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Abstract

Possession Island, in the Crozet Archipelago, consists of volcanic units
erupted mainly between ∼ 5 and 0.5 Ma. A paleomagnetic sampling was
carried out along several sections distributed near the northern, eastern,
and southeastern coasts. A total of 45 independent flows were sampled
(320 samples). For each flow a precisely defined characteristic remanence
direction was usually isolated after a careful progressive cleaning in alter-
nating fields. However, particularly complex remanence behavior is often
observed. The magnetostratigraphy of the lava pile is quite simple, with
reversed rocks in the lower part and normal units in the upper part of
two sections. A third section is of normal polarity throughout its whole
thickness, including three excursional directions. We did not find any
intermediate directions between the normal and reverse magnetozones.
Thus we have no evidence for the recording of the Matuyama-Brunhes
transition expected from a previous study [1]. The amplitude of paleosec-
ular variation, estimated from between-flow dispersion from the field of an
axial dipole, is 11.8◦ with 95% confidence limits between 9.3◦ and 14.0◦.
This value is consistent with the general anisotropic statistical model for
paleosecular variation of Constable and Johnson [2].

1 Introduction

The existence of broad fluctuations in direction and magnitude, spanning a
variety of spatial and temporal scales, is a fundamental characteristic of the
Earth’s magnetic field. These oscillations provide essential inputs for a bet-
ter understanding of the field-generating process occurring in the Earth’s outer
core and they may also provide information on possible lateral changes at the
core-mantle boundary. Yet there are still many uncertainties in the morpho-
logical characteristics of these fluctuations, as illustrated by many controversial
debates. For example, the question of whether or not the transitional virtual
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†Laboratoire Géomagnétisme et Paléomagnétisme, CNRS and IPGP, Paris, France

1



geomagnetic poles (VGP) are preferentially confined to two sectors of opposed
longitude, or the question of differences in paleosecular variation between the
Pacific and Atlantic hemispheres, and moreover, if there are differences in pa-
leosecular variation between the Northern and Southern Hemispheres as it is
the case in the modern geomagnetic field (for a review, see [3]). These ques-
tions will undoubtedly remain unanswered as long as paleomagnetic analyses do
not allow the development of reliable observations, both in terms of direction
and intensity, from sites geographically dispersed. It is important to assess a
good geographical coverage, preferably provided by volcanic rocks which are, in
general, a more reliable recorder than sedimentary rocks.

In examining directional databases of volcanic records, McElhinny and Mc-
Fadden [4] note a predominance of data acquired during an era before the mod-
ern methods of principal component analysis were introduced into the proce-
dures for demagnetization of rocks. Therefore it is feared that some of these
data are sullied with errors due to the presence of secondary components of
magnetization which have not been completely eliminated. For this reason,
McElhinny and McFadden [4] suggested that some of these studies would be
worth repeating using modern experimental techniques. At first glance, this
remark is particularly relevant to the volcanic data coming from the southern
Indian Ocean, since they were obtained mainly at the beginning of the 1970s
[1, 5, 6, 7, 8]. These data now appear crucial because they come from geograph-
ically isolated islands and thus represent rare field observations possible in a
wide area devoid of data.

Spurred on by these considerations, we carried out a new paleomagnetic
study of the volcanic sequences from Possession Island (Crozet Archipelago,
southern Indian Ocean). This work was made possible by the presence of the
French scientific base Alfred Faure on Possession Island, which enabled us to
have essential logistical support for the paleomagnetic sampling. We also hoped
to be able to sample the full spectrum of the field fluctuations, since a reversed to
normal polarity boundary thought to correspond to Matuyama-Brunhes was de-
tected and because some intermediate directions have been previously reported
on this island [1].

