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Abstract. We measure the spatial correlation function of Bose-Eingtendensates in the cross-over region between
phase-coherent and strongly phase-fluctuating condenssieeobserve the continuous path from a gaussian-like shape
to an exponential-like shape characteristic of one-dioeas phase-fluctuations. The width of the spatial corretat
function as a function of the temperature shows that the easate coherence length undergoes no sharp transition
between these two regimes.

PACS. 03.75.Hh Static properties of condensates; thermodyransitatistical and structural properties — 03.75.Dg
Atom and neutron interferometry — 39.20.+q Atom interfeebm techniques

1 Introduction is observed@?]: below a characteristic temperafljyeleter-
mined by the atom number and the trapping frequencies, the
.= The high atomic phase-space density provided by a Bosendensate is nearly phase coherent, but aligvihe popu-
Einstein condensate (BEQ) [1] has driven interest in ggjdidation of the axial modes is high and phase fluctuations may
atoms in a manner analogous to guiding laser light througk pronounced. For weakly elongated condensdigsan be
single-mode optical fibres. The most advanced technologyhigher than the transition temperatdfg so that the conden-
_date is based oatom chips, where the fields which trap andsate is nearly phase coherent at all temperatures. In spntra
00 guide the atoms are created by microfabricated structB@B{H&f¢n chips can easily produce traps with high aspect ratios
Many groups around the world have already succeeded inprépal000) for which Ty can be much smaller théft. Phase
O) ing BEC on an atom chidJB[9,ll0]11] LA[13,14] and one can dhuctuations are therefore likely to impose limits on thefper
visage using this technology to create integrated atont-interance of atom chip devices and need to be well understood.

O ferometers[[15,6,17 [18]. In this context, a precise dttera | an elongated condensate, the wavelength of the low en-
zation ase coherence properties of the conderssaigygy axial modes is longer than the radial size of the conden-
O crucial 1]- _ ) sate, so these excitations have a 1D character. However, the
~ Trapping quantum gases on atom chips naturally involv@gyelength of these excitations can be much shorter than the
I_highly elongated, guide-like traps. Changing the dimemsio axja| length of the condensate, reducing the phase coherenc
m'ty of the system from three-dimensional (3D) towards ONgsngth in the axial direction. An important feature of quasi
O dimensional (1D) has a profound effect on the phase coherepgndensates is that density fluctuations remain suppréssed
(.)Of the_ condensate. In 3D condensates of modest aspect rafi@. trap, due to the mean field energy, even in the presence
experimental results show that phase coherence exterasackf |arge phase fluctuationf [[#7]21]. Therefore, the 3D guasi

the whole cloud[[32,33], even at finite temperat]rg [24]. Howondensate has the usual parabolic profile in the ThomasiFer
ever, in the 1D regime, thermal excitations of the low energyyit.

axial modes lead to phase fluctuations which degrade thephas Ph fluctuati d tes in el ted t first
coherence[[35,26]. Condensates exhibiting such phasedhct ase-fiuctuating condensates in elongated traps were 1irs

tions are known aguasi-condensates. observed by the conversion of phase fluctuations into densit
In the intermediate regime of elongated 3D condensaﬂa"écwm'onS after a sufficiently long free expansErI [19 &y

