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Vanishing non-local regularization of a scalar conservation law

Jéréme Droniou !, 29/10,/2003.

Abstract We prove that the solution to the regularization of a scalar conservation law by a fractional
power of the Laplacian converges, as the regularization vanishes, to the entropy solution of the hyperbolic
problem. We also give an error estimate when the initial condition has bounded variation.
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1 Introduction

We consider the problem

{ Opus (t, ) + div(f(u®))(t, z) + eg[us (¢, )] (z) =0, t>0, zeRY, L.1)

u®(0,z) = ug(x), r RN,

where f = (f1,...,fn) € (C®(R))N, ug € L>®(RY) and g is the non-local operator defined through
Fourier transform by

Flglu®(t, )€ = [EPF(u(t,))(€),  with A €]1,2]. (1.2)

In the case € = 0, this equation reduces to the classical scalar conservation law

u(t. iv(flu T) = T N
{at (t.x) + div(f(w))(t,2) =0,  t>0, z€RY, (1.3)

u(0,z) = up(z), z € RN,

Existence and uniqueness of a solution to this equation, in the L>° framework, has been established by
Krushkov [8]; it relies on so-called “entropy solutions”, which must satisfy particular inequalities. The
case A =2 and € > 0 in (1.1) corresponds to g[us(t,-)](z) = —(27)?Auc(¢,z) and is called the parabolic
regularization of (1.3). In this situation, existence, uniqueness and regularity of solutions to this equation
are well-known (see e.g. [10]), and an entropy solution of (1.3) can be obtained by proving that, as e — 0,
the solution to this parabolic regularization converges to a function which satifies the entropy inequalities
of (1.3).

For general A €]1,2] and € > 0, in which case g is a fractional power of the Laplacian, the study of (1.1) less
classical, though motivated by physical problems of detonation (see [4], [5] for example), hydrodynamics,
molecular biology, etc... (see the introduction of [1] and references therein). A number of papers ([1],
[2]...) have studied this equation (also called “fractal conservation law”). The existence results in [1] for
(1.1) give global solutions in the case N = 1, but which are not very regular, or local (in time) solutions
for general N > 1 and small initial data, but still not regular (in Morrey spaces). In [2] or [3], the authors
consider a parabolic regularization of (1.1), that is to say they add a Laplacian operator to the equation;
thanks to this second order operator, a global solution is obtained and regularity results can be proved.
These papers are mainly interested in asymptotic behaviours for this equation.

However, one could consider (1.1) as a (possible) regularization of (1.3), without having to add another
term. In this case, a natural space for the initial data is L°°(R"), and the question is whether or not (1.1)
gives rise to a solution which is regular for ¢ > 0 (i.e. whether or not g has the same effect on the regularity
as —A). It has been proved in [6] that this indeed happens: there exists a unique bounded solution to (1.1),
in a suitable sense, and this solution belongs to C°°(]0, co[xRY). It is constructed via a splitting method,
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and inherits thus all the properties that are common to both the conservation law and the equation
9yv + eg[v] = 0, such as essential bounds, comparison and contraction principles, etc...; its regularity is
proved using the Banach fixed point theorem on Duhamel’s formula for d,u® + eg[u®] = —div(f(u)).
Once it has been established that (1.1) has the same regularizing effect, with respect to (1.3), as the
parabolic equation, the next question is to know if, as in the parabolic case, the solution to (1.1) remains
close to the solution of (1.3) for small €. This is the aim of the present work, and our main results are
the following.

Theorem 1.1 Let ug € L>(RY). The solution to (1.1) converges, as e — 0 and in C([0,T]; LL _(RN))
for all T > 0, to the entropy solution of (1.3).

Remark 1.1 This theorem (as well as the results of [6]) is valid for more general g (roughly speaking,
the methods work for operators whose kernels are approximate units — see subsection 2.1). For example,
sums of operators of the kind (1.2) (or more general Lévy operators) can be considered, with, as a special
case, the equation Oyu® + div(f(u®)) + eg[u®] — eAu® =0 (as in [2], [3]).

As a by-product of the proof of Theorem 1.1, we also obtain the following error estimate.

Theorem 1.2 Let ug € L®(RY) N LY(RYN) N BV(RY), u® be the solution to (1.1) and u be the entropy
solution to (1.3). Then, for all T >0, |[u® — ul|c(or)1 &y = O(EY).

Remark 1.2 This result in the case of parabolic reqularization (A = 2) has already been proved in [9]. The
special feature of Theorem 1.2 is that it establishes an elegant relationship between the rate of convergence
and the order of the operator chosen for the reqularization of (1.3); in fact, this error estimate is optimal
(see Remark 2.1).

Remark 1.3 Note that, since u® and u are bounded (by ||ug|| ), @ convergence in L*(RY) (respectively
in Ll (RN)) implies, by interpolation, a convergence in LP(R™) (respectively in LY (RN)) for all finite

p. For example, under the hypotheses of Theorem 1.2, we have, for all p € [1,00[ and all T > 0,

1
[u® —ullogo,r)Lr Yy = O(eP%).

The paper is organized as follows. In the next section, we prove approximate entropy inequalities for u¢;
this function has been obtained in [6], using a splitting method, as a limit of explicit functions: we first
prove approximate entropy inequalities on those explicit functions, and then deduce the corresponding
inequalities for u®; it is not clear that these estimates could be inferred from the methods of [1]. In
Section 3, we use Krushkov’s classical doubling variable technique to combine the approximate entropy
inequalities on u® and the entropy inequalities on u, which gives an estimate on |u® — u| and proves
Theorem 1.1. Section 4 is devoted to the proof of Theorem 1.2, which is an easy consequence of the
estimates obtained in Section 3. We have gathered, in Section 5, some results concerning g and its kernel,
which we use in the rest of the work.

2 Approximate entropy inequalities for the solution of (1.1)

In order to prove approximate entropy inequalities for u®, we need to recall the construction of this
function (see [6]).