2 Geological Setting

The Crozet Archipelago is composed of five main islands including Possession
Island. This archipelago lies east of the Southwest Indian Ridge on an oceanic
plateau which was created at 54 Ma during an episode of anomalous volcan-
ism on the flank of the ridge, probably linked to a slow spreading phase [9].
Island volcanic edifices are being formed as this oceanic plateau passed over
the Crozet hotspot. Detailed geological works [10, 11] indicate that Possession
Island corresponds to a stratovolcano built through three main cycles, including
five volcanic phases (Figure 1). The first cycle of activity, which likely lasted
more than 7 Myr, constitutes the basement of a large stratovolcano of ∼ 40 km
diameter. Basaltic flows were first emplaced underwater (phase I) and later as
subaerial or intrusive units (phase II). No age could be obtained from the very
altered basalts from phase I. For the subaerial phase II flows, potassium-argon
(K-Ar) ages of 8.1± 0.6 Ma and 2.7 ± 0.8 Ma were obtained [11] near the middle
and the top of the sequence, respectively, whereas an age of 1.3 ± 0.4 Ma was
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measured on a dyke. These ages correspond to several chrons preceding the
Matuyama chron.

After a period of erosion the second cycle lasted for ∼ 0.5 Myr. Conglomerate
and differentiated felsic basalts of phase III lie, often unconformably, over the
phase II formations. Phase III includes lava with K-Ar ages between 1.03 ± 0.4
and 0.72 ± 0.11 Ma (Matuyama-Lower Brunhes). The thick top plateau flows,
assigned to phase IV, were erupted during volcanic activity along a wide rift
oriented along a NW-SE azimuth of 135◦. They yield radiometric ages from
0.70 ± 0.15 to 0.53 ± 0.09 Ma (Brunhes). Following a glacial episode during
which U-shaped valleys were formed, the third cycle (phase V) produced recent
Strombolian cones and some sparse lava flows (differentiated suite from felsic
basalts to phonolites). This phase seems related to an important tectonic event
marked by the formation of horsts and rifts and the collapse of a large western
part of the stratovolcano.

3 Paleomagnetic Sampling

For paleomagnetic sampling, we looked for stratigraphic sections not affected
by tectonic events and presumed to encompass a large time interval. One of
Watkins et al.’s [1] paleomagnetic sections near the southeastern coast at Crique
de Noël (CN), and a new one along the northern coast in the Petit Caporal
valley (PC) (Figure 1) were chosen because they include volcanic sequences of
flows from phases II and III and because one K-Ar age is available from each
of them. Unfortunately, owing to very difficult field working conditions, we
had to stop sampling before reaching the top of the PC section, leaving the
upper part of the phase III sequence unsampled. A third section, with good
quality outcrops, is located near the eastern coast on Alouette Mountain (AL).
This volcanic sequence is exclusively composed of phase II lava flows. Because
these three sections are several kilometers apart, a stratigraphic correlation
from one section to the other was impossible independent of that provided by
the magnetic data. It is noteworthy that we could not resample either Watkins
et al.’s [1] section near Port Alfred, which is now in a protected area for sea
birds, or his Morne Rouge section where no good outcrops were found. Instead,
we tried to sample one section down from the Alfred Faure base at Bollard (BO)
but could only collect cores from a single flow belonging to phase II. Along each
section, we collected an average of seven cores from each consecutive volcanic
unit using a gasoline-powered portable drill. Samples were oriented using a
magnetic compass corrected for local anomaly by sighting the Sun and known
landmarks. In all, we collected 320 oriented cores from 45 units. Flows are
usually thin and seldom exceed 10 m in thickness. Because they are horizontal
or near horizontal, no tilt correction has been made.

4 Experimental Procedure

Determination of the direction of characteristic remanent magnetization (ChRM)
in the laboratory encountered several difficulties. First, the 15-day magnetic vis-
cosity index [12, 13] was estimated on two thirds of the collection by measuring
the remanent magnetization first after 2 weeks of storage with the ambient field
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parallel to the positive cylindrical axis of each specimen (M1), and then after
another two-week storage in zero field (M2). The viscosity index (ν) is expressed
in percent by

