N

N

Dynamic Load Balancing for Ocean Circulation Model
with Adaptive Meshing

Eric Blayo, Laurent Debreu, Grégory Mounié, Denis Trystram

» To cite this version:

Eric Blayo, Laurent Debreu, Grégory Mounié, Denis Trystram. Dynamic Load Balancing for Ocean
Circulation Model with Adaptive Meshing. Euro-Par’ 99 Parallel Processing - 5th International Euro-
Par Conference, Aug 1999, Toulouse, France. pp.303-312, 10.1007/3-540-48311-X_39 . hal-00003948

HAL Id: hal-00003948
https://hal.science/hal-00003948
Submitted on 20 Jan 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00003948
https://hal.archives-ouvertes.fr

Dynamic Load Balancing for Ocean Circulation
Model with Adaptive Meshing

Eric Blayo, Laurent Debreu, Grégory Mounié, and Denis Trystram

LMC-IMAG, BP 53, 38041 Grenoble Cedex 9, France
tel: (33) (0)476514500, fax: (33) (0)476631263
{name}@imag. fr

Abstract. This paper reports the parallel implementation of adaptive
mesh refinement within finite difference ocean circulation models. The
implementation is based on the model of Malleable Tasks with inefficiency
factor which allows a simple expression of the different levels of paral-
lelism with a good efficiency. Our goal within this work was to validate
this approach on an actual application. For that, we have implemented a
load-balancing strategy based on the well-known level-by-level mapping.
Preliminary experiments are discussed at the end of the paper.

Keywords: Load Balancing - Malleable Tasks - Adaptive Mesh Refinement -
Ocean Modeling

1 Introduction

Numerical modeling of the ocean circulation started in the sixties and was con-
tinuously developed since that time. Today the motivation for ocean modeling
is mainly twofold: The first goal is climate study (prediction of the evolution of
the climate, at ranges from a few months to a few years), while the second mo-
tivation is operational oceanography, i.e. near real time forecast of the “oceanic
weather” | in a way similar to operational meteorology.

A major practical problem within ocean general circulation models (OGCMs)
is their very large computational cost. These models are run on vector and/or
parallel supercomputers (Cray C90 or T3E, Fujitsu VPP ...), where a usual
simulation requires several hundred or thousand hours of CPU-time.

In this context, it is clear that adaptive meshing could be of real interest for
ocean modelers. It could reduce the computational cost of models by taking ad-
vantage of the spatial heterogeneity of oceanic flows and thus using a fine mesh
only where and when necessary. Moreover, this would allow local zooms on lim-
ited areas of particular interest, e.g. for operational purposes. The finite element
technique permits of course the use of such a non-uniform adaptive grid over the
computational domain. However, this approach is mostly reserved, in the field
of ocean modeling, to coastal or tidal models, and all major OGCMs use finite
difference methods on structured grids. Starting from this consideration, Blayo
and Debreu [2] are currently developing a Fortran 90 software package, which

will furnish any finite difference ocean model the capability of adaptive mesh-
ing and local zooming. The method is based on the adaptive mesh refinement
(AMR) algorithm proposed by Berger and Oliger [1], which features a hierar-
chy of grids at different resolutions, with dynamic interactions. Since the mesh
refinement is adaptive over the time step, the number of grids as well as their
sizes and resolutions vary during the simulation. Thus, the computational load
is also varying in time, and a dynamic load balancing is necessary to implement
efficiently this AMR method on a parallel computer.

This paper will discuss the design, implementation and performance of a
load balancing package and its integration into a code for large scale simulations
of ocean circulation. Tt is organized as follows: in section 2, we describe some
features of ocean models useful for the rest of the paper and present the AMR
method. The model of Malleable Tasks with inefficiency factor is presented in
section 3. Then, an adaptation of the level-by-level load balancing algorithm is
detailed and analyzed in section 4. Some numerical experiments are reported
in section 5, in order to illustrate the behavior of the algorithm on a parallel
machine. Finally, some conclusions and perspectives are discussed.

2 Ocean Models and Adaptive Mesh Refinement

2.1 About Ocean Models

The basic relations describing the ocean circulation are equations for conserva-
tion of momentum (Navier-Stokes equations), mass (continuity equation), heat
and salt, and an equation of state. The addition of the Boussinesq’s approxima-
tion (variations of density are small) and the hydrostatic approximation leads
to the so-called “primitive equations” (PE), which are solved by most OGCMs,
using finite difference techniques. Simpler models of ocean circulation can also
be derived by making additional assumptions.

