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In this paper we prove the absolute continuity of the representing measures of the Dunkl intertwining operator and of its dual. Next we present some applications of this result.

Introduction

We consider the differential-difference operators on R d introduced by C.F.Dunkl in [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF] and called Dunkl operators in the literature . These operators are very important in pure Mathematics and in Physics.They provide a useful tool in the study of special functions with root systems (see [START_REF] Van Diejen | Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero system with harmonic confinement[END_REF] [START_REF] Heckman | An elementary approach to the hypergeometric shift operators of Opdam[END_REF]), and they are closely related to certain representations of degenerate affine Hecke algebras [START_REF] Cherednik | A unification of the Knizhnik-Zamolodchikov equations and Dunkl operators via affine Hecke algebras[END_REF] [START_REF] Opdam | Harmonic analysis for certain representations of graded Hecke algebras[END_REF], moreover the commutative algebra generated by these operators has been used in the study of certain exactly solvable models of quantum mechanics, namely the Calogero-Sutherland-Moser models, which deal with systems of identical particles in a one dimensional spaces (see [START_REF] Hikami | Dunkl operators formalism for quantum many-body problems associated with classical root systems[END_REF] [13] [START_REF] Lapointe | Exact operator solution of the Calogero-Sutherland model[END_REF]). C.F.Dunkl has proved in [START_REF] Dunkl | Hankel transforms associated to finite reflection groups Contemp[END_REF] that there exists a unique isomorphism V k from the space of homogeneous polynomial P n on R d of degree n onto itself satisfying the transmutation relations

T j V k = V k ∂ ∂x j , j = 1, ..., d, (1) 
V k (1) = 1.

(

) 2 
This operator is called Dunkl intertwining operator. Next K.Trimèche has extended this operator to an isomorphism from E(R d ) (the space of C ∞functions on R d ) onto itself satisfying the relations (1) and (2) (see [START_REF] Èche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual[END_REF]).

The operator V k possesses the integral representation

V k (f )(x) = R d f (y)dµ x (y), f ∈ E(R d ), (3) 
where µ x is a probability measure on R d with support in the closed ball B(o, ||x||) of center o and radius ||x||. (See [17][23]).

We have studied in [START_REF] Èche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual[END_REF] the transposed operator t V k of the operator V k . It has the integral representation

t V k (f )(y) = R d f (x)dν y (x), (4) 
where ν y is a positive measure on R d with support in the set {x ∈ R d /||x|| ≥ ||y||} and f in D(R d ) (the space of C ∞ -functions on R d with compact support). This operator is called the dual Dunkl intertwining operator. We have proved in [START_REF] Èche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual[END_REF] that the operator t V k is an isomorphism from D(R d ) onto itself, satisfying the transmutation relations

∀ y ∈ R d , t V k (T j f )(y) = ∂ ∂y j t V k (f )(y), j = 1, ..., d, (5) 
In this paper we prove that the measure µ x given by (3), is absolutely continuous with respect to the Lebesgue measure on R d . More precisely for all continuous function g on R d , we have

∀ x ∈ R d , ω k (x)V k (g)(x) = R d K o (x, y)g(y)dy, (6) 
and

∀ x ∈ R d reg , V k (g)(x) = R d K(x, y)g(y)dy, (7) 
where K o (x, .) is a positive integrable function on R d with respect to the Lebesgue measure and with support in {y ∈ R d / y ≤ x }, and K(x, y) the function given by

∀ x ∈ R d reg , ∀ y ∈ R d , K(x, y) = ω -1 k (x)K o (x, y). (8) 
Next we establish that for all y ∈ R d the measure ν y given by ( 4), is absolutely continuous with respect to the measure ω k (x)dx on R d , with ω k a positive weight function on R d which will be given in the following section. More precisely for all continuous function f on R d with compact support, we have

∀ y ∈ R d , t V k (f )(y) = R d K(x, y)f (x)ω k (x)dx, (9) 
where K(., y) is the function given by the relation [START_REF] Heckman | An elementary approach to the hypergeometric shift operators of Opdam[END_REF].

It is locally integrable on R d with support in {x ∈ R d / x ≥ y }.
We present some applications of the relations ( 6), [START_REF] Gallardo | TRIM ÈCHE Un analogue d'un théorème de Hardy pour la transformation de Dunkl[END_REF], in particular we prove that the Dunkl kernel K(-ix, z) satisfies

∀ x ∈ R d , lim z →+∞ {ω k (x)K(-ix, z)} = 0, (10) 
and

∀ x ∈ R d reg , lim z →+∞ K(-ix, z) = 0. ( 11 
)
Also we give a simple proof of the main result of [START_REF] Xu | Integration of intertwining operator for h-harmonic polynomials associated to reflection groups[END_REF].

Finally we remark that in personal communications sent to C.F.Dunkl, M.F.E.de Jeu and M.Rösler after the summer of Year 2000, we have conjectured that the measures µ x and ν y are absolutely continuous, and we have tried to solve this conjecture. Next M.F.E.de Jeu and M.Rösler have also conjectured in [START_REF] De Jeu | Asymptotic analysis for the Dunkl kernel[END_REF] that the measure µ x is absolutely continuous.

The eigenfunction of the Dunkl operators

In this section we collect some notations and results on Dunkl operators and the Dunkl kernel (see [START_REF] Dunkl | Integral kernels with reflection group invariance[END_REF], [START_REF] Dunkl | Hankel transforms associated to finite reflection groups Contemp[END_REF], [START_REF] Humphreys | Reflection groups and Coexter groups[END_REF], [START_REF]The Dunkl transform[END_REF]).