with a high aspect ratio, a behaviour similar to the 1D Cagecondensate-focussmg technigp [20]. Qua_ntltauve ureas
ments of the phase coherence length have since been obtained
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relation function ]. The results of each of these experita fringes, uniformly spaced along the longitudinal direntithe
showed good agreement with theo@[Z?] in the strongly phaspatial frequency of the fringes being proportional to thess
fluctuating regime (at temperaturss T,). However, neither rations. The fringe contrast integrated over the entire conden-
experiment explored the cross-over regi@h+ T,) between sate gives the first-order correlation functiorsat
phase-coherent and strongly phase-fluctuating condensate
In j[his article we describe anew experimen'_c using a matter- c (s) = /013r W (r — fez)%(r + fez). 2)
wave interferometer and Fourier-space analysis to medsere 2 2
spatial correlation function, thereby extending our measu
ments into the cross-over regid ~ Ty). Our results agree
with the predicted shapes of the correlation functionFor>
Ty, we find exponential-like correlation functions as preelict
for significant phase fluctuations, wheread'at- T4 we find
a gaussian-like shape, as expected when the phase proﬁITé(llr [E]' ; -
' . . . n the case of a quasi-condensate, 1D thermal excitations
nearly f'?t and t_he correlation function decay is do_mlnatyed lEause the phase to fluctuate along the longitudinal axi bot
the density profile. The coherence length as a functidhy/df,

; i spatially and temporally. In our experiment, these flugturest
follows the trend predicted by theory, showing that the ¢oh re, small compared to the parabolic phase developed during

ence Ieng;h increases smqqthly as the temperature falls ?r@% expansion. Therefore when we image the overlapping con
that there is no sharp transition’st. This highlights the fact oo after free expansion, we still observe straigtyes,

that phase fluctuations occur at all finite temperatures) dve ut they are no longer strictly periodic. Small local phasiéts
these effects are too small to be resolved experimentatly Hd a i

herical t ¥ h . jitter” to the fringe spacing, which in Fourier spa@sh
more Spherical traps. HOWEVer, Whereas our previous measyhq oftact of broadening the peak at the spatial frequency of
ments based on momentum spectroscpply [21], realized for hig fringes and thereby reducing its height. Al increased,
T/T¢.’ were in fgll agrement with the thepry, two obsgrvgtlonﬁ]e fringes are perturbed more strongly, because the csatken
remain unexplained in the interferometric method. Firstina .

. . . hase becomes less correlated at larger separations. ke co
a previous experimenft [R2], our experimental measurenwnt

) ) .~ trast therefore decreases faster witthan in the fully phase-
the coherence length are shifted from the theoretical ptiedi :
) ~ W=7 coherent case. The greater the amplitude of the phase fluctu-
by about20% for T'/T = 0, even after taking the limitations g b P

: . . term int tS d interf ations, the faster the contrast decreases withherefore by
ol ourimaging Systém Into account. second, our inter elcomr?leasuring the width of the correlation function at diffdren
ter produces unexplained supplementary fringes outsideeof temperatures, we extract the temperature dependenceai-the

region where the condensates overlap, and we note thaasi ; R ;
unexplained fringes appear in other published [29%sEh Oftrﬁgi%:s;g?{g:y;g%gatmn 's obtained from trepsh

,[S:r?eprlsrr:::een;?%efr;?]g?rigoclgzzsgssrgr?e%c&%pa“ble with in- In the presence of phase fluctuations, each realization of
: the experiment gives a different interference pattern evih
fixed experimental conditions. Expressi(ﬂ] (2) must theeefo
be generalized to:

Repeating this contrast measurement for different sepasat
s, one can study the decay 6f!) (s) with increasings [PJ).
For a fully phase coherent condensate, the first-order leerre
tion function decay reflects only the width of the densityfjieo

2 Measurement of the coherence length by

atom interferometry W (s) = /d3r W (r — %ez)%(r n gez)>7 3)
A natural method to study the coherence length along the lon

axis ~ of a condensate, or a quasi-condensate, is to use aw%ere the bracket§ denote a statistical average of the random
interferometry. With atomic beam-splitters, one produwes Process describing the random phase. In practice, one ewst r
daughter copies of the initial condensate with a separationPeat the experiment at a given separatioand average the
and observes the interference pattern appearing in theicatoﬁﬁ)?)tfas'[ measurements over many quasi-condensates to obta