2.1 Construction of u°
The solution to d;v + eg[v] = 0 with initial condition v(0, ) = vg is (at least formally) given by v(t,-) =
K (t,-) * vg, where

Ke(t.x) = F (e (@),



The main property of this kernel is that (K. (¢,-)):—o is an approximate unit. This means that K.(¢,-) is

non-negative (see [11]), has integral equal to 1 and that, for all v > 0, fly\>v (t,y)dy —0ast— 0 (?).

We assume here that ug € C°(RY) (though uy € L>®(RY) N LY(RY) N BV (RY) would be enough). Let
§ > 0and u®° : [0, oo[x]RN — R be defined by u(0,-) = up and

. for all even p, us? is, on |pd, (p+1)5] xRN the solution to 9;us®+2eg[us?] = 0 with initial condition
©9(pé, -), that is to say uS°(t,x) = K. (2(t — pd), ) * u®°(pd, -)(x) for (t,x) €]ps, (p + 1)8] x RV

e for all odd p, u®° is, on |pé, (p + 1)d] x RV the entropy solution to dyus? 4 2div(f(us?)) = 0 with
initial condition u®°(pd, -).

We have then v € C([0,00[; L' (RY)) with u?(0,-) = ug and

VE >0, [[us0(t, )| pem@yy < ol @y s (U0t )l @yy < JJuoll i@y
and [u° (¢, )| gy ey < [|[Vuol| 1@y

(2.1)

It has been proved in [6] that u®® converges, as § — 0 and in C([0,T]; L (RY)) for all T > 0, to the
solution u of (1.1). It has also been noticed that, for § small enough, % is in fact, on [pd, (p+ 1)6] x RN
for all odd p, a regular solution to dyus? + 2div(f(u?)) = 0; moreover, for such ¢ and all ¢ > 0, us (¢, -)
is regular.

The results of [6] are stated in dimension N = 1 and with g instead of eg (with K; instead of K.) but,
as indicated in this reference, they are valid in any dimension N > 1 and substituting K. for K; (K. has
the same properties, for a fixed € > 0, as K;: in fact, K (¢,x) = K;(et,x)), they also hold with eg.

Remark 2.1 If f = 0, the solution to (1.1) is u®(t,z) = K:(t,-) * uo(x) and the solution to (1.83) is
u(t, ) = ug(z). Taking, for example, ug the characteristic function of [—1,1]V, some easy computations
and the homogeneity property K.(1,z) = K (g,x) = e N/ K (1,61 *z) (see footnote 2 on page 3) show
that |[u®(1, )L @3\[—1,1v) = ce'’> for some ¢ > 0. Hence, the estimate of Theorem 1.2 is optimal.

2.2 The approximate entropy inequalities

We now establish the following approximate entropy inequalities for the solution to (1.1).

Proposition 2.1 Assume that ug € L®(RY) and let u® be the solution to (1.1). Letn : R — R
be a regular convex function and ¢ = (¢1,...,¢n) such that ¢, = n'fl. Then, for all non-negative
0 € C([0,00[xRY), we have

/ [ (6 o)duplt, ) + G (1 0) Veplta) dedo+ [ n(ua(a))p(0.2) do
RN RN

. / h / ol )glelt, @) dide. (22)

Remark 2.2 If p € C°([0,00[xRY), then t € [0,00[— V(t,) € LYRN)N and t € [0, 00[— Ap(t,-) €
LY(RN) are continuous; hence, by Lemma 5.1 and the linearity of g, the function t € [0, 00[— g[e(t,-)] €
LY(RYN) is continuous. In particular, since ¢(t,-) = 0 fort large enough, (t,x) — g[p(t,-)](z) is integrable

on 10, 0o[ xRV,

2This comes from K. (t,x) = t~N/* K. (1,t=1/*z) (change of variable in the definition of K¢) and from K.(1,-) € L*(RN)
(because the N + 1 first derivatives of £ — e—lé1” are integrable on R™V).



Proof of Proposition 2.1
Note that (2.2) with 5 or n — n(0) are the same inequalities. Indeed, the entropy fluxes ¢ associated to
n and 1 — n(0) are identical,

/ Opp(t, x) dtdx + / »(0,z)dx =0
o JrV RN
and, since g[p(t,-)] € LY(RY) for all t > 0 (see Lemma 5.1),

/RN gle(t, ))(z) dx = F(gle(t, )D0) = (|- *F(e(t,)))(0) = 0.

Hence, there is no loss in generality if we assume that 7(0) = 0, which we do from now on.

The proof is done in two steps. We first suppose that the initial condition is regular, in which case we
establish approximate entropy inequalities for the functions u® constructed in subsection 2.1, and we
deduce the result of the proposition by letting § — 0. We then prove the proposition for general initial
conditions.

Step 1: assume that ug € C°(RY).
We take § small enough so that u®° is, on [pd, (p + 1)d] x RN for all odd p, a regular solution to
Opus® + 2div(f(us%)) = 0. For odd p, we therefore have

(p+1)6
/ / (™ (t,2))dp(t, x) + 2¢(u=° (¢, 7)) - Vop(t, x) dida
pé RN

- / (= (p + 18, 2))((p + 1)6, 2) der — / n(u™ (98, 7))o (96, z) de.
RN RN

Summing on odd p’s (note that, since the support of ¢ is compact, this sum is finite), and defining xs as
the characteristic function of Uyqq p|pd, (p + 1)d], we find

/ /]RN u= (t, 1)) Dsp(t, ) + 20(uS (t, ) - Vo(t,z)) xs(t) dtde = Z (aps1 — ap)
odd p

where

= / (0 (5,2)) @)

Z (ap1 —ap) = Z Z ap = Z — apy1) —ao,

odd p even p, p>2 odd p even p

Since

we deduce that

/ /R (0, 2)p(t, @) + 20(u (1, 2)) - Vep(t, ) xo (8) didar+ /R | Muo())¢(0, ) dz
= Z (ap —apy1). (2.3)

even p

If p is even, we have, by definition, u®°((p + 1)0) = K.(20) * u*(pd) (it is convenient, because of the
convolution product, to omit the space variable). Since 7 is convex and K. (26) is positive with integral
equal to 1, Jensen’s inequality gives then n(us°((p + 1)d)) < K.(25) * n(u’(pd)). The function ¢ being
non-negative, we deduce that n(u®°((p + 1)8))p((p + 1)8) < K. (26) * n(u°(pd))p((p + 1)§) and thus

apt1 —ap < o K(20) % 1(u™° (p8))o((p + 1)8) — n(u™* (p5))(pd)