ν =
|M1 − M2|

|M2|
with

M1 = NRM + VRMLab

M2 = NRM

where NRM is the “stable” natural remanent magnetization, which of course
includes some viscous remanent magnetization (VRM) fraction acquired prior
to the viscosity test, and VRMLab the VRM acquired during the first 2-week
storage in the ambiant field, and normally destroyed during the 2-week storage
in zero field. Viscosity index measured from the Possession basalts ranges from
<1% to >100%. It shows a lognormal distribution characterized by a median
value of 5% and a geometric average of 15 ± 3% (95% interval for the mean)
which is rather high compared to the mean value of 6.1 ± 0.7% found for some
upper Tertiary and pre-Bruhnes quaternary subaerial volcanic rocks [13]. The
high viscous index could be due to the presence in Possession basalts of nearly
superparamagnetic single-domain grains as it has been shown for subaerial lava
[13] or for synthetic magnetite [14]. The large number of highly viscous samples
warns us that significant VRM overprints are likely, since the ratio of VRM ac-
quired in situ since the beginning of the Bruhnes polarity epoch, to the ChRM
is estimated for subaerial lava to be ∼ 3-4 times as large as the viscosity index
[13]. Because we believe, as has been shown by one of us [13], that heating
in a zero field is the most efficient cleaning method for VRM, we treated one
pilot sample from each rock unit by stepwise thermal demagnetization using a
noninductive PYROX furnace with a residual field <20 nT. Surprisingly, this
treatment provided demagnetization diagrams of poor quality which were dif-
ficult to interpret (Figure 2c). This behavior, somewhat unusual for young
basalts, could be explained by large instability of samples upon heating which
is always observed for the few low-field susceptibility measurements performed
under vacuum (< 10−2 mbar) (Figure 3). Consequently, we decided to use alter-
nating fields (AF) cleaning using a laboratory built AF demagnetizer in which
the sample is stationary and subjected to fields up to 140 mT.

Second, during AF processing, many samples revealed an atypical easiness
to acquire a spurious anhysteritic remanent magnetization (ARM) due to the
presence of a small direct field in our device not previously detected. Thus we
repeated, for these samples, each demagnetization step for two reversed positions
of the sample then averaged the two measurements for each duplicated step in
order to reduce the ARM effect on the calculated direction of the remaining
NRM.

Finally, in a few cases for which the demagnetization curve does not decay
to the origin (Figure 2e), we suspect that an artificial gyroremanent magnetiza-
tion (GRM) was induced during AF cleaning. In principle, GRM is acquired by
particularly anisotropic single domain grains [15, 16], in a direction perpendic-
ular to both the applied AF axis and the easy axis of magnetization [17]. The
GRM magnitude is maximum when the angle between AF and anisotropy axis
is 45◦ and zero when these two axes are parallel or perpendicular to each other.
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Therefore GRM is suppressed by demagnetizing and measuring successively each
component at each step of the AF processing [18]. This measurement procedure
greatly increased the quality of our demagnetization diagrams (Figure 2f). The
overall complex remanence behavior prevented us from using the remanence in-
tensities as proxy for paleointensity as was done with Icelandic and Hawaiian
volcanic sequences [19]. Nor could we determine the absolute intensity of the
paleofield, since very few samples satisfied the usual selection criteria.

5 Results

Following carefully chosen (to avoid spurious remanence) and very detailed AF
demagnetization procedures involving up to 18 cleaning steps, the ChRM was
successfully isolated from significant secondary components (Figure 4) for al-
most 90% of samples. We think that the natural magnetic overprint is likely
of viscous origin because the components with low unblocking fields are gen-
erally directed along the present-day field direction. Thus we observe that the
geometric average intensity of NRM is larger for the normal (6.2 ± 0.4 A/m,
95% interval confidence for the average) than for the reversely (2.2 ± 0.3 A/m)
magnetized rocks. This interpretation is further validated by the rather large
viscosity indices reported above. We determined the ChRM by means of a
least-squares method [20]. Nearly all directions computed provide a maximum
angular deviation of < 2◦. Among the 10% of rejected samples are also those
which gave a significantly different direction from that of the other samples
from the same flow if field notes indicated possible misorientation. The flow
average directions are listed together in Table 1 with the parameters from the
Fisher’s statistics. Only for flow PC7, no mean stable direction could be suc-
cessfully determined. With the exception of flow PC1, the ChRM directions are
well clustered in each flow with rather small values of the 95% confidence cone
about the mean direction (α95), all <10◦.

