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Abstract

The aim of this work is to study a specific scheduling problem under the
machine-independent model BSP. The problem of scheduling a set of in-
dependent chains in this context is shown to be a difficult optimization
problem, but it can be easily approximated in practice. Efficient heuris-
tics taking into account communications are proposed and analyzed in
this paper. We particularly focus on the influence of synchronization be-
tween consecutive supersteps. A family of algorithms is proposed with
the best possible load-balancing. Then, a strategy for determining a good
compromise between the two opposite criteria of minimizing the number
of supersteps and a good balance of the load is derived. Finally, a heuris-
tic which considers the influence of the latency is presented. Simulations
of a large number of instances have been carried out to complement the
theoretical worst case analysis. They confirm the very good behavior of
the algorithms on the average cases.
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1 Introduction

This paper studies the problem of scheduling independent chains on iden-
tical parallel processors. The chains are composed of tasks that have to be
executed sequentially. This problem is motivated by the practical deter-
mination of the allocation of processes on a parallel distributed-memory
machine. Each process may be a list of non-preemptive components that
have to be executed sequentially. The processors are organized as a par-
allel distributed-memory machine, consisting of m identical processors.
It is well established that in such systems, the communications are the
most predominant parameters which influence the performances. Until
recently, most of the works considered a standard computational model
(the delay model) where the communications are taken into account ex-
plicitly by the time for transmitting an elementary piece of data from one
processor to another [21]. Unfortunately, such a model is unrealistic and
too difficult to be used practically for parallelizing actual applications. We
consider here a machine-independent programming model based on BSP
(Bulk Synchronous Parallel) [24]. Two main parameters can be consid-
ered in BSP, namely the global communication-synchronization overhead
and the latency between two consecutive communication-synchronization
events. One of the main motivations for introducing BSP was to separate
the problems of load-balancing and optimization of communications.

The goal of this work is to show that efficient scheduling algorithms can
be designed under the BSP model. We developed a theoretical analysis
which is confimed by practical simulation experiemnts at the end of the
paper.

1.1 Related works

The identification and scheduling of potential parallelism is one of the
main research fields on Parallel Computing. Just few years ago, with the
lack of a standard and realistic cost model, most scheduling works were
restricted to the analysis of virtual parallelism or addressed a specific
parallel architecture. There are mainly two kinds of works related to this
paper: scheduling chains on theoretical idealized models, and scheduling
other graphs under realistic new parallel programming models.

The scheduling of chains considering theoretical models was studied a
long time ago. The close problem of scheduling a set of independent tasks
of any duration with preemption has been treated for uniform processors
with zero cost communications [13] (the uniform model is the natural
extension of the classical delay model where the processors have different
speeds varying by a multiplicative factor). Assuming uniform processors
with integer speed ratio and communication occurrences at any integer
time, scheduling independent chains has been showed to be NP-hard in
the strong sense for an arbitrary number of processors [19] even if the
communication times are neglected.

The problem of scheduling under BSP has been investigated in particu-
lar by people in the Oxford and Paderborn groups: [20, 23] and [17, 1]. The
scheduling of uniform directed acyclic graphs (also known as tightly-nested
loops) was studied in [5, 6]. BSP algorithms for several classical prob-



lems involving matrices were presented in [20]. A new model (BSPRAM)
and corresponding algorithms for butterfly directed acyclic graph, cube
directed acyclic graph, dense matrix multiplication and sorting were pre-
sented in [23]. Note that some other works studied the scheduling problem
of specific task graphs like FORK (flat trees) or general tree structures
under computational models close to architectural constraints like LogP
[18, 25, 26] or CGM [4, 8].

In this work, we focus our attention on scheduling specific precedence
task graphs which consist of a set of independent chains of unit execu-
tion time tasks. This paper is an extension of the paper [11], where an
algorithm with P"TH-I communications was proposed.

1.2 Organization of the paper

The basic problem of scheduling a set of independent chains and some
definitions about BSP are introduced in Section 2. A discussion about
the trade-off between load balancing and communication, and some pre-
liminary results for solving this problem under the basic computational
model (the delay model, described later in this paper) are also presented.
Then, some specific instances of this problem are solved in Section 3 (for
two extreme cases, namely for a two processors system and for an unlim-
ited number of processors). The general case corresponding to an arbitrary
number of processors is tackled in Section 4. Complexity results and worst
case about communications are analyzed. A first approximation algorithm
presented in [11] is recalled. Then, a family of algorithms with any fixed
number of supersteps is proposed. We deduce a general algorithm which
determines a trade-off between a low communication overhead and a good
balance of the load. The influence of the latency is discussed in Section
5. Section 6 is devoted to experiments with simulations, where we eval-
uate how to perform the supersteps for obtaining good performances in
average. Finally, some perspectives for future work are discussed in the
conclusion.

2 Preliminaries

In this section the target problem of scheduling independent chains is
presented and the definition of BSP together with its main properties
are recalled. Some preliminary results assuming standard computational
models, useful for the understanding of the further algorithms, are also

described.

2.1 Description of the problem

The problem that we consider in this paper is to schedule k independent
chains of tasks {chi,...,chr} on m identical processors under the BSP
model. We will shortly call this problem S/C for Scheduling Independent
Chains. The execution time of each task takes one unit of time (UET
assumption). The length of chain ch; will be denoted n; (for 1 < 1 < k).
In the following, we will consider the case & > 2, since otherwise the



problem is trivial and the best strategy is to schedule the entire single
chain on one processor without communication. The total number of
tasks is n = Zle n;. Without loss of generality, the chains are assumed
to be initially sorted in decreasing order of length, that is, n1 > ... > ng.

It is interesting to observe that in the SIC problem, task replication
is not useful, as each task has at most one successor. This is usually not
the case for general graphs.

