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Vanishing non-local regularization of a scalar conservation law

Jérôme Droniou 1, 29/10/2003.

Abstract We prove that the solution to the regularization of a scalar conservation law by a fractional
power of the Laplacian converges, as the regularization vanishes, to the entropy solution of the hyperbolic
problem. We also give an error estimate when the initial condition has bounded variation.
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1 Introduction

We consider the problem{
∂tu

ε(t, x) + div(f(uε))(t, x) + εg[uε(t, ·)](x) = 0 , t > 0 , x ∈ RN ,

uε(0, x) = u0(x) , x ∈ RN ,
(1.1)

where f = (f1, . . . , fN ) ∈ (C∞(R))N , u0 ∈ L∞(RN ) and g is the non-local operator defined through
Fourier transform by

F(g[uε(t, ·)])(ξ) = |ξ|λF(uε(t, ·))(ξ) , with λ ∈]1, 2]. (1.2)

In the case ε = 0, this equation reduces to the classical scalar conservation law{
∂tu(t, x) + div(f(u))(t, x) = 0 , t > 0 , x ∈ RN ,

u(0, x) = u0(x) , x ∈ RN .
(1.3)

Existence and uniqueness of a solution to this equation, in the L∞ framework, has been established by
Krushkov [8]; it relies on so-called “entropy solutions”, which must satisfy particular inequalities. The
case λ = 2 and ε > 0 in (1.1) corresponds to g[uε(t, ·)](x) = −(2π)2∆uε(t, x) and is called the parabolic
regularization of (1.3). In this situation, existence, uniqueness and regularity of solutions to this equation
are well-known (see e.g. [10]), and an entropy solution of (1.3) can be obtained by proving that, as ε→ 0,
the solution to this parabolic regularization converges to a function which satifies the entropy inequalities
of (1.3).
For general λ ∈]1, 2] and ε > 0, in which case g is a fractional power of the Laplacian, the study of (1.1) less
classical, though motivated by physical problems of detonation (see [4], [5] for example), hydrodynamics,
molecular biology, etc... (see the introduction of [1] and references therein). A number of papers ([1],
[2]...) have studied this equation (also called “fractal conservation law”). The existence results in [1] for
(1.1) give global solutions in the case N = 1, but which are not very regular, or local (in time) solutions
for general N ≥ 1 and small initial data, but still not regular (in Morrey spaces). In [2] or [3], the authors
consider a parabolic regularization of (1.1), that is to say they add a Laplacian operator to the equation;
thanks to this second order operator, a global solution is obtained and regularity results can be proved.
These papers are mainly interested in asymptotic behaviours for this equation.
However, one could consider (1.1) as a (possible) regularization of (1.3), without having to add another
term. In this case, a natural space for the initial data is L∞(RN ), and the question is whether or not (1.1)
gives rise to a solution which is regular for t > 0 (i.e. whether or not g has the same effect on the regularity
as−∆). It has been proved in [6] that this indeed happens: there exists a unique bounded solution to (1.1),
in a suitable sense, and this solution belongs to C∞(]0,∞[×RN ). It is constructed via a splitting method,
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and inherits thus all the properties that are common to both the conservation law and the equation
∂tv + εg[v] = 0, such as essential bounds, comparison and contraction principles, etc...; its regularity is
proved using the Banach fixed point theorem on Duhamel’s formula for ∂tu

ε + εg[uε] = −div(f(uε)).
Once it has been established that (1.1) has the same regularizing effect, with respect to (1.3), as the
parabolic equation, the next question is to know if, as in the parabolic case, the solution to (1.1) remains
close to the solution of (1.3) for small ε. This is the aim of the present work, and our main results are
the following.

Theorem 1.1 Let u0 ∈ L∞(RN ). The solution to (1.1) converges, as ε → 0 and in C([0, T ];L1
loc(RN ))

for all T > 0, to the entropy solution of (1.3).

Remark 1.1 This theorem (as well as the results of [6]) is valid for more general g (roughly speaking,
the methods work for operators whose kernels are approximate units — see subsection 2.1). For example,
sums of operators of the kind (1.2) (or more general Lévy operators) can be considered, with, as a special
case, the equation ∂tu

ε + div(f(uε)) + εg[uε]− ε∆uε = 0 (as in [2], [3]).

As a by-product of the proof of Theorem 1.1, we also obtain the following error estimate.

Theorem 1.2 Let u0 ∈ L∞(RN ) ∩ L1(RN ) ∩BV (RN ), uε be the solution to (1.1) and u be the entropy
solution to (1.3). Then, for all T > 0, ||uε − u||C([0,T ];L1(RN )) = O(ε1/λ).

Remark 1.2 This result in the case of parabolic regularization (λ = 2) has already been proved in [9]. The
special feature of Theorem 1.2 is that it establishes an elegant relationship between the rate of convergence
and the order of the operator chosen for the regularization of (1.3); in fact, this error estimate is optimal
(see Remark 2.1).

Remark 1.3 Note that, since uε and u are bounded (by ||u0||∞), a convergence in L1(RN ) (respectively
in L1

loc(RN )) implies, by interpolation, a convergence in Lp(RN ) (respectively in Lp
loc(RN )) for all finite

p. For example, under the hypotheses of Theorem 1.2, we have, for all p ∈ [1,∞[ and all T > 0,
||uε − u||C([0,T ];Lp(RN )) = O(ε

1
pλ ).

The paper is organized as follows. In the next section, we prove approximate entropy inequalities for uε;
this function has been obtained in [6], using a splitting method, as a limit of explicit functions: we first
prove approximate entropy inequalities on those explicit functions, and then deduce the corresponding
inequalities for uε; it is not clear that these estimates could be inferred from the methods of [1]. In
Section 3, we use Krushkov’s classical doubling variable technique to combine the approximate entropy
inequalities on uε and the entropy inequalities on u, which gives an estimate on |uε − u| and proves
Theorem 1.1. Section 4 is devoted to the proof of Theorem 1.2, which is an easy consequence of the
estimates obtained in Section 3. We have gathered, in Section 5, some results concerning g and its kernel,
which we use in the rest of the work.

2 Approximate entropy inequalities for the solution of (1.1)

In order to prove approximate entropy inequalities for uε, we need to recall the construction of this
function (see [6]).

2.1 Construction of uε

The solution to ∂tv + εg[v] = 0 with initial condition v(0, ·) = v0 is (at least formally) given by v(t, ·) =
Kε(t, ·) ∗ v0, where

Kε(t, x) = F−1(e−εt|·|λ)(x).
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The main property of this kernel is that (Kε(t, ·))t→0 is an approximate unit. This means that Kε(t, ·) is
non-negative (see [11]), has integral equal to 1 and that, for all ν > 0,

∫
|y|≥ν

Kε(t, y) dy → 0 as t→ 0 (2).

We assume here that u0 ∈ C∞c (RN ) (though u0 ∈ L∞(RN ) ∩ L1(RN ) ∩BV (RN ) would be enough). Let
δ > 0 and uε,δ : [0,∞[×RN → R be defined by uε,δ(0, ·) = u0 and

• for all even p, uε,δ is, on ]pδ, (p+1)δ]×RN , the solution to ∂tu
ε,δ+2εg[uε,δ] = 0 with initial condition

uε,δ(pδ, ·), that is to say uε,δ(t, x) = Kε(2(t− pδ), ·) ∗ uε,δ(pδ, ·)(x) for (t, x) ∈]pδ, (p+ 1)δ]× RN .

• for all odd p, uε,δ is, on ]pδ, (p+ 1)δ]×RN , the entropy solution to ∂tu
ε,δ + 2div(f(uε,δ)) = 0 with

initial condition uε,δ(pδ, ·).