We recommend that our results do not complete but supersede the ones de-
scribed by Watkins et al. [1] because the directions do not corroborate each
other, at least for the CN section which was resampled exactly at the same
place, and because the former directions were calculated using the method of
the minimum scatter criterion. This method, no longer used in current research,
consisted of AF-demagnetizing specimens at various steps (maximum 30 mT in
this case) and then combining the core directions obtained at any demagnetiza-
tion steps to calculate the average direction yielding the minimum within-flow
scatter. First, it is obvious that such a method is not suitable for rocks over-
printed by large secondary components, as for many of the Possession Island
basalts; a processing of 30 mT may not be sufficient to retrieve the primary
component (Figure 5). Second, this method is not efficient in detecting the ac-
quisition of spurious ARM and GRM components from AF treatment as low as
10 mT, as occurs in the present study. For example, we believe that the interme-
diate directions initially described by Watkins et al. [1] correspond to reversed
directions which would have been incompletely cleaned of their present-day field
viscous overprint. The principal component analysis used in the present study
provides more reliable estimates of the paleofield directions.
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6 Discussion

It seems very speculative to correlate one section to the others from the paleo-
magnetic results. The main reason is that the magnetic sequences obtained are
very simple, and thus they are not constraining in term of magnetostratigraphy.
For sections PC and CN, reversed polarity units are found in the lower part
and normal units are found in the upper part. Section AL is of normal polarity
throughout its whole thickness, except for three consecutive flows yielding ex-
cursional directions. A notable result is the absence of intermediate directions
between the normal and reverse magnetozones. We have, however, some argu-
ments to suggest that the sampled sections do not duplicate each other and that
altogether they cover a time interval long enough for providing a reliable record
of the history of field fluctuations at Possession Island (Figure 6). The phase
III units from the CN and PC sections are of normal polarity and therefore
should have erupted during the Brunhes epoch, consistent with the K-Ar age
of 0.72 Ma obtained in this sequence [11]. For the phase II basalts the reversed
polarity obtained in the PC section in the top flows with K-Ar age of 2.7 ± 0.8
Ma [11] could correspond to the end of the Gilbert epoch or to the beginning
of the Matuyama one. Then the bottom part of PC section, being also only of
reversed polarity, should have been erupted during the same epoch. We have no
clues for assigning a precise magnetic chron to the normal polarity zone corre-
sponding to the whole section AL. We are certain, however, that flows belonging
to the same chron have not been sampled elsewhere since phase II units from
the other sections are of reverse polarity. The only doubt we have concerns the
phase II units from BO section and the lower part of CN section. Because they
are, like the phase II PC section, of reversed polarity, we assumed tentatively
that they also belong to the beginning of Matuyama or to the end of Gilbert
chron. Notwithstanding age uncertainties, it is likely that the three sections
complement each other with no (or small) overlapping in time (Figure 6). Nev-
ertheless, given the episodic nature of volcanism, the question remains whether
the time elapsed between successive lava flows is long enough compared to the
rate of secular variation of the geomagnetic field. If not, oversampling of the
same field directions from lava flows clustered temporally will skew the estimate
of the paleosecular variation. Unfortunately, without very accurate age deter-
minations for each flow, we have no objective means of averaging or discarding
similar successive directions, since the rate of secular variation is itself variable,
and thus similar paleomagnetic directions may be due to real stasis of secular
variation [21]. Thus we have to assume, tentatively, that the paleodirections
obtained correspond to a reasonable random sampling of the field fluctuations
over the Plio-Pleistocene period.

The characterization of the paleosecular variation was done by means of
statistical techniques common in paleomagnetism. We processed the data by
reversing the directions of reversed polarity and removing those having a VGP
latitude less than an arbitrarily chosen cutoff to avoid inclusion of transitional
data. The secular variation was estimated by the total angular standard devia-
tion (asd) expressed in degrees as ST in

ST = (N − 1)−
1
2

(
N∑

i=1

δ2
i

) 1
2

,
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where N is the number of data and δi is the angular distance between the ith
field direction or VGP position and the direction or VGP position about which
the dispersion is computed, corrected for the experimental errors by calculating
the between-flow asd expressed in degrees as SB in

S2
B = S2

T − S2
W /n̄,

where n̄ is the mean number of sample cores per lava, SW ≈ 81◦/
√

κ̄, and κ̄
the mean precision parameter. The dispersion statistics of local field directions
and corresponding VGPs are given in Tables 2 and 3, respectively, for two VGP
cutoffs (45◦ and 55◦), with analyses about means and an axial dipole. We stress
that in the present study, the way the dispersion is estimated is not critical
because first the mean direction is not statistically different from the direction
of an axial dipole (Table 2) and second because the effect of experimental errors
(the mean within-flow dispersion SW ) is rather small.

