\{a\} \leq \{b_i\} \lor \{c\} \), \(\{b\} \lor \{b_{i-1}\} \). In the second case, \(\{a\} \leq \{b_0\} \lor \{c\}, \{b_i\} \lor \{c\} \).

Hence \(\text{Co}(T) \) satisfies (HS\(^2\)). By Lemma 5.4, \(\text{Co}(T) \) satisfies (HS). \(\square \)

6. The Transitivity Lemma

The main purpose of the present section is to prove the following technical lemma, which provides a large supply of minimal coverings.

Lemma 6.1 (The Transitivity Lemma). Let \(L \) be a lattice satisfying the identities (HS), (U), (B), (E), and (P), let \(\Sigma \) be a join-seed of \(L \), and let \(a, b, c, b_0, b_1 \in \Sigma \) such that both \(a \leq b \lor c \) and \(b \leq b_0 \lor b_1 \) are minimal nontrivial join-covers. Then there exists \(i < 2 \) such the following statements hold:

(i) the inequality \(b \leq a \lor b_1 \) holds, and both inequalities \(b \leq c \lor b_1 \) and \(a \leq c \lor b_1 \) are minimal nontrivial join-covers;

(ii) one of the following two statements holds:

(ii.1) \(a \leq b_i \lor c, b_{i-1} \lor b \lor b \) and, if \(a \not\leq b_{i-1} \), then the inequality \(a \leq b_0 \lor b_1 \) is a minimal nontrivial join-cover;

(ii.2) \(a \leq b_0 \lor c, b_1 \lor c \) and, if \(a \not\leq b_{i-1} \), then the inequality \(a \leq b_{i-1} \lor c \) is a minimal nontrivial join-cover.

The situation may be partly viewed on Figure 3.

Proof. It follows from Lemma 5.4 that there exists \(i < 2 \) such that
\[
b \leq a \lor b_1 \text{ and either } a \leq b_i \lor c, b_{i-1} \lor b \lor b \text{ or } a \leq b_0 \lor c, b_1 \lor c.
\]
Since \(b \leq b_i \lor c \) is a nontrivial join-cover and \(\Sigma \) is a join-seed of \(L \), there are \(x \leq b_i \) and \(c' \leq c \) in \(\Sigma \) such that \(b \leq x \lor c' \) is a minimal nontrivial join-cover. By applying (B\(_j\)) to the inequalities \(b \leq b_i \lor b_{i-1}, x \lor c' \) and observing that \(b \not\leq b_i = b_1 \lor x \), we
obtain that \(b \leq b_{1-i} \lor x \), whence, by the minimality assumption on \(b_i, x = b_i \). By applying Lemma 5.4 to the minimal nontrivial join-covers \(a \leq b \lor c \) and \(b \leq b_i \lor c' \), we obtain that either \(a \leq c' \lor c = c \), a contradiction, or \(a \leq b \lor c' \). By the minimality assumption on \(c \), the latter implies that \(c = c' \). Hence we have proved the following:

the inequality \(b \leq b_i \lor c \) is a minimal nontrivial join-cover. \hspace{1cm} (6.2)

Now we shall proceed by proving the following statement:

the inequality \(a \leq b_i \lor c \) is a minimal nontrivial join-cover. \hspace{1cm} (6.3)

If \(a \leq b_i \), then \(b \leq a \lor b_i = b_i \), a contradiction; whence \(a \nleq b_i \). So \(a \leq b_i \lor c \) is a nontrivial join-cover, thus, since \(\Sigma \) is a join-seed of \(L \), there are \(x \leq b_i \) and \(c' \leq c \) in \(\Sigma \) such that \(a \leq x \lor c' \) is a minimal nontrivial join-cover. By applying \((B_j)\) to the inequalities \(a \leq b \lor c, x \lor c' \) and observing that \(a \nleq c = c \lor c' \), we obtain that \(a \leq b \lor c' \), whence, by the minimality assumption on \(c \), we obtain that \(c = c' \).

Now we apply Lemma 4.2 to the minimal nontrivial join-covers \(a \leq b \lor c, x \lor c \) and the inequality \(b \leq b_0 \lor b_1 \). Thus either \(b \leq a \lor x \) or there exists \(j < 2 \) such that \(a \leq b_j \lor c \) and \(b \leq a \lor b_j, b_j \lor x \). Suppose that the second case holds. If \(i \neq j \), then \(b \leq a \lor b_j \leq c \lor b_j \). But \(b \leq c \lor b_j \) and \(b \leq b_i \lor b_j \), whence, by \((U_j)\), either \(b \leq b_0 \) or \(b \leq b_i \) or \(b \leq c \), a contradiction. Therefore, \(i = j \) and \(b \leq x \lor b_i = b_i \), a contradiction.

Hence the first case holds, thus it follows from \(a \leq x \lor c \) that \(b \leq x \lor c \) with \(x \leq b_i \), thus, by (6.2), \(x = b_i \). This completes the proof of (6.3), and thus also the proof of (i).

Now let us establish the remaining minimal nontrivial join-covers in (ii), under the additional assumption that \(a \neq b_{1-i} \). We have already seen that \(a \nleq b_i \). If \(a \leq b_{1-i} \), then, since \(b \leq a \lor b_i \) and by the minimality assumption on \(b_{1-i} \), we obtain that \(a = b_{1-i} \), a contradiction. Therefore, we have obtained the inequalities

\[a \nleq b_0 \text{ and } a \nleq b_1. \] \hspace{1cm} (6.4)

Now we separate cases, according to (6.1).

Case 1. \(a \leq b_i \lor c, b \lor b_{1-i} \). From the second inequality and \(b \leq b_0 \lor b_1 \) it follows that \(a \leq b_0 \lor b_1 \). Thus, by (6.4) and since \(\Sigma \) is a join-seed of \(L \), there are \(x_0 \leq b_0 \) and \(x_1 \leq b_1 \) in \(\Sigma \) such that \(a \leq x_0 \lor x_1 \) is a minimal nontrivial join-cover. By applying \((B_j)\) to the inequalities \(a \leq b_i \lor c \) (see (6.3)) and \(a \leq x_i \lor x_{1-i} \) and observing that \(a \nleq b_i = x_i \lor b_i \), we obtain the inequality \(a \leq c \lor x_i \) with \(x_i \leq b_i \), thus, by (6.3), \(x_i = b_i \). On the other hand, \(b \leq a \lor b_i \leq b_i \lor x_{1-i} \) and \(x_{1-i} \leq b_{1-i} \), thus, by the minimality assumption on \(b_{1-i} \), we obtain that \(x_{1-i} = b_{1-i} \). Therefore, we have proved the following statement:

the inequality \(a \leq b_0 \lor b_1 \) is a minimal nontrivial join-cover. \hspace{1cm} (6.5)

Case 2. \(a \leq b_0 \lor c, b \lor b_{1-i} \). From (6.4), the inequalities \(a \nleq c \) and \(a \leq b_{1-i} \lor c \), and the assumption that \(\Sigma \) is a join-seed of \(L \), it follows that there are \(x \leq b_{1-i} \) and \(c' \leq c \) in \(\Sigma \) such that \(a \leq x \lor c' \) is a minimal nontrivial join-cover. By applying \((B_j)\) to the inequalities \(a \leq b \lor c, x \lor c' \) and observing that \(a \nleq c = c \lor c' \), we obtain that \(a \leq b \lor c' \), whence, since \(c' \leq c \) and by the minimality assumption on \(c \), we obtain that \(c = c' \).

Suppose now that \(x < b_{1-i} \). Applying Lemma 4.2 to the join covers \(a \leq c \lor x, b \lor c \) and \(b \leq b_0 \lor b_1 \), we obtain that either \(b \leq a \lor x \) or \(b \leq a \lor b_j, x \lor b_j \), for some \(j < 2 \). In the first case, \(b \leq a \lor x \leq c \lor x \). Since \(b \nleq b_{1-i} = b_{1-i} \lor x \), we obtain, by
(B$_j$) applied to the inequalities $b \leq b_0 \lor b_1, c \lor x$ that $b \leq b_1 \lor x$, which contradicts the assumption that the cover $b \leq b_0 \lor b_1$ is a minimal nontrivial join-cover. Hence the second case applies. If $j \neq i$, then $b \leq a \lor b_j \leq c \lor b_j$, while $b \leq c \lor b_i$ and $b \leq b_1 \lor b_j$, whence, by (U_j), either $b \leq b_i$ or $b \leq b_j$ or $b \leq c$, a contradiction. Hence $j = i$ and $b \leq x \lor b_i$ with $x < b_{1-i}$, which contradicts the minimality assumption on b_{1-i}. This completes the proof of the following statement:

the inequality $a \leq b_{1-i} \lor c$ is a minimal nontrivial join-cover, \hspace{1cm} (6.6)

and thus the proof of (ii). \hfill \Box

In particular, in the context of Lemma 6.2, it follows from (i) that $a Db_i$ always holds. Moreover, if $a \neq b_{1-i}$, then, by (ii), $a Db_{1-i}$ holds. Therefore, we obtain the following remarkable corollary.