We have then uε,δ ∈ C([0,∞[;L1(RN )) with uε,δ(0, ·) = u0 and

∀t ≥ 0 , ||uε,δ(t, ·)||L∞(RN ) ≤ ||u0||L∞(RN ) , ||uε,δ(t, ·)||L1(RN ) ≤ ||u0||L1(RN )

and |uε,δ(t, ·)|BV (RN ) ≤ ||∇u0||L1(RN ).
(2.1)

It has been proved in [6] that uε,δ converges, as δ → 0 and in C([0, T ];L1
loc(RN )) for all T > 0, to the

solution uε of (1.1). It has also been noticed that, for δ small enough, uε,δ is in fact, on [pδ, (p+1)δ]×RN

for all odd p, a regular solution to ∂tu
ε,δ + 2div(f(uε,δ)) = 0; moreover, for such δ and all t ≥ 0, uε,δ(t, ·)

is regular.

The results of [6] are stated in dimension N = 1 and with g instead of εg (with K1 instead of Kε) but,
as indicated in this reference, they are valid in any dimension N ≥ 1 and substituting Kε for K1 (Kε has
the same properties, for a fixed ε > 0, as K1: in fact, Kε(t, x) = K1(εt, x)), they also hold with εg.

Remark 2.1 If f = 0, the solution to (1.1) is uε(t, x) = Kε(t, ·) ∗ u0(x) and the solution to (1.3) is
u(t, x) = u0(x). Taking, for example, u0 the characteristic function of [−1, 1]N , some easy computations
and the homogeneity property Kε(1, x) = K1(ε, x) = ε−N/λK1(1, ε−1/λx) (see footnote 2 on page 3) show
that ||uε(1, ·)||L1(RN\[−1,1]N ) ≥ cε1/λ for some c > 0. Hence, the estimate of Theorem 1.2 is optimal.

2.2 The approximate entropy inequalities

We now establish the following approximate entropy inequalities for the solution to (1.1).

Proposition 2.1 Assume that u0 ∈ L∞(RN ) and let uε be the solution to (1.1). Let η : R → R
be a regular convex function and φ = (φ1, . . . , φN ) such that φ′i = η′f ′i . Then, for all non-negative
ϕ ∈ C∞c ([0,∞[×RN ), we have∫ ∞

0

∫
RN

η(uε(t, x))∂tϕ(t, x) + φ(uε(t, x))·∇ϕ(t, x) dtdx+
∫

RN

η(u0(x))ϕ(0, x) dx

≥ ε

∫ ∞

0

∫
RN

η(uε(t, x))g[ϕ(t, ·)](x) dtdx. (2.2)

Remark 2.2 If ϕ ∈ C∞c ([0,∞[×RN ), then t ∈ [0,∞[→ ∇ϕ(t, ·) ∈ L1(RN )N and t ∈ [0,∞[→ ∆ϕ(t, ·) ∈
L1(RN ) are continuous; hence, by Lemma 5.1 and the linearity of g, the function t ∈ [0,∞[→ g[ϕ(t, ·)] ∈
L1(RN ) is continuous. In particular, since ϕ(t, ·) = 0 for t large enough, (t, x) → g[ϕ(t, ·)](x) is integrable
on ]0,∞[×RN .

2This comes from Kε(t, x) = t−N/λKε(1, t−1/λx) (change of variable in the definition of Kε) and from Kε(1, ·) ∈ L1(RN )

(because the N + 1 first derivatives of ξ → e−ε|ξ|λ are integrable on RN ).
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Proof of Proposition 2.1
Note that (2.2) with η or η − η(0) are the same inequalities. Indeed, the entropy fluxes φ associated to
η and η − η(0) are identical, ∫ ∞

0

∫
RN

∂tϕ(t, x) dtdx+
∫

RN

ϕ(0, x) dx = 0

and, since g[ϕ(t, ·)] ∈ L1(RN ) for all t ≥ 0 (see Lemma 5.1),∫
RN

g[ϕ(t, ·)](x) dx = F(g[ϕ(t, ·)])(0) = (| · |λF(ϕ(t, ·)))(0) = 0.

Hence, there is no loss in generality if we assume that η(0) = 0, which we do from now on.
The proof is done in two steps. We first suppose that the initial condition is regular, in which case we
establish approximate entropy inequalities for the functions uε,δ constructed in subsection 2.1, and we
deduce the result of the proposition by letting δ → 0. We then prove the proposition for general initial
conditions.

Step 1: assume that u0 ∈ C∞c (RN ).
We take δ small enough so that uε,δ is, on [pδ, (p + 1)δ] × RN for all odd p, a regular solution to
∂tu

ε,δ + 2div(f(uε,δ)) = 0. For odd p, we therefore have∫ (p+1)δ

pδ

∫
RN

η(uε,δ(t, x))∂tϕ(t, x) + 2φ(uε,δ(t, x)) · ∇ϕ(t, x) dtdx

=
∫

RN

η(uε,δ((p+ 1)δ, x))ϕ((p+ 1)δ, x) dx−
∫

RN

η(uε,δ(pδ, x))ϕ(pδ, x) dx.

Summing on odd p’s (note that, since the support of ϕ is compact, this sum is finite), and defining χδ as
the characteristic function of ∪odd p]pδ, (p+ 1)δ], we find∫ ∞

0

∫
RN

(
η(uε,δ(t, x))∂tϕ(t, x) + 2φ(uε,δ(t, x)) · ∇ϕ(t, x)

)
χδ(t) dtdx =

∑
odd p

(ap+1 − ap)

where
ap =

∫
RN

η(uε,δ(pδ, x))ϕ(pδ, x) dx.

Since ∑
odd p

(ap+1 − ap) =
∑

even p , p≥2

ap −
∑
odd p

ap =
∑

even p

(ap − ap+1)− a0 ,

we deduce that∫ ∞

0

∫
RN

(
η(uε,δ(t, x))∂tϕ(t, x) + 2φ(uε,δ(t, x)) · ∇ϕ(t, x)

)
χδ(t) dtdx+

∫
RN

η(u0(x))ϕ(0, x) dx

=
∑

even p

(ap − ap+1). (2.3)

If p is even, we have, by definition, uε,δ((p + 1)δ) = Kε(2δ) ∗ uε,δ(pδ) (it is convenient, because of the
convolution product, to omit the space variable). Since η is convex and Kε(2δ) is positive with integral
equal to 1, Jensen’s inequality gives then η(uε,δ((p+ 1)δ)) ≤ Kε(2δ) ∗ η(uε,δ(pδ)). The function ϕ being
non-negative, we deduce that η(uε,δ((p+ 1)δ))ϕ((p+ 1)δ) ≤ Kε(2δ) ∗ η(uε,δ(pδ))ϕ((p+ 1)δ) and thus

ap+1 − ap ≤
∫

RN

Kε(2δ) ∗ η(uε,δ(pδ))ϕ((p+ 1)δ)− η(uε,δ(pδ))ϕ(pδ)

=
∫

RN

F ((p+ 1)δ)ϕ((p+ 1)δ)− F (pδ)ϕ(pδ)
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where F (pδ) = η(uε,δ(pδ)) and, for t ∈]pδ, (p + 1)δ], F (t) = Kε(2(t − pδ)) ∗ F (pδ) (i.e. F satisfies
∂tF + 2εg[F ] = 0 on ]pδ, (p+ 1)δ]). We have η(0) = 0, so that, letting C0 be the Lipschitz constant of η
on [−||u0||∞, ||u0||∞] and using (2.1),

||F (pδ)||L1(RN ) ≤ C0||uε,δ(pδ)||L1(RN ) ≤ C0||u0||L1(RN ) (2.4)

||∇F (pδ)||L1(RN ) ≤ C0||∇uε,δ(pδ)||L1(RN ) ≤ C0||∇u0||L1(RN ) (2.5)

(recall that δ is small enough so that uε,δ(t, ·) is regular for all t ≥ 0). Lemma 5.2 in the appendix enables
then to write

ap+1 − ap ≤
∫

RN

F ((p+ 1)δ)ϕ((p+ 1)δ)− F (pδ)ϕ(pδ)

=
∫ (p+1)δ

pδ

∫
RN

F (t, x)∂tϕ(t, x)− 2εF (t, x)g[ϕ(t, ·)](x) dtdx. (2.6)

We have, by Lemma 5.3 in the appendix, for all ν > 0 and all t ∈]pδ, (p+ 1)δ],

||F (t)− η(uε,δ(pδ))||L1(RN ) = ||Kε(2(t− pδ)) ∗ F (pδ)− F (pδ)||L1(RN )

≤ 2||F (pδ)||L1(RN )

∫
|y|≥ν

Kε(2(t− pδ), y) dy + ν||∇F (pδ)||L1(RN ).