density: CM(s).
s 4 s This principle was used by Michelson in his famous astro-
n(r) o [Po(r — Ze,) + ey (r + ~e,)|? nomical interferometer, whose goal was to measure the spa-
2 s 2 tial coherence of the light field arriving from a star, in arde
o [Tp(r — =€) > + |W(r + ~e,)|? to deduce the diameter of the sthr|[34]. However, Michelson’
. 2 s 2 s method is plagued by the existence of a randomly fluctuating
+ 2Re[e 1w (r — 5ez)%(r + §ez)], (1) relative phase between the two inputs of the interferomaier

various methods insensitive to the relative phase fluanati
wheree, is the axial unit vecto(r) is the wavefunction de- had to be developeﬂBS]. A similar problem appears when one
scribing the initial condensate anfg., a relative phase shift tries to determine the coherence length of a condensate or a
produced by the interferometer and the free fall of the candeguasi-condensate with interferometry. In addition to tba-c
sate. trolled relative phase between the two components iniegfer
Let us first consider the behaviour of a fully phase cohereint(]j), there is an uncontrollable relative phase due to expe

condensate. During free expansion, it acquires a phas# disental problems such as a residual phase shift between the
bution proportional taz? [BI]]. The phase difference,.; be- lasers creating the two copies or a random velocity kick im-
tween two displaced copies of the condensate is therefore grarted to the sample. In order to overcome this probIErh [36],
portional toz s, giving rise to an interference pattern of straighd. Hellweget al. [R§] have used an analysis analogous to the
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Hanbury Brown and Twiss method [37], since it is based on the
measurement of the second-order correlation functionisic
insensitive to global phase shifts. In contrast, our metisod

in line with the initial method of Michelson who could visu-
ally evaluate the contrast of the randomly moving fringes he
was observing. The decrease of this contrast as a function of
the telescopes’ separation gave a direct measurementodthe
herence length. Similarly, we directly evaluate the costtcd

the fringes by taking the modulus of the Fourier transform of
the fringe pattern. The decrease of that contrast as a émcti
of the separations yields the coherence length of the quasi- : %
condensate. : %

3 Experiment ‘ T
T t=Tror
_>l l(—

3.1 Creation of elongated Bose-Einstein

condensates S2 2ueT,

\
In our experimental setup [B8], a Zeeman-slowed atomic beam )
of 87Rb is trapped in a MOT, and after optical pumping int ig. 1. The condensate is released from the trap-at) and has a half-

the 551/2|F — 1,mp = —1) state is transferred to a mag_ength of L. A sequence of two Bragg pulses is applied to generate the

netic loffe-Pritchard trap created by an iron-core eleuntag- interferometer. Two output ports are creatp 0, p = 2hke) with
net. Our design allows us to lower the magnetic field at tﬁgmplememaw fringe patterns.
bottom of the trap to a few Gauss and thus to obtain very tight

radial confinement@9]. Using this trap, we are able to cre- )

ate condensates very close to the 1D Thomas-Fermi regifji! 7 the atomic mass ang, = 2m/A. The momentum
@]’ as was demonstrated im@@’ﬂ]_ In the presentrexp\é”dth along,f: of the expanding condensate corresponds to a
iment, we produce condensates further into the 3D regime f§gauency width of 200 Hz. Therefore we use Bragg pulses of
that we can explore the cross-over regirfie{ 7;). We use 7~ 10048, short enough such that the correspondirikHz

two different trap configurations: in the first, the final raidi frequency width (full width at half maximum) is sufficient to
and axial trap frequencies are respectively = 27 x 395 Hz couple the entire condensate. The _the_rma_1| cloqd surrogndin
andw, = 27 x 8.67Hz, giving an aspect ratio of 45; forthe condensate has a momentum distribution with a frequency

the second trap configuration, the final frequencies.are= width ranging from 12 kHz to 60 kHz, ml_Jch larger than that of
927 x 655Hz andw, = 271 x 6.55 Hz, with aspect ratio 100. _the condensate. Thus, only a small fraction ofthe_ thernoaict|