Reflection groups, root systems and multiplicity functions

We consider R d with the euclidean scalar product ., . and ||x|| = x, x . On C d , ||.|| denotes also the standard Hermitian norm, while z, w = d j=1 z j w j . For α ∈ R d \{0}, let σ α be the reflection in the hyperplan H α ⊂ R d orthogonal to α, i.e.

σ α (x) = x -2 α, x ||α|| 2 α. (1.1) A finite set R ⊂ R d \{0} is called a root system if R∩R d .α = {α, -α} and σ α R = R for all α ∈ R.
We assume that it is normalized by ||α|| 2 = 2 for all α ∈ R. For a given root system R the reflections σ α , α ∈ R, generate a finite group W ⊂ O(d), the reflection group associated with R. All reflections in W correspond to suitable pairs of roots. For a given

β ∈ R d reg = R d \ ∪ α∈R H α , we fix the positive subsystem R + = {α ∈ R / α, β > 0}, then for each α ∈ R either α ∈ R + or -α ∈ R + .
A function k : R -→ C on a root system R is called a multiplicity function if it is invariant under the action of the associated reflection group W. If one regards k as a function on the corresponding reflections, this means that k is constant on the conjugacy classes of reflections in W. For abbreviation, we introduce the index

γ = γ(R) = α∈R + k(α). (1.2)
Moreover, let ω k denotes the weight function

ω k (x) = α∈R + | α, x | 2k(α) , (1.3) 
which is W -invariant and homogeneous of degree 2γ.

For d = 1 and W = Z 2 , the multiplicity function k is a single parameter denoted γ > 0 and

∀ x ∈ R, ω k (x) = |x| 2γ . (1.4)
We introduce the Mehta-type constant

c k = ( R d exp(-||x|| 2 )ω k (x) dx) -1 , (1.5) 
which is known for all Coxeter groups W .(See [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF][8] [START_REF] Mehta | Random matrices and statistical theory of energy levels[END_REF]).

For an integrable function on R d with respect to the measure ω k (x) dx we have the relation

R d f (x)ω k (x) dx = +∞ 0 ( S d-1 f (rβ)ω k (β) dσ(β))r 2γ+d-1 dr, (1.6) 
where dσ is the normalized surface measure on the unit sphere

S d-1 of R d .
In particular if f is radial (i.e. SO(d)-invariant ), then there exists a function F on [0, +∞[, such that f (x) = F (||x||) = F (r), with ||x|| = r, and the relation (1.6) takes the form

R d f (x)ω k (x) dx = d k +∞ 0 F (r)r 2γ+d-1 dr, (1.7) 
where

d k = S d-1 ω k (β) dσ(β) = 2 c k Γ(γ + 2d)
.

(1.8)

Dunkl operators and Dunkl kernel

The Dunkl operators T j j = 1 , ..., d, on R d associated with the finite reflection group W and multiplicity function k are given for a function f of class C 1 on R d by

T j f (x) = ∂ ∂x j f (x) + α∈R + k(α)α j f (x) -f (σ α (x)) α, x .
(1.9)

In the case k = 0, the T j , j = 1, ..., d, reduce to the corresponding partial derivatives. In this paper, we will assume throughout that k ≥ 0 and γ ≥ 0. For f of class C 1 on R d with compact support and g of class C 1 on R d we have

R d T j f (x)g(x)ω k (x) dx = - R d T j g(x)f (x)ω k (x) dx.
(1.10)

For y ∈ R d , the system

   T j u(x, y) = y j u(x, y), j = 1, ..., d, u(0, y) = 1, (1.11) 
admits a unique analytic solution on R d , which will be denoted K(x, y) and called the Dunkl kernel. This kernel has a unique holomorphic extension to

C d × C d .
Examples.1.1 1) If d = 1 and W = Z 2 , the Dunkl kernel is given by

K(z, t) = j γ-1 2 (izt) + zt 2γ + 1 j γ+ 1 2 (izt), z, t ∈ C, (1.12) 
where for α ≥ -1 2 , j α is the normalized Bessel function defined by

j α (z) = 2 α Γ(α + 1) J α (z) z α = Γ(α + 1) ∞ n=0 (-1) n ( z 2 ) 2n n!Γ(α + n + 1) , (1.13) 
with J α is the Bessel function of first kind and index α. (See [START_REF] Dunkl | Hankel transforms associated to finite reflection groups Contemp[END_REF]).

2) The Dunkl kernel of index γ = d l=1 α l , α l > 0, associated with the

reflection group Z 2 × ... × Z 2 on R d is given for all x, y ∈ R d by K(x, y) = d l=1 K(x l , y l ), (1.14) 
where K(x l , y l ) is the function defined by (1.12).

The Dunkl kernel possesses the following properties. i) For z, t ∈ C d , we haveK(z, t) = K(t, z); K(z, 0) = 1 and K(λz, t) = K(z, λt), for λ ∈ C.

ii) For all x, y ∈ R d we have

|K(ix, y)| ≤ 1, (1.15) 
iii) The function K(x, z) admits for all x ∈ R d and z ∈ C d the following Laplace type integral representation

K(x, z) = R d
e <y,z> dµ x (y), (1.16) where µ x is the measure given by the relation (3) satisfying

• supp µ x ∩ {y ∈ R d /||y|| = ||x||} = Ø. (1.17) • For each r > 0, w ∈ W and each Borel set E ⊂ R d we have µ rx (E) = µ x (r -1 E), and µ wx (E) = µ x (w -1 E), (1.18) 
(See [START_REF] Ösler | Positivity of Dunkl's intertwining Operator[END_REF]).