. . . 0X
Thus, an ocean model can be written in a symbolic way as: ri F(X)

where t 1s the time, X is the state variable and F' is a non-linear operator. The
time discretization scheme is generally explicit, which leads in most cases to
discretized equations of the form X (¢ 4+ §t) = G(X(t), X (¢t — dt)) where d is
the discretization time step. However, some models use also an implicit scheme
for one of the equations (equation for barotropic — or depth-averaged — motion),
which implies in that case to solve at each time step a linear system for X (¢+46t).

The parallelization of ocean models is performed by domain decomposition
techniques : the geographical domain is divided into subdomains, each of them
being affected to a processor (e.g. [11] [3] [12]). An important point for the
purpose of this work is to emphasize that ocean models are regular applications,
in the sense that the volume of computations can be estimated quite precisely
as a function of the grid size and the number of processors (at least, it can be
measured by adequate benchmarks).

2.2 Adaptive Mesh Refinement (AMR)

The basic principle of AMR methods consists in locally refining or coarsening
the computation mesh, according to some mathematical or physical criteria (like
error estimates or eddy activity). Such techniques are widely used with finite el-
ement codes, but rather rarely with finite differences because refinements lead to
non-homogeneous grids and thus complicate the handling of the code. However,
Berger and Oliger [1] proposed an AMR, algorithm which avoids this drawback,
by considering a locally multigrid approach. In their method, the refinement is
not performed on a unique non-homogeneous grid, but on a hierarchy of grids,
i.e. a set of homogeneous embedded grids of increasing resolutions, and inter-
acting among themselves. Without going deeply into more details (the reader
can refer for example to [1] or [2]), the principle of the algorithm is as follows.
Consider a hierarchy of grids, like in Figure 1: it consists in a root (or level-0)
grid covering the entire domain of computation with coarse resolution Ahg and
coarse time step Atg, and a number of subgrids (or level-1 grids) with a finer
resolution Ahy = Ahg/r and a finer time step Aty = Atg/r focused only on
some subdomains (r is an integer called the refinement ratio). This structure is
recursive, in the sense that any level-/ grid can contain finer level-({4 1) subgrids,
with Ahjp1 = Ahy/r and Aty = Aty /r (of course until a maximum level /,,.,.).

Time integration is performed recursively starting from the root grid. Any
level-l grid is advanced forward one time step A#;. The solutions at time ¢ and
t + At; are used to provide initial and boundary conditions for the integration of
the level-({ 4 1) subgrids. These subgrids can then be advanced forward r time
steps At;41, to provide a more precise solution at time ¢t + rA¢; 4 =t 4 At; on
the regions covered by the subgrids. These solutions at level ({4 1) are then used
to improve the solution at level [, via an update procedure.

The relevance of the grid hierarchy is checked regularly every N coarse time
steps Atg. A criterion is evaluated at every grid point to determine whether
the local accuracy of the solution seems sufficient or not. Subgrids can then be
created, resized or removed.

Fig. 1. Example of grid hierarchy

A major interest of this AMR method is that it can be used without modi-
fying the model. The model can be seen like a black-box (corresponding to the
Step routine in the previous algorithm) needing only configuration parameters
(domain of computation, mesh size Ah, time step At, initial conditions, bound-
ary conditions) to be run. This is one of the key ideas of the package that we
are presently developing.

In the parallel version of our package, the model will still be used as a black-
box like in the sequential case, but with an additional parameter: the number of
processors used to run the model. Since the different grids at a given level [can
be run simultaneously, they will be affected to different groups of processors. The
problem is then to determine, for a given hierarchy, which is the best grids-to-
processors correspondence for computational efficiency. These assignments must
be determined at every regridding step, because of the evolution of the grid
hierarchy during the simulation. The model of Malleable Tasks presented in the
next section is an efficient tool for solving such problems.