The present results agree better with the general anisotropic paleosecular
model (CJ98.nz) proposed by Constable and Johnson [2] rather than with their
model with axial anisotropy (CJ98). The preferred model CJ98.nz is able to gen-
erate complex geographical variations assuming that the boundary conditions
at the core-mantle interface are geographically heterogeneous. The simulated
asd values for VGPs (16.5◦) and for directions (12◦) for the Possession Island
location are very close to the experimental ones found in the present study
(ST = 16.8◦ and sB = 11.8◦, respectively). However, the experimental 95%
confidence limits on asd (Tables 2 and 3), computed by means of the jackknife
method [22], are rather wide and thus prevent a firm conclusion. To obtain a
result with narrow confidence limits, we combined our data with those already
published for Marion Island [7] which is located only 15◦ of longitude west to
Crozet Archipelago. We did not include in this analysis the directions described
from East Island [1], which is located 18 km east to the Possession Island because
first East Island lava have similar petrological characteristics [23] than Posses-
sion basalts, and second the direction were obtained using the method of the
minimum scatter criterion. Their reliability is thus questionable. The regional
values of asd obtained (Table 3) are roughly the same as those obtained for
Possession Island alone and thus still agree with the general anisotropic model
CJ98.nz [2]. In the absence of intensity data we are not able to check more
precisely this model, nor the Camps and Prévot’s [19] model of fluctuations of
the geomagnetic field.

The geomagnetic field excursion (N-T-N) recorded in the phase II lava from
AL section is of particular interest (Figure 7) because it provides VGPs lying
within one of the two preferred longitudinal bands for transitional VGPs ob-
tained from sedimentary records [24]. This observation fits with the general
anisotropic model, as do our PSV results. Still, the controversial question re-
mains [25, 26] whether these preferred longitude sectors might be an artifact
of remanence acquisition in sedimentary rocks [27] or indirect evidence for a
thermal control of the Earth’s core dynamics by the lower mantle [24].

7 Conclusion

We presented here a new paleomagnetic study of the volcanic sequence from
Possession Island. This study emphasized the particularly complex behavior
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of the remanence, which obliged us to apply particularly careful experimental
procedures to isolate the ChRM. We think that such behaviors can explain our
difficulties to corroborate the paleofield directions obtained in the present study
and those previously reported [1], at least for the Crique de Noël section which
was resampled exactly at the same place. In particular, we do not confirm the
presence of intermediate directions within the Brunhes epoch. Hence we suggest
that our directional results supersede the ones from the former study guessed
to be less reliable. This raises the question of the reliability of the directions
described from East Island (Crozet Archipelago), [1], since they have similar
petrological and radiochronological characteristics [23]. Our paleosecular varia-
tion estimates seem to support models with longitudinal anisotropy. However,
we do not have a sufficient number of paleofield directions to enable us to con-
firm this interpretation. For that, it would be necessary to repeat and complete
a paleomagnetic study of lava flows from East Island in order to increase the
number of paleomagnetic observations for this area of the Indian Ocean.
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Figure 1: Sketch showing locations of sampled sections on a geological map
redrawn from [10].
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PC2, specimen 14C. Demagnetization diagrams of two specimens from the same
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men 310B compared to AF cleaning of (d) specimen 310A and the acquisition
of spurious GRM component of (e) flow PC1, specimen 005A which is suc-
cessfully removed (f) specimen 005C following a special procedure (see text for
explanation).
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Figure 3: Example of thermal dependence of weak field magnetic susceptibility
under vacuum. Heating and cooling curves are indicated by arrows. For the few
samples measured, the curves are always irreversible.
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Figure 4: Cumulative distribution function for the angles between the ChRM
and NRM directions.
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Figure 5: Cumulative distribution function of the first AF value used in the
least squares analysis to compute the direction of ChRM.
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Figure 6: Relationship between the sampled sections, the geomagnetic polar-
ity timescale for the last 7 Myr [28], and the chronostratigraphic evolution of
Possession Island [11]. (See text for explanation.)
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Figure 7: Virtual geomagnetic pole positions for Possession Island lava flows.
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Table 1: Directional Results
Flow Phase n/N I D α95 κ Longitude Latitude J0 J20