Examples 1.2 1) When d = 1 and W = Z 2 , for all x ∈ R\{0} and z ∈ C the relation (1.16) is of the form K(x, z) = Γ(γ + 1 2 ) √ πΓ(γ) |x| -2γ |x| -|x| (|x| -y) γ (|x| + y) γ-1 e yz dy. (1.19) 
Then in this case for all x ∈ R\{0} the measure µ x is given by dµ x (y) = K(x, y)dy with

K(x, y) = Γ(γ + 1 2 ) √ πΓ(γ) |x| -2γ (|x| -y) γ (|x| + y) γ-1 1 ]-|x|,|x|[ (y), (1.20) 
where

1 ]-|x|,|x|[ is the characteristic function of the interval ] -|x|, |x|[. 2) The Dunkl kernel of index γ = d l=1 α l , α l > 0, associated with the reflection group Z 2 × ... × Z 2 on R d , possesses for all x ∈ R d reg = R d \ d l=1 H l , with H l = {x ∈ R d / x l = 0}, and z ∈ C d , the integral representation K(x, z) = R d K(x, y)e y,z dy, (1.21) 
where

K(x, y) = d l=1 K(x l , y l ), (1.22),
with K(x l , y l ) given by the relation (1.20).

The Dunkl intertwining operator and its dual

Notations. We denote by

C(R d )(resp. C c (R d )) the space of continuous functions on R d (resp. with compact support). The Dunkl intertwining operator V k is defined on C(R d ) by ∀ x ∈ R d , V k f (x) = R d f (y)dµ x (y), (2.1) 
where µ x is the measure given by the relation ( 3). (See [START_REF] Ösler | Positivity of Dunkl's intertwining Operator[END_REF][23]p.364-366).

It possesses many properties in particular we have i) For all g in C(R d ) the function V k (g) belongs to C(R d ). Moreover for all x ∈ R d in the closed ball B(o, a) of center o and radius a > 0, we have

|V k (g)(x)| ≤ sup y∈B(o,a) |g(y)|. (2.2) ii) We have V k (g)(o) = g(o). (2.3) iii) We have ∀x ∈ R d , ∀z ∈ C d , K(x, z) = V k (e .,z )(x). (2.4) The operator t V k satisfying for f in C c (R d ) and g in C(R d ) the relation R d t V k (f )(y)g(y)dy = R d V k (g)(x)f (x)ω k (x)dx, ( 2.5) 
is given by

∀ y ∈ R d , t V k (f )(y) = R d f (x)dν y (x), (2.6) 
where ν y is a positive measure on the σ-algebra of R d , satisfying

• supp ν y ⊂ {x ∈ R d /||x|| ≥ ||y||}.
• For each a > 0, w ∈ W and each Borel set E ⊂ R d we have

ν ay (E) = a 2γ ν y (a -1 E) and ν wy (E) = ν y (w -1 E).
(2.7)

The operator t V k is called the dual Dunkl intertwining operator. (See [START_REF] Èche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual[END_REF]p.358-364).

It admits many properties in particular we have

i) For all f in C c (R d ) we have R d t V k (f )(y)dy = R d f (x)ω k (x)dx. (2.8) ii) For all f in C c (R d ) the function t V k (f ) belongs to C c (R d ) and we have suppf ⊂ B(o, a) ⇐⇒ supp t V k (f ) ⊂ B(o, a), (2.9) 
where B(o, a) is the closed ball of center o and radius a > 0.

iii) For all f in C c (R d ) and r > 0, we have

∀ y ∈ R d , t V k (f )(ry) = r 2γ t V k (f r )(y), with f r (x) = f (rx). (2.10)
iν) For all a > 0, we have

∀ y ∈ R d , t V k (e -a x 2 )(y) = e -a y 2 a γ π d/2 c k . (2.11)
The result of the following proposition has been given in [START_REF] Èche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual[END_REF] p. 363, without proof. Proposition 2.1. For all y ∈ R d we have

suppν y ∩ {x ∈ R d / x = y } = ∅.
(2.12)

Proof -1 st case: y ∈ R d \{0} Suppose to the contrary that suppν y ∩ {x ∈ R d / x = y } = ∅ for some y. Then there exists a constant σ ∈]1, +∞[ such that suppν y ⊂ {x ∈ R d / x ≥ σ y }. Thus from (2.6) for all a > 0 we have t V k (e -a x 2 )(y) = ||x||≥σ||y|| e -a x 2 dν y (x). We put u = x σ then t V k (e -a x 2 )(y) = ||u||≥||y|| e -aσ 2 u 2 dν y (u). Then t V k (e -a x 2 )(y) = t V k (e -aσ 2 x 2 )(y).
By using the relation (2.11) we obtain

e -a y 2 a γ π d/2 c k = e -aσ 2 y 2 (aσ 2 ) γ π d/2 c k . thus e -a y 2 = e -aσ 2 y 2 σ 2γ .
If we tends a to zero we obtain

σ 2γ = 1.
As γ > 0. Then σ = 1. Contradiction.

-2 nd case: y = 0 Suppose to the contrary that 0 / ∈ suppν o . Then there exists r > 0 such that We have

suppν o is contained in B c (o,
ν o (C) ≤ ν o (B(o, R)).
By applying the relation (2.7) with a = R ε , to the second member of the inequality we obtain

ν o (C) ≤ ( R ε ) 2γ ν o (B(o, ε)).
Thus ν o = 0. Impossible. This completes the proof of the proposition.