Corollary 6.2. Let L be a lattice satisfying the identities (HS), (U), (B), (E), and (P), let Σ be a join-seed of L. For any $a, b, c \in \Sigma$, from a $D b D c$ and $a \neq c$ it follows that $a D c$.

7. **The construction**

In this section, we shall fix a complete, lower continuous, finitely spatial lattice L satisfying (HS), (U), (B), (E), and (P). By Lemma 5.2, L is dually 2-distributive, thus, by Lemma 2.2, $\Sigma = J(L)$ is a join-seed of L.

For every $a \in J(L)$, we denote by $\{A_a, B_a\}$ the Udav-Bond partition of $[a]^D_a$ associated with a, as defined in [12, Section 5]. We define a binary relation \preceq_a on $J_a(L) = \{a\} \cup [a]^D_a$ by the following:

(i) $x \preceq_a a \preceq_a y$ and $x \preceq_a y$, for all $(x, y) \in (A_a \cup \{a\}) \times (B_a \cup \{a\})$;

(ii) $x \preceq_a y$ iff $y \leq a \lor x$, for all $x, y \in A_a$;

(iii) $x \preceq_a y$ iff $x \leq a \lor y$, for all $x, y \in B_a$.

We also say that $x \prec_a y$ iff $x \preceq_a y$ and $x \neq y$, for all $x, y \in J_a(L)$.

Lemma 7.1. The relation \preceq_a is a total ordering of $J_a(L)$, for any $a \in J(L)$.

Proof. It is trivial that \preceq_a is reflexive. Let $x, y, z \in J_a(L)$ with $x \preceq_a y$ and $y \preceq_a z$, we prove that $x \preceq_a z$. This is obvious if either $a \in \{x, y, z\}$ or $(x, z) \in A_a \times B_a$, so suppose otherwise. Then x and z belong to the same block of the Udav-Bond partition associated with a, say, $\{x, z\} \subseteq A_a$. Since $y \preceq_a z$, y belongs to A_a as well. Furthermore, $z \leq a \lor y \leq a \lor x$ and thus $x \preceq_a z$. The proof for $(x, z) \subseteq B_a$ is similar. This proves that \preceq_a is transitive.

Let $x, y \in J_a(L)$ such that $x \preceq_a y \preceq_a x$, we prove that $x = y$. This is obvious if $a \in \{x, y\}$, so suppose that $a \notin \{x, y\}$. Then x and y belong to the same block of the Udav-Bond partition associated with a, say, $\{x, y\} \subseteq A_a$. Pick $u \in B_a$. Then $a \lor x = a \lor y$, but $a \leq u \lor x, u \lor y$, thus $u \lor x = u \lor y$, thus, by the join-semidistributivity of L (see Lemma 5.2),

$$a \leq u \lor x = u \lor y = u \lor (x \land y).$$

However, by Lemma 2.3, both inequalities $a \leq u \lor x, u \lor y$ are minimal nontrivial join-covers, thus $x = y$. Hence \preceq_a is antisymmetric.

Now let $x, y \in J_a(L)$, we prove that either $x \preceq_a y$ or $y \preceq_a x$. This is obvious if either $a \in \{x, y\}$ or x and y belong to different blocks of the Udav-Bond partition associated with a, so suppose otherwise, say, $\{x, y\} \subseteq B_a$. Pick $u \in A_a$. By Lemma 2.3, both inequalities $a \leq u \lor x, u \lor y$ are minimal nontrivial join-covers, thus,
by applying Lemma 3.2 to the minimal nontrivial join-covers \(a \leq u \lor x, u \lor y, u \lor y \),
we obtain that either \(x \leq a \lor y \) or \(y \leq a \lor x \), thus either \(x \leq_a y \) or \(y \leq_a x \). The
proof for \(\{ x, y \} \subseteq A_a \) is similar. Hence \(\leq_a \) is a total ordering. \(\Box \)

For any \(a \in J(L) \), let \(\varphi_a : L \to \mathcal{P}(J_a(L)) \) be the map defined by the rule
\[
\varphi_a(x) = \{ b \in J_a(L) \mid b \leq x \}, \quad \text{for all } x \in L.
\]

Lemma 7.2. The set \(\varphi_a(x) \) is order-convex in \((J_a(L), \leq_a) \), for any \(x \in L \).

Proof. Let \(u, v, w \in J_a(L) \) such that \(u \leq_a w \leq_a v \) and \(u, v, w \leq x \), we prove that
\(w \leq x \). If \(u \in \{ a \} \cup A_a \) and \(v \in \{ a \} \cup B_a \), then \(a \leq u \lor v \leq x \), and then, \(w \in \{ a \} \cup A_a \)
implies that \(w \leq a \lor u \leq x \), while \(w \in \{ a \} \cup B_a \) implies that \(w \leq a \lor v \leq x \).

Suppose now that \(u, v \in A_a \). From \(w \leq_a v \) it follows that \(w \in A_a \). Pick \(t \in B_a \).
By Lemma 2.3, all inequalities \(a \leq t \lor u, t \lor v, t \lor w \) are minimal nontrivial join-covers;
and \(a \lor v \leq a \lor u \lor w \) that \(t \lor v \leq t \lor w \leq t \lor u \), thus, by
Lemma 3.4, \(w \leq u \lor v \leq x \). The argument is similar in case \(u, v \in B_a \). \(\Box \)

Lemma 7.3. The map \(\varphi_a \) is a lattice homomorphism from \(L \) to \(\text{Co}(J_a(L)) \),
and it preserves the existing bounds.

Proof. It is clear that \(\varphi_a \) is a meet-homomorphism from \(L \) to \(\text{Co}(J_a(L)) \) and that it
preserves the existing bounds. Let \(x, y \in L \), we prove that \(\varphi_a(x \lor y) = \varphi_a(x) \lor \varphi_a(y) \).

It suffices to prove that \(b \in \varphi_a(x \lor y) \) implies that \(b \in \varphi_a(x) \lor \varphi_a(y) \), for any
\(b \in J_a(L) \). This is trivial if \(b \leq x, y \). Suppose otherwise, that is, \(b \not\leq x, y \).
Since \(b \leq x \lor y \) and \(J(L) \) is a join-seed of \(L \), there are \(b_0 \leq x \) and \(b_1 \leq y \) in
\(J(L) \) such that the inequality \(b \leq b_0 \lor b_1 \) is a minimal nontrivial join-cover. From
Corollary 6.2 it follows that both \(b_0 \) and \(b_1 \) belong to \(J_a(L) \). If \(b = a \), then the pair
\((b_0, b_1) \) belongs to \(A_a \times B_a \) or \(B_a \times A_a \). In the first case, \(b_0 \leq_a a \leq_a b_1 \), in
the second case, \(b_1 \leq_a a \leq_b b_0 \); in both cases, \(b = a \in \varphi_a(x) \lor \varphi_a(y) \).

Suppose from now on that \(b \neq a \), say, \(b \in B_a \). Pick \(c \in J(L) \) such that \(a \leq b \lor c \) is a
minimal nontrivial join-cover; observe that \(c \in A_a \). So there exists \(i < 2 \) such
that the statements (i), (ii) of Lemma 6.1 hold.

From the fact that the inequality \(a \leq b \lor c \) is a minimal nontrivial join-cover and \(c \in A_a \) it follows that \(b \in B_a \). From the relations \(b, b_i \in B_a \), \(b \neq b_i \), and
\(b \leq a \lor b_i \) it follows that
\[
b \leq_a b_i. \tag{7.1}
\]

If \(a = b_{1-i} \), then, since \(b \in B_a \), we obtain that \(b_{1-i} = a \leq_a b \), thus, by (7.1),
\(b \in \varphi_a(x) \lor \varphi_a(y) \). Suppose from now on that \(a \neq b_{1-i} \). If (ii.1) of Lemma 6.1 holds,
then the inequality \(a \leq b_0 \lor b_1 \) is a minimal nontrivial join-cover with \(b_i \in B_a \), thus
\(b_{1-i} \in A_a \), thus \(b_{1-i} \leq_a b \), which, together with (7.1), implies that \(b \leq \varphi_a(x) \lor \varphi_a(y) \).
Suppose now that (ii.2) of Lemma 6.1 holds. From the fact that \(a \leq b_{1-i} \lor c \) is a
minimal nontrivial join-cover and \(c \in A_a \) it follows that \(b_{1-i} \in B_a \). If \(b \leq_a b_{1-i} \), then,
since \(b, b_{1-i} \in B_a \), we obtain that \(b \leq a \lor b_{1-i} \leq c \lor b_{1-i} \), and then, \(\{ b \leq c \lor b_i \}
and \(b \leq b_i \lor b_{1-i} \), whence, by (U), either \(b \leq b_0 \) or \(b \leq b_1 \) or \(b \leq c \), a contradiction.
Hence \(b \nleq_a b_{1-i} \), thus, by Lemma 7.1, \(b_{1-i} \leq_a b \). Therefore, it follows again from
(7.1) that \(b \in \varphi_a(x) \lor \varphi_a(y) \). \(\Box \)

8. The Representation Theorem

Notation 8.1. Let \(\text{SUB}(\mathcal{L}_0) \) denote the class of all lattices that can be embedded
into a direct product of the form \(\prod_{i \in I} \text{Co}(T_i) \), where \(\langle T_i \mid i \in I \rangle \) is a family of
chains.
Our main theorem is the following.