Using (2.4) and (2.5), we deduce

||F (t)− η(uε,δ(pδ))||L1(RN ) ≤ 2C0||u0||L1(RN ) sup
0<s≤2δ

∫
|y|≥ν

Kε(s, y) dy + C0ν||∇u0||L1(RN ). (2.7)

We have |η(uε,δ(t)) − η(uε,δ(pδ))| ≤ C0|uε,δ(t) − uε,δ(pδ)| and, for t ∈]pδ, (p + 1)δ], uε,δ(t) = Kε(2(t −
pδ)) ∗ uε,δ(pδ). Hence, Lemma 5.3 and (2.1) give, for all t ∈]pδ, (p+ 1)δ] and all ν > 0,

||η(uε,δ(t))− η(uε,δ(pδ))||L1(RN ) ≤ 2C0||u0||L1(RN ) sup
0<s≤2δ

∫
|y|≥ν

Kε(s, y) dy + C0ν||∇u0||L1(RN ). (2.8)

Gathering (2.7) and (2.8), we find, for all t ∈]pδ, (p+ 1)δ] and all ν > 0,

||F (t)− η(uε,δ(t))||L1(RN ) ≤ 4C0||u0||L1(RN ) sup
0<s≤2δ

∫
|y|≥ν

Kε(s, y) dy + 2C0ν||∇u0||L1(RN ) = ωε(δ, ν)

with limν→0(limδ→0 ωε(δ, ν)) = 0 (because (Kε(t, ·))t→0 is an approximate unit). Using this inequality
in (2.6), we obtain, for all ν > 0,

ap+1 − ap ≤
∫ (p+1)δ

pδ

∫
RN

η(uε,δ(t, x))∂tϕ(t, x)− 2εη(uε,δ(t, x))g[ϕ(t, ·)](x) dtdx

+ωε(δ, ν)
∫ (p+1)δ

pδ

(
||∂tϕ(t, ·)||L∞(RN ) + 2ε||g[ϕ(t, ·)]||L∞(RN )

)
dt. (2.9)

Note that, by definition of g, we can write

||g[ϕ(t, ·)]||L∞(RN ) ≤
∣∣∣∣ | · |λF(ϕ(t, ·))

∣∣∣∣
L1(RN )

=
∣∣∣∣∣∣∣∣ | · |λ

1 + (2π| · |)2(N+1)
F
(
ϕ(t, ·) + (−∆)N+1ϕ(t, ·)

)∣∣∣∣∣∣∣∣
L1(RN )

≤
∣∣∣∣∣∣∣∣ | · |λ

1 + (2π| · |)2(N+1)

∣∣∣∣∣∣∣∣
L1(RN )

||F
(
ϕ(t, ·) + (−∆)N+1ϕ(t, ·)

)
||L∞(RN )

≤
∣∣∣∣∣∣∣∣ | · |λ

1 + (2π| · |)2(N+1)

∣∣∣∣∣∣∣∣
L1(RN )

||ϕ(t, ·) + (−∆)N+1ϕ(t, ·)||L1(RN ) (2.10)
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with λ − 2(N + 1) ≤ −2N < −N . Hence, t → ||g[ϕ(t, ·)]||L∞(RN ) is integrable on [0,∞[ (in fact, this
function is continuous and null for t large).

Summing (2.9) on even p’s and coming back to (2.3), we deduce∫ ∞

0

∫
RN

(
η(uε,δ(t, x))∂tϕ(t, x) + 2φ(uε,δ(t, x)) · ∇ϕ(t, x)

)
χδ(t) dtdx+

∫
RN

η(u0(x))ϕ(0, x) dx

≥ −
∫ ∞

0

∫
RN

(
η(uε,δ(t, x))∂tϕ(t, x)− 2εη(uε,δ(t, x))g[ϕ(t, ·)](x)

)
(1− χδ(t)) dtdx

−ωε(δ, ν)
∫ ∞

0

(
||∂tϕ(t, ·)||L∞(RN ) + 2ε||g[ϕ(t, ·)]||L∞(RN )

)
dt

(note that 1− χδ is the characteristic function of ∪even p]pδ, (p+ 1)δ]), that is to say∫ ∞

0

∫
RN

η(uε,δ(t, x))∂tϕ(t, x) + 2φ(uε,δ(t, x)) · ∇ϕ(t, x)χδ(t) dtdx+
∫

RN

η(u0(x))ϕ(0, x) dx

≥ 2ε
∫ ∞

0

∫
RN

η(uε,δ(t, x))g[ϕ(t, ·)](x)(1− χδ(t)) dtdx

−ωε(δ, ν)
∫ ∞

0

(
||∂tϕ(t, ·)||L∞(RN ) + 2ε||g[ϕ(t, ·)]||L∞(RN )

)
dt. (2.11)

As δ → 0, we have uε,δ → uε in C([0, T ];L1
loc(RN )) for all T > 0; hence, η and φ being Lipschitz-

continuous on [−||u0||∞, ||u0||∞] and uε,δ taking its values in this interval, we deduce that η(uε,δ) → η(uε)
and φ(uε,δ) → φ(uε), as δ → 0 and in C([0, T ];L1

loc(RN )) for all T > 0. This allows to see that, as δ → 0,∫ ∞

0

∫
RN

η(uε,δ(t, x))∂tϕ(t, x) dtdx→
∫ ∞

0

∫
RN

η(uε(t, x))∂tϕ(t, x) dtdx. (2.12)

We also deduce that∫
RN

φ(uε,δ(·, x)) · ∇ϕ(·, x) dx→
∫

RN

φ(uε(·, x)) · ∇ϕ(·, x) dx in L∞loc([0,∞[),

and thus in L1(]0,∞[) (these functions are null for t large). Since χδ → 1/2 in L∞(]0,∞[) weak-∗, this
implies ∫ ∞

0

∫
RN

2φ(uε,δ(t, x)) · ∇ϕ(t, x)χδ(t) dtdx→
∫ ∞

0

∫
RN

φ(uε(t, x)) · ∇ϕ(t, x) dtdx. (2.13)

For all M ≥ 0, we have∣∣∣∣∫
RN

η(uε,δ(t, x))g[ϕ(t, ·)](x) dx−
∫

RN

η(uε(t, x))g[ϕ(t, ·)](x) dx
∣∣∣∣

≤ ||g[ϕ(t, ·)]||L∞(RN )

∫
|x|≤M

|η(uε,δ(t, x))− η(uε(t, x))| dx+ 2C1

∫
|x|≥M

|g[ϕ(t, ·)](x)| dx (2.14)

with C1 = sup{|η(z)| , |z| ≤ ||u0||∞}. By Remark 2.2, the function t ∈ [0,∞[→ g[ϕ(t, ·)] ∈ L1(RN ) is
continuous and null for t large enough; this implies that {g[ϕ(t, ·)] , t ≥ 0} is compact in L1(RN ), and
thus, by Vitali’s theorem, that

lim
M→∞

∫
|x|≥M

|g[ϕ(t, ·)](x)| dx = 0 uniformly with respect to t ≥ 0.