3 Parallel Implementation

3.1 Malleable Tasks

Since the eighties, many works have been developed for parallelizing actual large
scale applications like the oceanographic simulation considered in this paper. The
solution of the scheduling problem (in its larger acception) is a central question
for designing high-performance parallelization. It corresponds to finding a date
and a processor location for the execution of each task of the parallel program.
Among the various possible approaches, the most commonly used is to consider
the tasks of the program at the finest level of granularity and apply some ad-
equate clustering heuristics for reducing the relative communication overhead
[6]. The main drawback of such an approach is that communications are taken
into account explicitly (they are expressed assuming a model of the underly-
ing architecture of the system which is very difficult to establish and often far
from the actual asynchronous and non-deterministic behavior of the parallel ex-
ecution). It is well-known that the introduction of explicit communications into
the scheduling algorithms renders the problem harder than without communica-
tion [4]. Recently, a new computational model has been proposed [5]. Malleable
tasks (denoted MT in short) are computational units which may be themselves
executed in parallel. Tt allows to take into account implicitly the influence of
communications.

3.2 Motivation for Using MT

There are several reasons for introducing M'T as a way to design efficient parallel
applications. Let us summarize them below:

— MT allow to hide the complex behavior of the execution of a subset of tasks
by using a parameter (the inefficiency factor p discussed later) to abstract

the overhead due to the management of the parallelism (communications,
idle times due to internal precedence constraints, etc..).

— MT reflect the structure of some actual parallel applications because they
unify the usual single processor tasks and tasks which may require more than
one processor for their execution. The structural hierarchy is then included
into the model and the user does not specify when to use one model or
another.

— MT simplify the expression of the problems in the sense that the user does
not have to consider explicitly the communications. Thus, the same code
may be used on several parallel platforms (only the p factors will change),
leading to a better portability.

The idea behind this model is to introduce a parameter which will implicitly give
the communication overhead. An average behavior has to be determined using
the inefficiency factor that will be now discussed in more details.

3.3 Inefliciency Factor: Definition and Properties

The efficiency of the execution of a parallel application depends of many factors
like the algorithm, the data size, the data partitioning between available process-
ing units, communication volume, network latency, topology, throughput, etc..
Ideally, a parallel system with m processors could complete the execution of an
application m times faster than a single processor. However, an actual m proces-
sors system does not achieve such speedup due to some overhead introduced by
inter-processor communication (which is slow compared to basic processor com-
putation) and synchronization between the tasks. The ratio between achieved
speedup and theoretical speedup depends on the number m of processors and the
size N of the application. It will be denoted by u(m, N) and called inefficiency
factor. We give below the definition using a geometric interpretation.

Definition 1. The inefficiency factor is the expansion of the computational area
while using m processors: t,, = p(m, N)-L where t; (resp. tn,) is the time re-
“m

quired to complete a malleable task of size N on one processor (resp. on m
processors).

Generally, the inefficiency factor increases with the number of processors and
decreases with the size of the parallel task (at least until a certain threshold).
The general shape of p function may be divided into three zones of consecutive
intervals of number of processors: (I) corresponds to the start-up overhead due
to the management of the parallelism, where the efficiency may be quite bad.
(IT) is the region where the addition of extra processors cost almost nothing,
speed-ups here are generally linear. (III) corresponds to a degradation due to
the lack of parallelism (for instance, for too small MT). Some properties of u are
presented below. They will be useful for bounding the time in the load-balancing
heuristics.

Property 1. p(q,.) is an increasing function of ¢

Proof. Adding a processor generally involves an extra cost for managing com-
munications and synchronizations between this processor and the others. This
comes directly from the Brent’s Lemma [9].

Property 2. Given a specific m processor system and a particular application,
t t

p(1,N) = Land plg + 1, N) = < (g, N) - Vg, 1 S g S m— 1.

Proof. These relations are usual hypotheses in parallel processing. The first part

comes from the sequential execution of a task. For the second relation, just

remark that it is useless to solve the application with one more processor if 441
is greater than t4.

A direct corollary of this last property ensures that is a decreasing

u(g,)
q

function of q.

4 Load-Balancing Issues

4.1 Definition and Context

A parallel application is usually described as a set of tasks (which are compu-
tational units) plus their interactions which are represented as a graph, called
the precedence task graph [9]. For the specific oceanographic application we are
considering in this paper, the tasks correspond to solve the equations on a mesh
at a given time step. The parameters of a task are the size of the mesh (n; and
ns plus the height along the vertical axis, at each time step k). This graph is not
known in advance, it evolves in time and a mesh refinement leads to introduce
a new series of tasks in the graph. In this sense, the problem is dynamic.