Petit Caporal section (Latitude:-46.37◦; Longitude:51.76◦)
pc13 III 7/7 -55.1 349.3 6.4 90 11.2 76.6 5.53 2.57
pc12 III 7/7 -76.1 357.6 3.7 269 235.3 72.7 5.86 2.91
pc11 II 7/7 50.0 186.5 3.3 330 251.9 -73.6 2.35 1.25
pc10 II 6/7 66.4 189.0 5.7 139 347.3 -83.4 2.63 0.87
pc9 II 8/8 68.8 180.3 2.4 528 49.9 -84.2 2.58 1.76
pc8 II 9/9 65.8 174.1 4.4 138 116.9 -85.7 2.75 1.00
pc7b II 0/7 3.88 1.21
pc6 II 7/7 67.4 180.1 7.6 54 68.7 -82.8 1.25 0.80
pc5 II 7/7 65.2 171.6 4.3 198 129.9 -84.2 1.14 1.00
pc4 II 5/7 63.1 186.8 9.7 63 303.7 -84.9 1.37 0.86
pc3 II 5/5 65.9 197.1 8.0 92 336.9 -78.3 1.64 1.09
pc2 II 7/7 68.2 188.4 7.6 64 6.8 -82.6 1.85 0.60
pc1 II 5/7 55.5 196.1 16.0 24 286.9 -74.1 2.15 0.86

Alouette mountain section (Latitude:-46.38◦; Longitude:51.78◦)
al16 II 8/8 -61.0 350.5 2.2 619 350.8 81.9 6.68 3.74
al15 II 7/7 -53.1 8.8 2.6 444 82.9 75.6 4.64 3.04
al14 II 7/7 -58.6 11.1 4.5 183 104.7 79.2 4.95 2.12
al13 II 8/8 -70.0 5.3 4.4 158 209.6 81.7 8.51 3.48
al12 II 7/7 -75.8 244.5 2.6 525 260.1 30.8 5.47 2.80
al11 II 8/8 -74.6 252.7 8.6 43 264.8 32.4 7.79 2.39
al10 II 4/4 -62.5 278.3 4.3 458 292.4 35.0 5.16 2.17
al9 II 7/7 -66.0 347.7 2.4 617 304.2 81.5 6.79 4.60
al8 II 10/10 -63.3 352.4 2.6 340 335.3 84.5 4.67 2.14
al7 II 6/7 -71.1 1.2 4.1 272 237.8 73.6 11.55 3.44
al6 II 7/7 -68.6 357.8 4.0 232 245.5 84.3 7.05 4.56
al5 II 12/12 -70.1 8.5 3.2 186 199.8 80.6 5.84 2.32
al4 II 2/3 -69.8 7.8 200.1 81.2 9.08 6.59
al3 II 7/7 -69.0 356.5 4.0 228 250.9 83.5 6.48 3.76
al2 II 7/7 -68.5 8.8 2.8 455 188.1 82.1 7.62 3.16
al1 II 7/7 -50.7 332.2 3.8 255 346.9 63.9 3.52 1.14

Bollard section (Latitude:-46.43◦; Longitude:51.87◦)
bo1 II 7/8 63.4 189.0 4.6 130 311.9 -83.5 7.27 1.78