For a fixed M , we have
∫
|x|≤M

|η(uε,δ(t, x))− η(uε(t, x))| dx→ 0 as δ → 0, locally uniformly with respect
to t ≥ 0; since supt≥0 ||g[ϕ(t, ·)]||L∞(RN ) <∞ (see (2.10)), these considerations and (2.14) show that, as
δ → 0, ∫

RN

η(uε,δ(·, x))g[ϕ(·, ·)](x)dx→
∫

RN

η(uε(·, x))g[ϕ(·, ·)](x) dx in L∞loc([0,∞[),

6



and thus also in L1(]0,∞[) (because ϕ(t, ·) = 0 for t large). We have 1−χδ → 1/2 in L∞(]0,∞[) weak-∗,
which implies

2ε
∫ ∞

0

∫
RN

η(uε,δ(t, x))g[ϕ(t, ·)](x)(1− χδ(t)) dtdx→ ε

∫ ∞

0

∫
RN

η(uε(t, x))g[ϕ(t, ·)](x) dtdx. (2.15)

Passing to the limit δ → 0 in (2.11), thanks to (2.12), (2.13) and (2.15), we deduce∫ ∞

0

∫
RN

η(uε(t, x))∂tϕ(t, x) + φ(uε(t, x)) · ∇ϕ(t, x) dtdx+
∫

RN

η(u0(x))ϕ(0, x) dx

≥ ε

∫ ∞

0

∫
RN

η(uε(t, x))g[ϕ(t, ·)](x) dtdx

−
(

lim
δ→0

ωε(δ, ν)
)∫ ∞

0

(
||∂tϕ(t, ·)||L∞(RN ) + 2ε||g[ϕ(t, ·)]||L∞(RN )

)
dt.

Since this is satisfied for all ν > 0, we can let ν → 0 and use the property of ωε(δ, ν) to see that (2.2)
holds.

Step 2: we now only assume that u0 ∈ L∞(RN ).
Let u0,n ∈ C∞c (RN ) which converges a.e. to u0 and is bounded by ||u0||∞; we define uε

n as the solution
to (1.1) with u0,n as initial datum. As in Section 6.4 of [6], we can see that (uε

n)n≥1 is bounded (3) and
converges pointwise to uε as n→∞ (4).
uε

n satisfies (2.2), with u0,n instead of u0. Hence, using the dominated convergence theorem, we let
n→∞ in this inequality to see that it is also satisfied by uε, and the proof is complete.

3 Proof of the convergence

Proposition 3.1 Let u0 ∈ L∞(RN ), uε be the solution to (1.1) and u be the entropy solution to (1.3).
Let L be a Lipschitz constant of f on [−||u0||∞, ||u0||∞] and T > 0. If B is a subset of RN , we define
B̃ = {x ∈ RN | dist(x,B) ≤ 1} and, for (µ, ν) ∈]0, 1[2,

ωB
1 (µ, ν) = sup

0<t<T

(
sup

0<r<µ ,|z|<ν

∫
B

|u(t, x)− u(t+ r, x+ z)| dx

)
(3.1)

ωB
2 (µ, ν) = sup

|z|<ν

∫
B

|u0(x)− u0(x+ z)| dx+ sup
0<s<µ

∫
B̃

|u0(x)− u(s, x)| dx. (3.2)

B(R) denotes the ball in RN of center 0 and radius R. Then, for all M > LT , there exists C1 > 0 such
that, for all t0 ∈ [0, T ], for all ε > 0, for all µ ∈]0, 1[ and for all ν ∈]0, 1[,∫

B(M−LT )

|uε(t0, x)− u(t0, x)| dx ≤ C1ω
B(M+1)
1 (µ, ν) + ω

B(M+1)
2 (µ, ν)

+2ε||u0||∞
∫

RN

∫ T

0

∫
RN

|g[hν,M (y, t, ·)](x)| dydtdx (3.3)

for some hν,M ∈ C∞c (RN × [0, T ]× RN ) only depending on ν and M .

Remark 3.1 As in Remark 2.2, the regularity of hν,M enables us to see that (y, t) ∈ RN × [0, T ] →
g[hν,M (y, t, ·)] ∈ L1(RN ) is continuous and that (y, t, x) → g[hν,M (y, t, ·)](x) is integrable on RN × [0, T ]×
RN .

3This can be deduced from (2.1) by letting δ → 0, and using ||u0,n||∞ ≤ ||u0||∞.
4This is a consequence of estimates in [6] which show that all the derivatives of uε

n are bounded on ]t0,∞[×RN , for all
t0 > 0, uniformly with respect to n; there is thus a subsequence of (uε

n)n≥1 which converges pointwise and, to prove that
the limit is a solution to (1.1), we let n →∞ in Duhamel’s formula which defines these solutions.
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Proof of Proposition 3.1
We use the famous doubling variable technique of Krushkov (see [8]).
(2.2) has been obtained for regular convex η but it is easy, thanks to an approximation technique, to
see that it also holds with the entropy ηκ(z) = |z − κ|, associated to the flux φκ(z) = f(z>κ)− f(z⊥κ)
(where z>κ = max(z, κ) and z⊥κ = min(z, κ)).
Let ϕ ∈ C∞c ([0,∞[×RN × [0,∞[×RN ) be non-negative. Applying, for fixed (s, y) ∈]0,∞[×RN , (2.2) to
ηu(s,y) and ϕ(·, ·, s, y), and integrating on (s, y) ∈]0,∞[×RN , we find∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(s, y)|∂tϕ(t, x, s, y) + F (uε(t, x), u(s, y)) · ∇xϕ(t, x, s, y) dsdydtdx

+
∫ ∞

0

∫
RN

∫
RN

|u0(x)− u(s, y)|ϕ(0, x, s, y) dsdydx

≥ ε

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(s, y)| g[ϕ(t, ·, s, y)](x) dsdydtdx (3.4)

where F (z, w) = f(z>w)−f(z⊥w) is symmetric. We can see, as in Remarks 2.2 and 3.1, that (t, x, s, y) →
g[ϕ(t, ·, s, y)](x) is integrable on ]0,∞[×RN×]0,∞[×RN , so that all the integral signs in the right-hand
side can be manipulated at wish, using Fubini’s theorem.
Since u is the entropy solution to (1.3), it satisfies, for all κ ∈ R and all non-negative ψ ∈ C∞c ([0,∞[×RN ),∫ ∞

0

∫
RN

ηκ(u(s, y))∂sψ(s, y) + φκ(u(s, y)) · ∇yψ(s, y) dsdy +
∫

RN

ηκ(u0(y))ψ(0, y) dy ≥ 0.

Applying this inequality to κ = uε(t, x) and ψ = ϕ(t, x, ·, ·), and integrating on (t, x) ∈]0,∞[×RN , we
obtain∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|u(s, y)− uε(t, x)|∂sϕ(t, x, s, y) + F (u(s, y), uε(t, x)) · ∇yϕ(t, x, s, y) dsdydtdx

+
∫ ∞

0

∫
RN

∫
RN

|u0(y)− uε(t, x)|ϕ(t, x, 0, y) dtdxdy ≥ 0. (3.5)

Summing (3.4) and (3.5), we see that∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(s, y)|(∂tϕ(t, x, s, y) + ∂sϕ(t, x, s, y)) dsdydtdx

+
∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

F (uε(t, x), u(s, y)) · (∇xϕ(t, x, s, y) +∇yϕ(t, x, s, y)) dsdydtdx

+
∫ ∞

0

∫
RN

∫
RN

|u0(x)− u(s, y)|ϕ(0, x, s, y) dsdydx

+
∫ ∞

0

∫
RN

∫
RN

|u0(y)− uε(t, x)|ϕ(t, x, 0, y) dtdxdy

≥ ε

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(s, y)| g[ϕ(t, ·, s, y)](x) dsdydtdx. (3.6)