According to most studies in parallel processing, we are interested in mini-
mizing the total execution time. It is influenced by two contradictory criteria,
namely the idle time (or load-balance) which decreases as the size of the grain
decreases and the communication overhead which grows with the number of
processors. The load-balancing problem corresponds formally to determine an
application which associates to each (malleable) task a sub-set of the processors.
The resulting scheduling problem (defined as determining the date of which each
task will start its execution, synchronously on the sub-set of processors) should
add some constraints; namely, a task is allocated only once and should not be
preempted. One contribution of this work is to introduce the influence of the
inefficiency factor into load-balancing policies.

The well-known gang scheduling policy corresponds to allocate the total re-
sources of the parallel system for executing each task [7]. Gang will be used as
a basis for comparison.

4.2 Level-by-level mapping

The well-known level-by-level load-balancing policy can also be adapted to M'T
with inefficiency. A complete presentation of the basic heuristic can be found
in [8]. It was proposed for a classical model of tasks with no communication
delays. The basic idea of the level-by-level mapping is to distribute the tasks
level by level in the precedence task graph. The level i is defined as the sub-set
of independent tasks (not related by the precedence constraints) at distance ¢
from the root of the corresponding not-weighted task graph. In other words, this
policy may be interpreted as a series of successive synchronized Macro-Gang
schedulings with sets of independent malleable tasks.

5 Experiments

5.1 The Ocean Model

The ocean model used for this study is a simple quasi-geostrophic box model,
since our intention is to validate the M'T approach and to design a good schedul-
ing heuristic before running the simulation on the operational models. This type
of model has been widely used in the ocean modeling community, and is known
as a simple prototype of eddy-active large scale circulation in the mid-latitudes.
Blayo and Debreu [2] already implemented the AMR method in such a multi-
layered model, and demonstrated its interest.

In the present study, we use a barotropic (i.e. one layer) version of this model
(see for instance [10] for a detailed description of such a model). Its governing
equation can be written as:

0AY

W-I—J(@b,Aw)-l—ﬁ% = curlr — rAY + AA%Y (1)

where ¢ is the streamfunction, J is the Jacobian operator, 8 is the meridional
gradient of the Coriolis parameter at the mid-latitude of the domain, 7 is the hor-
izontal wind stress at the surface of the ocean, r is a bottom friction coefficient,
and A is a lateral viscosity coefficient.

5.2 Evaluation of Inefficiency

The inefficiency factors p correspond to the penalty coefficients of the parallel
time due to the overhead coming from the management of the parallelism. The
parallel code was benchmarked in order to determine empirically an expression
of the inefficiency factors for including them into the load-balancing policies.
The p 1s measured using single grid parallel computation. The variation of these
curves 1n regard to the number of processors confirms the same global behaviour.
Two aspects were studied:

— The variation of y versus the grid size (cf Fig. 2) for a given number of proc.
Note that for other number of processors, the general shape of the curves
remains the same. The greater the number of processors, the greater the
number of anomalies.

inefficiency factor

inefficiency factor

Fig. 2. Inefficiency factor as a function of the number of gridpoints in x— and
y—directions for 15 processors

— Figure 3 depicts the typical behaviour of p versus the number of processor
for a small and a large grid. This behaviour shows clearly some limitations of
speedup due to inefficiency for small grids (speed down) and a linear speedup
of larger problems.

inefficiency factor ——
e —

Fig. 3. Inefficiency factor as a function of the number of processors. Left panel: with
anomaly (small grid size); right panel: without anomaly (large grid size). The reference
curve y = x is also plotted.

5.3 Experimental Results

We are currently developing numerical experiments on an IBM-SP2 parallel ma-
chine with 16 nodes connected on a fast switch.

Since the oceanographic model considered here is rather simple, the present
study should be interpreted as a preliminary study for comparing the load-
balancing policies and demonstrating the interest of using MT model for actual
applications.

Gang ——
-

Gang ——
Lev-by-Lev without inefficiency facto -
Lev-by-Lev wih inefficiency factor —x.

v-y-Lev without inefficiency factor
v-by-Lev with inefficiency factor

Fig. 4. Time and Work achieved by Gang, Level-by-Level with and without inefficiency
factor scheduling algorithms versus the number of processors.