. F((p+1)0)e((p+1)d) — F(pd)p(pd)



where F(ps) = n(us?(pd)) and, for ¢t €]pd, (p + 1)8], F(t) = K.(2(t — pd)) = F(pd) (i.e. F satisfies
OuF + 2eg[F] =0 on |pd, (p + 1)6]) We have 1(0) = 0, so that, letting Cy be the Lipschitz constant of 7
on [—||uo||oos ||to||oo] and using (2.1),
1E®8)l 2 evy < Collu™ (p0)]| 1y < Colluol| o1 e (2.4)
IVE @)l vy < Col [V (p8)]| 1@y < CollVuo| |1 an) (2.5)

(recall that 6 is small enough so that u®(t,-) is regular for all ¢ > 0). Lemma 5.2 in the appendix enables
then to write

W=ty S| F((p+1)0)e((p+1)6) — F(pd)e(pd)
p+1)0
= [T [ Femaete) - 2Pt algliele, ) (o) ded (2.6)
pd RN
We have, by Lemma 5.3 in the appendix, for all v > 0 and all ¢ €]pd, (p + 1)d],
I1E () = (> (o)l @y = |[K(2(t — pd)) * F(ps) — F(pd)|| L1 @w)
< 2(FPd)||Lr @) e K (2(t = pd),y) dy + v||VE(pd)|| 1 (gv).
Yy|l=zv

Using (2.4) and (2.5), we deduce

IF(t) — n(u=° (p0))]| 1 ey < 2C0|[uol| 11 vy SUE% N K:(s,y) dy + Cov|[Vuo|[ L1 @ny- (2.7)
S y_l/

We have |[n(u®°(t)) — n(us?(pd))| < Colusd(t) — u=°(pd)| and, for ¢t €]ps, (p + 1)8], w0 (t) = K. (2(t —
pd)) * us?(pd). Hence, Lemma 5.3 and (2.1) give, for all ¢ €]pd, (p + 1)6] and all v > 0,

Hn(us,5(t)) — 17( (pa))HLl(RN) < 200||U0||L1(RN) :u<p% o KE(S,y) dy + COV”V'U;OHLI(RN). (28)
S Y| =v

Gathering (2.7) and (2.8), we find, for all ¢ €]pd, (p + 1)d] and all v > 0,

HF(t) — n(ug’é( ))||L1(]RN < 4CO||UO||L1 (RN) sup Ks(s,y) dy + QCOVHVUOHLI(RN) = ws((;, l/)
0<s<20 J|y|>v

with lim, o (lims_o w:(0,7)) = 0 (because (K (t,)):—o is an approximate unit). Using this inequality
n (2.6), we obtain, for all v > 0,

p+1
app1 —ay < /M [ 0 a)orp(t.a) = 2en(u (1. 0)le(t. ) o) ded

(p+1)8
Jrcua(til/)/5 ([18ep(t, )l @y + 2¢llglo(t, )| Lo my) dt. (2.9)
P
Note that, by definition of g, we can write
lgle(t, Mlre@yy < [ PF D] L@
|"/\ N+1
= F (ot ) + (=A) et )
+ (2] - [)2NHD ( ) L1(RY)
|- N1
< [IF (ot ) + (=) o(t, ) [l
AT PO o, 1 Mlimia
|- Nt1
< [lo(t, ) + (=)ot )| e (2.10)
+ @nl - DX ||y gy nen



with A —2(N +1) < —2N < —N. Hence, t — |[|g[o(t,-)]|| L @) is integrable on [0, 00 (in fact, this
function is continuous and null for ¢ large)

Summing (2.9) on even p’s and coming back to (2.3), we deduce

//RN

usO(t,2))0pp(t, ) + 20(u (t, ) - Vo(t, x)) xs(t) dtdz —l—/

. n(uo(x))e(0, ) dz
/ / (1, 2)) Dt ) — 2em(u (8, 2))glp(t, )] (@) (1= xs5(t)) dider

we (0, v) /000 (1180 (t, )| Lo mvy + 2¢]|gle(t, )l Loe rY)) d

(note that 1 — x5 is the characteristic function of Ueyen p|pd, (p + 1)4]), that is to say

/OOO/RNU(U

(1) (t ) + 200 (42)) - Viplt o)t o+ [ no(a))p(0, ) do

> e [ [ e e glott )0 - xst) dids
0 RN

—we (9 V)/O (10ep(t, Mooy + 2ellglio(ts ]l Lo may) dt. (2.11)
As § — 0, we have u®° — u® in C([0,T]; L (RY)) for all T > 0; hence,  and ¢ being Lipschitz-
continuous on [—||to]|se, ||t0||eo] and u=? taking its values in this interval, we deduce that n(us?) — n(u®)
and ¢(u®°) — ¢(uf), as § — 0 and in C([0,T]; LL (RN)) for all T > 0. This allows to see that, as § — 0

/ / us (t, ) atgotxdtdxﬂ/ /
RN ]RN

£(t,x))O0vp(t, x) dtdx. (2.12)
We also deduce that

o d(us(-,x)) - Vo -, x) de — - d(u(,2)) - Vo(,x)de in L2 ([0, 00[),
and thus in L'(]0, oo[) (these functions are null for ¢ large). Since ys — 1/2 in L*°(]0, oco[) weak-x, this
implies

oo

/ / 20(u=’ (t,x)) - Voo(t, 2)xs(t) dtde — /00 d(us(t,z)) - Vo(t,z) dtdx
0 RN 0 RN