Let ρν ∈ C∞c (RN ) and θµ ∈ C∞c (R) be smoothing kernels such that supp(ρν) ⊂ {x ∈ RN | |x| < ν}
and supp(θµ) ⊂]0, µ[. We take ψ ∈ C∞c ([0,∞[×RN ) a non-negative function and we let ϕ(t, x, s, y) =
ψ(t, x)ρν(y−x)θµ(s−t); we have ∂tϕ(t, x, s, y)+∂sϕ(t, x, s, y) = ∂tψ(t, x)ρν(y−x)θµ(s−t),∇xϕ(t, x, s, y)+
∇yϕ(t, x, s, y) = ∇xψ(t, x)ρν(y − x)θµ(s− t) and ϕ(t, x, 0, y) = 0 (for t ≥ 0). Hence, (3.6) gives∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(s, y)|∂tψ(t, x)ρν(y − x)θµ(s− t) dsdydtdx

+
∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

F (uε(t, x), u(s, y)) · ∇xψ(t, x)ρν(y − x)θµ(s− t) dsdydtdx
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+
∫ ∞

0

∫
RN

∫
RN

|u0(x)− u(s, y)|ψ(0, x)ρν(y − x)θµ(s) dsdydx

≥ ε

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

θµ(s− t)|uε(t, x)− u(s, y)| g[ρν(y − ·)ψ(t, ·)](x) dsdydtdx. (3.7)

Let A1, A2 and A3 be the first three lines of this inequality (5). We take T > 0 and B a bounded set in
RN , and we suppose that supp(ψ) ⊂ [0, T ]×B. Then∣∣∣∣A1 −

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(t, x)|∂tψ(t, x)ρν(y − x)θµ(s− t) dsdydtdx
∣∣∣∣

≤
∫ ∞

0

∫
RN

∫ ∞

0

∫
B

|u(t, x)− u(s, y)| |∂tψ(t, x)|ρν(y − x)θµ(s− t) dsdydtdx

≤ ||∂tψ||L1(0,T ;L∞(RN )) sup
0<t<T

(∫ ∞

0

∫
RN

∫
B

|u(t, x)− u(s, y)|ρν(y − x)θµ(s− t) dsdydx
)

≤ ||∂tψ||L1(0,T ;L∞(RN ))ω
B
1 (µ, ν).

Since
∫∞
0
θµ(s− t) ds = 1 for all t > 0 and

∫
RN ρν(y − x) dy = 1 for all x ∈ RN , this gives

A1 ≤
∫ ∞

0

∫
RN

|uε(t, x)− u(t, x)|∂tψ(t, x) dtdx+ ||∂tψ||L1(0,T ;L∞(RN ))ω
B
1 (µ, ν). (3.8)

We have |F (uε(t, x), u(s, y))| ≤ L|uε(t, x)− u(s, y)| (because both functions uε and u take their values in
[−||u0||∞, ||u0||∞]) and therefore

|A2| ≤ L

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(s, y)| |∇xψ(t, x)|ρν(y − x)θµ(s− t) dsdydtdx

≤ L

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(t, x)| |∇xψ(t, x)|ρν(y − x)θµ(s− t) dsdydtdx

+L
∫ ∞

0

∫
RN

∫ ∞

0

∫
B

|u(t, x)− u(s, y)| |∇xψ(t, x)|ρν(y − x)θµ(s− t) dsdydtdx

≤ L

∫ ∞

0

∫
RN

|uε(t, x)− u(t, x)| |∇xψ(t, x)| dtdx+ L||∇xψ||L1(0,T ;L∞(RN ))ω
B
1 (µ, ν). (3.9)

Note that if x ∈ B and ρν(y − x) 6= 0, then dist(y,B) ≤ ν ≤ 1. Therefore, for ν ≤ 1,

|A3| ≤ ||ψ(0, ·)||L∞(RN )

∫ ∞

0

∫
RN

∫
B

|u0(x)− u0(y)|ρν(y − x)θµ(s) dsdydx

+||ψ(0, ·)||L∞(RN )

∫ ∞

0

∫
RN

∫
B

|u0(y)− u(s, y)|ρν(y − x)θµ(s) dsdydx

≤ ||ψ(0, ·)||L∞(RN )ω
B
2 (µ, ν). (3.10)

Gathering (3.8), (3.9) and (3.10) in (3.7), we deduce∫ ∞

0

∫
RN

|uε(t, x)− u(t, x)|(∂tψ(t, x) + L|∇xψ(t, x)|) dtdx

+
(
||∂tψ||L1(0,T ;L∞(RN )) + L||∇xψ||L1(0,T ;L∞(RN )

)
ωB

1 (µ, ν) + ||ψ(0, ·)||L∞(RN )ω
B
2 (µ, ν)

≥ ε

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

θµ(s− t)|uε(t, x)− u(s, y)| g[ρν(y − ·)ψ(t, ·)](x) dsdydtdx. (3.11)

5We keep the precise expression of the fourth term up to the end, since it will be useful in the proof of Theorem 1.2.
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Let M > LT and wM ∈ C∞c ([0,∞[) be non-increasing, with values in [0, 1], such that wM ≡ 1 on [0,M ]
and supp(wM ) ⊂ [0,M +1]. Let Θ ∈ C∞c ([0, T [) with values in [0, 1]. Then ψ(t, x) = wM (|x|+Lt)Θ(t) is
non-negative, belongs to C∞c ([0,∞[×RN ) (the function Θ has its support in [0, T [ and (t, x) → wM (|x|+
Lt) is regular on [0, T ] × RN since, in the neighborhood of [0, T ] × {0}, we have wM (|x| + Lt) = 1) and
supp(ψ) ⊂ [0, T [×B(M + 1). We have

∂tψ(t, x) = Lw′M (|x|+ Lt)Θ(t) + wM (|x|+ Lt)Θ′(t)

|∇xψ(t, x)| =
∣∣∣∣w′M (|x|+ Lt)Θ(t)

x

|x|

∣∣∣∣ = (−w′M (|x|+ Lt))Θ(t)

(recall that wM is non-increasing). Hence, ∂tψ(t, x) + L|∇xψ(t, x)| = wM (|x|+ Lt)Θ′(t). Moreover,

||∂tψ||L1(0,T ;L∞(RN )) ≤ LT ||w′M ||∞ + ||Θ′||L1(0,T ) , ||∇xψ||L1(0,T ;L∞(RN )) ≤ T ||w′M ||∞.

Therefore, (3.11) gives∫ T

0

∫
RN

|uε(t, x)− u(t, x)|wM (|x|+ Lt)Θ′(t) dtdx

+(2LT ||w′M ||∞ + ||Θ′||L1(0,T ))ω
B(M+1)
1 (µ, ν) + ω

B(M+1)
2 (µ, ν)

−ε
∫ ∞

0

∫
RN

∫ T

0

∫
RN

Θ(t)θµ(s− t)|uε(t, x)− u(s, y)| g[ρν(y − ·)wM (| · |+ Lt)](x) dsdydtdx

≥ 0. (3.12)

Let t0 ∈ [0, T [ and take Θ(t) = Θβ(t) =
∫∞

t
θβ(s − t0) ds. Then, for β small enough, Θβ ∈ C∞c ([0, T [),

has its values in [0, 1] and ||Θ′
β ||L1(0,T ) ≤ 1. Since, for all t ∈ [0, T ], wM (| · | + Lt) ≡ 1 on B(M − LT )

and Θ′
β(t) = −θβ(t− t0), we deduce from (3.12) that∫ T

0

∫
B(M−LT )

|uε(t, x)− u(t, x)|θβ(t− t0) dtdx

≤ (2LT ||w′M ||∞ + 1)ωB(M+1)
1 (µ, ν) + ω

B(M+1)
2 (µ, ν)

−ε
∫ ∞

0

∫
RN

∫ T

0

∫
RN

Θβ(t)θµ(s− t)|uε(t, x)− u(s, y)| g[ρν(y − ·)wM (| · |+ Lt)](x) dsdydtdx.