Theorem 8.2. For a lattice L, the following are equivalent:

(i) L belongs to $\text{SUB}(\mathcal{L}_0)$.

(ii) L satisfies the identities (HS), (U), (B), (E), and (P).

(iii) There exists an embedding $\varphi : L \hookrightarrow \prod_{i \in I} \text{Co}(T_i)$, for some family $\{T_i \mid i \in I\}$ of chains, which preserves the existing bounds and satisfies the following additional properties:

- if L is finite, then $\sum_{i \in I} |T_i| \leq |J(L)|^2$;
- if L is subdirectly irreducible, then $I = \{0\}$, φ is atom-preserving, and, if L is finite, then $|T_0| = |J(L)|$.

Proof. (i)⇒(ii) We have seen in [12] that L satisfies (U) and (B). Moreover, it follows from Corollaries 3.3, 4.3, and 5.5 that L satisfies (E), (P), and (HS).

(ii)⇒(iii) As in [12, 13], we embed L into the filter lattice \hat{L} of L, partially ordered by reverse inclusion. This embedding preserves the existing bounds and atoms. We recall that \hat{L} is complete, lower continuous, and finitely spatial. Let $J_a(\hat{L})$ and $\varphi_a : \hat{L} \to \text{Co}(J_a(\hat{L}))$ be defined as in Section 7, and let $\psi_a : L \to \text{Co}(J_a(L))$ be the restriction of φ_a to L, for any $a \in J(\hat{L})$. Since every element of \hat{L} is a join of elements of $J(\hat{L})$, it follows from Lemma 7.3 that the map $\psi : L \to \prod_{a \in J(\hat{L})} \text{Co}(J_a(\hat{L}))$ that with any $x \in L$ associates the family $\{\psi_a(x) \mid a \in J(\hat{L})\}$ is an embedding; it obviously preserves the existing bounds. In case L is finite, we have $\hat{L} = L$ and $|J_a(L)| \leq |J(L)|$, for all $a \in J(\hat{L})$; the cardinality bound follows immediately.

Suppose now that L is subdirectly irreducible. Thus ψ_a is an embedding, for some $a \in J(\hat{L})$; pick such an a. Every atom x of L is also an atom of \hat{L}, and $\psi_a(x)$ is nonempty, thus there exists $b \in J_a(\hat{L})$ below x, whence $x = b \in J_a(\hat{L})$ and $\psi_a(x) = \{x\}$, an atom of $\text{Co}(J_a(L))$. Suppose now that L is finite, thus $\hat{L} = L$. For any $x \in J(L)$, if x' denotes the join of all elements of $J_a(L)$ below x, then $\psi_a(x) = \psi_a(x')$, whence $x = x'$, thus, since x is join-irreducible, $x \in J_a(L)$; therefore, $J_a(L) = J(L)$.

Now suppose, in addition, that L is atomistic. Then $\{x\} = \psi_a(x)$ belongs to the range of ψ_a, for any $x \in J(L)$, thus ψ_a is surjective, hence it is an isomorphism from L onto $\text{Co}(J(L), \subseteq_a)$.

(iii)⇒(i) is trivial. □

Remark 8.3. A finite, atomistic lattice L in $\text{SUB}(\mathcal{L}_0)$ may not embed atom-preservingly into any $\text{Co}(P)$, thus a fortiori into any product of the form $\prod_{i \in I} \text{Co}(T_i)$ where the T_i-s are chains, as shows [12, Example 8.1]. Also, a finite, atomistic, subdirectly irreducible lattice in SUB may not be of the form $\text{Co}(P)$, see [12, Example 8.2].

Corollary 8.4. The class $\text{SUB}(\mathcal{L}_0)$ is a finitely based variety of lattices. In particular, $\text{SUB}(\mathcal{L}_0)$ is closed under homomorphic images.

This result solves positively Problem 3 in [12].

9. The class $\text{SUB}(n)$, for $n \geq 0$

We start with the following lemma.
Lemma 9.1. Let L be a complete, lower continuous, finitely spatial lattice in $\text{SUB}(\mathcal{L} \emptyset)$, let $a \in J(L)$. Let $x, y, u \in [a]^D$ such that $a \leq u \lor x, u \lor y$. If $x \leq a \lor y$, then the inequality $x \leq u \lor y$ is a minimal nontrivial join-cover.

Proof. From Lemma 2.3 it follows that both inequalities $a \leq u \lor x, u \lor y$ are minimal nontrivial join-covers. Since $x \leq a \lor y$ and $a \leq u \lor y$, we obtain that $x \leq u \lor y$. From Lemma 2.4 it follows that $x \not\leq u, y$. Since $x \leq u \lor y$ and $J(L)$ is a join-seed of L, there are $u' \leq u$ and $y' \leq y$ in $J(L)$ such that the inequality $x \leq u' \lor y'$ is a minimal nontrivial join-cover. So $a \leq x \lor u \leq y' \lor u$ with $y' \leq y$, thus, by the minimality of y in $a \leq y \lor u$, we obtain that $y' = y$. If $u' = a$, then $a \leq u$, a contradiction; whence $u' \neq a$; but $a D x D u'$, whence, by Corollary 6.2, a $D u'$. But $u' \leq u$ and $a D u$, whence, by Lemma 2.4, $u' = u$. \hfill \Box

Now we are able to relate chains in the $J_a(L)$-s and Stirloit tracks.

Corollary 9.2. Let L be a complete, lower continuous, finitely spatial lattice in $\text{SUB}(\mathcal{L} \emptyset)$, let $a \in J(L)$, let n be a natural number, let $u, x_0, \ldots, x_n \in J_a(L)$ with $x_0 \triangleleft a_0 \triangleleft a_n \cdots \triangleleft a_n$. Denote by $\{A_a, B_a\}$ the Udav-Bond partition of $[a]^D$ associated with a. Then the following statements hold:

(i) If $u \in A_a$ and $x_0, \ldots, x_n \in \{a\} \cup B_a$, then $((x_i \mid 0 \leq i \leq n), (u \mid 1 \leq i \leq n))$ is a Stirloit track.

(ii) If $u \in B_a$ and $x_0, \ldots, x_n \in \{a\} \cup A_a$, then $((x_{n-i} \mid 0 \leq i \leq n), (u \mid 1 \leq i \leq n))$ is a Stirloit track.

Proof. (i) It follows from Lemma 9.1 that the inequality $x_i \leq u \lor x_{i+1}$ is a minimal nontrivial join-cover, for any $i \in \{0, \ldots, n-1\}$; the conclusion follows. The proof for (ii) is similar. \hfill \Box

We recall, see [13], that for any positive integer n, the class SUB_n of all lattices that can be embedded into some $\text{Co}(P)$ where P is a poset of length at most n is a finitely based variety, defined by the identities (S), (U), (B), together with new identities (H_n) and $(H_{k,n+1-k})$ for $1 \leq k \leq n$.

Notation 9.3. For a natural number n, let $\text{SUB}(n)$ denote the class of all lattices that can be embedded into a power of $\text{Co}(n)$.

Of course, $\text{SUB}(0)$ is the trivial variety while $\text{SUB}(1) = \text{SUB}(2)$ is the class of all distributive lattices. Now we obtain the main result of this section.

Theorem 9.4. Let n be a positive integer. The class $\text{SUB}(n+1)$ is a finitely generated variety, defined by the identities (HS), (U), (B), (E), (P), and $(H_{k,n+1-k})$ for $1 \leq k \leq n$. Furthermore, $\text{SUB}(n+1) = \text{SUB}(\mathcal{L} \emptyset) \cap \text{SUB}_n$.

Proof. Since the $(n+1)$-element chain belongs to SUB_n, the containment $\text{SUB}(n+1) \subseteq \text{SUB}(\mathcal{L} \emptyset) \cap \text{SUB}_n$ is obvious. Furthermore, by the results of [13] and Theorem 8.2, every lattice in $\text{SUB}(\mathcal{L} \emptyset) \cap \text{SUB}_n$ satisfies the identities (HS), (U), (B), (E), (P), and $(H_{k,n+1-k})$ for $1 \leq k \leq n$.