Theorem 2.1. Let (ν y ) y∈R d be the family of measures defined in formula (2.6) and let f be an integrable function on R d with respect to the measure ω k (x)dx. Then for almost all y (with respect to the Lebesgue measure on R d ), f is ν y -intégrable, the function

y → ν y (f ) = R d f (x)dν y (x),
which will also be denoted by t V k (f ), is defined almost everywhere on R d and is Lebesgue integrable. Moreover for all bounded continuous functions g on R d , we have the formula

R d ν y (f )g(y)dy = R d f (x)V k (g)(x)ω k (x)dx. ( 2.13) 
(See [START_REF] Gallardo | TRIM ÈCHE Un analogue d'un théorème de Hardy pour la transformation de Dunkl[END_REF]).

Theorem 2.2. Let (µ x ) x∈R d be the family of measures defined in formula (2.1) and let g be a measurable and bounded function on R d . Then for almost all x (with respect to the Lebesgue measure on R d ) the function

x → µ x (g) = R d g(y)dµ x (y)
which also will be denoted by V k (g), is defined almost everywhere on R d , measurable and bounded. Moreover for all functions f in C c (R d ) we have the formula

R d µ x (g)f (x)ω k (x)dx = R d t V k (f )(y)g(y)dy. (2.14)

Proof

We will divide the proof in three steps. i) From the properties of the operator V k we deduce that the family of measures (µ x ) x∈R d is weak- * continuous. More precisely for all

g in C(R d ) the function x → µ x (g) = V k (g)(x) = R d g(y)dµ x (y), belongs to C(R d ). ii) Let f be in C c (R d ).
From the relation (2.13) we deduce that for all bounded function g in C(R d ) we have

R d µ x (g)f (x)ω k (x)dx = R d t V k (f )(y)g(y)dy.
(2.15)

iii) If g is a measurable and bounded function on R d . Then parts i), ii) and Bourbaki's integration of measures Theorem [1 , p.17] shows that the function x → µ x (g) exists for almost all x ∈ R d with respect to the Lebesgue measure, is measurable and bounded, and the relation (2.15) is valid for this function g.

The following theorem gives the expression of t V k (f ) when f is radial. (See [START_REF] Èche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual[END_REF]).

Theorem 2.3. For γ > 0 and for all f in D(R d ) radial, we have

∀y ∈ R d , t V k (f )(y) = Γ(γ + d 2 )d k π d 2 Γ(γ) +∞ ||y|| F (t)(t 2 -||y|| 2 ) γ-1 tdt, (2.16) 
where F is the function in D(R + ) given by

f (x) = F (||x||) = F (r), with r = ||x||.
Examples 2.1 1) When d = 1 and W = Z 2 , the Dunkl intertwining operator V k is defined by (2.1) with for x ∈ R\{0} we have dµ x (y) = K(x, y)dy, where K given by the relation (1.20).

The dual Dunkl intertwining operator t V k is defined by (2.6) with for all y ∈ R we have dν y (x) = K(x, y)ω k (x)dx, where K and ω k given respectively by the relations (1.20) and (1.4).

2) The Dunkl intertwining operator

V k of index γ = d l=1 α l , α l > 0, associated with the reflection group Z 2 × ... × Z 2 on R d , is given for all f in C(R d ) and x ∈ R d reg = R d \ d l=1 H l , with H l = {x ∈ R d /x l = 0}, by V k (f )(x) = R d K(x, y)f (y)dy (2.17)
where K(x, y) is given by the relation (1.22). By change of variables we obtain

∀ x ∈ R d , V k (f )(x) = [ d l=1 Γ(α l + 1 2 ) √ πΓ(α l ) ] [-1,1] d f (t 1 x 1 , t 2 x 2 , ..., t d x d ) × d l=1 (1 -t l ) α l (1 + t l ) α l -1 dt 1 ...dt d . (2.18) 
(See [START_REF] Xu | Integration of intertwining operator for h-harmonic polynomials associated to reflection groups[END_REF] p.2964). The dual Dunkl intertwining operator is given for all f in C c (R d ) by

∀ y ∈ R d , t V k (f )(y) = R d K(x, y)f (x)ω k (x)dx, (2.19) 
where K(x, y) is defined by the relation (1.22) and

ω k (x) = d j=1 |x j | 2α j (2.20)
3 Absolute continuity of the representing measures of the Dunkl intertwining operator and of its dual

The example 2.1 shows that when d = 1 and W = Z 2 the representing measures of the Dunkl intertwining operator and of its dual are absolutely continuous.

In this section we suppose that d ≥ 2.

We give now the following remark which concerns the multiplicity function k.

Remark 3.1. Let V ′ ⊂ R d be the R-linear space of the subsystem R ′ = {α ∈ R; k(α) = 0} (with V ′ = {0} if R ′ = 0} and V ′′ = (V ′ ) ⊥ = {0}. We have R d = V ′ ⊕ V ′′ .
Thus all x ∈ R d can be written in the form x = x ′ + x ′′ with x ′ ∈ V ′ and x ′′ ∈ V ′′ (see [START_REF] De Jeu | Asymptotic analysis for the Dunkl kernel[END_REF]). From the relations (1,9), [START_REF] Bourbaki | Éléments de Mathématique[END_REF][START_REF]The Dunkl transform[END_REF], [START_REF] Bourbaki | Éléments de Mathématique[END_REF][START_REF] Opdam | Harmonic analysis for certain representations of graded Hecke algebras[END_REF] we have

∀ x, λ ∈ R d , K(x, λ) = e x ′′ ,λ ′′ K(x ′ , λ ′ ).
Using this relation and (2.13) we deduce that the measures µ x and ν y with x, y ∈ R d , of the integral representations of the Dunkl intertwining operator V k and its dual t V k are of the form

µ x = δ x ′′ ⊗ µ x ′ , (3.1) 
ν y = δ y ′′ ⊗ ν y ′ , (3.2) 
where δ z ′′ is the Dirac measure at the point z ′′ ∈ V ′′ . Thus for x, y ∈ R d \V ′ , the measures µ x and ν y are not absolute continuous.