According to most other studies related to scheduling in the context of
Parallel Processing, we are interested in minimizing the makespan, which
is the maximum completion time of the tasks of a parallel algorithm.

Definition 1 The ideal makespan for SIC on m processors is defined by
t* = max{[Z],m }.

The ideal makespan is the maximum of the total workload distributed
among the processors and the length of the longest chain. All the valid
schedules have maximum completion time at least ¢*.

Observe that the bound given by the ideal makespan is not tight, it
cannot be accomplished in every case without splitting chains (which in-
troduces communication between the different parts of a chain). Consider
for instance the execution of three chains of same length on two processors
as shown in figure 1 (in this figure and in all further figures, the dashed
area represents idle times).

.
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Figure 1: Scheduling three identical chains with no communication on two pro-
Ccessors.

This remark motivates the following notation:

Notation 1 w, denotes the best possible makespan to complele the exe-
cution of all the chains without communication.

It is straightforward to show that wy > £*.

2.2 Presentation of BSP

BSP (for Bulk Synchronous Parallel) is a computational model introduced
for improving the scalability, the portability and the ease of developing
application code on distributed-memory parallel systems [24]. It distin-
guishes between the two key factors of performance: computation and
communication. BSP was introduced in order to separate the commu-
nication difficulties from the scheduling difficulties. It is becoming more
and more popular for theoretical studies, providing a solid foundation for
designing parallel algorithms. Moreover, some implementations of BSP
library components have been developed on several platforms [16, 3].



2.2.1 Definition

Programming in BSP consists of a succession of supersteps. FEach super-
step may be divided into three activities:

¢ a computation phase where independent local computations run in
parallel;

¢ a communication phase where the communications of data involve
all the processors in a personalized all-to-all communication [12];

e a synchronization phase where a synchronization barrier allows the
simultaneous starts of all the processors for the next superstep.

The synchronization guarantees the completion of communication and
computation of the superstep. There are mainly two ways to perform
the communication: asynchronously or as an efficient h-relation [12].
In the rest of the paper, we will shortly use CS for communication-
synchronization.

The original BSP model [24] allows supersteps where the synchroniza-
tion i1s done only among subsets of processors. However, the actual current
implementations only provide global synchronization. See [22] for a com-
plete discussion. According to most existing related works, we assume
here a simplified BSP model where the communications involve all the
processors, that is, the synchronization is always global. This is a usual
practical assumption.

There are two intrinsic restrictions in the BSP model: each processor
can send/receive a bounded number of messages during a superstep, and
the messages have a limited size. With these restrictions, the cost of a
single superstep is at worst the sum of three terms: the maximum cost
of the local computations, the cost of a h-relation and the cost of the
synchronization barrier. An h-relation is a message exchange operation
where each processor receives or sends at most h messages. It should be
notice that each message may be delivered in more than one communica-
tion packet. BSP considers two main parameters: g and l. g is known as
the communication throughput ratio, it takes hg units of time to deliver a
h-relation. [ is defined as the cost of a synchronization barrier. In all the
algorithms presented in this paper, each processor sends and receives at
most one communication, so if b is the size of the largest communication
(b-relation) we can assume that a CS takes a constant time denoted by C
(equal to bg +1).

In the original BSP model proposed by Valiant [24], a periodicity pa-
rameter called latency (L) was introduced. In his model, in a superstep,
after each period of L time units, a global check was made to determine
whether the superstep was completed by all processors. In the variation of
BSP model proposed by McColl [20], there is no reference to the period-
icity, this approach was probably chosen because in actual computers the
periodicity can be as small as the synchronization costs. But as periodic-
ity can be interesting in the theoretical point of view, or even for future
computers, in this work we chose to present a short discussion (Section 5)
taking into account a minimum gap between two consecutive supersteps.
So, instead of assuming a time multiple of L, this study is restricted to a
minimum gap between consecutive supersteps.



To summarize, we will consider two main parameters: the time to
communicate the data and synchronize the processors, C' (a positive real
number usually greater than the execution time, C' > 1) and in addition
the minimum time between two consecutive supersteps, denoted by A (of
course, A > C).

In order to give an insight about these parameters, we have reported
some practical values in table 1'. We verify that the synchronization cost
has the main influence on parameter C.

(Mflop/s) | g (flop/word) | 1 (flop)

8, 400Mhz PII, 100Mb ether. 88 30.9 18347
Cray T3D, 150Mhz (256 procs.) 12 2.4 387
T3E, 300Mhz(20 procs.) 47 1.63 880
IBM SP2, 66.7Mhz (8 procs.) 26 11.4 5412

Parsytec (8 procs.) 19.3 25.4 29080

Table 1: Floating point rate by processor, and normalized values of g and [ for
several machines.

In order to simplify our analysis, we suppose w.l.o.g. that the last su-
perstep of a program does not require CS. So a program with s supersteps
has a CS time equal to (s — 1)C.

2.2.2 Example

The example depicted in figure 2 shows an execution under BSP for a sim-
ple precedence task graph (which is the usual representation of oblivious
programs: the instructions are represented by nodes, and the precedence
relations among the instructions are represented by arcs). On the Gantt
chart, the communications are represented in grey, the synchronization
phases are in black (as pointed out before, in actual machines the syn-
chronization phase can be about two orders of magnitude greater than
the communication phase for small messages) and the idle times are in
dashed areas.
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Figure 2: Schedule of a UET graph under BSP.
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Superstep duration > A

IThese values were found in www.BSP-Worldwide .org/implmnts/oxtool/params.html



2.3 Load balancing versus communication

In a parallel distributed memory machine with m processors, the parallel
execution time for executing a program can be estimated [2] as:

th
b = ;+(t1+tc)

where ¢; is the sequential time of the program (in our case equal to the
total number of tasks), ¢; corresponds to the sum of idle time over all
processors divided by m, and t. is the time for performing communication
and synchronization. Given m, we are interested in minimizing ¢,,. As the
sequential time and the number of processors are fixed, this corresponds
to minimize the overhead (¢r + t.).