(2.13)
For all M > 0, we have

[t anglote @ de = [ ot o)glptt. (@) do

< |9[90(t7')]||L°0(RN)/I<M |n(u€’5(t7x))7n(u€(t7x))|dx+201/

lgle(t, )](x)| de (2.14)
with C; = sup{|n(2)|, |z| < ||uo|lec}. By Remark 2.2, the function ¢ € [0, 00[— g[p(t,-)] € L*(RY) is
continuous and null for ¢ large enough; this implies that {g[p(¢, )],
thus, by Vitali’s theorem, that

|| > M

t > 0} is compact in L*(RY), and
lim lgle(t, )](z)|de =0 uniformly with respect to ¢t >0
M —o00 || >M

For a fixed M, we havefl i< In(u S9(t, x))
to t > 0; since sup; > ||g[e(t,

—n(u®
0 — 0,

(t,x))| dr — 0 as § — 0, locally uniformly with respect
I Lo vy < 00 (see (2.10)), these considerations and (2.14) show that, as

/]RN 77(u€,5(~7 3;))9[%0(.7 )](l')dx R

. n(w (- 2))gle(, ) (@) de o Lig ([0, o),



and thus also in L(]0, co[) (because ¢(t,-) = 0 for ¢ large). We have 1 — x5 — 1/2 in L°°(]0, oo[) weak-x,
which implies

2 /Ooo /]RN n(us (¢, 2))gle(t, ) (@) (1 — x5(t)) dtde — e/ooo /RN n(us (¢, 2)glp(t, ) (x) dtdz.  (2.15)

Passing to the limit 6 — 0 in (2.11), thanks to (2.12), (2.13) and (2.15), we deduce

/ [ )0t n) + oG (4.2)) - Vit + [ nuola)) (0. 2) do

RN

[ gttt e deds
~ (timwe() [ (0ot + 2elalote, W)

Since this is satisfied for all v > 0, we can let ¥ — 0 and use the property of w.(d,v) to see that (2.2)
holds.

Step 2: we now only assume that ug € L= (RY).

Let ug,, € C2°(RY) which converges a.e. to ug and is bounded by ||ug||s; We define u as the solution
to (1.1) with g, as initial datum. As in Section 6.4 of [6], we can see that (u),>1 is bounded (3) and
converges pointwise to u® as n — oo (4).

ug, satisfies (2.2), with ug,, instead of ug. Hence, using the dominated convergence theorem, we let
n — oo in this inequality to see that it is also satisfied by u®, and the proof is complete. B

3 Proof of the convergence

Proposition 3.1 Let ug € L*®(RY), u® be the solution to (1.1) and u be the entropy solution to (1.3).
Let L be a Lipschitz constant of f on [—||uo||so, |[tol|ec] and T > 0. If B is a subset of R, we define

B = {z € RN | dist(z, B) < 1} and, for (u,v) €)0,1[2,

wl(p,v) = sup ( sup / lu(t, ) — u(t +r,x + 2)| dx) (3.1)

0<t<T \O<r<p,|lz|<vJB
wl(p,v) = sup / luo(z) — wo(z + 2)| dr + sup / lug(z) — u(s, z)| dx. (3.2)
lz|<vJB 0<s<upJB

B(R) denotes the ball in RN of center 0 and radius R. Then, for all M > LT, there exists C; > 0 such
that, for all ty € [0,T], for all € > 0, for all u €]0,1] and for all v €]0,1],

/ [u (to, @) — u(to, )| de < Crwp ™M () + W M ()
B(M—LT)

+2e||uo||oo/ // (i (yst, (@) dydtde— (3.3)

for some hy pr € C(RYN x [0,T] x RN) only depending on v and M.

Remark 3.1 As in Remark 2.2, the regularity of h,a enables us to see that (y,t) € RN x [0,T] —
glhwai(y,t,-)] € LYRYN) is continuous and that (y,t,x) — glh, ar(y,t,-)](z) is integrable on RN x [0, T x
RN

3This can be deduced from (2.1) by letting § — 0, and using ||uo,n||co < ||u0]|oo-

4This is a consequence of estimates in [6] which show that all the derivatives of u$, are bounded on |tg, co[xR¥, for all
to > 0, uniformly with respect to n; there is thus a subsequence of (u$),>1 which converges pointwise and, to prove that
the limit is a solution to (1.1), we let n — oo in Duhamel’s formula which defines these solutions.



Proof of Proposition 3.1

We use the famous doubling variable technique of Krushkov (see [8]).

(2.2) has been obtained for regular convex n but it is easy, thanks to an approximation technique, to
see that it also holds with the entropy 7. (2) = |z — k|, associated to the flux ¢.(2) = f(2Tk) — f(2Lk)
(where 2Tk = max(z, k) and zLk = min(z, k)).

Let o € C°([0, 00[xRY x [0, 00[xRY) be non-negative. Applying, for fixed (s,y) €]0,00[xRY, (2.2) to
Nu(s,y) and @(-,-, s,y), and integrating on (s,y) €]0, oo[xR¥ | we find

/ / / / |uf(t, ) —u(s,y)|Orp(t, z, s,y) + F(u®(t, ), u(s,y)) - Vao(t, x, s,y) dsdydtdx
o JryJo JrWN

(o)
s [ uete) — uCssleto.,5.9) dsdyd
o Jry JrN
e [T [ ) — sl glett s o)) dsdyats (34
o JrNJo JRN
where F(z,w) = f(2Tw)— f(zLw) is symmetric. We can see, as in Remarks 2.2 and 3.1, that (¢, z, s,y) —
glp(t, -, s,y)](x) is integrable on ]0, co[ xRN x]0, 0co[xRY | so that all the integral signs in the right-hand

side can be manipulated at wish, using Fubini’s theorem.
Since u is the entropy solution to (1.3), it satisfies, for all £ € R and all non-negative 1) € C°([0, oo[xRY),

/ " / e (15, 4))Ds(5, 9) + u(u(s,)) - V(5. y) dsdy + / e (10 (4))8(0, ) dy > 0.
0 RN RN

Applying this inequality to x = u®(¢,z) and ¢ = ¢(t,z,-,-), and integrating on (¢,2) €]0,c0c[xRY, we
obtain

L[ i) = e tlouetts,) + Fuls. o). () - 9ot 5.0) ddydrds
o JryJo Jry
s [ ] o) - ettt 0.y dedzay > 0. (35
o Jrv JrN