In this section we shall suppose that the multiplicity function k satisfies

∀ α ∈ R, k(α) > 0. (3.3)
3.1 Absolute continuity of the measure µ x M.F.E. de Jeu and M. Rösler have proved in [START_REF] De Jeu | Asymptotic analysis for the Dunkl kernel[END_REF] that for all x ∈ R d reg the measure µ x of the integral representation (2.1) of the Dunkl intertwining operator V k is continuous The purpose of this subsection is to prove that for all x ∈ R d reg the measure µ x is absolute continuous with respect to the Lebesgue measure on R d , and to present some applications of this result. By applying [START_REF] Schwartz | Analyse III, calcul intégrale[END_REF] p. 341 and Theorem 8.6 of [START_REF] Rudin | Real and complex analysis[END_REF] p.166 to the measure ν y , y ∈ R d , we deduce that there exist a positive function K o (., y) locally integrable on R d with respect to the Lebesgue measure, and a positive measure ν s y on R d such that for every Borel set E we have

ν y (E) = E K o (x, y)dx + ν s y (E). (3.4) with K o (x, y) = lim r→0 ν y (B(x, r)) m(B(x, r)) . (3.5) 
The measure ν s y and the Lebesgue measure m are mutually singular.

Remark 3.2

When the multiplicity function satisfies

∀ α ∈ R, k(α) = 0, (3.6) 
which is equivalent to say that the subset V ′ of the Remark 3.1 is empty, then from (3.2), (3.5) we deduce that

K 0 (x, y) = 0 if x = y, +∞ if x = y. (3.7) Thus E K 0 (x, y)dx = 0. (3.8)
For x o , y ∈ R d and n ∈ N * , we consider the following sequence given by

∆ n (x o , y) = sup 0< 1 p < 1 n { ν y (B(x o , 1 p )) m(B(x o , 1 p )) }.
(3.9)

These functions and their properties have been given only in the French translation [START_REF] Rudin | Analyse réelle et complexe[END_REF] of Rudin's book [START_REF] Rudin | Real and complex analysis[END_REF].

Lemma 3.1. i) The sequence {∆ n (x o , y)} n∈N * is decreasing. ii) For x o ∈ R d and n ∈ N * , the function ∆ n (x o , .) is measurable positive. iii) For x o , y ∈ R d we have K o (x o , y) = lim n→∞ ∆ n (x o , y).

Proof

We deduce i),ii) and iii) from the definition of the function ∆ n (x o , y), (3.5), and the relation (3) of [START_REF] Rudin | Analyse réelle et complexe[END_REF] p.147. Lemma 3.2. For x 0 ∈ R d , r > 0 and for all bounded continuous function g on R d we have

B(x 0 ,r) V k (g)(x)ω k (x)dx = R d g(y)ν y (B(x 0 , r))dy.
(3.10)

Proof

We deduce (3.10) from the relation (2.13). Proposition 3.1. Let g be a bounded continuous function on R d . Then for x 0 ∈ R d the function K o (x 0 , .) is integrable on R d with respect to the Lebesgue measure and we have

V k (g)(x 0 )ω k (x 0 ) = R d
K o (x 0 , y)g(y)dy.

(3.11)

Proof

-By writing g = g + -g -, we can suppose in the following that g is positive.

From the relation (3.4), for x 0 ∈ R d and r > 0, we have

1 m(B(x 0 , r)) B(x 0 ,r) V k (g)(x)ω k (x)dx = R d g(y) ν y (B(x 0 , r)) m(B(x 0 , r))
dy.

(3.12)

By using (3.9) and by applying the relation ( 2) of [START_REF] Rudin | Real and complex analysis[END_REF] p.168 to the first member, and Fatou Lemma to the second, we obtain when r tends to zero.

R d K o (x 0 , y)g(y)dy ≤ V k (g)(x 0 )ω k (x 0 ). (3.13)
We replace in this inequality the function g by the constant function equal to 1, and next we use the fact that

∀ x ∈ R d , V k (1)(x) = 1,
we deduce that

R d K o (x 0 , y)dy ≤ ω k (x 0 ) < +∞. (3.14)
Then the function K o (x 0 , .) is integrable on R d with respect to the Lebesgue measure.

-On the other hand from the relation (3.10) for x 0 ∈ R d and n, p ∈ N * with n < p, we have 

1 m(B(x 0 , 1 p )) B(x 0 , 1 p ) V k (g)(x)ω k (x)dx ≤ R d g(y)∆ n (x 0 , y)dy. ( 3 
∀ x ∈ R d , w k (x) = 1,
and

V k = Id.
A proof analogue to that of Proposition 3.1 and by using the relation (3.8), we obtain for x 0 ∈ R d and g a positive bounded continuous function on R d , the following inequalities which are the analogue of (3.13) and (3.16) :

0 = R d K 0 (x 0 , y)g(y)dy ≤ V k (g)(x 0 )w k (x 0 ), 0 = K d K 0 (x 0 , y)g(y)dy ≥ V k (g)(x 0 )w k (x 0 ).
But the second member of the second inequality is positive. Hence we obtain a contradiction.

This proof shows that the relation (3.11) is not true in this case.

ii) When the subset V ′ of the Remark 3.1 is such that V ′ = ∅, then by using (3.2) and the result of the preceding i) we deduce that the relation (3.11) is also not true in this case.