In this way, we obtain needle-shaped condensates corgairlmcoUPled by the Bragg pulsels [45]. By controlling the Bragg
around3 x 10° atoms, with a typical half-length ~ 85 um pulse length, we realize f-pulse which splits the condensate
in the first trap and. ~ 120 um in the second. We control the/Nt© & coherent superposition of two wavepacliets with veloc
final number of atoms by holding the condensate for a variabigS differing by2vg = 2hky,/m = 11.72 mms™", wherevg
time, typically a few seconds, in the presence of an rf shiiag. 'S the 2-photon recoil velocity. The interferometer sequeis
absolute number of atoms is calibrated from a measuremenfjtrated in Figurg]L. The condensate is held in the trajafo
the critical temperature, taking into account the effeéiater- €St 2 at the end of the final rf evaporative-cooling ramp, t
actions [4H]. For condensates with small condensate érasti 2llow residual oscillations to be dampdd][21,20]. Aftertshi
(less than 60 %), the temperature is obtained by fitting a-gaiid Off the trap, the condensate is allowed to expand fremty f
sian distribution to the thermal wings of the cloud. The tenf.MS before the first-pulse is applied. During this expansion
perature is then extrapolated from the final frequency oftheth® condensate density reduces by two orders of magnitude,

ramp to lower temperatures for which the thermal fraction 9 collisions between the diffracted wavepacket and trgi-ori
indiscernibles]. nal condensate become negligible. During a free-evoltitioe

2ms< T < 10 ms, the two wavepackets separate to a distance
s = 2vrTs. The second;-pulse completes the interferometer,
3.2 Interferometry set-up and timing and we observe interference in each of the two output ports,
which differ in momentum by = 24kr. The condensate is
As shown in Figur§]1, we implement the interferometer usin@aged by absorption perpendicular to the long axifter a
a sequence of twg-Bragg pulses, which act as matter-wavé9 ms total time-of-flight|[46].
beamsplitters. The set-up consists of two laser beamseoeunt For a given set of experimental conditions (condensate atom
propagating along the longitudinal trap axis, each of isitgn number and temperature), the experimental correlation-fun
~2mW cm~2, red-detuned byl = 6.6 GHz from the®”Rb D2 tion is acquired by taking a sequence of interference images
line at A\ = 780.02nm. Two acousto-optic modulators driverwith different condensate separationsanging from0.2L to
by frequency synthesizers produce a small relative degunin2L, varied by changing’s. For smaller separations, we do
§, tuned to the two-photon Bragg resonarice= 2hk?/m, not observe enough fringes to obtain a reliable measurement
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of the contrast. At the maximum value ef the contrast has s (um)
reduced such that the fringes are no longer discernibleeabov V\Z A
the noise. Typical images fdr.3L < s < 1.1L are shown \ \
in Figurel}. For each value &f typically 5 images are taken, 9%
so that a statistical average can be performed. The fringe co
trast is then measured, giving the correlation functiorr&o 84 i
lation functions have been obtained at various temperafiire
between 100 an2i30 nK and for condensate atom numbéis 72 &
betweerD.5 x 10° and2.5 x 10°. These conditions correspond
t00.8 < T/Ty < 8, whereT,, = 15h% Ny /16mkgTL? [RF]. 60
48 #
4 Analysis of interferograms
3 #
4.1 Interferogram
24 \
As shown in [2F], a quasi-condensate is well-described by a t

fluctuating complex field?(p, z) = +/n(p, 2)€®(»), with 0 ke

fixed density distributiom(p, z) and fluctuating phase(p, z). ~ Fig. 2. Left: One of the two output ports of the interferometer for
In the following, ¥ (p, z) represents the wavefunction of theyifferent separations between the two condensate copies. The half-
condensate after the free-fall expansion. The first Bradgepulength of the initial condensate i = 85, m. Right: Profiles of the
is applied after 2 ms of free expansion, at which time the dezB Fourier transform (absolute value) of each of the imageshe
sity has reduced such that interactions between the ataensleit. The profiles are normalized to equal central peak hejgiopor-
negligible. We therefore assume that the different copfes tmnal to total atom number). The position of the second felakm-
the condensate propagate independently. The phase dlistritgd by the two lines) gives the spatial frequency of thedeis, and
tion can be expressed @$p, ) = az? + Bp + ¢ (2), where the ratio of the height of the second peak to the central paas the
oun(2) represents the thermal phase fluctuations and the quatiifage contrast.