Crique de Noël section (Latitude:-46.46◦; Longitude:51.83◦)
cn15 III 5/7 -74.0 329.4 7.1 79 273.2 67.5 3.10 2.56
cn14 III 6/7 -66.2 7.7 4.6 153 166.9 84.4 5.30
cn13 III 3/4 -66.0 22.0 4.5 327 157.0 75.0 5.25 0.95
cn12 III 3/5 -75.4 47.8 5.1 254 190.3 58.9 9.06 3.27
cn11 III 6/7 -61.7 341.0 6.1 87 329.8 76.1 11.99 5.20
cn10 III 8/9 -63.2 13.5 9.1 29 136.2 80.4 7.05 1.72
cn9 II 7/8 74.7 234.8 6.5 66 7.7 -55.7 0.51 0.40
cn8 II 3/7 46.3 228.9 8.9 83 313.1 -47.5 2.68 2.90
cn7 II 5/7 45.5 210.1 6.5 91 292.9 -59.3 5.53 2.57
cn6 II 7/7 56.7 215.7 4.4 144 315.5 -62.2 5.14 2.26
cn5 II 7/7 50.1 231.0 4.3 150 318.6 -48.1 1.96 1.08
cn4 II 5/7 62.2 205.0 5.2 147 321.3 -72.1 2.73 1.71
cn3 II 7/8 50.5 147.6 2.7 379 161.8 -60.8 3.14 0.94
cn2 II 7/7 46.8 148.9 5.9 70 168.0 -59.5 2.00 0.96
cn1 II 7/7 52.7 159.6 3.7 287 174.9 -69.6 2.84 1.67

Flows are listed in stratigraphic order with the youngest on top, oldest on the
bottom. The volcanic phases are inferred from the geological map (Figure
1) [10] and field observations; n/N is the number of samples used in the
analysis/total number of samples collected; I and D are the mean inclination
positive downward and declination east of north, respectively; α95 is 95%
confidence cone about average direction; Longitude and Latitude correspond
to VGP position; J0 and J20 are the geometric mean remanence intensities in
A/m of NRM and after 20 mT alternating field treatment, respectively.
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Table 2: Dispersion Statistics of Flow-Average Directions
VGP > 45◦ VGP > 55◦

N 41 39
Mean inclination -64.4◦ -64.7◦

Mean declination 5.2◦ 1.9◦

Precision parameter kappa 37.2 46.5
α95 3.7◦ 3.4◦

Mean of the within-flow asd SW 5.6◦ 5.5◦

Dispersion from the Dipole Field Direction (Im = −64.6 Dm = 0.0)
Total asd ST 13.6◦ (13.0) 12.0◦ (11.6)
Between-flow asd SB 13.4◦ (12.9) 11.8◦ (11.5)
95% confidence limits on SB 10.4-16.2◦ 9.3-14.0◦

Dispersion from the Mean Direction
Total asd S′

T 13.4◦ (12.9) 12.0◦ (11.5)
Between flow asd S′

B 13.2◦ (12.7) 11.7◦ (11.3)
95% confidence limits on S′

B 10.4-15.9◦ 9.2-14.1◦

N, number of lava flow included in the analysis; asd, angular standard deviation;
see text for explanation of subscripts T, W, and B. The 95% confidence limits are
computed using the jackknife method [22]. Numbers in parentheses correspond
to asd calculated from [1] data set.
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Table 3: Dispersion statistics of Virtual Geomagnetic Poles
VGP > 45◦ VGP > 55◦

Possession Island
N 41 39
Average VGP latitude 86.4◦ 88.0◦

Average VGP longitude 157.3◦ 179.2◦

Precision parameter Kappa 19.6 24.1
α95 5.2◦ 4.8◦

Total asd ST 18.9◦ (17.2) 16.8◦ (15.5)
Mean of the within-flow asd SW for VGP 7.8◦ 7.6◦

Between-flow asd SB 18.6◦ 16.5◦

95% confidence limits on SB 14.6-22.4◦ 13.2-19.6◦

Marion Island, [7]
N 21 20
Total asd ST 20.3◦ 18.7◦

Mean of the within-flow asd SW for VGP 10.9◦ 11.0◦

Between-flow asd SB 19.9◦ 18.3◦

95% confidence limits on SB 14.8-24.2◦ 13.9-21.9◦

Possession and Marion Combined
N 62 59
Total asd ST 19.2◦ 17.3◦

Mean of the within-flow asd SW for VGP 8.5◦ 8.4◦

Between-flow asd SB 18.9◦ 17.0◦

95% confidence limits on SB 15.9-21.7◦ 14.4-19.3◦

N, number of lava flow included in the analysis; asd, angular standard deviation;
see text for explanation of subscripts T, W, and B. The 95% confidence limits are
computed using the jackknife method [22]. Numbers in parentheses correspond
to asd calculated from [1] data set.
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