This remark implies that the relation (3.11) is true only under the assumption (

i) For all x 0 ∈ α∈R + H α , we have for almost all y ∈ R d :

K o (x 0 , y) = 0.
ii) For x 0 ∈ R d , we have

ω k (x 0 )dµ x 0 (y) = K o (x 0 , y)dy, y ∈ R d , (3.17) 
where µ x 0 is the measure given by the relation (2.1).

Proof

We deduce the results of this proposition from the relation (3.11), the fact that

ω k (x) = 0 ⇐⇒ x ∈ α∈R + H α
and the properties of the measure µ x 0 .

Notation. For all x ∈ R d reg and y ∈ R d , we put

K(x, y) = ω -1 k (x)K o (x, y). (3.18) 
Corollary 3.1. The function K(., y), y ∈ R d , given by the relation (3.18) satisfies

∀ x ∈ R d reg , suppK(x, y) ⊂ B(0, ||x||), (3.19) 
where B(0, ||x||) is the closed ball of center 0 and radius ||x||.

Theorem 3.1. The representing measure µ x of the Dunkl intertwining operator V k satisfies i) For x ∈ R d reg we have

dµ x (y) = K(x, y)dy, (3.20) 
where K(x, y) is the function given by (3.18).

ii) For all h in C(R d ) we have

∀ x ∈ R d , ω k (x)V k (h)(x) = R d K o (x, y)h(y)dy, (3.21) 
and

∀ x ∈ R d reg , V k (h)(x) = R d K(x, y)h(y)dy. (3.22) 
Proof i) The relations (3.17 From this theorem and the relation (2.1) we deduce that for all x ∈ R d reg the measure µ x is absolutely continuous with respect to the Lebesgue measure.

Examples 3.1 On R d with W = Z 2 × • • • × Z 2 the function K(x, y) of (3.20
) is given by (1.22) and in this case the relation (3.22) 

is true for all x ∈ R d reg = R d \∪ d ℓ=1 H ℓ with H ℓ = {x ∈ R d /x ℓ = 0}. Corollary 3.2. i) For all x ∈ R d and z ∈ C d we have ω k (x)K(x, -iz) = R d K o (x, y)e -i y,z dy. (3.23) 
ii) For all x ∈ R d reg and z ∈ C d we have

K(x, -iz) = R d K(x, y)e -i y,z dy. (3.24) 

Proof

We deduce the relations (3.23),(3.24) from the relation (3) and Theorem 3.1, ii).

In the following proposition we give some other properties of the function K(x, y).

Proposition 3.3 i) For all x ∈ R d reg we have R d K(x, y)dy = 1. (3.25) 
ii) For all r > 0, w ∈ W and for all x ∈ R d reg we have

K(wx, y) = K(x, wy), a.e.y ∈ R d , (3.26) 
K(rx, y) = r -d K(x, y r ), a.e.y ∈ R d . (3.27) 

Proof

We deduce these relations from Theorem 3.1 ii) and the relations (3.21), (1.18).

Corollary 3.3. The generalized Bessel function J W defined for x ∈ R d and z ∈ C d by (see [START_REF] Èche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual[END_REF] p.355-356)

J W (-ix, z) = 1 |W | w∈W K(-ix, wz), (3.28) 
admits the following integral representations

∀x ∈ R d , ω k (x)J W (-ix, z) = R d E W (-iz, y)K o W (x, y)dy, (3.29) 
and 

∀x ∈ R d reg , ω k (x)J W (-ix, z) = R d E W (-iz, y)K W (x,

Proof

We obtain i),ii) and iii) from the definition of Λ n (x, y 0 ), (3.34) and the relation (3) of [START_REF] Rudin | Analyse réelle et complexe[END_REF] p.147. Lemma 3.5. For y 0 ∈ R d , r > 0, and for all f in C c (R d ) we have

B(y 0 ,r) t V k (f )(y)dy = R d µ x (B(y 0 , r))f (x)ω k (x)dx.
(3.36)

Proof

We deduce (3.36) from the relation (2.14).

Proposition 3.4. For all f in C c (R d ) and y 0 ∈ R d we have By applying the relation (2) of [START_REF] Rudin | Real and complex analysis[END_REF] p.168, to the first member of (3.38), and Fatou Lemma to the second member of the same relation, we obtain when r tends to zero. 

t V k (f )(y 0 ) = R d K o (x, y 0 )f (x)dx. ( 3 
R d K o (x, y 0 )f (x)dx ≤ t V k (f )(y 0 ) < +∞. ( 3 
f in C c (R d ) we have ∀ y ∈ R d , t V k (f )(y) = R d K(x, y)f (x)ω k (x)dx. (3.42)

Proof

We deduce the results from Proposition 3.4 and the relation (3.18).

Remark 3.5 Theorem 3.2 shows that for all y ∈ R d the measure ν y is absolutely continuous with respect to the measure ω k (x)dx. More precisely for all y ∈ R d we have dν y (x) = K(x, y)ω k (x)dx.

Proposition 3.5. For y ∈ R d and almost t > 0, we have 

1 d k S d-1 K(tβ, y)ω k (β)dσ(β) = Γ(γ + d 2 )d k π d 2 Γ(γ) t 2-2γ-d (t 2 -||y|| 2 ) γ-1 1 ]||y||,+∞[ (t), (3.43 

Proof.