For all t0 ∈ [0, T [, θβ(· − t0) converges, as β → 0 and in the weak-∗ sense of the measures on [0, T ], to
the Dirac mass at t0; as β → 0, we also have Θβ → 1[0,t0] everywhere and |Θβ | ≤ 1. Since both u and uε

are continuous [0, T ] → L1
loc(RN ) and

t→
∫ ∞

0

∫
RN

∫
RN

θµ(s− t)|uε(t, x)− u(s, y)| g[ρν(y − ·)wM (| · |+ Lt)](x) dsdydx

is integrable on [0, T ] (see Remark 3.1), we can let β → 0 to find∫
B(M−LT )

|uε(t0, x)− u(t0, x)| dx ≤ (2LT ||w′M ||∞ + 1)ωB(M+1)
1 (µ, ν) + ω

B(M+1)
2 (µ, ν)

+εTε,µ,ν,M (t0) (3.13)

where

Tε,µ,ν,M (t0) = −
∫ ∞

0

∫
RN

∫ t0

0

∫
RN

θµ(s−t)|uε(t, x)−u(s, y)| g[ρν(y−·)wM (| · |+Lt)](x) dsdydtdx (3.14)

satisfies

|Tε,µ,ν,M (t0)| ≤ 2||u0||∞
∫

RN

∫ T

0

∫
RN

|g[hν,M (y, t, ·)](x)| dydtdx
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with hν,M (y, t, x) = ρν(y − x)wM (|x| + Lt) ∈ C∞c (RN × [0, T ] × RN ). This concludes the proof of the
proposition for t0 < T , and the estimate for t0 = T is obtained by letting t0 → T in (3.3).

The result in Theorem 1.1 is then an easy consequence of the following lemma.

Lemma 3.1 Let u ∈ C([0,∞[;L1
loc(RN )) and T > 0. If B is a bounded subset of RN , we define ωB

1 (µ, ν)
and ωB

2 (µ, ν) from u by (3.1) and (3.2), with u0 = u(0, ·). Then, as (µ, ν) → (0, 0), ωB
1 (µ, ν) and ωB

2 (µ, ν)
go to 0.

Proof of Theorem 1.1
Let T > 0 and M > LT , with L a Lipschitz constant of f on [−||u0||∞, ||u0||∞]. Let C1 and hν,M be
given by Proposition 3.1.
Take α > 0. Since u is the entropy solution to (1.3), it is in C([0,∞[;L1

loc(RN )). Hence, applying Lemma
3.1, we fix µ ∈]0, 1[ and ν ∈]0, 1[ small enough so that

C1ω
B(M+1)
1 (µ, ν) + ω

B(M+1)
2 (µ, ν) ≤ α.

By Remark 3.1, we can choose ε0 > 0 (depending on ν and M) such that

2ε0||u0||∞
∫

RN

∫ T

0

∫
RN

|g[hν,M (y, t, ·)](x)| dydtdx ≤ α.

Proposition 3.1 then shows that, for all ε ≤ ε0,

sup
t∈[0,T ]

∫
B(M−LT )

|uε(t, x)− u(t, x)| dx ≤ 2α.

This reasoning can be made for all T > 0 and allM > LT , which proves that uε → u in C([0, T ];L1
loc(RN ))

for all T > 0.

Proof of Lemma 3.1
The convergence of ωB

2 (µ, ν) is quite easy. Indeed, since u0 = u(0, ·) ∈ L1
loc(RN ) and B is bounded, we

know that ∫
B

|u0(x)− u0(x+ z)| dx→ 0 as z → 0.

By continuity of u : [0,∞[→ L1
loc(RN ) and since B̃ is bounded, we also have ||u(s, ·) − u0||L1(B̃) → 0 as

s→ 0. Hence, this proves that ωB
2 (µ, ν) → 0 as (µ, ν) → 0.

The convergence of ωB
1 (µ, ν) is a bit more tricky. We split it in two parts:

ωB
1 (µ, ν) ≤ sup

0<t<T

(
sup
|z|<ν

∫
B

|u(t, x)− u(t, x+ z)| dx

)

+ sup
0<t<T

(
sup

0<r<µ ,|z|<ν

∫
B

|u(t, x+ z)− u(t+ r, x+ z)| dx

)

≤ sup
0<t<T

(
sup
|z|<ν

∫
B

|u(t, x)− u(t, x+ z)| dx

)
(3.15)

+ sup
0<t<T

(
sup

0<r<µ

∫
B̃

|u(t, y)− u(t+ r, y)| dy
)
. (3.16)

By hypothesis, u ∈ C([0, T + 1];L1(B̃)); hence, u is uniformly continuous [0, T + 1] → L1(B̃) and

sup
0<t<T

(
sup

0<r<µ

∫
B̃

|u(t, y)− u(t+ r, y)| dy
)
≤ sup

(t,s)∈[0,T+1]2 , 0<s−t<µ

||u(t, ·)− u(s, ·)||L1(B̃) → 0 (3.17)

11



as µ → 0. Moreover, since u ∈ C([0, T ];L1(B̃)), the set K = {u(t, ·) , 0 ≤ t ≤ T} is compact in L1(B̃);
therefore, by Kolmogorov’s compactness theorem, the translations are equicontinuous on K, that is to
say

sup
v∈K

(
sup
|z|<ν

∫
B

|v(x)− v(x+ z)| dx

)
→ 0

as ν → 0. This quantity bounds (3.15), which proves, together with (3.17), that ωB
1 (µ, ν) → 0 as

(µ, ν) → 0.

4 Proof of the error estimate

We prove here Theorem 1.2, beginning with a stronger version of Lemma 3.1 in the case of more regular
functions.

Lemma 4.1 Let u ∈ Lip([0,∞[;L1(RN )) such that supt≥0 |u(t, ·)|BV (RN ) <∞. We define ωRN

1 (µ, ν) and
ωRN

2 (µ, ν) from u by (3.1) and (3.2), with T = ∞, u0 = u(0, ·) and B = RN . Then ωRN

1 (µ, ν) = O(µ+ν)
and ωRN

2 (µ, ν) = O(µ+ ν).

Proof of Lemma 4.1
It is classical (see e.g. [7] or (5.7)) that, if v ∈ BV (RN ) then,∫

RN

|v(x+ h)− v(x)| dx ≤ |h| |v|BV (RN ). (4.1)

Thus,

sup
|z|<ν

∫
RN

|u0(x)− u0(x+ z)| dx = O(ν)

and, since u : [0,∞[→ L1(RN ) is Lipschitz continuous, we deduce that ωRN

2 (µ, ν) = O(µ+ ν).
We split ωRN

1 (µ, ν) as in the proof of Lemma 3.1 (with B̃ = RN here). By the Lipschitz continuity of u,
(3.16) is a O(µ); by (4.1) and the bound on |u(t, ·)|BV (RN ), (3.15) is a O(ν). This concludes the proof of
the lemma.