If t. = 0, that is just one superstep in the BSP model (on the BSP
model ¢, is discrete), it will be shown later in this paper that the min-
imization problem is N P-hard. Otherwise, increasing ¢. (and thus, the
number of supersteps on BSP) might reduce ¢r. In this paper, we will
study how to minimize the idle time by increasing the communication
time. We will give closed formulas to minimize (globally) the idle time,
and to minimize the idle time for a given number of supersteps (thus,
bounding the communication time). We will also discuss the trade-off
between a good balance of the load and a low communication overhead.

2.4 SIC under basic computational models

Some papers addressing the problem of scheduling a set of independent
chains have been published before. This problem has some practical in-
terests since it corresponds to distribute the execution of sequential work
(for instance, while using library components like BLAS [9]).

Most of these papers assume simple computational models. Fither
communications are simply ignored, or they are taken into account with
variations around the standard delay model introduced by Rayward-Smith
[21], in which there is no synchronization among the communications, and
the transmission of messages can be overlapped by local computations.
Communications are assumed to be constant and equal to the elementary
computational time (UET-UCT assumption). We can easily derive a BSP
algorithm from an asynchronous algorithm, as follows:

Claim 1 [t is easy to obtain a feasible BSP schedule from an asynchronous
algorithm designed for the delay model, just by replacing any (asynchronous)
communication by a global one.

2.4.1 A basic asynchronous algorithm

In this section, a simple algorithm for SIC under the standard asyn-
chronous delay model is presented. The principle consists in filling the
processors one after the other, from time zero to time t*, that is from left
to right on the figures (all details can be found in algorithm 1).

When a chain does not fit entirely on a processor (for instance, Py), it
is split and a communication is introduced between its two parts.
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Figure 3: Greedy fill-in and allocation of a split chain.

Notation 2 A chain that is executed in more than one processor will be
denoted split chain.

According to the precedence constraints: the first part starts on £, and
the last part finishes on P;, each part is allocated at extreme sides of
the Gantt chart in order to respect the precedence constraints. Figure 3
illustrates the principle.

Algorithm 1 Asynchronous algorithm.

Require: load(P;) computes the number of tasks allocated to processor P;
11,5+ 1
while i < k do {it remains some chains to allocate}
while load(P;) + n; <t* and i < k do
allocate ch; to P;
i1+ 1
end while
if load(P;) # t* and i < k then
allocate the first n; — (t* — load(P;)) tasks of ch; to Pjyq
allocate the last t* — load(P;) tasks of ch; to P;
11+ 1
end if
Jej+1
end while

In the standard delay model, it is straightforward to show that the al-
location given by this algorithm is valid, and the corresponding makespan
is equal to t*. The key point is that a communication can always be per-
formed between the two parts of a split chain (because it has less than ¢*
tasks).

3 Two preliminary cases

In this section, some results for scheduling & independent chains under
BSP are presented for two extreme cases, namely two processors, and an



unlimited number of processors. Both cases have been already published
in [11]. We only recall the main results which constitutes the basis of
further developments.

3.1 SIC on two processors in BSP

First the problem of scheduling independent chains on two processors with
a makespan equal to t* is shown to be NP-hard. Then, an algorithm that
builds a schedule with a makespan not greater than ¢*+ C' (in other words,
it has no more than two supersteps) is presented and analyzed.

3.1.1 Theoretical analysis

Lemma 1 Determining the existence of a schedule of UET independent
chains on two identical processors within the time t* is an N P-complete
problem.

Proof: In the presence of communications, any schedule will have a
makespan greater than t*, so we look for a schedule with only one su-
perstep.

The problem is in N P, since a non-deterministic algorithm only needs
to guess a subset C'H of the set of chains, and to check in polynomial time
that the sum of the chain lengths in CH is equal to t*. Recall that the
following Partition problem is NP-Complete [10]:

o Instance : a set X of elements of integer length n;, an integer B such

that Z n; = B.
o Question : does a subset of total length g exist?

It 1s straightforward to reduce this problem into the SIC problem on
two identical processors. Given a partition problem, consider the problem
of scheduling k independent chains of length n;, 1 <1 < k, if t* > Z?=2 n;,
the problem is trivial. Otherwise, when t* = ?, a schedule with makespan
t* exists if and only if there exists a set of tasks whose total length is Z.

2
g

Moreover, a schedule without communication can be “far” from t*.
For instance, consider again the example of Section 2.1 consisting of three
chains of the same length. The length of the schedule without communica-
tion is w, = %t*. Anyway, the well-known Graham’s bound [14] (2 — %)t*
on list schedules remains always valid.

3.1.2 Algorithm for two processors

The algorithm given below determines a schedule for SIC on two proces-
sors. The principle is based on the general asynchronous algorithm of
Section 2.4.1 using the systematic derivation stated in claim 1. The first
processor is filled exactly until £*. If a chain is shared between both pro-
cessors, a CS is introduced between its two parts (for instance when the
first part finishes).

Note that there is no need to sort the chains before the algorithm. The
algorithm analysis is straightforward.



Proposition 1 The time of the schedule generated by the previous algo-
rithm is at most t* + C.

Proof: By construction, it is obvious to remark that at most one chain
is split in the previous algorithm. Thus, there is at most one communica-
tion. As the largest chain has at most t* tasks, a CS can be introduced
between the two parts of the split chain, if it exists. So the previous
algorithm gives a valid schedule with processing time less than t* + C. O

3.1.3 Example

We detail an example for SIC with 4 chains of respective lengths 10,10, 5
and 5 on two processors. The time of a CS is C' = 2 (cf. figure 4).