Now let L be a lattice satisfying the identities (HS), (U), (B), (E), (P), and $(H_{k,n+1-k})$ for $1 \leq k \leq n$, we prove that L belongs to $\text{SUB}(n+1)$. By embedding L into its filter lattice, we see that it suffices to consider the case where L is complete, lower continuous, and finitely spatial. By Theorem 8.2, L belongs to $\text{SUB}(\mathcal{L} \emptyset)$. In order to conclude the proof, it suffices to establish that $J_a(L)$ has at most $n+1$ elements, for any $a \in J(L)$. If this is not the case, then both blocks A_a and B_a of
the Udav-Bond partition of $[a]^D$ associated with a are nonempty, and $J_a(L)$ has a chain of the form

$$x_k <_a \ldots <_a x_1 <_a x_0 = a = y_0 <_a y_1 <_a \ldots <_a y_l,$$

where k and l are positive integers with $k + l = n + 1$. Define pairs σ and τ by

$$\sigma = (\langle x_i \mid 0 \leq i \leq k \rangle, \langle y_1 \mid 1 \leq i \leq k \rangle),$$

$$\tau = (\langle y_j \mid 0 \leq j \leq l \rangle, \langle x_1 \mid 1 \leq j \leq l \rangle).$$

It follows from Corollary 9.2 that both σ and τ are Stirlitz tracks, but $a \leq x_1 \lor y_1$, thus the pair (σ, τ) is a bi-Stirlitz track (see [13]) of index (k, l) with $k + l = n + 1$, which contradicts the fact that L satisfies the identity $(H_{k,l})$, see [13, Proposition 6.2].

In particular, we have proved that $\text{SUB}(n + 1)$ is a variety. Of course, it is generated by the single finite lattice $\text{Co}(n + 1)$.

Since the construction underlying Theorem 9.4 is the same as the one underlying Theorem 8.2, the corresponding additional information is preserved. For example, any member L of $\text{SUB}(n + 1)$ has an embedding into a power of $\text{Co}(n + 1)$ which preserves the zero if it exists; furthermore, if L is subdirectly irreducible, then this embedding preserves atoms.

Theorem 9.5. The variety $\text{SUB}(\mathcal{L}_0)$ is locally finite.

Proof. For a lattice L, let $\text{Csub}(L)$ denote the lattice of all convex sublattices of L, ordered by inclusion. For a variety V of lattices, let $\text{Csub}(V)$ denote the variety generated by all lattices of the form $\text{Csub}(L)$, for $L \in V$. For a chain T, the equality $\text{Co}(T) = \text{Csub}(T)$ obviously holds, whence $\text{SUB}(\mathcal{L}_0)$ is a subvariety of $\text{Csub}(\mathcal{D})$, where \mathcal{D} denotes the variety of all distributive lattices. It is proved in V. Slavík [14] that $\text{Csub}(\mathcal{D})$ is locally finite, therefore, the smaller variety $\text{SUB}(\mathcal{L}_0)$ is also locally finite. □

Corollary 9.6. The variety $\text{SUB}(\mathcal{L}_0)$ is generated by $\text{Co}(\omega)$, where ω denotes the chain of natural numbers.

If, for a poset P, we denote by $\text{SUB}(P)$ the variety generated by $\text{Co}(P)$, we obtain the ‘equation’ $\text{SUB}(\mathcal{L}_0) = \text{SUB}(\omega)$.

Corollary 9.7. The variety $\text{SUB}(\mathcal{L}_0)$ is the quasivariety join of all varieties $\text{SUB}(n)$, where $1 \leq n < \omega$.

Proof. Let Q be any quasivariety containing $\text{SUB}(n)$, for every positive integer n. Every finite lattice L in $\text{SUB}(\mathcal{L}_0)$ embeds into a finite power of some $\text{Co}(n)$, thus it belongs to Q. By Theorem 9.5, it follows that Q contains $\text{SUB}(\mathcal{L}_0)$. □

10. Weak Stirlitz tracks in lattices of convex subsets of chains

Definition 10.1. Let L be a lattice, let m, n be positive integers.

(i) A weak Stirlitz track of length n of L is a pair $\sigma = (\langle x_i \mid 0 \leq i \leq n \rangle, x)$, where x, x_i (for $0 \leq i \leq n$) are elements of L, and the following relations hold:

1. $x_0 \neq (x_0 \land x_1) \lor (x_0 \land x)$;
2. $x_k \leq x_{k+1} \lor x$, for all $k \in \{0, \ldots, n-1\}$;
3. $x_{k-1} \nleq (x_k \land x_{k+1}) \lor x$, for all $k \in \{1, \ldots, n-1\}$.
(ii) A weak bi-Stirling track of index \((m, n)\) of \(L\) is a pair \((\sigma, \tau)\), where \(\sigma = \langle x_i \mid 0 \leq i \leq m \rangle, x\rangle\) and \(\tau = \langle y_j \mid 0 \leq j \leq n \rangle, y\rangle\) are both weak Stirling tracks such that \(x_0 = y_0 \leq x_1 \lor y_1\) while \(x_0 \neq (x_0 \land x_1) \lor (y_0 \land y_1)\).

For a Stirling track \(\sigma = \langle x_i \mid 0 \leq i \leq m \rangle, (x'_i \mid 1 \leq i \leq n)\rangle\), we put \(\overline{\sigma} = \langle x_i \mid 0 \leq i \leq m \rangle, x'\rangle\), and \(\overline{\tau} = \langle x_i \mid 0 \leq i \leq n \rangle\), the trace of \(\sigma\) and of \(\overline{\sigma}\).

The trace of a (weak) bi-Stirling track \((\sigma, \tau)\) is the pair \((\overline{\sigma}, \overline{\tau})\).

Lemma 10.2. Let \(L\) be a lattice in \(\text{SUB}\). Then the following statements hold:

(i) The pair \(\overline{\sigma}\) is a weak Stirling track of \(L\), for every Stirling track \(\sigma\) of \(L\).

(ii) The pair \((\overline{\sigma}, \overline{\tau})\) is a weak bi-Stirling track of \(L\), for every bi-Stirling track \((\sigma, \tau)\) of \(L\).

Proof. (i) Let \(\sigma = \langle (x_i \mid 0 \leq i \leq m), (x'_i \mid 1 \leq i \leq n)\rangle\rangle\) be a Stirling track of \(L\). We put \(x = x'_1\) and we verify (1)–(3) of Definition 10.1(i).

The inequality (1) is trivial, while the inequality (2) follows from [12, Lemma 5.6]. Suppose that \(x_{k-1} \leq (x_k \land x_{k+1}) \lor x'_k\). If \(x_{k-1} \leq x'_k\), then, again by [12, Lemma 5.6], \(x_0 \leq x_{k-1} \lor x'_k = x'_1\), a contradiction; whence \(x_{k-1} \leq x'_1\). Furthermore, \(x_{k-1} \leq x_k\), thus \(x_{k-1} \leq x_k \land x_{k+1}\). By applying (B) to the inequalities \(x_{k-1} \leq x_k \lor x'_k, x_k \land x_{k+1} \lor x'_k\) and observing that \(x_{k-1} \leq x_k \lor x'_k, x_k \land x_{k+1}\), we obtain that \(x_{k-1} \leq (x_k \land x_{k+1}) \lor x'_k\) with \(x_k \land x_{k+1} < x_k\), which contradicts the minimality assumption on \(x_k\).

(ii) follows immediately from (i) and the join-irreducibility of \(x_0\). \(\square\)

For subsets \(X\) and \(Y\) of a chain \((T, \sqsubseteq)\), let \(X \lhd Y\) and \(X \sqsubseteq_w Y\) be the following statements:

\[
X \lhd Y \iff x < y, \text{ for all } (x, y) \in X \times Y,
\]

\[
X \sqsubseteq_w Y \iff \forall x \in X, \exists y \in Y \text{ such that } x \sqsubseteq y.
\]

Of course, the equivalence

\[
X \lhd Y \iff (X \sqsubseteq_w Y \text{ and } X \cap Y = \emptyset)
\]

holds, for all nonempty \(X, Y \in \text{Co}(T)\).

Lemma 10.3. Let \((T, \sqsubseteq)\) be a chain, let \(L\) be a sublattice of \(\text{Co}(T)\), let \(n\) be a positive integer. For any weak Stirling track \((\langle X_i \mid 0 \leq i \leq n \rangle, X)\) of \(L\), either the following statement or its dual holds:

\[
X \sqsubseteq_w X_0 \sqsubseteq_w X_1 \text{ and } X \lhd X_1 \lhd X_2 \lhd \cdots \lhd X_n.
\]

Proof. If \(X_1 \cap X \neq \emptyset\), then \(X_1 \cap X = (X_1 \cap Y) \lor (X \cap X)\) for any \(Y \in \text{Co}(T)\), a contradiction for \(Y = X_0\). Hence \(X_1 \cap X = \emptyset\). It follows that either \(X \lhd X_1\) or \(X_1 \lhd X\), say \(X \lhd X_1\). Since \(X_0 \leq X_1 \lor X\) is a nontrivial join-cover, we obtain that \(X \sqsubseteq_w X_0 \sqsubseteq_w X_1\).

Now we prove, by induction on \(k\), that the statement

\[
X \lhd X_1 \lhd X_2 \lhd \cdots \lhd X_k
\]

holds, for any \(k \in \{1, \ldots, n\}\). For \(k = 1\) this is already verified. Suppose having established (10.1) at step \(k\), with \(1 \leq k < n\).