Proof of Theorem 1.2
Since u0 ∈ L∞(RN )∩L1(RN )∩BV (RN ), it is classical that |u(t, ·)|BV (RN ) ≤ |u0|BV (RN ). The function f
being regular, the BV semi-norm of f(u(t, ·)) is also bounded and, thanks to ∂tu+ div(f(u)) = 0, we see
that u is Lipschitz continuous [0,∞[→ L1(RN ). Hence, Lemma 4.1 and (3.13) show that, for all T > 0,
for all M > LT and all t0 ∈ [0, T ], if µ ∈]0, 1[ and ν ∈]0, 1[,∫

B(M−LT )

|uε(t0, x)− u(t0, x)| dx ≤ C0(2LT ||w′M ||∞ + 2)(µ+ ν) + εTε,µ,ν,M (t0), (4.2)

where we recall that Tε,µ,ν,M (t0) is defined by (3.14).
To bound Tε,µ,ν,M (t0), we use (5.1). We handle the case λ ∈]1, 2[, the other one being easier (and, anyway,
well-known). We define β = −N − (λ−2). It is not hard to check, differentiating under the integral sign,
that

g[hν,M (y, t, ·)](x) = Eλ| · |β ∗ (∆xhν,M (y, t, ·))(x) = Eλdivx

(
| · |β ∗ ∇xhν,M (y, t, ·)

)
(x)

(recall that hν,M (y, t, x) = ρν(y−x)wM (|x|+Lt) ∈ C∞c (RN×[0, T ]×RN )). Let A be such that the support
of hν,M (y, t, ·) is contained in the ball of center 0 and radius A. From the definition of the convolution
product, we see that, for |x| > A, | | · |β ∗∇xhν,M (y, t, ·)(x)| ≤ Λ(|x|−A)β ; hence, | · |β ∗∇xhν,M (y, t, ·)(x)
goes to 0, as |x| → ∞, quicker than |x|−N+1 (because β = −N − (λ − 2) < −N + 1). We know that
uε(t, ·) is regular for all t > 0 (see [6]), and that ||∇uε(t, ·)||L1(RN ) ≤ |u0|BV (RN ) (this can be easily seen
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letting δ → 0 in (2.1) — we have noticed that the construction of uε in subsection 2.1 is valid for initial
data in L∞(RN ) ∩ L1(RN ) ∩ BV (RN )). We can therefore use Stokes formula on a ball of radius R and
let R→∞ to find∫

RN

|uε(t, x)− u(s, y)| g[hν,M (y, t, ·)](x) dx

= −Eλ

∫
RN

∇x(|uε(t, ·)− u(s, y)|)(x) · (| · |β ∗ ∇xhν,M (y, t, ·))(x) dx

= −Eλ

∫
RN

sgn(uε(t, x)− u(s, y))∇uε(t, x) · (| · |β ∗ ∇xhν,M (y, t, ·))(x) dx ,

which implies∣∣∣∣∫
RN

|uε(t, x)− u(s, y)| g[hν,M (y, t, ·)](x) dx
∣∣∣∣ ≤ |Eλ|

∫
RN

|∇uε(t, x)| |(| · |β ∗ ∇xhν,M (y, t, ·))(x)| dx.

Therefore, by (3.14),

|Tε,µ,ν,M (t0)| ≤ |Eλ|
∫

RN

∫ t0

0

∫
RN

|∇uε(t, x)| |(| · |β ∗ ∇xhν,M (y, t, ·))(x)| dydtdx. (4.3)

We choose wM such that (w′M )M≥1 is bounded by C1. Let δ ∈]0, 1[ and Bδ be the ball of center 0 and
radius δ; cutting as in the proof of Lemma 5.1 and using Stokes formula, we have

(| · |β ∗ ∇xhν,M (y, t, ·))(x) =
∫

Bδ

|z|β∇xhν,M (y, t, x− z) dz −
∫

Bc
δ

|z|β∇z(hν,M (y, t, x− z)) dz

=
∫

Bδ

|z|β∇xhν,M (y, t, x− z) dz − δβ

∫
∂Bc

δ

hν,M (y, t, x− z)n(z) dσδ(z)

+β
∫

Bc
δ

hν,M (y, t, x− z)|z|β−1 z

|z|
dz (4.4)

(σδ is the (N − 1)-dimensional measure on ∂Bc
δ and n is the unit normal to ∂Bc

δ outward to Bc
δ). Since

|hν,M (y, t, x)| = |ρν(y − x)wM (|x|+ Lt)| ≤ ρν(y − x)

and

|∇xhν,M (y, t, x)| =
∣∣∣∣−∇ρν(y − x)wM (|x|+ Lt) + ρν(y − x)w′M (|x|+ Lt)

x

|x|

∣∣∣∣
≤ |∇ρν(y − x)|+ C1ρν(y − x),

(4.4) shows that

|(| · |β ∗ ∇xhν,M (y, t, ·))(x)| ≤
∫

Bδ

|z|β (|∇ρν(y − x+ z)|+ C1ρν(y − x+ z)) dz

+δβ

∫
∂Bc

δ

ρν(y − x+ z) dσδ(z) + |β|
∫

Bc
δ

ρν(y − x+ z)|z|β−1 dz.

By Fubini-Tonelli’s theorem and (4.3), we obtain

|Tε,µ,ν,M (t0)|

≤ |Eλ|
∫

RN

∫ t0

0

∫
RN

|∇uε(t, x)|
(∫

Bδ

|z|β (|∇ρν(y − x+ z)|+ C1ρν(y − x+ z)) dz

+δβ

∫
∂Bc

δ

ρν(y − x+ z) dσδ(z) + |β|
∫

Bc
δ

ρν(y − x+ z)|z|β−1 dz

)
dydtdx

≤ |Eλ|
(
||∇ρν ||L1(RN ) + C1

)
|| | · |β ||L1(Bδ)||∇uε||L1(]0,t0[×RN ) + |Eλ|δβσδ(∂Bc

δ)||∇uε||L1(]0,t0[×RN )

+|Eλ| |β| || | · |β−1||L1(Bc
δ)||∇uε||L1(]0,t0[×RN ).
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By change of variable, || | · |β ||L1(Bδ) = C2δ
N+β , || | · |β−1||L1(Bc

δ) = C3δ
N+β−1 and σδ(∂Bc

δ) = C4δ
N−1,

where C2, C3 and C4 do not depend on δ (recall that β − 1 < −N < β). Since ||∇uε(t, ·)||L1(RN ) ≤
|u0|BV (RN ), we deduce that

|Tε,µ,ν,M (t0)| ≤ C5T (||∇ρν ||L1(RN ) + 1)δN+β + C5Tδ
N+β−1 (4.5)

where C5 does not depend on t0, ε, µ, ν, M or δ.

Choosing smoothing kernels (ρν)ν>0 of the kind ρν(x) = ν−Nρ(ν−1x), we have ||∇ρν ||L1(RN ) = C6ν
−1.

Since (w′M )M≥1 is bounded by C1, (4.2) and (4.5) give, for all T > 0, for all M > LT and all t0 ∈ [0, T ],∫
B(M−LT )

|uε(t0, x)− u(t0, x)| dx ≤ C0(2LTC1 + 2)(µ+ ν) + ε

(
C5C6Tδ

2−λ

ν
+ C5Tδ

2−λ + C5Tδ
1−λ

)
(we have N + β = 2− λ). We let M →∞ and µ→ 0; since ν < 1, this gives

||uε(t0, ·)− u(t0, ·)||L1(RN ) = O
(
ν + ε

(
δ2−λ

ν
+ δ1−λ

))
.

Minimizing on δ and then on ν, we see that the best choices are (up to multiplicative constants) δ = ν
and ν = ε1/λ, which proves Theorem 1.2.

5 Appendix

5.1 An expression and an estimate of g[ϕ]

Lemma 5.1 Let λ ∈]1, 2]. There exist Eλ ∈ R and Cλ > 0 such that, for all ϕ ∈ S(RN ),{
g[ϕ] = Eλ| · |−N−(λ−2) ∗∆ϕ for λ ∈]1, 2[

g[ϕ] = Eλ∆ϕ for λ = 2
(5.1)

and
||g[ϕ]||L1(RN ) ≤ Cλ

(
||∇ϕ||L1(RN ) + ||∆ϕ||L1(RN )

)
.