We first compute t* = 15. Initially, the first processor is filled upto
at least time t*, which corresponds to two chains with a makespan of 20.
Due to the addition of one CS, 5 tasks of the second chain are moved to
the second processor. With one CS, the makespan becomes 17 = t* + C,
and both processors are fully occupied.

10 10
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Figure 4: Allocation with only one superstep and BSP algorithm on two pro-
Cessors.

Remark: The proposed algorithm does not always generate an optimal
schedule. In some cases, a schedule with makespan t* does exist (see
figure 5 with the same example as before). But, as proved before, the
question of the existence of such a schedule is an N P-complete problem.

3.2 Unlimited number of processors

We can design an oblivious algorithm for this case. Given k chains, ch;, for
1 <12 < k, each one is allocated to a separate processor. The makespan is
given by the length of the longest chain, ni. It is unnecessary to use more
than k& processors because each chain has to be executed sequentially.

10
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Figure 5: Example of a schedule that reaches t* with no communication

There may be a solution with fewer processors, but it is not possible
to improve the makespan. Finding the optimal schedule without commu-
nication with the minimum number of processor is also NP-Hard. It is
equivalent to the problem of solving a 11-Bin-Packing problem [10], with
bins of length nj.

4 Fixed number of processors

In this Section, the extension to the case of a fixed number of processors
is studied. We showed in the last section that SIC is already a difficult
problem for two processors, but there exists an almost optimal algorithm
which guarantees only an additional term of C from the optimal.

The complexity of the problem on m > 2 processors is first discussed
(of course, k > m, otherwise the problem is straightforward). We study
how to minimize the idle time t7, we present a worst case analysis and a
schedule in this case. The worst case analysis is developed to show that
|'mT+1‘| supersteps may be required for obtaining a schedule in which each
processor has to execute at most t* tasks. A schedule is proposed with
processing time t* and at most [%] + 1 supersteps. Finally, a family
of algorithms where the number of communications is fixed and equally
spaced in time is introduced.

In all these algorithms, a CS (which costs time C) can occur at any
time. The influence of the latency term A will be studied separately in
section 3.

4,1 Perfect load balance

Since minimizing the parallel time t¢,, is equivalent to minimizing the
overhead t7+t., the prime and natural question is to study what happens
when both terms are minimal. First, the problem of minimizing the idle
time ¢; without communication (tc = 0) is shown to be difficult. Then,

the problem of minimizing the idle time with communication is studied.

m+1
2

schedule, and an algorithm which requires at most [Z] 4 1 supersteps,

We present an instance which requires at least [ | supersteps for any

thereby achieving the lower bound for even m and exceeding it by only
one for odd m.

11



4.1.1 Theoretical analysis

In this section, we are interested in SIC with the ideal makespan t* on m
processors (m > 3). Given a set of chains, it is possible that there is no
schedule without communication which reaches the bound. But, even if
such a schedule exists, it is difficult to find.

Proposition 2 Finding the minimum makespan of the SIC problem with-
oul communication for an arbilrary number of processors is N P-hard in
the strong sense.

Proof: We use a reduction from the numerical 3-dimensional matching
problem [10] which is recalled below.
N3DM problem:

e Instance : Given three sets, X = {z1,..., o5}, Y = {v1,...,yn}
and Z = {z1,...,2znx}. Each element € X (respectively y € Y and
z € Z) has a positive integer weight s(x) (respectively s(y) and s(z)).
Let B be a positive integer, such that Zf\il s(xi) + s(yi) + s(zi) =
NB.

¢ Question : Find N disjoint 3-partitions of X U Y U Z such that in
each partition {z;,y,,zx} the sum of the weights is equal to B.

This problem is known to be N P-hard in the strong sense [10]. In the
presence of CS (i.e. more than one superstep), any schedule will have a
makespan larger than t* so we look for a schedule without CS.

It 1s easy to show that SIC is in NP, since a non-deterministic algo-
rithm needs only to guess an m-partition (S,..., S,,) of the set of chains,
and to check in polynomial time that the sum of the chain lengths of each
subset S;,1 < j < m is at most t*.

To do the reduction, we solve a N3DM problem by solving the schedule
of 3N chains on N processors. Given an instance of N3DM, the length of
each chain is defined as follows:

ng, =8B + s(zi),1 <1< N,
ny, =4B + s(y;),1 <1 < N,
n. =2B 4+ s(z),1 <i<N.

The total number of tasks is N(8B+4B +2B) + 21111 s(zi) +s(yi) +
s(zi) = 15N B.

The ideal makespan is 15B. We will show that if there exists a schedule
of length at most 158, then, it corresponds to a solution for the N3DM
problem.

‘ 15‘B

s(x,) sy)  s@)
8B H 4B H 2B H

Figure 6: Principle of the allocation on one processor.
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There is exactly one chain of each type (#, y and z) on each processor:
each processor owns one chain of length ns, (it is not possible to allocate
more than one such chain per processor, without mapping more than 158
tasks on a processor). Taking into account the chains of length ns;, the
number of remaining available time slots is less than 7B (see figure 6).
Thus, there is at most one chain of length n;, per processor. Obviously,
the same argument holds also for the chains of type y and z.