tic terms represent the parabolic phase developed durpayex

sion. . . - : Y
We now consider the interference pattern produced at Orr(]eescaled o units of 2D atomic density, is the integratedgn

of the output ports of the interferometer. For a separatjave
obtain the atomic density distribution: (2, z) = const [ dynous. Q)
1 9 We take the 2D Fourier transform of this image and extract its
Nout (P, 2) = ZM/(p’ 2= 5/2) +¥(p,z+5/2)| profile along the zero radial frequenky = 0 axis:

_ % " %— n V”;"‘ Cos|AD(2) + o], (4)

100, k.] = const/dgr Nout€*=7. (6)
with n+ = n(p, z = s/2) andAd(z) = &(z + s/2) — ¢(z —  Typicalimages and their 2D Fourier transform profiles amsh
s/2). The global phase shift, is due to random, uncontrolled;, Figure[? for different separatiorsThe contrast of the fringe
phase shifts between the two Bragg pulses. The phase dlf&%ﬁem is given by the ratidi 0, ko (s)] /[0, 0], wherek (s) ~
ence between the two copiesd®(z) = azs+dm(z+5/2)— ¢ the dominant spatial frequency of the fringe pattern. The
¢n(2 — 5/2). The density of the condensate is small when the ifiles of Figure[l2 show clearly the increasing spatial fre-
first Bragg pulse is applied, so we neglect a small relative ency and decreasing contrast as a function of

locity due to repulsion between the two copies. At the seconld 1o exiract the correlation function, we take the complex

output port, the two condensate copies have an additioredt litude of the Fouri k at th tial f fth
ative phase shift due to the Bragg pulses, thereby prodminaﬁgelsu: e of the Fourier peak at the spatial frequeincyt the

complementary fringe pattern. In our data analysis, theyesa
of each output port are treated separately. = i 3 iAD

Since the global phase shiff fluctuates from shot to shot, I[0, ko(s)] = €™ [ dr y/nyn_e oo, (7)
we cannot average over differentimages at the same saparati . .
s. Instead, we take the contrast of each image individualty al? the absence of the global phase shifts the correlation

then average the contrast. functionC™ (s) would be obtained by taking the statistical av-
erage of equatiof(7):
4.2 Analysis in Fourier Space CW(s) = (1[0, ko(s)]) = /d3r (Vngn_edPm)  (8)

The atoms are imaged by absorption along the vertieatis, which is identical to relation[k3). Howevep, changes from
perpendicular to the long axis of the trap. The image we abtashot to shot and prevents us from averaging Fourier tramsfor
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1.0
0.8
5 0.6
g
s 0.44
o
0.2+
O'O-I T T T 1
0.0 0.5 1.0 1.5 2.0
s/L
Fig. 3. Paints represent the contrast extracted from our simulzibed
sorption images (see text) as a functionsg¢f, L being the conden- 0.8-
sate half-length, fof’ /T, = 1. These points are fitted by the product B A
of a gaussian and an exponential (solid line) which we taksetour <064 \
theoretical effective correlation functia®™ (s). .'g \
Q 041 A N
directly in this way [4}]. To eliminate this random phase, we 0.2+ -~ _ _
can take the absolute value of the Fourier transform before a 0.0 T =
eraging. Thus we obtain an effective correlation function: o 5 10 15 20