Suppose that \(X_k \sqsubseteq_w X_{k+1}\), that is, there exists \(x \in X_k\) such that \(y \lhd x\) holds for any \(y \in X_{k+1}\). By the induction hypothesis, this also holds for any \(y \in X\), thus...
From (10.2) and (10.3) it follows that
\[X_k \subseteq_w X_{k+1}. \]
(10.2)
Suppose that \(X_k \cap X_{k+1} \neq \emptyset \). Since \(X \subseteq_w X_{k-1} \subseteq_w X_k \subseteq_w X_{k+1} \), we obtain that \(X_{k-1} \subseteq (X_k \cap X_{k+1}) \lor X \), a contradiction. Hence we have established the relation
\[X_k \cap X_{k+1} = \emptyset. \]
(10.3)
From (10.2) and (10.3) it follows that \(X_k \not< X_{k+1} \), which completes the induction step for (10.1). For \(k = n \), we obtain the conclusion of the lemma. \(\square \)

Lemma 10.4. Let \((T, \leq)\) be a chain, let \(L \) be a sublattice of \(\text{Co}(T) \), let \(m \) and \(n \) be positive integers, let \((\sigma, \tau)\) be a weak bi-Stirzitz track of \(\text{Co}(T) \) of index \((m, n)\), with
\[\begin{align*}
\sigma &= ((X_i \mid 0 \leq i \leq m), X), \\
\tau &= ((Y_j \mid 0 \leq j \leq n), Y).
\end{align*} \]
Then \(X_1 \lor Y_1 \neq X_1 \cup Y_1 \), and, putting \(Z = X_0 = Y_0 \), either the following statement or its dual holds:
\[X_m \not< \cdots < X_1 < Y_1 < \cdots < Y_n \quad \text{and} \quad X_1 \subseteq_w Z \subseteq_w Y_1. \]
Furthermore, \(Z \) does not meet simultaneously \(X_1 \) and \(Y_1 \), and \(\text{Co}(m + n) \) embeds into \(L \).

Proof. It follows from Lemma 10.3 that we may assume, without loss of generality, that the following statement holds:
\[X_m \not< \cdots < X_1 < X \quad \text{and} \quad X_1 \subseteq_w X_0 \subseteq_w X. \]
(10.4)
Suppose that \(X_0 \not\subseteq_w X_1 \). Since \(X_1 \subseteq_w X_0 \) and \(X_0 \not\subseteq X_1 \), \(X_1 \) is a proper final segment of \(X_0 \). Thus, from \(X_1 \not< X \) it follows that \(X_0 \not< X \), but \(X_0 \subseteq X_1 \lor X \), whence \(X_0 \not\subseteq X_1 \), a contradiction. Hence we have established the relation
\[X_0 \not\subseteq_w X_1. \]
(10.5)
Now suppose that \(Y_1 \not\subseteq_w Y_0 \) and \(Y_1 \not< Y \). As in the paragraph above, we obtain that \(Y_0 \not\subseteq_w Y_1 \). By (10.5) and since \(X_0 = Y_0 = Z \), there exists \(z \in Z \) such that \(y \not< z \) for any \(y \in X_1 \cup Y_1 \), which contradicts the fact that \(Z \subseteq X_1 \lor Y_1 \). Therefore, by Lemma 10.3, the following statement holds:
\[Y < Y_1 < \cdots < Y_n \quad \text{and} \quad Y \subseteq_w Y_0 \subseteq_w Y_1. \]
(10.6)
If \(X_1 \lor Y_1 = X_1 \cup Y_1 \), then \(Z = (Z \cap X_1) \lor (Z \cap Y_1) \), a contradiction. Hence \(X_1 \lor Y_1 \neq X_1 \cup Y_1 \), in particular, \(X_1 \cap Y_1 = \emptyset \). This, together with (10.4) and (10.6), establishes the statement
\[X_m \not< \cdots < X_1 < Y_1 < \cdots < Y_n. \]
Furthermore, if \(Z \) meets both \(X_1 \) and \(Y_1 \), then \(Z = (Z \cap X_1) \lor (Z \cap Y_1) \), a contradiction.

In particular, sending \(\{i\} \) to \(X_{m-i} \) for \(0 \leq i < m \) and to \(Y_{i-m+1} \) for \(m \leq i < m + n \) defines a lattice embedding from \(\text{Co}(m + n) \) into \(L \). \(\square \)
11. Subvarieties of $\text{SUB}(\mathcal{L}_0)$

Notation 11.1. For positive integers m and n, we set

$$L_{m,n} = \{ X \in \text{Co}(m + n + 1) \mid m \in X \Rightarrow m - 1 \in X \},$$

and we put $c_m = \{ m - 1, m \}$. Observe that $c_m \in J(L_{m,n})$.

The lattices $L_{m,n}$, for $m + n \leq 4$, are diagrammed on Figure 4, together with $\text{Co}(3)$ and $\text{Co}(4)$.

Definition 11.2. For positive integers m and n, the canonical bi-Stirlitz track of $L_{m,n}$ is defined as (σ_0, τ_0), where we put

$$\sigma_0 = (\langle c_m, \{ m - 1 \}, \ldots, \{ 0 \} \rangle, \langle \{ m + n \} \mid 1 \leq i \leq m \rangle),$$

$$\tau_0 = (\langle c_m, \{ m + 1 \}, \ldots, \{ m + n \} \rangle, \langle \{ 0 \} \mid 1 \leq j \leq n \rangle).$$

We observe that the relation $\{ m - 1 \} < c_m$ (between entries of (σ_0, τ_0)) holds.

Lemma 11.3. Let m and n be positive integers. Then the following statements hold:

(i) $L_{m,n}$ is a $(0,1)$-sublattice of $\text{Co}(m + n + 1)$.

(ii) The join-irreducible elements of $L_{m,n}$ are the singletons $\{ i \}$, where $0 \leq i \leq m + n$ and $i \neq m$, together with c_m.

(iii) $L_{m,n}$ is subdirectly irreducible, with monolith (smallest nonzero congruence) $\Theta(\{ m - 1 \}, c_m)$.

(iv) All weak bi-Stirlitz tracks γ of $L_{m,n}$ with index (m', n') such that $m' + n' = m + n$ have trace either $(\tilde{\sigma}_0, \tilde{\tau}_0)$ or $(\tilde{\tau}_0, \tilde{\sigma}_0)$ (see Definition 11.2).

Proof. (i)–(iii) are straightforward. The result of (iv) follows easily from Lemma 10.4. □

The proof of the following lemma is straightforward.

Lemma 11.4. Let K and L be lattices, let $f : K \rightarrow L$ be a lower bounded, surjective lattice homomorphism, let $\beta : L \leftarrow K$ be the join-homomorphism defined by $\beta(x) = \min f^{-1} \{ x \}$, for all $x \in L$. Then the following statements hold:

(i) The image under β of $J(L)$ is contained in $J(K)$.

(ii) The image under β of any minimal nontrivial join-cover of L is a minimal nontrivial join-cover of K.

(iii) The image under β of any Stirlitz track (resp., bi-Stirlitz track) of L is a Stirlitz track (resp., bi-Stirlitz track) of K.

Now we can classify all finite subdirectly irreducible members of $\text{SUB}(\mathcal{L}_0)$.

Theorem 11.5.

(i) Let L be a finite subdirectly irreducible lattice in $\text{SUB}(\mathcal{L}_0)$, let n be a positive integer. Then either $\text{Co}(n)$ embeds into L or L embeds into $\text{Co}(n)$.

(ii) Let V be a subvariety of $\text{SUB}(\mathcal{L}_0)$. Then either $\text{SUB}(n) \subseteq V$ or $V \subseteq \text{SUB}(n)$, for every positive integer n.

(iii) The only finite subdirectly irreducible members of $\text{SUB}(\mathcal{L}_0)$ are the $\text{Co}(n)$, for $n > 0$, and the $L_{m,n}$, for $m, n > 0$.
Proof. (i) Suppose that \(L \) does not embed into \(\text{Co}(n) \). Since \(L \) is subdirectly irreducible, it does not belong to \(\text{SUB}(n) \), thus, by Theorem 9.4, it does not belong to \(\text{SUB}_{n-1} \). Hence, there exists \(k \in \{1, \ldots, n-1\} \) such that \(L \) does not satisfy the identity \((H_{k,n-k})\), see [13]. Since \(L \) is finite, it follows from [13, Proposition 6.2] that \(L \) has a bi-Stirzitz track of index \((k,n-k)\), thus, by Lemma 10.4, \(\text{Co}(n) \) embeds into \(L \).

(ii) Suppose that \(\text{SUB}(n) \) is not contained in \(V \), that is, \(\text{Co}(n) \notin V \). We prove that any lattice \(L \in V \) belongs to \(\text{SUB}(n) \). Since \(\text{SUB}(\mathcal{L}_0) \) is locally finite (Theorem 9.5), it suffices to consider the case where \(L \) is finite, hence it suffices to consider the case where \(L \) is finite and subdirectly irreducible. From \(\text{Co}(n) \notin V \) it follows that \(\text{Co}(n) \) does not embed into \(L \), thus, by (i), \(L \) embeds into \(\text{Co}(n) \), thus it belongs to \(\text{SUB}(n) \).