Let f be a radial function in D(R d ). From (3.42) we have

∀ y ∈ R d , t V k (f )(y) = R d K(x, y)F (||x||)ω k (x)dx,
where F is the function in D(R + ) given by

∀ x ∈ R d , f (x) = F (||x||).
Using (1.6) and the fact that the support of K(x, y) is contained in the set {x ∈ R d /||x|| ≥ ||y||}, we obtain

∀ y ∈ R d , t V k (f )(y) = +∞ ||y|| ( S d-1 K(tβ, y)ω k (β)dσ(β))F (t)t 2γ+d-1 dt.
By applying Theorem 2.3 we deduce that for almost all t > 0:

t 2γ+d-1 S d-1 K(tβ, y)ω k (β)dσ(β)) = Γ(γ + d 2 )d k π d 2 Γ(γ) t 2-2γ-d (t 2 -||y|| 2 ) γ-1 1 ]||y||,+∞[ (t).
We obtain (3.43) 

Z 2 × Z 2 × ... × Z 2 can also be written for all f in C c (R d ) in the form ∀ y ∈ R d , t V k (f )(y) = d j=1 Γ(α j + 1 2 ) √ πΓ(α j ) |x 1 |>|y 1 | ... |x d |>|y d | f (x 1 , ..., x d ) × d j=1 (|x j | -y j ) α j (|x j | + y j ) α j -1 dx 1 ...dx d .

Applications

In this section we suppose that the multiplicity function k satisfies the assumption (3.3).

First application

Theorem 4.1. We have

∀ x ∈ R d , lim z →+∞ {ω k (x)K(-ix, z)} = 0. (4.1) and ∀ x ∈ R d reg , lim z →+∞ K(-ix, z) = 0. (4.2)
Proof -From Corollary 3.2 i), for all x ∈ R d , and z ∈ R d we have 

ω k (x)K(-ix, z) = R d K o (x, y)e -i
+ , C = {x ∈ R d / α, x > 0, for all α ∈ R + },
and for δ > 0,

C δ = {x ∈ C/ α, x > δ x , for all α ∈ R + }.
M.F.E de Jeu and M. Rösler have proved in [START_REF] De Jeu | Asymptotic analysis for the Dunkl kernel[END_REF] the following behaviour for the Dunkl kernel K(x, -iz), uniform for the variable tending to infinity in cones C δ : There exists a constant non-zero vector v = {v w } w∈W such that for all x ∈ C, w ∈ W and each δ > 0, V k (h)(tξ)ω k (ξ)dσ(ξ) = ct 2-2γ-d B(0,t) h(y)(t 2y 2 ) γ-1 dy.

Second application

Using the properties of the operator V k we deduce that the first member of this relation is continuous on ]0, +∞[. The second member possesses also the same property. Then this relation is true for all t ∈]0, +∞[. 

∀ x > 0, V k (h)(x) + V k (h)(-x) 2 = Γ(γ + 1 2 ) π 1 2 Γ(γ)
x 1-2γ x -x h(y)(x 2y 2 ) γ-1 dy.

ii) By using the ω k -harmonic polynomials Y.Xu has proved in [START_REF] Xu | Integration of intertwining operator for h-harmonic polynomials associated to reflection groups[END_REF] the relation (4.6) for t = 1 and h a ω k -harmonic polynomial.

Third application

The generalized (or Dunkl) translation operators τ x , x ∈ R d , are defined on E(R d ) by

∀ y ∈ R d , τ x f (y) = (V k ) x (V k ) y [(V k ) -1 (f )(x + y)].
(See [START_REF] Èche | Paley-Wiener theorems for Dunkl transform and Dunkl translation operators[END_REF] p.33-35).

They satisfies many properties, in particular we have τ x f (o) = f (x), τ x f (y) = τ y f (x), τ x (1)(y) = 1. (4.7)

At the moment an explicit formula for the generalized (or Dunkl) translation operators is known only in the following cases( see [18] [22]). 1 st cas : d = 1 and W = Z 2 .

For all f in C(R) and y ∈ R we have (1 + t)(1t 2 ) k-1 .

τ x f (y) = 1
If we consider f even and we make the change of variables u = yt, we obtain for all y ∈ R\{o}: 

τ x f (y) = Γ(k + 1 2 ) √ πΓ(k) |y| -2k

  r) the complementary of the open ball B(o, r) of center o and radius r. Let C be a compact contained in B c (o, r) . There exists R > 0 such that C ⊂ B(o, R).

Notations.

  We denote by -m the Lebesgue measure on R d . -B(ξ, r) the open ball of center ξ and radius r > 0.

. 15 )

 15 By using the relation(3.13) and Lemma 3.1, we deduce that the sequence {g(y)∆ n (x o , y)} n∈N * satisfies the hypothesis of the other version of the monotonic convergence theorem (see Theorem 5.7.27 of[START_REF] Schwartz | Analyse III, calcul intégrale[END_REF] p.234-235). By applying this theorem to the second member of (3.15), and the relation (2) of[START_REF] Rudin | Real and complex analysis[END_REF] p.168, to the first member of the same relation, we obtain when n tends to infinityR d K o (x 0 , y)g(y)dy ≥ V k (g)(x 0 )ω k (x 0 ). (3.16) We deduce (3.11) from the relations (3.13) and (3.16). Remark 3.3 i) If we suppose that the multiplicity function k satisfies (3.6), then from (1.3), (2.1) and (3.1) we have

  ) (3.18) give the result. ii) we obtain (3.21),(3.22) from (3.17), (3.20) and (2.1). Remark 3.4.

  y)dy, (3.30) ii) For y o ∈ R d , n ∈ N * the function Λ n (., y 0 ) is measurable positive. iii)For x, y o ∈ R d , we have lim n→+∞ Λ n (x, y 0 ) = K o (x, y o ).