C(s) = <‘I[O’ ko]‘> = (’/d3r Ve T (9) Fig. 4. Top: Lines are simulated effective correlation funct@f (s)
(described in the text) as a function ofL for differentT’/T;. From

Note that although it has similar behaviour, our effective-c the top,7/T; = 0,1, 3, 10. With increasindl’/ T, the curve changes
relation function is expected to be quantitatively diffgr'om  from a quasi-gaussian to an exponential and the width deesen-
€D (). Taking the absolute value of the transform reduces tfgl: Comparison o’ (s) (solid line) gndC“)(s)_(dashed line) at
cancelling effect between the random thermal phase shiftsZi/Zs» = 10. Bottom: Width atl /e of C**(s) (solid line) andC"") (s)
the statistical average, so that the effective correldtiootion (dashed line) as a function &f/ 7.
C°(s) decays more slowly wita thanC™) (), as calculated

in the next section. o ) _ _
approximation for the density(r), taking R and L from fits

to images after expansion. To simulate numerically the @has

4.3 Simulation fluctuations, we replace the operatarsand d; by complex
Gaussian random variables and «;. These variables have
The 1st order correlation functia@it!) (s) can be calculated an-a mean value of zero and the correlatioryay,) = d;; N;

alytically [B3], using the theory ofI:}:?l to account for thegse whereN; = kpT/(hw.+/j(j + 3)/4) is the occupation num-
fluctuations. However, it is not possible to obtain an an@lytyar for the quasiparticle modeat a given temperaturg. We
expression for the effective correlation functiof (s) (equa- 455 me that the phase fluctuations do not evolve on the time
tion @)) which we measure. Therefore, to calculdté (s), we  gcaje of the expansiofi [33]. We have verified this by studying
first simulate the quasi-condensate phase fluctuatiom®fl§ jmages of condensates after the same time-of-flight, but-wit
the theory in[27]. The phase operator is given by: out the interferometer pulses. In this case, we observe atsmo

. B A density profile, with no extra features appearing in the eour

G (r) = [4n(r)] /2N " £ (r)a, + hec., (10) transform.

J For a givenT'/T,, 20 condensates are generated at each

value of s, with s ranging from0.2L to 2. Each condensate

where a; is the annihilation operator of the excitation WithS integrated ovey as in equatior{]5). These simulated absorp-
quantum numbej. The solution of the Bogoliubov-de Gennes, 9 N q ’ P

cauatons for“ow crergy” exctatons (wih energs < oo e Sabed 1 exacly e same ey o e ea
hw, ) gives the wavefunctions of these modes: P ges.

forms of the images are averaged, and the contrast extrasted

. . in equation Kp). The points in Figuﬂa 3 show the typical con-
FHr) = (U +2)(2) + 3)9"(r)P(171)(z/L) (11) frast extracted from our simulations /7, = 1. We found
’ 4m(j+1)R?Le; 7 ’ that these points are very well fitted by the product of a gaus-

sian and an exponential, for &ll/T,,. We use these fits as our
whereP"'Y) are Jacobi polynomialg, = Arh%a/m is the in- theoretical effective correlation functions™ (s).
teraction strengthy is the scattering length and L are the The effective correlation function was simulated fbr<

size of the condensate in the trap and= fiw./j(j +3)/4 T/Tp < 20. Figure[Jta presents results for differditT,,. At
is the energy of mode [@]. We assume the Thomas-Fermi” = 0, C*f(s) coincides withC")(s) [@]. This function is



6 M. Hugbartet al.: Coherence length of an elongated condensate: a study bgrmatve interferometry

0.8+ : sf @
T/T,=1.35 )
Lo/l = 0.62 )

5 0.4
O
0.2 1
0.0 -
0.0
1.09
0.8 Fig. 6. Lc/L as a function ofl’/T,. The solid curve is a fit using
. ' the function described in the text. Empty circles correspiorthe two
g 0.67 experimental correlation profiles of Figtﬂe 5. Inset: Thidsturve is
é 0.4 the simulated effective correlation function of Fig@e 4b.
0.2
0.0 T 1 5.1 Shape of the effective correlation functions
0.0 0.5 1.0 1.5 2.0 ' P
s/L

: . . , _First, we observe qualitatively that the shape of the eiffect
Fig. 5. Example of two experimental effective correlation pmf'le%orrelation functionsZ‘EH(s) changes a§"/T}; increases. For
(points) as a function of/L showing clearly the change in shape ¢ i

and width with7'/T,. Each point is averaged over 5 condensategmaIIT/T¢’ as In F|gur€[|5a, the curves are clearly gaussian, as

each with 2 output port images. Top: At/T, = 1.35, the effec- ?Ihowt? by the fit I_r(;lthe figure. tASi V&\? '”Cref_ﬂf‘f@ thesgrtoh- t at
tive correlation curve is fitted by a gaussian (solid line)thwi /e lies become rﬁp' y exponlen '3 : b < Sefe md blgﬂre ata
width Lc /L = 0.62. The fit to an exponential (dashed line) is showr] /T» = 4.86, the curve is already better fitted by an exponen-

for comparison. Bottom: AT’/T; = 4.86, the effective correlation @l than a gaussian. At intermediate valuesrgfr;;, we can
curve is fitted better by an exponential (solid line), withe width ~US€ the product of a gaussian and an exponential to fit a smooth

Le/L = 0.46. The fit to a gaussian (dashed line) is shown for confUrve through the data. The contribution of the exponeirtial

parison. creases rapidly in importance at finii¢ in agreement with
the simulation, reflecting the increasing amplitude of thage
fluctuations withT'/T.

simply the integrated overlap function between the two con-

densates, and is approximately a gaussian function of fiee se

rations [@ AsT'/T, increases, the width of the function des 2 Comparison of coherence length L¢