(iii) Let \(L \) be a finite subdirectly irreducible member of \(\text{SUB}(\mathcal{L}_0) \). Suppose that \(L \) is nondistributive. There exists a largest integer \(n \geq 2 \) such that \(\text{Co}(n) \) embeds into \(L \). By (i), \(L \) embeds into \(\text{Co}(n+1) \). Suppose that \(L \) is not isomorphic to \(\text{Co}(n) \). Since \(L \) is subdirectly irreducible, \(L \notin \text{SUB}(n) \), thus, as in the proof of (i), there are \(k, l > 0 \) such that \(k + l = n \) and \(L \) does not satisfy \((H_{k,l})\), hence \(L \) has a bi-Stirzitz track \((\sigma, \tau)\) of index \((k,l)\), with, say,

\[
\sigma = ((X_i \mid 0 \leq i \leq k), (X'_i \mid 1 \leq i \leq k)), \\
\tau = ((Y_j \mid 0 \leq j \leq l), (Y'_j \mid 1 \leq j \leq l)).
\]

Put \(Z = X_0 = Y_0 \). It follows from Lemma 10.4 that, up to possibly reversing the ordering of \(n+1 \) or exchanging \(\sigma \) and \(\tau \),

\[
X_k \prec \cdots \prec X_1 \prec Y_1 \prec \cdots \prec Y_l \text{ and } X_1 \preceq_w Z \preceq_w Y_1, \quad (11.1) \\
X_1 \lor Y_1 \neq X_1 \cup Y_1 \text{ and } Z \cap Y_1 = \emptyset. \quad (11.2)
\]

Since \(L \) has at most \(n+1 \) join-irreducible elements, these elements are exactly the \(X_i \)-s, for \(1 \leq i \leq k \), the \(Y_j \)-s, for \(1 \leq j \leq l \), and \(Z \). Furthermore, it follows from (11.1) and (11.2) that \(X_i = \{k-i\} \) for \(1 \leq i \leq k \), \(Y_j = \{k+j\} \) for \(1 \leq j \leq l \), and \(Z \) is either equal to \(\{k\} \) or to \(\{k-1,k\} \). In the first case, \(L \cong \text{Co}(n+1) \), a contradiction, thus the second case applies. But then, \(L \cong L_{k,l} \).

\[\square\]

Remark 11.6. There exists a proper class of infinite subdirectly irreducible lattices in \(\text{SUB}(\mathcal{L}_0) \), for example, all lattices of the form \(\text{Co}(T) \) where \(T \) is an infinite chain. However, each of those lattices generates the variety \(\text{SUB}(\mathcal{L}_0) \).

As the union of the \(\text{SUB}(n) \), for \(1 \leq n < \omega \), generates \(\text{SUB}(\mathcal{L}_0) \), we obtain the following corollary.

Corollary 11.7. Every proper subvariety of \(\text{SUB}(\mathcal{L}_0) \) is finitely generated.

For a lattice \(L \), let \(V(L) \) denote the lattice variety generated by \(L \).

Proposition 11.8. Let \((m,n) \) and \((m',n') \) be pairs of positive integers such that \(m + n = m' + n' \). If \(L_{m,n} \) belongs to \(V(L_{m',n'}) \), then \((m,n) = (m',n') \).

Proof. By Jónsson’s Lemma (see B. Jónsson [9] or P. Jipsen and H. Rose [7]), there are a sublattice \(L \) of \(L_{m',n'} \) and a congruence \(\theta \) of \(L \) such that \(L_{m,n} \cong L/\theta \). The canonical bi-Stirzitz track \((\sigma_0, \tau_0)\) of index \((m,n)\) of \(L_{m,n} \cong L/\theta \) can be, by
Lemma 12.3. Let either the following statement or its dual holds:

Lemma 12.2. disjoint elements of exactly the varieties \(V \) such that \(\Lambda_{m,n} \)

Proof. It follows from Theorem 11.5 that the join-irreducible elements of \(B \) of Proposition 11.8, these varieties are mutually incomparable, hence they are atoms of \(B_n \). Since \(B_n \) is finite distributive, it is Boolean with \(n - 1 \) atoms.

Corollary 11.9. For any integer \(n \geq 2 \), the lattice \(B_n \) of all lattice varieties \(V \) such that \(\text{SUB}(n) \subseteq V \subseteq \text{SUB}(n + 1) \) is isomorphic to \(2^{n-1} \).

Proof. It follows from Theorem 11.5 that the join-irreducible elements of \(B_n \) are exactly the varieties \(V(L_{k,l}) \), where \(k, l > 0 \) and \(k + l = n \). Furthermore, by Proposition 11.8, these varieties are mutually incomparable, hence they are atoms of \(B_n \).

The results of this section describe completely the lattice of all subvarieties of \(\text{SUB}(\mathcal{L}_0) \). This lattice is countable. Its bottom is diagrammed on the left half of Figure 4. We use standard notation, for example, \(N_5 \) denotes the variety generated by the pentagon, \(L_{1,2} \) denotes the variety generated by \(L_{1,2} \), and so on. The right half of Figure 4 represents small subdirectly irreducible members of \(\text{SUB}(\mathcal{L}_0) \).

12. Projective members of \(\text{SUB}(\mathcal{L}_0) \)

Notation 12.1. Let \(m, n > 0 \). We define lattice-theoretical statements \(\Lambda_n(x_0, \ldots, x_{n-1}) \) and \(\Lambda_{m,n}(x_0, x_1, \ldots, x_{m+n}) \) as follows:

\[
\Lambda_n(x_0, \ldots, x_{n-1}) = x_k \leq x_i \vee x_j \text{ if } 0 \leq i < k < j < n \\
\text{and } x_i \wedge x_j = x_0 \wedge x_1 \text{ for } i \neq j;
\]

\[
\Lambda_{m,n}(x_0, x_1, \ldots, x_{m+n}) = x_k \leq x_i \vee x_j \text{ if } 0 \leq i < k < j \leq m + n,
\]

\[
x_{m-1} \leq x_m,
\]

\[
\text{and } x_i \wedge x_j = x_0 \wedge x_2 \text{ for } i \neq j \text{ and } \{i, j\} \neq \{m - 1, m\}.
\]

We leave to the reader the easy proof of the following lemma.

Lemma 12.2. Let \((T, \leq) \) be a finite chain, let \(n > 0 \), let \(A_0, \ldots, A_{n-1} \) be pairwise disjoint elements of \(\text{Co}(T) \) such that \(A_k \subseteq A_i \vee A_j \), for \(0 \leq i < k < j < n \). Then either the following statement or its dual holds:

There are elements \(x_i, y_i \) of \(T \) such that \(A_i = \{x_i, y_i\} \), for all \(i < n \), and

\[
x_0 \leq x_1 \leq \cdots \leq x_{n-1} \leq y_{n-1}.
\]

The following lemma is the key to all projectivity results of the present section.

Lemma 12.3. Let \(L \in \text{SUB}(\mathcal{L}_0) \). The following statements hold:

(i) For all \(n > 0 \) and all \(a_0, \ldots, a_{n-1} \in L \) such that \(\Lambda_n(a_0, \ldots, a_{n-1}) \) holds, there exists a unique \(\varphi: \text{Co}(n) \to L \) such that \(\varphi([i]) = a_i \), for all \(i < n \).
(ii) For all $m, n > 0$ and all $a_0, a_1, \ldots, a_{m+n} \in L$ such that $\Lambda_{m,n}(a_0, a_1, \ldots, a_{m+n})$ holds, there exists a unique $\varphi : L_{m,n} \rightarrow L$ such that $\varphi (\{ i \}) = a_i$, for all $i \neq m$, while $\varphi (\{ m - 1, m \}) = a_m$.

Proof. Without loss of generality, L is generated by $\{ a_i \mid 0 \leq i < n \}$ in (i), by $\{ a_i \mid 0 \leq i \leq m + n \}$ in (ii). In particular, by Theorem 9.5, L is finite. Since L is a finite member of $\text{SUB}(\mathcal{L} \mathcal{O})$, we may assume, by Theorem 8.2, that $L = \text{Co}(T)$, for a finite chain (T, \sqsubseteq). Let u be the common value for all $a_i \land a_j$ for $i \neq j$ in (i), for $i \neq j$ and $\{ i, j \} \neq \{ m - 1, m \}$ in (ii). The uniqueness statement about φ is, in both cases, obvious, and if there is a map φ as desired, then it is given by the rule $\varphi (X) = \bigvee_{x \in X} a_x$, for all $X \in \text{Co}(n)$ in (i), for all $X \in L_{m,n}$ in (ii), with the convention that the empty join equals u. From the assumption that the a_i-s satisfy (the statement involving joins in) Λ_{n} in (i) and $\Lambda_{m,n}$ in (ii) it follows easily that φ is a join-homomorphism.