Proof of Lemma 5.1
If λ = 2, the result is obvious since, up to a multiplicative constant, g[ϕ] is ∆ϕ. We thus assume that
λ ∈]1, 2[ and we have

g[ϕ] = F−1(| · |λF(ϕ)) = (2iπ)−2F−1(| · |λ−2F(∆ϕ))

(note that | · |λ−2 ∈ L1
loc(RN ), as λ − 2 > −N , and that F(∆ϕ) ∈ S(RN ), so that | · |λ−2F(∆ϕ)

is integrable on RN ). Since λ − 2 ∈] − N, 0[, it is classical that F−1(| · |λ−2) = C1| · |−N−(λ−2) in
S ′(RN ), for some C1 ∈ R. We can then check, using the definition (by duality) of F−1 on S ′(RN ), that
F−1(| · |λ−2F(∆ϕ)) = C1| · |−N−(λ−2) ∗∆ϕ, which proves (5.1).
Let β = −N−(λ−2) ∈]−N, 0[. We now estimate || | · |β ∗∆ϕ||L1(RN ), which will conclude the proof (note
that this estimate is not a straightforward consequence of Young’s inequalities for convolution, since | · |β
is not integrable on RN ). We have, if 1B is the characteristic function of the ball B of center 0 and radius
1 and 1Bc is the characteristic function of Bc = RN\B,

| · |β ∗∆ϕ = (1B | · |β) ∗∆ϕ+ (1Bc | · |β) ∗∆ϕ. (5.2)

But 1B | · |β ∈ L1(RN ) (because β > −N), and thus

||(1B | · |β) ∗∆ϕ||L1(RN ) ≤ ||1B | · |β ||L1(RN )||∆ϕ||L1(RN ). (5.3)
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By Stokes formula, we write

(1Bc | · |β) ∗∆ϕ(x) =
∫

Bc

|y|β∆ϕ(x− y) dy

= −
∫

∂Bc

∇ϕ(x− y) · n(y) dσ(y) + β

∫
Bc

∇ϕ(x− y) ·
(
|y|β−1 y

|y|

)
dy

where n is the outward unit normal to Bc and σ is the measure on ∂Bc. We deduce that

|(1Bc | · |β) ∗∆ϕ(x)| ≤
∫

∂Bc

|∇ϕ(x− y)| dσ(y) + |β|
∫

Bc

|∇ϕ(x− y)| |y|β−1 dy

and, integrating this thanks to Fubini-Tonelli’s theorem,∫
RN

|(1Bc | · |β) ∗∆ϕ(x)| dx ≤
∫

∂Bc

∫
RN

|∇ϕ(x− y)| dxdσ(y) + |β|
∫

Bc

∫
RN

|∇ϕ(x− y)| dx |y|β−1 dy

=
(
σ(∂Bc) + |β|

∫
Bc

|y|β−1 dy

)∫
RN

|∇ϕ(z)| dz. (5.4)

Since β − 1 = −N − (λ− 2)− 1 = −N − λ+ 1 < −N ,
∫

Bc |y|β−1 dy is finite. Gathering (5.3) and (5.4)
in (5.2), we deduce that || | · |β ∗∆ϕ||L1(RN ) ≤ C(||∆ϕ||L1(RN ) + ||∇ϕ||L1(RN )) for some C not depending
on ϕ, and the proof is complete.

5.2 Technical lemmas on the kernel of g

The results in the following two lemmas have already been used in [6], but their proofs were left to the
reader. We include them here for sake of completeness.

Lemma 5.2 Let r > 0, w0 ∈ L1(RN ) and, for t > 0, w(t, ·) = Kr(t, ·) ∗ w0. Then, for all ϕ ∈
C∞c ([0,∞[×RN ) and all t0 > 0,∫ t0

0

∫
RN

w(t, x)∂tϕ(t, x)− rw(t, x)g[ϕ(t, ·)](x) dtdx =
∫

RN

w(t0, x)ϕ(t0, x) dx−
∫

RN

w0(x)ϕ(0, x) dx.

Proof of Lemma 5.2
We ignore, as in the proof of Proposition 2.1, the space variable. Since Kr(t) and w0 are integrable, w(t)
is integrable and we have

F−1(w(t)) = F−1(Kr(t))F(w0) = e−rt|·|λF−1(w0) (5.5)

(note that, since Kr(t) is even, F−1(Kr(t)) = F(Kr(t))). By Fubini’s theorem, for all (a, b) ∈ L1(RN ),∫
RN

aF−1(b) =
∫

RN

F−1(a)b. (5.6)

Thus, writing g[ϕ(t)] = F−1(| · |λF(ϕ(t))) and ∂tϕ(t) = F−1(F(∂tϕ(t))), we have, thanks to (5.5) and
(5.6), for all t > 0,∫

RN

w(t)∂tϕ(t)− rw(t)g[ϕ(t)]

=
∫

RN

e−rt|ξ|λF−1(w0)(ξ)F(∂tϕ(t))(ξ)− r|ξ|λe−rt|ξ|λF−1(w0)(ξ)F(ϕ(t))(ξ) dξ

=
∫

RN

∂t

(
e−rt|ξ|λF(ϕ(t))(ξ)

)
F−1(w0)(ξ) dξ.
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(t, ξ) → e−rt|ξ|λF−1(w0)(ξ) is bounded on ]0, t0[×RN and, by regularity of ϕ, (t, ξ) → |ξ|λF(ϕ(t))(ξ)
and (t, ξ) → F(∂tϕ(t))(ξ) are integrable on ]0, t0[×RN (see e.g. (2.10)); hence, integrating the preceding
equality on ]0, t0[ and using Fubini’s theorem, we find∫ t0

0

∫
RN

w(t)∂tϕ(t)− rw(t)g[ϕ(t)] dt =
∫

RN

(
e−rt0|ξ|λF(ϕ(t0))(ξ)−F(ϕ(0))(ξ)

)
F−1(w0)(ξ) dξ.

Using once again (5.5) and (5.6), we get∫ t0

0

∫
RN

w(t)∂tϕ(t)− rw(t)g[ϕ(t)] dt =
∫

RN

F−1(w(t0))F(ϕ(t0))−F−1(w0)F(ϕ(0))

=
∫

RN

w(t0)ϕ(t0)− w0ϕ(0)

which concludes the proof.

Lemma 5.3 Let r > 0 and w0 ∈ W 1,1(RN ) ∩ C1(RN ). We define, for t > 0, w(t, ·) = Kr(t, ·) ∗ w0.
Then, for all ν > 0 and all t > 0,

||w(t, ·)− w0||L1(RN ) ≤ 2||w0||L1(RN )

∫
|y|≥ν

Kr(t, y) dy + ν||∇w0||L1(RN ).

Proof of Lemma 5.3
The proof relies on classical cuttings of integration domain when approximate units are involved. Since
Kr(t, ·) is non-negative with integral equal to 1, we can write

|w(t, x)− w0(x)| =
∣∣∣∣∫

RN

Kr(t, y)(w0(x− y)− w0(x)) dy
∣∣∣∣ ≤ ∫

RN

Kr(t, y)|w0(x− y)− w0(x)| dy.

Now,

||w(t, ·)− w0||L1(RN )

≤
∫
|y|≥ν

Kr(t, y)
∫

RN

|w0(x− y)− w0(x)| dxdy +
∫
|y|<ν

Kr(t, y)
∫

RN

|w0(x− y)− w0(x)| dxdy

≤ 2||w0||L1(RN )

∫
|y|≥ν

Kr(t, y) dy + sup
|z|<ν

∫
RN

|w0(x+ z)− w0(x)| dx.

We then write, using Fubini-Tonelli’s theorem and a change of variable,∫
RN

|w0(x+ z)− w0(x)| dx ≤
∫

RN

∫ 1

0

|∇w0(x+ ζz)| |z| dζ dx ≤ |z|
∫

RN

|∇w0(y)| dy , (5.7)

and the proof is complete.
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diffusion generators, Studia Math., 148 (2001), no. 2, 171–192.

[3] P. Biler, G. Karch and W. A. Woyczynski, Asymptotics for multifractal conservation laws,
Studia Math., 135 (1999), no. 3, 231–252.

16



[4] P. Clavin and L. He, Theory of cellular detonations in gases, part 1., stability limits at strong
overdrive, C. R. Acad. Sci. Paris 329 (2001), Série UU b, 463-471.

[5] P. Clavin and B. Denet, Theory of cellular detonations in gases, part 2., mach-stem formation
at strong overdrive, C. R. Acad. Sci. Paris 329 (2001), Série UU b, 489-496.
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