creases and its form gradually becomes exponential. Inr&igu

Ab we plot thel /e widths of the §imu|ate($’6ff(s) functionsas | order to extract quantitative information from the effee
a function of7’/T;. For comparison we show also the width ofgrelation functions, we define a coherence lerigth equal
CM(s) [B3] which decreases much faster withi 7. to the1/e width of the effective correlation curve“’ (s). We
then use this parameter to compare the widths of the measured
and simulated effective correlation functions. A smoothveu
5 Experimental results is fitted through the data (using the product of a gaussian and
an exponential) and the/e width extracted. Although the ther-
Figure[p shows two examples of effective correlation curvesal cloud plays no role in the interference pattern we oleserv
measured using our interferometer and analysed as descriib@ppears behind the condensates ingtke 0 output of the in-
above. The points shown in Figue 5a were obtained usindeaferometer and thus reduces the measured contrast.eneep
magnetic trap with an aspect ratio of 45, and with an atodent measurements of the thermal fraction (between 60 % and
number and temperature correspondingd’, = 1.35, that 80 % for this experiment) allow us to renormalize the exper-
is for small-amplitude phase fluctuations. The points in- Figmental effective correlation functions to take accountto$
ure[§b were obtained using a trapping aspect ratio of 100, aftect. When fitting the renormalized curves, we then fix the
with T'/T, = 4.86. The contrast is plotted as functionofL, value ats/L = 0 to unity.
obtained from a fit to a truncated parabola. Each point corre- In Figure[p, we plotL/L as a function of'/T. Impor-
sponds to an average over 5 condensates. The differenae irtaimtly, we see that the coherence length varies smoothly as a
range ofs/L explored is due to different expansion dynamiciinction of T'/T,, even when the temperature is closelin
after release from the two different traps. In the more tightThis is what we should expect sin@g, is simply a charac-
confined trap (Figurf] 5b), the axial expansion is much slowégristic temperature, defined as that at which the mean squar
and thus the fringe spacing decreases more slowly witht fluctuations of the phase difference between two points-sepa
the smallest values o, it is therefore impossible to measurgated by a distancg is equal to 1. Therefore it should be borne
the contrast reliably since we do not observe enough fringgsmind that even condensates at temperatures BEjoave not
We can extract information about the phase fluctuations framecessarily fully coherent.
both the shape and the width of these effective correlationf The inset of Figure[lG compares the measured coherence
tions. widths with the results of the simulation (Figufe 4b). Déspi
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the offset between the two curves, the trend of the datavisllo  There remains in our experiment an unexplained pheno-
very well that of the simulation. In Figur@: 6 the experiméntanenon regarding the distribution of the fringe pattern. \ile e
data is fitted by a curvd + B exp (—bT'/T'¢), givingb = 0.35  pectto see fringes only in the region where the two condessat
andB = 0.32. This is in reasonable agreement with the simwverlap. However, it can be seen in the images of Fiﬁhre 2 that
lation, for which the fit yield$ = 0.32 and B = 0.39. In the the fringes extend to the edges of each condensate. Moreover
following discussion we consider possible explanatiomdtie these “extra” fringes have the same spatial frequency aadeh
observed reduction in contrast. as the central fringes. Although it is possible that a smratt-f
tion of the thermal cloud is coupled by the Bragg beams,-inter
ference fringes produced in this wgy [30] would have a much
5.3 Discussion smaller fringe spacing, less th&mum. More importantly, the
contributions from different parts of the original therncldud,
As shown in the inset of Figurd 6, the measured coherengose width is~ 100 zm, would sum incoherently to wash out
length is offset by abou20% from the results of the simula- the fringe pattern. Itis more likely that these extra fringeise
tion atT' /Ty = 0. In order to eliminate various possible causess a result of interactions during the application of theggra
of this discrepancy, and to understand better the limitatiof  pulses, but better modelling is still needed before evalgat
our experiment, we have performed several tests. whether their presence should increase or decrease thallover
Since the accuracy of our experiment relies on the commeasured contrast.
parison of fringe contrast at different spatial frequesgieis
important to take great care in setting up and characterisin
the imaging system. Therefore we measured the m_odulat@rbondusion
transfer function (MTF) (see.g. [@]) of our complete imag-
Ing systemin sSitu, using a USAF1940 resolutlon_ target €"We have demonstrated a new type of matter-wave interferom-
graved with 3-bar square wave patterns of spatial frequené:[¥ . —enf: :
y using Bragg beam-splitter pulses and Fourier spacke ana

4-200 lines/mm, covering the range of spatial frequendies Q _. .
served in our interference experiment. By Fourier tramsfor Y>> Our results show that the expected shape of the cborela

ing images of different regions of the target, we were able FLénctlons changes from a gaussian-like shape to an expahent

compare the magnitude of the different Fourier components1l1 e shape when the amplitude of phase fluctuations is iseata

: . . ~The coherence length of elongated condensates varieslsijnoot
e image i those of e laret palen, Ihrety Sb8 emperaures clse , s redicted by heory. Thi g
’ IIlghts the fact that the characteristic phase temper&diydoes

mately linear, falling from 1 at zero spatial frequency tot0 &~ .~ . o
118 lines/mm. This resolution limit a.5 um is in agreement not indicate a transition to full phase coherence, but ratie

with earlier characterisations of the syste@ [42]. The shafp condensates exhibit phase fluctuations at all finite tentpes,

. : beit of small amplitude. This may place constraints on the
f[he MTF Is due_alr_n_ost entlre_ly o the .CCD came@ [49]. ar’[%rlapping geometries which can be used for creating measure-
1S surprls[ngly _S|gn|f_|cant atfringe spacings much greéttan ment devices based on the phase coherence of condensates
the effective pixel size 0.5 um. All contrast measurements '

were corrected by this MTF. In fact, for the data obtainedgsi

the second trapping aspect ratio, the axial expansion far t
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