Thus, each processor has exactly three chains, one of each type z;, y;, zi
and ng; + ny; +n,, =158, that is s(zi) + s(y;) + s(zx) = B. In any op-
timal schedule without communication, there is exactly one element from
each set on each processor, and the sum of these elements is always equal
to B. Thus, the solution of SIC is a solution for the N3DM problem. U

4.1.2 Worst case on the number of supersteps

We present an instance for which any schedule needs |'mT+1'| supersteps
(or, equivalently [mT_l] CS) for SIC on m processors in order to minimize
the idle time on the processors. The considered instance has m + 1 chains
of the same length. The number of supersteps which minimizes the idle
time has been proven by constructing valid schedules with, respectively,
1,2, ..., [®=tL] supersteps. The construction is quite technical, but not

2
difficult, and more details can be found in [11].

4.1.3 Algorithm

We present now an algorithm which minimizes the idle time t7, this algo-
rithm can require up to [ ] 4+ 1 supersteps (that is [ 3] CS, as we donot
consider the CS of the last superstep). The algorithm is based on a trans-
formation (described on claim 1) of the asynchronous algorithm (which
has a perfect load balance) of Section 2.4.1. The key idea is to show that
it is possible to group the communications placed by the asynchronous
algorithms, at least two by two, into the same CS. To group asynchronous
communications within the same CS, we introduce them after the last
asynchronous communication sent and before the first asynchronous com-
munication received.

The main steps of the analysis are sketched as follows. Again, the
details of the proofs may be found in [11].

The chains are partitioned into three disjoint sets according to their
length which will be scheduled one after the other:

e Set A of chains of length ¥,
e Set B of chains of length between [%] and t*,

o Set C of chains of length at most [%]

Claim 2 All the chains of set A can be scheduled without CS. All the

chains of set C can be scheduled with a single CS at time L%J

It is more difficult to schedule chains from set B. The idea for reducing
the number of supersteps is to gather some asynchronous communications
into a single CS using the argument described in the following lemma.
When the chains of set B are allocated in decreasing order of length we
can state the following lemma:

13



Lemma 2 The asynchronous communications of consecutive split chains
in set B can be partitioned into subsets of size at least two (only the last
subsel can have one communication), in such a way that the communica-
tions on each subset use the same CS.

—
P ‘o—o—o—o—o—o—& h—o—o—o—o‘

eeeeeees

Figure 7: Allocation of chains on set B.

Sketch of the proof: The proof of the previous lemma is technical but
not difficult. Two cases can occur (see figure 7), namely processors with
two or three chains of set B. On processor F;4q there are two different
chains which can use the same CS (see figure 8). On processor P; there
are three different chains, in this case, there are again two sub-cases. Let
ch; be the chain completely allocated on ;. Either chain ch;_;, which
starts its execution on P;, can use the same CS as P;;1. Or, it cannot
share this CS, but can share another CS with chain ch;_».00

Set A does not need a CS, if set C needs a CS, set B will need at most
|_m2_2-| CS (as set C has at least a split chain), otherwise set B will need

at most [Z-1] CS. So the total number of CS is bounded by [Z].

Figure 8: How to perform two asynchronous communications into a single CS.

Algorithm 2 given below groups the chains according to the receive
time of the asynchronous communications. This algorithm minimizes the

14



number of CS for a fixed chain allocation.

Algorithm 2 Algorithm with a limited number of supersteps

Apply the asynchronous algorithm and tag all communications

#cs 0

while there remains an untagged AC (asynchronous communications) do
#cs — Fes+1
compute synch[#tcs] as the smallest receive time of all the untagged AC
tag all the AC that can be grouped within the same CS at time synch[#cs]

end while

for 7 < 1 to #cs do
introduce a CS after the processing of synch[i] tasks

end for

4.2 Fixed number of supersteps

With the previous algorithm, at most [ 3] 4 1 supersteps are required to
perfectly balance the load among the processors. In this section, instead
of minimizing only the idle time ¢{; we are looking for a trade-off of the
overhead tr + t.. Indeed, t; may increase if t. decreases.

Without communication, that is £, = 0, there are several well-known
approximation algorithms like LPT [15] and multi-fit [7]. Here we choose
to present LPT as it is easy to understand. The performance guarantee

of the makespan of LPT is: wrpr < (% — %)wo Recall that LPT (which
stands for Largest Processing Time first) is the policy where the tasks
are allocated in decreasing order of length, at the earliest possible time
(see figure 9 for an example). Now, we are interested in approximation

algorithms where a fixed number of CS may be considered.

chq ‘ chg ‘ chqg ‘

L
P 77

chg ‘chs ‘Chg m
s w7

Figure 9: LPT principle of allocation on four processors.

Without loss of generality, let suppose that the chains are strictly
smaller than t*, otherwise these chains are simply allocated one per pro-
cessor, and the problem is solved with the remaining chains on the free
processors. The goal of this section is to design an optimal algorithm for
a fixed number of supersteps s that are evenly distributed (s > 1). To
introduce this optimal algorithm, we present first an algorithm which de-
pends on s and on an integer (denoted by « between n; and t*) which is
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a parameter for tuning the distance between two consecutive supersteps.
Then, we analyze the behavior of this first algorithm when the number
of supersteps s varies. Finally, we present a refinement of this algorithm,
and we choose the value of o for which it reaches the best performance.

4.2.1 A first algorithm for fixed supersteps

The algorithm 3 detailed below constructs a schedule for any set of chains
within s supersteps. The principle is first to compute where the CS will
be introduced, then to allocate the chains.

The (s — 1) CS are introduced from the beginning of the schedule in
successive regular intervals of length A, = 252—_101. Let € be the size of the

last superstep. Note that by construction of the intervals € > Aq.