Summing (3.4) and (3.5), we see that

/ / / / [uf(t, ) — u(s,y)|(Opp(t, x, 8, y) + Os(t, x, 8,y)) dsdydtdx

o JryvJo Jry

s [T PR (Vapttrs,) + Fypltns. ) dsdyded
o JryJo Jry

e[ o) = utsile(0.,5.9) dsdyds
o JrRNJRN
e [0 tuel) = e olett . 0.9) dedody
0o JrRNJRN
e [ [ ) - wswlglett s )@ dsagdeds. 30)
o JryJo JRN
Let p, € C(RY) and 6, € C(R) be smoothing kernels such that supp(p,) C {z € RY | |z < v}
and supp(f,) CJ0, u[. We take ¢ € C°([0,00[xRY) a non-negative function and we let (¢, z,s,y) =

(L, 2)py (y—2)0, (s—1); we have dpp(t, x, 5, y)+0s (L, 7, 5,y) = Op(t, ) pu (y—2)0u (s—1), Vaip(t, 2, 5,y)+
Vye(t,z,s,y) = Vab(t,z)p,(y — 2)0u(s — t) and p(t,2,0,y) =0 (for t > 0). Hence, (3.6) gives

/0°° /RN /OOO /RN U (t, ) — u(s, y)| 0 (t, x) o (y — )6, (s — t) dsdydtdx
’ /0°° /]RN /O"" /]RN F(us(t,2),u(s,y)) - Vot (t, 2)pu (y — 2)0,(s — t) dsdydtdz



[ L] ) = uls )l 0.0)0. (0 = 06,() dsdyda
> 6/0 /]RN /0 /]RN 0,.(s —t)|u®(t,x) —uls,y)| glpv(y — ) (t, )] (x) dsdydtdz. (3.7)

Let Ay, Ay and A3 be the first three lines of this inequality (°). We take 7' > 0 and B a bounded set in
RY, and we suppose that supp(¢)) C [0,7] x B. Then

’Al - /ODO /RN /OOO /RN 0 () — ult, 2)| b (1, ) po (y — )0, (s — £) dsdydtda

< / / / /|u(t,x)—u(s,y)\|8tw(t,x)|py(y—x)@u(s—t)dsdydtdx
0 RN JoO B
< 1ollrasy s ([T ][ o) - uts oty - 08,06 - 0 dsdyis)
o<t<T RN
< 18]l 1 (0,1 po RN YW (15 ).

Since [ 0,(s—t)ds=1for all t >0 and [py pu(y — ) dy = 1 for all x € RY, this gives

Ay S/ /R [u (t, ) — u(t, )|0p) (t, x) dtdz + || 0] L1 0,750 vyt (11, v). (3-8)
0 N

We have |F(u®(t,x),u(s,y))| < Llu®(t,z) —u(s,y)| (because both functions u® and u take their values in
[—]]20]]o0s | |10]|0]) and therefore

4] < L/OOO /RN /000 /RN [us(t, x) — u(s, y)| [Vah(t, 2)|pu (y — )0, (s — t) dsdydtda
= L /OOO / fom / [ (8, @) — u(t, )| [V (t, @) o (y — 20, (s — 1) dsdydtde
+L /OOO /RN /OOO /B lu(t, ©) — u(s,y)||Vah(t, 2)|py (y — )0, (s — t) dsdydtdax

< L/OOO /RN [uf (t,z) — u(t, z)| |V (t, 2)| dtdz + LIV o] 110 10 @i (11, v). (3.9)

Note that if x € B and p, (y — x) # 0, then dist(y, B) < v < 1. Therefore, for v < 1,

Al < 0oy [ [ [ @) = wowlp s~ 2)0,(5) dsdyde
0wy [ [ [ Tuoto) = uls, oy~ 2)0,5) dsdyo
< 100, vy ). (3.10)
Gathering (3.8), (3.9) and (3.10) in (3.7), we deduce
[ [ ) — e o) @t ) + L9000 dvde
( |3t¢||L1(0 T;Lo°(RN)) T LHVM/’HLI(OT Loo(RN)) Wy (,U'v v) + [|¥(0, )||Lw(RN)WzB(#aV)
> 5/ /]RN/ - 0,.(s —t)|us(t,x) —u(s,y)| glpu(y — )(t, )] (x) dsdydtdz. (3.11)

5We keep the precise expression of the fourth term up to the end, since it will be useful in the proof of Theorem 1.2.



Let M > LT and wys € C°([0,00]) be non-increasing, with values in [0, 1], such that wy = 1 on [0, M]
and supp(war) C [0, M +1]. Let © € C°([0,T[) with values in [0,1]. Then ¢(¢, ) = wa(|z|+ Lt)O(¢) is
non-negative, belongs to C°([0, co[xRY) (the function © has its support in [0, 7] and (t,z) — was(|z| +
Lt) is regular on [0, T] x R¥ since, in the neighborhood of [0, T] x {0}, we have wy(|z| + Lt) = 1) and
supp(¢)) C [0, T[x B(M + 1). We have

o (t, ) = Lw), (x| + Lt)O(t) + war (|| + Lt)O' (1)
= (—wiy (2| + Lt))O(t)

x
||
(recall that wyy is non-increasing). Hence, 0y (t, ) + L|V,¥(t, )| = wa (Jz| + Lt)©'(t). Moreover,

Vet (t, @) = |wiy (2] + Lt)O(2)

10l 10,7500 mY)) < LT[ wisrlloo + 1€ L1001y s IVatllLr 0,100 )y < Tl|wis]]oo-
Therefore, (3.11) gives

/ /RN [u=(t, @) — u(t, z)|lw (|2 + Lt)©' (t) dtdz

1 B(M+1
LT [Whelloe + 116l 301w ® M0 (11, v) + wE

e [T 008t~ 0l 10) ~ st~ el + L) syt
(3.12)

1)

Let to € [0,T[ and take O(t) = O4(t) = [~ 05(s — to) ds. Then, for 3 small enough, Oz € C°([0,T]),
has its values in [0,1] and [[©}]|z1(0,7) < 1. Since, for all ¢ € [0, 7], wa(| - | + Lt) =1 on B(M — LT)
and O5(t) = —0s(t — to), we deduce from (3.12) that