The tests reported in Fig. 4 compare speedup and efficiency of the three
load-balancing policies: gang, level-by-level with and without inefficiency factor
for multiple runs of a test case.

On a small number of processors the difference between algorithmsis small. In
fact, as the load imbalance produces large overhad, the gang scheduling perform
better than Level by Level algorithms in some cases.

On a greater number of processor, the gang scheduling induces a large com-
munication overhead.

The two Level by Level algorithms (with and without inefficiency factor) seem
quite close in appearance on left panel of Fig. 4, namely in achieved makespan.
However the Level by Level algorithm with inefficiency factor never used more
than 9 processors while it achieves almost the same time. The amount of com-
putation reported in Fig. 4 show clearly that inefficiency factor allows to bound
it without large performance penalty.

The good behavior of the Level-by-Level scheduling algorithm with ineffi-
ciency factor allows us to expect good results for future works using a large
number of processors, for example on a 128 processors Cray T3E.

Note, since the adaptive algorithm use the oceanographic model as black
boxes, it is intrinsically synchronous; communications between MT only occur
before and after computation. Thus the makespan is quite sensitive to the syn-
chronization overhead between MT. This is especially true for the Gang schedul-

ing and partially explains its poor efficiency. Gang scheduling is also highly sen-
sitive to perturbations occurring in multi-user environment.

6 Conclusion and Future Works

We have presented in this work a new way to parallelize actual applications. It
is based on the model of Malleable Tasks with inefficiency factor. We have dis-
cussed some fundamental properties of MT and showed how they are suitable for
designing load-balancing heuristics. Some adaptations of well-known heuristics
have been done, and preliminary experiments on a test problem coming from
oceanography are currently carried out to show the feasibility and potential of
MT model.

Other short term perspectives are to develop other load-balancing heuristics,
and implement them within operational models of ocean circulation.

References

1. Berger M. and J. Oliger, 1984: Adaptive mesh refinement for hyperbolic partial
differential equations. J. Comp. Phys., 53, 484-512.

2. Blayo E. and L. Debreu, 1998: Adaptive mesh refinement for finite difference ocean
models: first experiments. J. Phys. Oceanogr., 29, 1239-1250.

3. Bleck R., S. Dean, M. O’Keefe and A. Sawdey, 1995: A comparison of data-parallel
and message passing versions of the Miami Isopycnic Coordinate Ocean Model
(MICOM). Paral. Comp., 21, 1695-1720.

4. Hoogeveen J., Lenstra J.-K., and Veltman B., 1994: Three, four, five, six, or the
complexity of scheduling with communication delays. Operations Research Letters,
16, 129-137

5. Turek J., Wolf J. and Yu, P., 1992: Approximate algorithms for scheduling paral-
lelizable tasks. 4th Annual ACM Symposium on Parallel Algorithms and Architec-
tures, 323-332

6. Gerasoulis A. and Yang 1., 1994: DSC : Scheduling Parallel Tasks on an Un-
bounded Number of Processors. [EEFE Transaction on Parallel and Distributed
Systems, 5,951-967

7. Scherson [.D., Subramanian S.D., Reis V. L. M. and Campos L. M., 1996: Schedul-
ing computationally intensive data parallel programs. Placement dynamique et ré-
partition de charge : application auz systémes paralléles et répartis (Ecole Frangaise
de Parallélisme, Réseauz et Systéme), Inria, 107-129

8. Kumar V., Grama A., Gupta A. and Karypis G., 1994: Introduction to Parallel
Computing: Design and Analysis of Algorithms, Benjamin/Cummings

9. Cosnard M. and Trystram D., 1993: Algorithmes et architectures paralleles. In-
terEditions, collection ITA.

10. Pedlosky J., 1987: Geophysical fluid dynamics. Springer-Verlag, 710.

11. Smith R.D.; J.K. Dukowicz and R.C. Malone, 1992: Parallel ocean general circu-
lation modeling. Physica D, 60, 38-61.

12. Wallcraft A.J. and D.R. Moore, 1997: The NRL layered ocean model. Paral. Comp.,
23, 2227-2242.