Algorithm 3 Given a number of supersteps s and an integer «

Require: load(P;) computes the number of tasks allocated to processor P;
11,5« 1,A, = 252——10" maxj,qq = t* + AT“
Introduce up to (s — 1) CS in regular intervals of length A,
while (i < k) do
if (load(P;) + n; < max,qq) then
allocate ch; to P;
else
allocate first n; — load(P;) + maxjoqq tasks of ch; on Pjqq
allocate the remaining tasks of ch; to P;
if there is no CS between the split parts of ch; then
transfer tasks from P; to Pj4q from left to right until a CS is found
end if
JeJj+1
end if
1i+1
end while

The idea of this algorithm is to add some idle times (up to % units
by processor) to obtain a valid schedule. The chains are scheduled one
after the other as in the asynchronous algorithm. A chain is split when a
processor reaches the limit of ¢* + AT" tasks.

If a chain does not have a CS between its two split parts, it is delayed
(as shown in figure 10). For the split chains smaller than (s — 1)Ag,, it
is easy to verify that there always exists a CS between its two parts. For
the other chains, if there is a split chain ch, it can be delayed in order to
use one of the CS. In the case where a chain is delayed, the tasks on the
first processor where the chain is allocated are transfered, until a CS is
found, to the following processor. As ch has at most n; tasks, and n; is
smaller than (s — 1)A, + AT", this delay is at most AT". Of course, this

process is not cumulative since it does not affect the CS locations.

Proposition 3 Given a SIC instance to be scheduled within s supersteps
and an integer a such that ni < a < t*, the time of algorithm 3 is bounded

by t* + ﬁa—}-(s—l)c.
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Figure 10: Allocating chains longer than (s — 1)A,,. If there is no CS between
the two parts of a split chain on an interval, the tasks belonging to this interval
on P; are transfered to P;y; and the rest of the chain starts after CS.

Proof: Each processor, except maybe the last one which can have less
than t* tasks, have at least t* tasks to process, and a chain that is split
and allocated on two different processors uses one of the introduced CS
in order to communicate. So, the schedule generated by algorithm 3 is
feasible.

According to the allocation of chains in the algorithm, at most (s — 1)
CS are done and as we start from an algorithm in time t* by adding at
most a time Az—" = ﬁa, we obtain the result. [

(From this general result, we can derive some specialized cases de-
pending on the length of the chains.

Corollary 1 1. When the chains are small (n1 < [%]), the makespan
achieved by algorithm 3 is t* + C.

2. Given s, = max{s|n1 > ==1t*}. For all s, s > so, the makespan
achieved by algorithm 3 is t* 4+ (s — 1)C.

Proof:

1. The proof is straightforward by using a simplified version of the
previous algorithm. One CS is introduced at time [%] Then,
the chains are allocated one after the others as in the asynchronous
algorithm. As the chains are small, all the split chains can use this

CS to communicate.

Introducing the CS in successive intervals of length % (which cor-
responds to Aq for @ = ¢*), the condition on s, guarantees that the
longest chain is smaller than ¢* — % (that is (s — 1)As). So, if the
chains are allocated as in proposition 3; There always exists a CS
between the parts of a split chain. [0

We study now, for an instance of SIC, the number of supersteps which
leads to a schedule of minimal idle time, and then we study the number
of supersteps which minimizes the overhead of the schedule produced by
algorithm 3 (defined as the additive factor of the lower bound t*: A2—" +
(s =1)0).

In Proposition 3, the overhead is given by the sum of two terms, one
proportional to the number of CS, and the other inversely proportional to
the number of CS. To find a good compromise between the load-balancing
and the number of supersteps, we present the following result.

Proposition 4 The optirnal number of supersteps to minimize the over-
head for the schedule produced by algorithm 3 is given by s, = { 55 + %-I
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* a 1
or smax = /75 + 1]
Proof: The length of the schedule is ¢* plus the sum of two positive
expressions: namely, AQ" which is a decreasing function on s, and an in-
creasing one, (s — 1)C. So, the makespan is minimized when the derivate

on s is equal to zero. However, as s is an integer, the minimum makespan
is obtained by sy,.x, equal to the floor, or the ceiling functions of /2 + %

O

So, the best compromise algorithm is easy to derive:

Algorithm 4 Best compromise algorithm for a fixed number of supersteps.
Choose a such that n; < a < t*

Compute s} .,

Apply algorithm 3 with s

*

max Supersteps

4.2.2 Refinement

Algorithm 4 clearly depends on the distribution of the chain lengths. As
its performance is guaranteed by a worst case bound, it can be refined
in some cases and the bound can be improved. First we propose some
improvements on the average behavior of the algorithm, and then we
discuss how to determine the value of «a.

Algorithm improvement Algorithm 4 can be adapted in order to
obtain a better average behavior. The chain placement can be slightly
changed in order to fill-in the processors as close as possible to t*, so the
chain placement is done only until ¢*. During the allocation, if a chain is
split, and there is no CS between its two parts, then the less costly of the

following procedures (depicted in figure 11) is chosen:

ch ch‘

Figure 11: Alternatives to rearrange a chain with no extra CS between its two
parts.

For the following description, for a split chain ch let p; be the pro-
cessor where the last part of ch is allocated, and p;4+1 be the processor

18



where the first part of ch is allocated. Let [ be the superstep where the
communication should occur.

(i) Stop executing the tasks on superstep 3 of processor pit1. Transfer
these tasks to processor p;. In this case the processor time previously
allocated to ch on piy1 (ﬁlled with horizontal lines on figure 11) can
be used for the next chain allocation.

(ii) Delay the tasks executed by processor p; during superstep 3 until the
beginning of the next superstep. That is, the execution of chain ch
on processor P; will start after superstep 3.

Obviously the delay introduced by this procedure can be as large as a half
of the computational part of a superstep. So, this algorithm has the same
worst case bound as for the original algorithm for a given number of CS.
However, the improved algorithm has better average behavior.

With this improvement the number of supersteps can be reduced on
the average case. To find the best makespan with the improvements we
have to perform a search for the number of supersteps between 1 and

*
Smax-

Definition 2 Given a SIC instance, we denote by s* the number of su-
persteps that provide the best makespan using the improved algorithm.