T
/ / i (8, ) — u(t, 2)|05(t — to) dtdar
0 JB(M-LT)
< LT whylloe + Dot ™ (1, v) + w0y’ (1, v)
0o T
e [T [ ] ©s8uts ~ 0lut.) ~ uls. )l gloly — June(|- | + L0](w) dsdyded
o JryJo JrN
For all ¢y € [0, T, 05(- — to) converges, as § — 0 and in the weak-* sense of the measures on [0, 7], to

the Dirac mass at to; as 3 — 0, we also have ©5 — 1jg ;,] everywhere and |©4| < 1. Since both v and u*

are continuous [0,7] — LL (RY) and

t= [ s = 0lun) = (s, sl — (- + L)) dsdyda
0 RN JRN
is integrable on [0, T] (see Remark 3.1), we can let § — 0 to find
/ U (to, ) — u(to, 2)|de < (2LT|[whylloo + Doy (1, v) + w0 M (,v)
B(M~—LT)
+5Ts,,u,u,M(t0) (313)
where

Tepsslt) == [ [ 7] 05— 0l 0) ~uts )l gl e+ L)) dsdydrde (3.14)

satisfies

o)) < Aol | // ot (3, )) (@) dydtd

10



with hy, v (y,t, ) = pu(y — 2)wr(|z] + Lt) € C2 (RN x [0,7] x RY). This concludes the proof of the
proposition for ¢ty < T', and the estimate for ¢ty = T is obtained by letting tc — 7" in (3.3). ®

The result in Theorem 1.1 is then an easy consequence of the following lemma.

Lemma 3.1 Let u € C([0,00[; LL (RY)) and T > 0. If B is a bounded subset of RN, we define wf (u,v)

and wP (i, v) fromu by (3.1) and (3.2), with ug = u(0,-). Then, as (u,v) — (0,0), w8 (u,v) and WP (u,v)
go to 0.

Proof of Theorem 1.1

Let T'> 0 and M > LT, with L a Lipschitz constant of f on [—||uo||sc, ||t0]|ec]. Let C1 and h, pr be
given by Proposition 3.1.

Take a > 0. Since u is the entropy solution to (1.3), it is in C([0, 0o[; Li, .(R™Y)). Hence, applying Lemma
3.1, we fix p €]0, 1] and v €]0, 1] small enough so that

Cro? M () + w3 M (1) < o

By Remark 3.1, we can choose gy > 0 (depending on v and M) such that

T
20 [ |0 / / / (9lha (v, )](2)| dydidz < a.
RN JO RN

Proposition 3.1 then shows that, for all ¢ < gg,

sup / |uf(t, z) — u(t, z)| dz < 2a.
t€[0,7] /B(M~LT)

This reasoning can be made for all 7 > 0 and all M > LT, which proves that u* — w in C([0, T; LL,.(RY))
forall 7>0. m

Proof of Lemma 3.1
The convergence of wf(u,v) is quite easy. Indeed, since ug = u(0,-) € L (RY) and B is bounded, we
know that

/ luop(x) —up(z + 2)|de — 0 as z— 0.
B

By continuity of u : [0, 00[— L

L J(RYN) and since B is bounded, we also have |Ju(s, -) — uOHLl(E}) — 0 as
s — 0. Hence, this proves that wZ(u,v) — 0 as (u,v) — 0.

The convergence of w(u,v) is a bit more tricky. We split it in two parts:

0<t<T \ |z|<v

wB v su su uwlt,r) —ul(t,r + 2 X
1(:“7)§ p( p/B‘(t’) (t7+)|d>

0<t<T \O<r<p,|z|<v

+ sup < sup /|u(t,m+z)u(t+r,z+z)|dm)
B

< sup (sup / lu(t, x) — u(t,x + 2)] da:) (3.15)
0<t<T \|z|<v /B
+ sup < sup /~ lu(t,y) —u(t +r,y)| dy) . (3.16)
0<t<T \0<r<p JB
By hypothesis, u € C([0,T + 1]; L(B)); hence,  is uniformly continuous [0, T + 1] — L*(B) and
swp (s [t —uerrpldy) < s it~ u(e )l — 0 (347
0<t<T \0<r<upJB (t,s)€[0,T+1]2, 0<s—t<p
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as 1 — 0. Moreover, since u € C([0,T]; L*(B)), the set K = {u(t,-), 0 <t < T} is compact in L'(B);
therefore, by Kolmogorov’s compactness theorem, the translations are equicontinuous on C, that is to

say
sup (sup / [v(x) —v(z + 2)] da:) —0
veK \ |z|<v /B

as v — 0. This quantity bounds (3.15), which proves, together with (3.17), that w(u,v) — 0 as
(,v) - 0. 1

4 Proof of the error estimate

We prove here Theorem 1.2, beginning with a stronger version of Lemma 3.1 in the case of more regular
functions.

Lemma 4.1 Let u € Lip([0, oof; L*(RY)) such that sup,sq |u(t, )| pv@ey) < co. We define w]FN (1, v) and
B (1, v) from w by (3.1) and (3.2), with T = oo, ug = u(0,-) and B =RN. Then w®" (11,v) = O(u+v)
and W5 (1,v) = O(u+v).

Proof of Lemma 4.1
It is classical (see e.g. [7] or (5.7)) that, if v € BV(RY) then,

/]RN |v(x + h) —v(z)|dx < |h] \v|BV(RN). (4.1)

Thus

)

sup [ fuo(a) = wolir+ )] d = O(v)

|z|<v

and, since u : [0, 00[— L!(RY) is Lipschitz continuous, we deduce that w¥" (1, v) = O(u + v).