Now we prove that φ is a meet-homomorphism. Suppose first that u is nonempty. The join of any two members of L is their union, whence L is distributive. The statement that φ is a meet-homomorphism follows immediately in (i). In (ii), for
all $X, Y \in L_{m,n}$, we compute:

$$\varphi(X) \land \varphi(Y) = \bigvee\{a_i \land a_j \mid (i, j) \in X \times Y\} = \begin{cases} \varphi(X \cap Y) \lor a_{m-1}, & \text{if } (m - 1, m) \in (X \times Y) \cup (Y \times X), \\ \varphi(X \cap Y), & \text{otherwise}. \end{cases}$$

But in the first case, $m - 1$ belongs to $X \cap Y$, so we obtain again that $\varphi(X) \land \varphi(Y) = \varphi(X \cap Y)$.

Suppose now that $u = \emptyset$. By Lemma 12.2, we may assume without loss of generality that $a_i = [x_i, y_i]$, for elements $x_i \leq y_i$ of T, for $i < n$ in (i) and $i \leq m + n$ in (ii), such that

$$x_0 \leq y_0 \leq \cdots \leq x_{n-1} \leq y_{n-1}$$

in (i), while

$$x_0 \leq y_0 \leq \cdots \leq x_{m-2} \leq y_{m-2} \leq x_m \leq y_m \leq \cdots \leq x_{m+n} \leq y_{m+n}$$

in (ii). Furthermore, from the assumption on the a_i-s it follows that $x_{m-1} = x_m$ and $y_{m-1} \leq y_m$ in (ii), in particular,

$$x_0 \leq x_1 \leq \cdots \leq x_{m+n} \text{ and } y_0 \leq y_1 \leq \cdots \leq y_{m+n}. $$

Hence, in both cases (i) and (ii), the value of $\varphi(X)$ for X in the domain of φ can be computed by the rule $\varphi(X) = [x_i, y_j]$ whenever $X = [i, j]$, for $i \leq j$. It follows easily that φ is a meet-homomorphism.

Now we can prove the main result of the present section.

Theorem 12.4. Every finite subdirectly irreducible member of $\text{SUB}(\mathcal{L} \mathcal{O})$ is projective in $\text{SUB}(\mathcal{L} \mathcal{O})$.

Proof. We first prove that $\text{Co}(n)$ is projective in $\text{SUB}(\mathcal{L} \mathcal{O})$, for all $n > 0$. Let $L \in \text{SUB}(\mathcal{L} \mathcal{O})$, let $\pi: L \to \text{Co}(n)$ be a surjective lattice homomorphism, we prove that there exists a lattice homomorphism $\varphi: \text{Co}(n) \to L$ such that $\pi \circ \varphi = \text{id}_{\text{Co}(n)}$. Since $\text{Co}(n)$ is finite, we may replace L by a finitely generated sublattice, which, by Theorem 9.5, is finite. Since L is finite, the sublattice $\pi^{-1}\{X\}$ has a least element, that we denote by $\beta(X)$, for any $X \in \text{Co}(n)$. Put $a_i = \beta([i, j])$, for all $i < n$. Since β is a join-homomorphism, the following statement holds:

$$a_k \leq a_i \lor a_j, \text{ for } 0 \leq i < k < j < n. \quad (12.1)$$

Now we define inductively elements b' and a'_l of L, for $i < n$ and $l < \omega$, as follows:

$$a'_0 = a_i; \quad (12.2)
$$

$$b' = \bigvee\{a'_i \land a'_j \mid i \neq j\}; \quad (12.3)
$$

$$a'_{i+1} = a'_l \lor b'. \quad (12.4)$$

Since L is finite, there exists $l < \omega$ such that $a'_{i+1} = a'_l$, for all $i < n$. From (12.1), (12.2), and (12.4), it is easy to prove, by induction on l, the inequalities

$$a'_k \leq a'_l \lor a'_j, \text{ for } 0 \leq i < k < j < n. \quad (12.5)$$

Furthermore, for $i \neq j$ and k in $\{0, \ldots, n - 1\}$, $a'_i \land a'_j \leq b' \leq a'_{i+1} = a'_k$. Hence, the statement $\Lambda_n(a'_0, \ldots, a'_{n-1})$ holds, thus, by Lemma 12.3(i), there exists a lattice homomorphism $\varphi: \text{Co}(n) \to L$ such that $\varphi([i]) = a'_i$, for all $i < n$. From (12.2)–(12.4) it follows that $\pi(a'_i) = \{i\}$, for all $i < n$, whence $\pi \circ \varphi = \text{id}_{\text{Co}(n)}$.

The proof that $L_{m,n}$ is projective, for $m, n > 0$, is similar, by using Lemma 12.3(ii). The definitions of the a_i-s and the d_i-s are exactly the same as for the $\text{Co}(n)$ case, while the join in the definition of b_i in (12.3) has to be taken over the pairs (i, j) such that $i \neq j$ and $\{i, j\} \neq \{m - 1, m\}$.

By Theorem 11.5, there are no other finite subdirectly irreducible members of $\text{SUB}(\mathcal{LO})$, thus the proof is complete. □

As a consequence of this, we obtain the following result, which shows that $\text{SUB}(\mathcal{LO})$ is a quite peculiar variety, see the contrast with Example 14.1.

Theorem 12.5. Every subquasivariety of $\text{SUB}(\mathcal{LO})$ is a variety.

Proof. Let Q be a subquasivariety of $\text{SUB}(\mathcal{LO})$, we prove that Q is a variety. It suffices to prove that every homomorphic image L of a lattice L' in Q belongs to Q. Since L belongs to the locally finite variety $\text{SUB}(\mathcal{LO})$, it suffices to consider the case where L is finite. By considering the subdirect decomposition of L, it suffices then to consider the case where L is subdirectly irreducible. By Theorem 12.4, L is projective within $\text{SUB}(\mathcal{LO})$, thus it embeds into L'; whence L belongs to Q. □

13. **AN EXAMPLE**

For a chain Q and a subset P of Q, endowed with the induced ordering, the lattice $\text{Co}(P)$ embeds into $\text{Co}(Q)$, thus it belongs to the variety generated by $\text{Co}(Q)$. We shall now show, through an example, that this simple observation cannot be extended to arbitrary posets.

Let P and Q be the posets diagrammed on Figure 5. Obviously, P is a subset of Q, endowed with the induced ordering.

![Figure 5. The posets P and Q](image-url)

By induction on the natural number n, we define lattice terms $x_1^{(n)}$, $x_2^{(n)}$, s, and t, in the variables x_0, x_1, x_2, x_3, x_a, x_b, putting $x_1^{(0)} = x_1$, $x_2^{(0)} = x_2$, and

- $x_1^{(n+1)} = x_1^{(n)} \land (x_0 \lor x_2^{(n)}) \land (x_0 \lor x_b)$;
- $x_2^{(n+1)} = x_2^{(n)} \land (x_3 \lor x_1^{(n)}) \land (x_3 \lor x_a)$,

for all $n < \omega$, then $s = x_1 \land (x_0 \lor ((x_1 \lor x_b) \land (x_2 \lor x_a)))$, and then

$$t = (x_1 \land x_b) \lor (x_1 \land (x_0 \lor x_a)) \lor (x_1 \land (x_2 \lor x_a)) \lor (x_1 \land (x_0 \lor (x_2 \land (x_1 \lor x_a)))) \lor (x_1 \land (x_0 \lor (x_2 \land (x_3 \lor x_b)))).$$
Finally, let $(*)$ be the following identity:
\[
x_1^{(2)} \leq s \lor t.
\]

Lemma 13.1. The lattice $\text{Co}(Q)$ satisfies $(*)$.

Proof. Let $X_0, X_1, X_2, X_3, X_a, X_b$ be elements of $\text{Co}(Q)$, let S and T be obtained by evaluating s and t at those parameters. We prove that $X_1^{(2)}$ is a subset of $S \cup T$.

So, let $x_1 \in X_1^{(2)}$. If $x_1 \in X_0 \cup X_2$, then $x_1 \in (X_0 \cap X_1) \cup (X_2 \cap X_1) \subseteq T$; suppose now that $x_1 \notin X_0 \cup X_2$. Since $x_1 \in X_0 \cap X_2$, there are $x_0 \in X_0$ and $x_2 \in X_2$ such that either $x_0 \leq x_1 \leq x_2$ or $x_2 \leq x_1 \leq x_0$.

Suppose that the first case occurs. If $x_2 \in X_1 \cup X_3$, then
\[
x_1 \in \left(X_1 \cap (X_0 \lor (X_1 \land X_2)) \right) \lor \left(X_1 \cap (X_0 \lor (X_2 \land X_3)) \right) \subseteq T.
\]

Suppose now that $x_2 \notin X_1 \cup X_3$. Since $x_2 \in X_1 \lor X_3$, there are $x \in X_1$ and $x_3 \in X_3$ such that either $x \leq x_2 \leq x_3$ or $x_3 \leq x_2 \leq x$. In the second case, from $x_1 \leq x_2 \leq x$ it follows that $x_2 \in X_1$, a contradiction. Thus $x_2 \leq x_3$.