Bound improvement The idea is to take into account the differences
between t* and n;, and between n; and the time slot of the last introduced

CS.

Proposition 5 Using the algorithm improvement, with a fived number of
supersteps s, the bound becornes:

t* —

t* + max <%— T,nl — (s—l)Aa,0> + (s =1)C

Proof: In addition to t* + (s — 1)C, there is the maximum of two terms:
the first term comes from the difference between t* and n;. This difference
is a lower bound of the elapsed time between the two parts of a split chain.
As t* — n; increases, the time to add to t* in order to schedule the chains
in the worst case decreases. This time is proportional to A, — (£* — ny),
but as we choose the less costly rearrangement, this time is divided by 2.
This term increases with «.

The second term comes from the date of the last CS, as it is the last
time a chain can be split. If the first part of a chain is greater than
this time, it needs to be truncated in order to be scheduled. This term
decreases with «. [

.. . . t*
The minimum value of the bound is achieved for apin = %

5 Influence of the latency

The algorithms presented in the last section concentrated on the impact of
CS. The specific structure of the SIC problem allows to limit the number of
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communications. We studied algorithms where CS are evenly distributed
over the time. Practically, CS can occur at any time. The objective of
this section is to study the impact on latency, i.e. the minimum delay
between two successive CS.

5.1 Principle of an algorithm

The aim of this section is to show that it is possible to take into account
the constraint of the latency with a small additional overhead proportional
to A. The main idea is to delay, or advance, close CS until they are spaced
by a time interval greater than A.

If a CS is delayed, an additional idle time may be introduced on the
receiver side. The effect is to increase its completion time. If a CS is
advanced, some idle times may be introduced at the sender side and the
equivalent number of tasks can be migrated to the receiver side increasing
the completion time (see figure 12).

t t
| | | | | | |

TR PR LY R 777778 P
i NI j =
el [
B ch, \‘ ch, ‘ F;‘ ch, \‘ ch, ‘ V A
BSP Delayed BSP
Communication Communilt.:a(ion
| | | |
N T P
j
’_:/
R[] R A,

Advanced BSP
Communication

Figure 12: Moving CS forward or backward

In figure 12, on the initial scheduling, three chains are placed. Chain
chy starts on P, and finishes on P;. If the CS is delayed, the end of ch2
is delayed too. On the other hand, if the CS is advanced, the end of
the first part of chy must be moved to P, and increases its completion
time. So, any change on a CS date will only increase the receivers com-
pletion time. The procedure is detailed on algorithm 5. This procedure
is available for any BSP algorithm and transform it to a new (feasible)
BSP algorithm with the latency constraint, but in general, we can not
guarantee its performance.

5.2 Analysis

Given a SIC instance. let w* be the makespan of an algorithm that does
not consider the latency, we state the following proposition.
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Algorithm 5 Algorithm with CS spaced of at least A

Apply any of the given BSP algorithms
for each CS (from the first one to the last one) do
if CS is at less than % time units from the previous one then
migrate the tasks of the split chains that use this CS
merge it (so advanced it) with the previous one
end if
if CS is between % and A time units from the previous one then
delay it until it occurs at A units from the previous one.
merge with this CS all previous CS at less than % time units
delay the tasks of the split chains that use these CS
end if

end for

Proposition 6 The additional cost from one of the proposed BSP algo-
rithms, taking into account the latency as stated in algorithm 5 is at most
an additive term equal to +%.

Proof: All the CS introduced by the algorithm are displaced (forward
or backward) by at most % unit of times. FEach processor increases its
completion time only if the communication it receives is displaced. As
each processor receives only one communication, each processor finishes
at most % time units after w*. As each processor is the origin of only one
communication, each merged CS still corresponds to a 1-relation. [

6 Average case analysis

In this paper we proposed some algorithms, and variations, to solve the
SIC problem. We already established the theoretical performance guar-
antee. In this section, we are interested in the average behavior of the
algorithms, towards simulations. We used the curve t* which is a lower
bound of the optimal schedule to serve as a reference. The following
algorithms have been implemented:

e LPT - (Largest Processing Time first) algorithm. Recall that it
requires no communication.

o Asynchronous- (Algorithm 2) where there are no restriction on the
CS placement.

o Three variations of the Algorithm 3 with a given number s of CS.
All the implemented algorithms use the refinements of Section 4.2.2.
The interval between two CS is proportional respectively to the ideal
makespan t*, the length of the longest chain ni and the average of
both. We will denote the smallest makespan version, with the opti-
mal number of supersteps, of the previous variations as, respectively

C/s*[t*, C[/s*[/n1 and C/s* /(" 4+ n1)/2.
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Figure 13: Average performance of LPT and Asynchronous on 50 processors
with almost equal length chains.

6.1 Methodology

For each curve, the number of processors and the CS time (equal to C) are
fixed. The chain lengths have been chosen according to a binomial law of
average 100 and standard deviation 10. Only the chains of positive lengths
are really scheduled. As the behavior of the algorithms does not depend
significantly on the number of processors, we report only an average case of
50 processors. The CS cost on 50 processors is 10. This value corresponds
to actual machines (for example T3E, in table 1 it corresponds to have
tasks with 88 flop). Each plotted point is the average of 30 instances. As
the measures obey a Gaussian distribution, the computed average is in a
range of 5% of the real average.

LPT vs Asynchronous

The behaviors of LPT and Asynchronous are compared on chains with
almost equal length (average length 100, and standard deviation 10) to
the trivial lower bound of SIC. These cases should behave badly for both
LPT, as the chains have almost the same length, and Asynchronous, as
the CS cost is large (10 percent of a chain length).