We split w]{w (11,v) as in the proof of Lemma 3.1 (with B = RY here). By the Lipschitz continuity of u,
(3.16) is a O(u); by (4.1) and the bound on |u(t, )| gy (®~), (3.15) is a O(v). This concludes the proof of
the lemma. B

Proof of Theorem 1.2

Since ug € L®(RN)N LY (RY) N BV (RY), it is classical that |u(t, )| gy @~ < |uo|pv(r~). The function f
being regular, the BV semi-norm of f(u(t,-)) is also bounded and, thanks to d;u + div(f(u)) = 0, we see
that wu is Lipschitz continuous [0, 0o[— L'(R"). Hence, Lemma 4.1 and (3.13) show that, for all T' > 0,
for all M > LT and all ¢y € [0,T7, if u €]0,1[ and v €]0, 1],

/ [u® (to, z) — u(to, z)| dx < Co(2LT |[wiy|loc + 2) (1 + v) + €T 0,0 (o), (4.2)
B(M—LT)

where we recall that T, , a(to) is defined by (3.14).

To bound Ty ,, ,, m (o), we use (5.1). We handle the case A €]1, 2], the other one being easier (and, anyway,
well-known). We define § = —N — (A —2). It is not hard to check, differentiating under the integral sign,
that

glhoa(y. t.))(@) = Exl - 17 % (Ashoa(y, 1)) (@) = Exdive (|- 7 * Vohon (9,1, ) (2)

(recall that b, a(y,t, 7) = p, (y—x)war(|z|+Lt) € C2 (RN x [0, T]xRY)). Let A be such that the support
of hy a(y,t,-) is contained in the ball of center 0 and radius A. From the definition of the convolution
product, we see that, for |z| > A, ||-|® %V h, ar(y, t,)(x)] < A(|z| — A)P; hence, |- |? * Vihy a1 (y, t, ) (z)
goes to 0, as |x| — oo, quicker than |z|~V*! (because 8 = —N — (A —2) < —N + 1). We know that
u®(t,-) is regular for all ¢ > 0 (see [6]), and that |[Vu®(t,-)||1 &~y < [uolpy(ryy (this can be easily seen

12



letting § — 0 in (2.1) — we have noticed that the construction of u® in subsection 2.1 is valid for initial
data in L>®(RM) N LY(RY) N BV(RY)). We can therefore use Stokes formula on a ball of radius R and
let R — oo to find

[ 1) = o)l o)) d

= B Va([uf(t,-) = uls,y))(@) - (| 17 * Vaohua(y,t,-)) (@) da

= —EA/ sgn(uf (t, ) — u(s,y))Vus (t,x) - (| - |° * Vaohyar(y, t, ) (@) da
RN
which implies
[ 1) = sl gl 8. (0) o

Therefore, by (3.14),

< |EA|/RN (Vs (t, )| (-7 * Vaho i (y, 8, ) (2)] d.

to
Tz v (to)| < |EA|/]R / /R IVas (t,2)| |(| |7 % Vil (y, 1, ) ()] dydtda. (4.3)
N 0 N

We choose wys such that (w},)ar>1 is bounded by Cy. Let § €]0,1[ and Bs be the ball of center 0 and
radius J; cutting as in the proof of Lemma 5.1 and using Stokes formula, we have

(- 17 5 Vahuar (.1, ) (@) / 1210V e hnt (gt — =) dz — / 285 (hyar (.t — 2)) d=
Bs B¢

= / |2|PV by i (y, t, . — 2) dz — 56/ hom(y,t,x — z)n(z) dos(z)
Bs aBg

z
E

(05 is the (N — 1)-dimensional measure on 9B§ and n is the unit normal to dB§ outward to B§). Since

hum(y, 8 2) | = |pu(y — 2)wn (] + L) < pu(y — @)

+ﬂ/ by (y, t,x — 2)]2)P~1 = dz (4.4)
Bg

and
x
ot = [Vt el + 1)+ oy el 1)
< |Vpu(y — z)| + Crpu(y — ),

(4.4) shows that

(|17 % Vahya(y,t, ) ()] < / 121 (IVpu(y — 2 + 2)| + Crpu (y — x + 2)) dz

Bs

15 / pu(y — @+ 2)dos(2) + 3] / poly — o + )| d.
aBS B¢

By Fubini-Tonelli’s theorem and (4.3), we obtain

|z a0, (o)
to
SN ] (/ 21 (IVpu(y — o+ 2)| + Cupuly — 2 + 2)) dz
RN JO RN Bs
+(56/ pv(y —x+ 2)dos(z) + |ﬁ|/ pu(y —x+ 2)|2|° 7t dz> dydtdx
OB BS
< B (IVoullni@yy + Co) 11+ Pl sl VUS| L go.toxryy + | EAI6705(OBS) VUl 11 0,0 [xRN)

+Ex1B]]]- |B_1\|L1(Bg)||VUE||L1(]o,t0[xRN)~
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By change of variable, ||| - [?||z1(5,) = C26™+P, || \ﬁ’lﬂLl(Bg) = C36NHP~1 and 05(0BS) = C40NV 1,
where Ca, C3 and C4 do not depend on § (recall that 3 —1 < —N < 3). Since ||[Vu®(t,)||1@y) <
|uo| gy (m~y, we deduce that

|T57u7u,M(t0)| S C5T(||V/)V||L1(]RN) + 1)(5N+’8 + C5T(5N+B_1 (45)
where C5 does not depend on tg, €, u, v, M or §.

N 1

Choosing smoothing kernels (p, ), >0 of the kind p, (z) = v=Np(v=1z), we have ||Vp,|[p1(zrv) = Cov ™.
Since (w);)am>1 is bounded by C1, (4.2) and (4.5) give, for all T > 0, for all M > LT and all ¢, € [0, 7],

C5CGT(52_>‘

v

/ |uf(to, x) — u(to, z)| de < Co(2LTCy +2)(p+v) + ¢ ( + CsT6* ™ + C5T51_)‘>
B(M—LT)

(we have N+ 3 =2—X). We let M — oo and p — 0; since v < 1, this gives

527)\
00, = utto, sy = O (w42 (= +817) ).