From $x_1 \in X_1^{(2)}$ it follows that $x_1 \in X_0 \lor X_2$. If x_1 belongs to $\downarrow X_0$ (the lower subset of Q generated by X_0), then $x_1 \in X_0 \cap X_1 \subseteq T$. If $x_1 \in X_2$, then $x_1 \in X_1 \land X_2 \subseteq T$. Suppose now that $x_1 \notin \downarrow X_0 \cup X_2$. Since $x_1 \in X_0 \lor X_2$, there exists $x_0 \in X_0$ such that $x_1 \leq x_0$. Furthermore, from $x_2 \in X_2^{(1)}$ it follows that $x_2 \in X_2 \lor X_a$. If $x_2 \in \uparrow X_a$, then $x_2 \in X_2 \lor (X_1 \lor X_a)$, thus $x_1 \in X_1 \lor (X_0 \lor (X_2 \lor (X_1 \lor X_a))) \subseteq T$.

Suppose now that $x_2 \notin \uparrow X_a$. Since $x_2 \notin X_3$ and $x_2 \in X_3 \lor X_a$, there exists $x_a \in X_a$ such that $x_a \leq x_2$.

If $x_a \leq x_1$, then $x_1 \in X_1 \lor (X_2 \lor X_a) \subseteq T$. If $x_1 \leq x_a$, then $x_1 \in X_1 \lor (X_0 \lor X_a) \subseteq T$. Suppose now that $x_a \parallel x_1$ (where \parallel denotes incomparability). If $x_2 \leq x_a$, then $x_1 \in X_1 \lor (X_0 \lor (X_2 \lor (X_1 \lor X_a))) \subseteq T$. If $x_a \leq x_2$, then $x_2 \in X_2 \lor (X_3 \lor X_b)$, thus $x_1 \in X_1 \lor (X_0 \lor (X_2 \lor (X_3 \lor X_b))) \subseteq T$. Suppose now that $x_2 \parallel x_a$. Since $x_1 \parallel x_a$, we have obtained the inequalities
\[
x_0 \leq x_1 \leq x_2 \leq x_3, \quad x_1 \leq x_b, \quad x_a \leq x_2, \quad x_1 \parallel x_a, \quad \text{and} \quad x_2 \parallel x_b. \quad (13.1)
\]
This leaves the only possibility $x_p = p$, for all $p \in P$. In particular,
\[
x_1 = 1 \in \{0\} \lor \{c\} \subseteq X_0 \lor ((X_1 \lor X_b) \lor (X_2 \lor X_a)),
\]
from which it follows that $x_1 \in S$.

The other case to consider is $x_2 \leq x_1 \leq x_0$. Then, applying the argument above to the dual of \leq, we obtain the dual of (13.1), whence $x_k = 3 - k$, for all $k \in \{0, 1, 2, 3\}$, $x_a = b$, and $x_b = a$. In particular,
\[
x_1 = 2 \in \{3\} \lor \{c\} \subseteq X_0 \lor ((X_1 \lor X_b) \lor (X_2 \lor X_a)),
\]
from which it follows again that $x_1 \in S$. In any case, $x_1 \in S \cup T$. \hfill \square

Lemma 13.2. The lattice $\text{Co}(P)$ does not satisfy $(*)$.

Proof. Put $x_p = \{p\}$, an element of $\text{Co}(P)$, for any $p \in P$. Then the left hand side of $(*)$, evaluated with those parameters, is $x_1 = x_1^{(2)} = \{1\}$, while the right hand side is empty. Therefore, $\text{Co}(P)$ does not satisfy $(*)$. \hfill \square

Hence we have reached the desired conclusion.
Proposition 13.3. The poset P embeds into the finite poset Q, but the lattice $\text{Co}(P)$ does not belong to the variety generated by $\text{Co}(Q)$.

14. Open problems

As in [13], we denote, for a class \mathcal{K} of posets, by $\text{SUB}(\mathcal{K})$ the lattice variety generated by $\{\text{Co}(P) \mid P \in \mathcal{K}\}$. Say that a lattice variety V is a Stirling variety, if it is of the form $\text{SUB}(\mathcal{K})$ for some class \mathcal{K} of posets.

It is clear that any join of Stirling varieties is a Stirling variety, thus the set of all Stirling varieties, partially ordered by inclusion, is a complete join-semilattice. In particular, it is a lattice, however, we do not know whether the meet in this lattice is the same as the meet for varieties.

Problem 1. Is the intersection of two Stirling varieties a Stirling variety?

Problem 2. Let L be a lattice in SUB. Does there exist a smallest Stirling variety V such that $L \in V$?

A related problem is the following.

Problem 3. For a finite lattice L in SUB, are there only finitely many Stirling varieties V which are minimal with the property that $L \in V$?

Analogies between our results with classical results of the spatial theory of modular lattices may fail. For example, the main result of C. Herrmann, D. Pickering, and M. Roddy [6] states that every modular lattice embeds, within its variety, into an algebraic and spatial modular lattice. On the other hand, every lattice L in SUB embeds into an algebraic and spatial lattice in SUB — namely, some $\text{Co}(P)$, however, $\text{Co}(P)$ may not belong to $V(L)$, for example for $L = N_5$. This leads to the following problem.

Problem 4. Does every lattice in SUB embed, within its variety, into some algebraic and spatial lattice?

Of course, by Whitman’s Theorem, every lattice L embeds into a partition lattice, which is both algebraic and spatial, but which does not necessarily lie in the same variety as L. We do not even know whether every lattice embeds, within its variety, into an algebraic and spatial lattice! While working on the present paper, the authors met the following intriguing problem.

Problem 5. Can every lattice be embedded into some lattice that is both algebraic and dually algebraic?

Note added. The second author recently solved Problem 5.

Problem 6. For a finite poset P, is the class of all sublattices of powers of $\text{Co}(P)$ a variety?

The answer to Problem 6 in the particular case where P is a chain is, by the results of the present paper, positive, see also Theorem 12.5. The results of Section 13 also suggest a positive answer to Problem 6 in general.

Example 14.1. There are many finite lattices L for which the quasivariety $Q(L)$ generated by L is not a variety, for example, the modular lattice $M_{3,3}$ of Figure 6, see V. A. Gorbunov [3, p. 257]. It is also possible to find L a bounded homomorphic image of a free lattice. For example, the lattice L_4^1, see P. Jipsen and H. Rose.
Figure 6. The lattices M_{3-3}, L_9^1, and L

$[7, 8]$, is bounded and subdirectly irreducible. It also has a unique doubly reducible element; doubling this element gives a finite, bounded lattice L. Furthermore, L satisfies the Whitman condition, thus it is projective, see [5]. The lattices L_9^1 and L are diagrammed on Figure 6. Since L_9^1 is a quotient of L, it belongs to $V(L)$. If L_9^1 belonged to $Q(L)$, then, since it is subdirectly irreducible, it would embed into L, which is easily seen not to be the case. Therefore, $Q(L) \neq V(L)$. Compare this with Theorem 12.5.

Problem 7. What are the congruence lattices of lattices in $\text{SUB}(\mathcal{L}\Omega)$?

Our next problems are related to the variety $\text{Csub}(D)$ studied by V. Slavík in [14]. This variety contains the variety $\text{SUB}(\mathcal{L}\Omega)$ studied in the present paper, see the proof of Theorem 9.5. In [14], some properties of the finite subdirectly irreducible members of $\text{Csub}(D)$ are given, for example, every proper dual ideal is a distributive lattice.

Problem 8. Describe the lattice of subvarieties and classify the finite subdirectly irreducible members of $\text{Csub}(D)$.

In V. Slavík [15], it is proved that $\text{Csub}(D)$ has uncountably many subvarieties, but this does not seem to rule out a reasonable classification of finitely generated subvarieties.

Furthermore, it is proved in [14] that $\text{Csub}(D) \cap M = M_\omega$, where M (resp., M_ω) denotes the variety of all modular lattices (resp., the variety generated by the infinite countable lattice M_ω of length two). It is well-known that M_ω is finitely based, see B. Jónsson [10] or [7, Theorem 3.32]. This suggests the following problems.

Problem 9. Is the variety $\text{Csub}(D)$ finitely based? More generally, if V is a self-dual, finitely based variety of lattices, is $\text{Csub}(V)$ finitely based?

Problem 10. Describe $\text{Csub}(D) \cap \text{SD}_\vee$, where SD_\vee denotes the quasivariety of all join-semidistributive lattices. In particular, is $\text{Csub}(D) \cap \text{SD}_\vee$ a finitely based quasivariety?

Acknowledgment

This work was completed during the first author’s visit at the University of Caen in March and April 2002, supported by a Young Scientist INTAS fellowship program. The hospitality of the SDAD team can never be forgotten.
This work was started during the two authors’ visit at the Charles University, from October to December 2001. Special thanks are due to Jiří Tůma and Václav Slavík.

REFERENCES

(M. Semenova) Institute of Mathematics of the Siberian Branch of RAS, Acad. Kop-tyug prosp. 4, 630090 Novosibirsk, Russia

E-mail address: semenova@math.nsc.ru

(F. Wehrung) CNRS, UMR 6139, DÉPARTEMENT DE MATHEMATIQUES, UNIVERSITÉ DE CAEN, 14032 CAEN CEDEX, FRANCE

E-mail address: wehrung@math.unicaen.fr

URL: http://www.math.unicaen.fr/~wehrung