In figure 13, as expected, the execution time of LPT does not smoothly
get closer than the optimal. The makespan of Asynchronous tends more
smoothly to the optimal. Nevertheless, when the number of chains is
close to the number of processors, Asynchronous uses a large number of
supersteps (cf. figure 14), so in these tests Asynchronous has a worse
performance than LPT (which requires only one superstep). However,
the maximum number (11) and the average number (7) of CS used are far
from the worst case (for 50 processors, the worst case bound is 25 CS).
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Figure 14: Average number of CS occurring on Asynchronous.

C/s*/t* vs LPT

Let us compare the evenly distributed CS algorithm with LPT (cf. fig-
ure 15). The behavior of C/s*/t* is close to the behavior of Asynchronous,
whose makespan gets closer to ¢* when the number of chains increases.

Variations of the fixed number of CS algorithms

C/s*[t* behaves as Asynchronous (cf. figures 15 and 13 respectively)
when the number of chains increases. The achieved makespan gets smoothly
close to the best makespan we can achieve t* + C (two supersteps).

C/s*[n1 does not get as close to t* + C as C/s* /t* when the number
of chains increases (cf. figure 16). The last CS occurs at a date smaller
than the chain size thus, contrary to C/s*/t*, some delays are always
introduced. However, when the number of chains is small C/s*/n; per-
forms better than C/s*/t*, this is due to a smaller interval between two
CS, thus to the introduction of less idle time.

C/s*/(t* + n1)/2 combines the advantages of the two previous algo-
rithms. It reaches the minimal bound of t* 4+ C' as the C/s*/t" algorithm.
When the number of chains is close to the number of processors, it is as

good as C/s*/ni.

C/s*/(t* + n1)/2 vs Asynchronous

Let us compare now C/s*/(t* + n1)/2 with Asynchronous (cf. figure 17).

The former reaches ¢*+C as fast as Asynchronous, but with a smoother
behavior and a much better performance when the number of chains is
close to the number of processors. The number of supersteps used by each
algorithm is depicted by figure 18.

C/s*/(t* 4+ n1)/2 performs better than Asynchronous in almost all
situations, but it uses less supersteps than Asynchronouseven for a rela-
tive small number of chains. Conversely, when the communication time is
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Figure 15: Average performance of LPT and C/s*/t* on 50 processors with
chains of almost equal length.

small compared to the average chain size, Asynchronoushas a better per-
formance as the communication weight becomes negligible. An example
where the CS corresponds to 1% of the average chain size can be found on
figure 19, again the average chain size is 100 and the number of processors
1s 50.

Influence of the number of communications

In this last experiemnt, we are interested on the behavior of C/s/(¢* +
nl)/2 when the number of CS varies. We fixed the number of processors
(equal to 50), and we generated several SIC instances with 65 chains (the
chain average and the standard deviation are the same as in the previous
examples). As we can see in figure 20, the average of the makespan,
produces a unimodal convex function, when the number of CS varies.

It is interesting to remark that even when the number of chains is close
to the number of processors, the optimal number of supersteps s* is small
(for example on the instance of figure 20 this number is only 2).

6.2 Summarize
Let us now summarize the main conclusions of the experiments.

o The Asynchronous algorithm is the simplest one, and was not espe-
cially designed for BSP. It performs well when the number of chains
is reasonably large compared to the number of processors. When
the communication cost is very low, Asynchronousbehaves well and
has the best performances among all the algorithms.

m
5 supersteps

for a perfect balance of the load on the processors. However, even for
instances which have a behavior close to the worst case (we saw that

Theoretically, solving one SIC instance can require ipto
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Figure 16: Average performance of the overhead for C/s*/t*, C/s*/nq,
C/s*/(t* + n1)/2 on 50 processors with chains of almost equal length.

this corresponds to chains of about the same length), the number
of communications used by Asynchronousis lower than this worst
case.

o Let us now look at the algorithms derived from Algorithm 3 which
uses evenly distributed communications. C/s*/n1 has the best the-
oretical bound, but it does not have the best behavior when the
number of chains increases. On the other hand C/s*/t* has a good
behavior when the number of chains increases but does not have a
good performance ratio when the number of chains is close to the
number of processors.

Choosing the compromise o = t*‘l'T"l, will guarantee the best be-
havior of this class of algorithms. C/s*/(t* + n1)/2 performs better
than Asynchronous, even when the number of chains is close to the
number of processors since the number of introduced supersteps is
a function of the achieved improvement.

Finally, C/s*/(t* + n1)/2 does not use more than a few supersteps.
It is well suited for all instances when the communication cost is not
negligible.

7 Conclusion

In this paper, we studied the influence of the computational model BSP
on a simple scheduling problem, namely SIC. We focused first on the
synchronization criterion. We proved that finding an optimal solution
with any supersteps number is still NP-hard, but near-optimal heuristics
can be found. We showed that there exist some instances which may
require up to [mT-I-l] supersteps to obtain a perfect load balance. We
proposed a general algorithm that obtains a perfect load balance with
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Figure 17: Average performance of the overhead (over t*) for Asynchronous and

C/s*/(t* + n1)/2 on 50 processors.

only one more superstep ([%] + 1). We proposed also algorithms which
achieve a trade-off on the overhead, that is both good load balance and
small number of supersteps.

Some simulation experiments have been carried out to show that in
practice the general algorithm needs only a few supersteps. The experi-
ments showed also that the algorithm with the best worst case bound are
not so good in average, especially for a large number of chains.

We hope that this work contributes to a better understanding on the
design of BSP algorithms. A good BSP algorithm should achieve a trade-
off between pure load-balancing and number of CS. For the SIC problem,
the latency has no significant influence. This should be studied for other
algorithms.
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