Minimizing on 0 and then on v, we see that the best choices are (up to multiplicative constants) § = v
and v = ¢!/, which proves Theorem 1.2. m

5 Appendix

5.1 An expression and an estimate of g[y]

Lemma 5.1 Let A €]1,2]. There exist Eyx € R and Cy > 0 such that, for all p € S(RY),

{ gle] = Ex|- TV %Ay for A €]1,2]
g

[¢] = ExAp for X =2 &

and

glelll L gyy < Cx (IIVellLr @y + Q@] L1 @ny) -

Proof of Lemma 5.1
If A = 2, the result is obvious since, up to a multiplicative constant, g[y] is Ap. We thus assume that
A €]1,2[ and we have

glel = F (|- PF(p) = @im) 2F (| - P2 F (D)

(note that |- |*72 € LL_(RY), as A — 2 > —N, and that F(Ap) € S(RY), so that |- P72F(Ap)
is integrable on RY). Since A\ — 2 €] — N,0[, it is classical that F~1(] - [*=2) = Cy| - |7N-(=2) in
S'(RY), for some C; € R. We can then check, using the definition (by duality) of F~! on S'(RY), that
FY |- P2F(Ap)) = Cy| - |N=(A=2) « Ay, which proves (5.1).

Let 3 = —N —(A—2) €]—N,0[. We now estimate ||| |#* Ag|| 1 g~), which will conclude the proof (note
that this estimate is not a straightforward consequence of Young’s inequalities for convolution, since |- |5
is not integrable on RY). We have, if 15 is the characteristic function of the ball B of center 0 and radius

1 and 1pe is the characteristic function of B¢ = RV\B,
P Ap = (1p]-17) 5 A+ (Lpe - ) 5 Ag. (5.2)
But 15| |# € LY(RY) (because 3 > —N), and thus

(L8] 17) * Apllpi@y) < [[16] - 17l @v) [1A@] L1 eo). (5:3)
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By Stokes formula, we write

(1pe| - 1%) * Ap(x)

/B P Ap(z —y) dy

— [ Vela— iy ndot)+5 [ Tete—)- (10 L)

where n is the outward unit normal to B¢ and o is the measure on 0B¢. We deduce that

[(1p.

Prese@l < [ Vet =pldo)+ 18] [ Vet -] bl dy

and, integrating this thanks to Fubini-Tonelli’s theorem,

[ [ vet—alastoty+18) [ [ 9ot ldrl dy
(stomy+151 [ Wl a) [ (9t -

[ 1@el 1) dp(o)] da
RN

IN

Since f—1=-N—-(A=2)—1=-N—-X+1< =N, [, |y’ *dyis finite. Gathering (5.3) and (5.4)
in (5.2), we deduce that ||| -|% * Apl[pr@ryy < C(|A|| 1wy + [Vl @yy) for some C not depending
on ¢, and the proof is complete. B

5.2 Technical lemmas on the kernel of g

The results in the following two lemmas have already been used in [6], but their proofs were left to the
reader. We include them here for sake of completeness.

Lemma 5.2 Let r > 0, wg € L'(RY) and, for t > 0, w(t,") = K.(t,-) xwy. Then, for all p €
C([0, c0[xRYN) and all ty > 0,

/0/ w(t, 2)Opp(t, x) — rw(t, x)gle(t, )] (x) dtda::/ w(to, z)p(to, x) dm—/ wo(z)p(0, x) d.
0 RN RN

RN

Proof of Lemma 5.2
We ignore, as in the proof of Proposition 2.1, the space variable. Since K,.(t) and wq are integrable, w(t)
is integrable and we have

FHw(t)) = FHE () F(wo) = eI F~ (w) (5.5)

(note that, since K,.(t) is even, F~1(K,(t)) = F(K,(t))). By Fubini’s theorem, for all (a,b) € L' (R"Y),

/RN aF L (b) = /RN F~(a)b. (5.6)

Thus, writing gle(t)] = F1(| - [’ F(p(t))) and dpp(t) = FL(F(0:p(t))), we have, thanks to (5.5) and
(5.6), for all t > 0,

|, w0260 = ro(oiete)
= [T E ) O @upl0)(€) = rlePe I ) O F (1) €) e

[0 (P Fp0)(©) 7 o) ) .
.
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(t, &) — e_”‘f‘k}'_l(wo)(f) is bounded on ]0,#o[xRY and, by regularity of ¢, (t,&) — [¢|*F(0(t))(€)
and (t,€) — F(0yp(t))(€) are integrable on ]0,to[xRY (see e.g. (2.10)); hence, integrating the preceding
equality on ]0, to[ and using Fubini’s theorem, we find

| [ w@ae® - ru@glede = [ (eI Fptta))(e) - Fe0))(©)) F wo)(€) de.
0 RN RN

Using once again (5.5) and (5.6), we get

F~H (w(to))F(e(to)) — F~ (wo) F((0))

RN

= / w(to)p(to) — wop(0)
]RN

/ ° / w(t)dup(t) — rw(t)glp(t)] di
0 RN

which concludes the proof. B

Lemma 5.3 Let r > 0 and wy € WHH(RN) N CHRY). We define, for t > 0, w(t,-) = K.(t,-) * wp.
Then, for allv >0 and all t > 0,

[Jw(t, ) — wol|prmry < 2[|wollpr my) /I K. (t,y) dy + v||Vwol| 1 ().
ylzv
Proof of Lemma 5.3

The proof relies on classical cuttings of integration domain when approximate units are involved. Since
K, (t,-) is non-negative with integral equal to 1, we can write

w(t, z) —wo(z)| =

/ K. (t,y)(wo(r —y) — wo(z)) dy‘ < / K. (t,y)lwo(x —y) — wo(x)| dy.
RN RN
Now,

l[w(t, ) — wol|L1 @)

< K, (t,y) / oo — ) — wo(@)| dzdy + | K, (t,y) / o — ) — wo(2)] dedy
ly|>v RN ly|<v RN
< Aunllpe [ Koltpdy+ s [ Juo(o+2) - wole)] da.
ly|>v |z|<v JRN

We then write, using Fubini-Tonelli’s theorem and a change of variable,

1
/RN |w0(m+z)—w0(m)|dx§/RN/0 |Vwo(a:+§z)||z\dg“dx§|z|/RN Vwoly)ldy,  (5.7)

and the proof is complete. B
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