  .37)Proof-By writing f = f +f -, we can suppose in the following that f is positive.From the relation (3.36), for y 0 ∈ R d and r > 0, we have1 m(B(y 0 , r)) B(y 0 ,r) t V k (f )(y)dy = R d f (x) µ x (B(y 0 , r))m(B(y 0 , r)) ω k (x)dx.(3.38) 

) where 1

 1 ]||y||,+∞[ is the characteristic function of the interval ]||y||, +∞[.

limz. 3 ) 4 . 1 .

 341 →+∞,z∈C δ ω k (x)ω k (z)e i(wx,z) K(wx, -iz) = v w .(4Corollary We have ∀ x ∈ R d , lim z →+∞ {ω k (x)J W (-ix, z)} = 0. (4.4) and ∀ x ∈ R d reg , lim z →+∞ J W (-ix, z) = 0.(4.5)ProofWe deduce (4.4),(4.5) from Corollary 3.3 and Theorem 4.1.

Theorem 4 . 2 .S d- 1 V. 0 (S d- 1 h

 42101 For all function h in C(R d ) we have∀ t > 0, k (h)(tξ)ω k (ξ)dσ(ξ) = Γ(γ + d 2 )d k π d/2 Γ(γ) t 2-2γ-d × B(0,t) h(y)(t 2y 2 ) γ-1 dy,(4.6) where B(0, t) is the open ball of center 0 and radius t.ProofFrom Theorem 3.1 ii) the relation (3.43) and Fubini's theorem, for almost all t ∈]0, +∞[ we haveS d-1 V k (h)(tξ)ω k (ξ)dσ(ξ) = R d [ S d-1 K(tξ, y)dσ(ξ)]h(y)dy = ct 2-2γ-d R d h(y)(t 2 -||y|| 2 ) γ-1 1 ]||y||,+∞[By using the spherical coordinates we obtainS d-1 V k (h)(tξ)ω k (ξ)dσ(ξ) = ct 2-2γ-d t (̺η)dσ(η))(t 2 -̺ 2 ) γ-1 ̺ d-1 d̺. Thus S d-1

  the relations (2.1),(1.20) we deduce that for d = 1 the analogue of the relation (4.6) is of the form

2 1 - 1 f ( x 2 + y 2 - 1 2 1 - 1 f (-x 2 + y 2 -

 2112211122 2xyt)(1 + xy x 2 + y 2 -2xyt )Φ k (t)dt + 2xyt)(1 -xy x 2 + y 2 -2xyt )Φ k (t)dt,

F ( x 2 + y 2 -

 22 2xu)(|y|u) k (|y| + u) k-1 du, (4.9)where F is the restriction of f on [0, +∞[. By using the relations (3.22),(1.22) we deduce that∀ y ∈ R\{o}, τ x f (y) = V k [F ( x 2 + y 2 -2x.)](y).

( 4 .

 4 [START_REF] Hikami | Dunkl operators formalism for quantum many-body problems associated with classical root systems[END_REF] 

  .39) Thus the function K o (., y 0 ) is locally integrable on R d with respect to the Lebesgue measure.-From (3.38) for y 0 ∈ R d and n, p ∈ N * with n < p we have There is a positive function K(., y), y ∈ R d , locally integrable on R d with respect to the Lebesgue measure, such that for all

	From the relation (3.39) and Lemma 3.4 we deduce that the sequence
	{f (x)Λ n (x, y 0 )} n∈N * satisfies the hypothesis of the other version of the mono-tonic convergence theorem (see Theorem 5.7.27 of [21] p.234-235). By ap-
	plying this theorem to the second member of (3.40), and the relation (2) of
	[20] p.168, to the first member of the same relation, we obtain when n tends
	to infinity.				
	t V k (f )(y 0 ) ≤	R d	K o (x 0 , y)f (x)dx.	(3.41)
	We deduce (3.37) from (3.39) and (3.41).	
	Theorem 3.2.				
	1 m(B(y 0 , 1 p )) B(y 0 , 1 p )	t V k (f )(y)dy ≤	R d	f (x)Λ n (x, y 0 )dx.	(3.40)

  from this relation. From the relations (2.17), (2.18) we deduce that the relation (3.42) of the dual Dunkl intertwining operator t V k on R d with the reflection group

	Example 3.2

  y,z dy.As for x ∈ R d the function K o (x, .) is integrable with respect to the Lebesgue measure on R d , then we obtain the relation (4.1) from Riemann-Lebesgue Lemma for the usual Fourier transform on R d .-Corollary 3.2 ii) and the same proof give the relation (4.2).

	Remark 4.1.
	Let C denotes the Weyl chamber attached with the positive subsystem
	R

Absolute continuity of the measure ν y

The purpose of this subsection is to prove that for all y ∈ R d the measure ν y of the integral representation (2.6) of the dual Dunkl intertwining operator t V k is absolute continuous with respect to the measure ω k (x)dx.

where K o (., y 0 ) is the function given by the relation (3.4). Proof From Theorem 2.2 and the relation (3.11) we have

We deduce (3.31) from the relation (2) of [START_REF] Rudin | Real and complex analysis[END_REF] p.168.

For x, y o ∈ R d and n ∈ N * , we consider the following sequence given by

i) The sequence {Λ n (x, y 0 )} n∈N * is decreasing.

where F is the function on [0, +∞[ given by f (x) = F (||x||). For f in E(R d ), even for d = 1 and radial for d ≥ 2, the relations (4.10), (4.11) and (3.20) implies that for all x ∈ R d we have

Theorem 4.3. For all x ∈ R d \{o} and y ∈ R d reg , there exists a positive function W(x, y, (t, t ′ )) satisfying

such that for all f in E(R d ), even for d = 1 and radial for d ≥ 2, we have

Proof

We deduce the results of this theorem from the relation (4.12), the change of variables: